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Dear Colleague, Split, 6thD6088
Sehr geehrter Herr Kollege!
M(_msieur et cher Confrere,

I should greatly apprecidte a reprint of your paper:
Sehr verbunden widre ich Ihnen fiir die Ubersendung eines Sonderdruckes Ihrer Arbeit:
Je vous serais tres obligé de U'envoi d’un tirage a part de votre publication:

ework for Default Reasoning

...................................................

sowie verwan
et des travaux

Thanking you in an
Mit bestem Dank im Voraus und vorziiglicher Hochachtung'
Je vous en remercie d’avance et vous prie, Monsieur,

d’agréer mes sentiments les plus distingués. Ing. Ivo Boré é




Dr. GUTURU PARTHASARATHY Ref. IITIECE{GP/rij 7
Asst. Professor, E & ECE Dept. Date.. P-4 Sed-t-. v eee
Indian Institute of Technology
Kharagpur-721302

India

Dear Do Pogle y

| Would appreciate receiving reprint(s) of the followjng research
material and any other relevant papers.

4. 4 el Hroave wok [

With regards,
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DE- P. 3. St

% al ,Bq DEPARTMENT OF PSYCHOLOGY

UNIVERSITY OF SHEFFIELD
3 ‘\g%% SHEFFIELD S10 2TN, ENGLAND

Dear D2 froie .

| would greatly appreciate a reprig( of your article on

[\ J%: mﬁ. Fme\E_ &1«' efNH’ oy l’\J/% .
which appeared in &1 36 (‘) \ﬁg

and any other reprints relevant to this subject.

Yours sincerely,

Bl T b



Ing . ZDENEK. MLADY
8§ K O D A, Concern Enterprise,

Nuclear Power Machinery Plant VE
snnnn 316 00 Plzeh '

Czechoslovakia

Dear Sir, % -7 /5 (/[
| would be very grateful if you could kindly send me a reprint
of your paper entitled A LOGICAL FRAMEWD'P-K FoR.
| PEFAULT REASONING | @D
which appeared in  ARTIFICIAL INTELLIGENCE , '}5\
VOL-36 , N24, AUGUST 4A88.
Thank you in advance for your kindness.

Yours very truly,
PLEASE, IF POSSIBUE FREE OF CHARGE ,

Plzefi, SEFTEHBER. 30+h , 4A88- f\n‘\.kadvg

A5 - 3901 b
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5 L. PEDDI,

: SCHDDL OF MATHEMATICS AND COMPUTER/INFORMATION SCIENCES

Dear :
| would very much appreciate receiving a reprint of the following

paper, and also reprints of other publications of yours on related topics.

Tite: ,@Mz Tt p St Bssoring.
Author (s) : _2avid | /\/60\ o
LB/ ‘Journal : JW/ W

s/ ‘27;"#7 Yours sincerely,
"’[ 7) Ny 22A
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Dear f{"‘
Yeaxsewm#t

I would be very grateful to receive reprints of your
papers

He oTrkaxuTe B ADYGESHOCTN BHCRATH OTHEAbLHME OTHNCRR
Bamxx crarelt

2 =

Aogtrraing,
4.

L WK 36, 4. ) 1705, LY

With respectful regards
C ray6oxux yBaxeHNEM

Yours sincerely,
6;7zékzl
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Dear Dr. (-Poolc,
| would greatly appreciate a reprint of your paper:

A bcgb@\ Frv anecrsile &V‘Dqlwt
Reonroriusy

with many’tha,nks. o
" Yours sincerely,



" Ha:lle, 23-'“'88

/Prol . ’Dmd (Poo(e .

“ Dear
[ should greatly ap

-eciate receiving a reprint of ycur paper entitled :

.........A.."\a(amnl mmm &s heammca

........

- which appeared in AI ....... 3‘1’(“(’“) ............................. ............. -

(and also of any qther related papers).

With many thanks for your kindness.

CL):L,L me

Yours. smcerely
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Véazeny pane kolego!

Byl bych Vam velmi zavézén za
zasldni seperstu uvedené prace
a pfipadn& daldich, které se ty-
kaji tohoto tématu:

Mon cher Colléque!

Je vous serais obligé de vouloir
bien me faire parvenir un ex-

trait de votre ouvrage et VoS . -

autres publications du meéme
sujet:

LAY

bimayse

YBaXkaeMbIif rocm. Kojueral

3apanee Bac Omaromapio 3a BO3- “°
MO:KHOCTh TOJYUYUTh OT Bac cema-

paT yKka3aHHO# DabOTHI, MM ApYy-
roit, moxOOHOM, Kacalolieics ITOM
TEMBI :

Dear Sir.

I should appreciate a reprint
of the following paper and of
other. papers you may have
published on the same subject:

T
PREE AR

Geehrter Herr Kollege!

Ich wire Ihnen fiir die Zusen-
dung eines Sonderdruckes Ihrer
folgenden Arbeit verbunden. —
Weiters erbitte ich mir Ihre
weiteren iiber dieses Thema
verfassten Arbeiten:

| Q?/7 /f567

A Logical Framewo

rk for

Ty Ty ¢

“

befault Roasoning

Artif. Intell. vole 16\," No.1,1988 SR .
b / 9

Bit bestem Dank im voraus:

Vohnik

TZ 61 - 1015 - 87

o PR LA
$ L e e EREE

Se srde¢nymi diky: Ceppaeunoe crnacn6o:

Avec remerciements: Yours very truly:
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Dear ___ [v P00/€ B

I should greatly -appreéiate receiving a reprint of your

paper entitled

I should also be glad to receive any other reprints or
preprints on the same subject which you may have
avalilable.

Thank you in advance.
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Ryszard Pierikowski
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DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF SHEFFIELD
SHEFFIELD S10 2TN, ENGLAND

) P
Dear %T /CC'Q‘L
I‘would greatly appreciate a reprint of your article on
d &W(@L 4 recisorr foc dfon bt
which appeared i\n Wu‘- \‘,MW’VGL gb’ "?c ! 0?/%

and any other reprints relevant to this subject.

7 C\ 7 ’1\
D) \ Lo Yours sincerely,
~ 2,C

P.té TP FRisk

(92
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THE UNIVERSITY SUSSEX ARTS BUILDING

A& W FALMER BRIGHTON BN1 9QN SUSSEX Telephone 606755 .
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I should be grateful if Ao'u could send me a
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0o
Dear Dr.: ZCULus, : Sh 1l.11. 197"

Sehr geehrter Herr Kollege:

I would greatly appreciate receiving a reprint of your paper
Fir die Ubersendung eines Sonderdruckes lhrer Verdffentlichung

A LOGICAL TFRAIEWORK FOR DEFAULT REASONING.

CARTIFICIAL IMTELLIGENCE, VOL. %6, 1988, NO. 1,

PP H 27"‘"’}‘9 -

8267 .f;€7 N
Thank you for your courtesy. //W"‘/ 9‘ 0]

wire ich lhnen sehr dankbar,
SOUR »BURUG < P Sincerely yours,
RO IN ZS];:a§011 S&f{];rl(\)ldc 5-p O Mit freundlichen Griissen ,
mr Darko Petti

1
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Please detach and use stu
for address

Adresse bitte hier abtrennen

mr DarkofPetti

SouR | .| UNIV. WATERLOO, DEPT. COIP.
[ AURD BAKOVIC: | o1

RO ALATNICA -RG Pro- | 710G, PROGRAMMING & ARTIFICIAL
jektiranje novih e - :

?roizvoda
50m)&AMON&QBROD INTELLIGENCE GRP, WATERLOCO,
NjegoSeva 1 i _ -

Jugoslavija ONTARIO, CANADA N2L 3Gl -




1 would greatly appreciate a reprint of your article:-

A_\_,o%&g@l._.&m@gf.h_{of._da€m& ____________
feQsSANg T2

.._-—..-...—_-—————————-—-———-—-—-—-——_-—_—---—_--———--————-——_—_—--

vhich appeared in: E\tfj‘;tg\id;l__l\zé\l\swsy_3:&29_ 3-em
Y 2 TG e ———

Thank y°“;/w~}/ Mr Steven H Holmes

s ee. /3/578 Department of Computing
JANet: Plymouth Polytechnic,
pP@843@ @ uk.ac.plym.a g{;&gugéf¢"37

Devon. PL4 8AA
Hicom: sh_holmes U.K.
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J.-L. JUAN DE MENDOZA
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Abstract

This paper presents a simple logical framework for default rea-
soning. The semantics is normal first order model theory; instead
of changing the logic, the way in which the logic is used is changed.
Rather than expecting reasoning to be just deduction (in any logic)
from our knowledge, we examine the consequences of viewing reason-
ing as a very simple case of theory formation. By treating defaults as
predefined possible hypotheses we show how this idea subsumes the
intuition behind Reiter’s default logic. Solutions to multiple extension
problems are discussed. A prototype implementation, called Theorist,
executes all of the examples given.

Introduction

There are arguments that we need to have at least the first order predicate
calculus in any representation system that is capable of reasoning about in-
dividuals and relations amongst individuals [Hayes77,Moore82,Genesereth87|.
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There has, however, been a perceived problem with using traditional logic
for commonsense reasoning, as it is monotonic (as we add new axioms to
a logic the set of logical consequences increases but people seem to re-
vise old opinions with new knowledge). There have been many proposals
for augmenting classical logic to allow it to do non-monotonic reasoning
[Reiter80,McDermott80,McCarthy86,Moore85] .

If one accepts the importance of logic (and the importance of meaning
and semantics), there seems to be two approaches to solving this problem
of non-monotonicity:

1. The first is to claim that there is obviously something wrong with
(say) classical logic and so there is a need to define a new logic to han-
dle nonmonotonic reasoning (e.g., [Reiter80,McDermottSO,MooreSS,Delgrande87]).
If one was to follow this path, then one would define a syntax, se-
mantics and a proof procedure and have theorems of soundness and
completeness for this logic.

2. An alternative is to say that there is nothing wrong with classical
logic; we should not expect reasoning to be just deduction from our
knowledge. Circumscription [McCarthy86] can be seen in this light:
defaults are implicit assumptions; we have to make these assumptions
explicit by adding the circumscription formula. From the completed
knowledge base we can then do deduction.

The proposal in this paper follows this second approach (but in a very
different way to circumscription, although some of the details on how to
use it are very similar). I argue that, rather than being a problem with
logic, nonmonotonicity is a problem of how logic is used. This follows in
the spirit of [Israel80].

There are arguments that say that a reasoning system must do some hy-
pothesising and testing. There has been much study of this, particularly in
the area of scientific theory formation [Popper59,Quine78,Hempe165,Rescher70].

Here we consider the simplest case of hypothetical reasoning, namely
where the user provides the form of possible hypotheses they are prepared to
accept in an explanation. We deliberately avoid the most difficult question
of science, namely “How can we generate the hypotheses?”.
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We show that this idea of theory formation from a fixed set of possible
hypotheses is a natural and simple characterisation of default reasoning.
Rather than defining a new logic for default reasoning, we would rather say
that it is the natural outcome of considering reasoning, not as deduction,
but as theory formation. It is logic which tells us what our theory predicts.

The thesis this paper is trying to defend is If one allows hypothetical rea-
soning then there is no need to define a new logic to handle nonmonotonic
reasoning.

We give a semantics for our proposal, and show how this can be incor-
porated into a system for default reasoning. A programming methodology
is given which, if followed, allows one to avoid many problematic multiple
extensions.

2 Semantics

The intuitive idea is, given a set of observations to be explained, a set of
facts known to be true, and a pool of possible hypotheses, to find an ex-
planation which is a set of instances of possible hypotheses used to predict
the expected observations (i.e., together with the facts implies the obser-
~ vations) and is consistent with the facts (i.e., does not predict anything
known to be false). This ezplanation should be viewed as a “scientific the-
ory” based on a restricted set of possible hypotheses. It is also useful to
view the explanation as a scenario in which some goal is true. The user
provides what is acceptable in such scenarios.

The framework is presented in terms of the first order predicate calculus,
although the idea is independent of the particular logic used. We want a
set of possible hypotheses which (together with the facts) implies the goal
and does not imply an absurdity (or something known to be false).

We assume that we are given a first-order language over a countable
alphabet [Enderton72]. By a formula we mean a well formed formula in
this language. By an instance of an formula we mean a substitution of
terms in this language for the free variables in the formula.

We assume we are given the following sets

F is a set of closed formulae, which we are treating as “facts”. We as-
sume the facts are consistent. These are intended to be statements
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which are true in the intended interpretation. More precisely these
are statements we are not prepared to give up for some application.

A is a set of formulae, called the set of possible hypotheses. Any ground
instance of these can be used as a hypothesis if it is consistent.

Definition 1 a scenario of 7,A is a set DUF where D is a set of ground
instances of elements of A such that DU ¥ is consistent.

Definition 2 If g is a closed formula then an explanation of g from ¥,A
is a scenario of ¥,A which implies g.

That is, g is explainable from 7, A if there is a set D of ground instances
of elements of A such that

FUuDkEgand
F U D is consistent

F U D is an explanation of g.
The first condition says that D predicts g, and the second says that D
does not predict something which we know is false.

Definition 3 an extension of ¥, A is the set of logical consequences of a
mazimal (with respect to set inclusion) scenario of ¥,A.

The question that arises is whether this is really a semantics. It is
certainly not as complex as other semantics; it is trying to inherit all of its
semantics from the first order predicate calculus.

Semantics is the linking of symbols and sentences in our language with
the semantic domain. The semantic domain I am interested in is the real
world. This is not a subset of the Herbrand Universe, some Kripke structure
or some other mathematical structure (though it may have some relation
to such structures), but rather a world consisting of trees and chairs and
people and diseases. It is this world that my robot must walk in, and this
world that my diagnostic program must reason about to determine what is
wrong with a patient.

The joy of classical (Tarskian) semantics is that if I choose a denotation
for the symbols in my language (i.e., for each symbol in my language I
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decide that it denotes an individual or relation in the world), and write
down in axioms statements true in the world, then all theorems of my
axioms will also be true in the world.

Defaults do not exist in the world. “Birds fly” is not a statement which
is true or not of a world; in the world there are birds, some fly and some
don’t. Defaults are assumptions used in building our theory of the world.
When we have this theory (a theory being the set of logical consequences
of a scenario), then we can talk about semantics and logical consequence.
It is these scenarios which have a semantic link to the world.

2.1 Properties of the Definitions

One interesting question is whether scenarios are finite. Note that an ex-
tension is not finite nor necessarily finitely axiomatisable (that is, there
may not be a finite D such that the extension is the logical consequence of
FuD).

The following lemma follows directly from the compactness theorem of
the first order predicate calculus [Enderton72, p. 136].

Lemma 1 Ifg is explainable from F,A then it is explainable using a finite
scenarto.

The following lemma trivially holds.
Lemma 2 (monotonicity) If D; C D, and FUD, |= a then FUD; = «

There is a very close connection between explainability and being in an
extension:

Theorem 3 o is explainable if and only if « is in some extension.

Proof: If o is explainable, there exists a scenario S which
implies @. Any extension of S, A is an extension of ¥, A which
contains a by lemma 2. One exists as S is an extension.

Conversely, suppose that a is in some extension. Then a €
Th(S)! for some scenario S. So, S is consistent and S |= g, so
S is an explanation for a. O

LIf A is a set of formulae, Th(A) is the set of logical consequences of A.
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3 Default Reasoning

Here we show that, if the possible hypotheses are defaults, the semantics
above gives an account for default reasoning.

We are considering defaults to be possible hypotheses which can be used
in an explanation. Explainability corresponds to following from the default
assumptions. A default is something that someone is prepared to accept as
part of an explanation of why something is expected to be true.

When considering possible hypotheses to be defaults, the thing to be
explained is intended to be something which we are predicting, rather than
something we are actually observing.

Example 1 Consider the statement “birds fly”. This can be expressed as
the default:

A = {bird(z) = flies(z)}

This means that, for a particular value b of z, if bird(b) can be proven, so
can flies(b), as long as the default has not been contradicted for that par-
ticular b. If bird(b) and —flies(b) are provable, the default is contradicted
for that particular b, and so cannot be used.

Suppose that, together with the above assumption, we have the facts
that emus are birds which do not fly, Polly is an emu and Tweety is a bird.
This can be expressed as:

F = { Vz emu(z) = bird(z),
Vz emu(z) = —flies(z),
emu(polly),
bird(tweety)}
flies(tweety) is explainable by
{bird(tweety) = flies(tweety)}

which is consistent with the facts. This should be translated as meaning
that we expect tweety to fly as tweety is a bird and we know birds, by default
fly, and there is no reason to believe that tweety doesn’t fly. flies(polly) is
potentially explainable by

{bird(polly) = flies(polly)}
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but this is not consistent with the facts, as its negation can be proved. So
flies(polly) is not explainable.

4 A comparison with Reiter’s logic

We make two comparisons with Reiter’s default logic [Reiter80]. In this
section we show that the above logic is a restricted case of his normal
defaults, and section 8 shows how to get the power of more general defaults
without sacrificing the simple semantics.

The default w € A is a syntactic variant of Reiter’s normal default

tMw
w

Reiter’s logic for closed defaults is defined in terms of “extensions”. In
this section we show that our own notion of an extension (definition 3) in
terms of a maximal scenario corresponds to Reiter’s definition in terms of
fixed points.

The following theorem parallels the definition of a closed extension given
in [Reiter80]. This shows that our definition of an extension in terms of
maximal theories corresponds to his definition in terms of fixed points.

Theorem 4 Suppose E is an extension of ¥, A. Then
1. FCE
2. Th(E)=E
3. If a is a ground instance of an element of A, and ~a ¢ E thena € E

Furthermore E is minimal with respect to the above three properties.

Proof: If E is an extension of of ¥, A, then E = Th(¥ U D)
for some (possibly infinite) maximal set D of ground instances
of elements of A.

1. follows since ¥ C Th(¥ U D) for any D

2. follows from the properties of Th, since Th(Th(S)) =
Th(S) for any S.
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3. Suppose a is a ground instance of a possible hypothesis,
and ~a € E. If o ¢ E, then ¥ U DU {a} is a strict
superset of U D and is consistent (as ~a & Th(E)) which
contradicts the maximality of E.

To show E = Th(¥ U D) is minimal with respect to the above
three properties, suppose E' C E, E € E'; and E' is a set
with the above three properties. There must be some ground
instance o of an element of A such that « € D and o ¢ E'
(as if every element of D is in E', we have ¥ U D C E' and so
E = Th(¥ UD) C Th(E') = E'). a is a ground instance of a
possible hypothesis, and —a ¢ E' (as E' C E and ~a ¢ E (as
a € E and E is consistent)). But a ¢ E', contradicting 3, so
no such E' can exist. [

5 Naming Defaults

One of the things that turns out to be useful is the ability to name defaults.
These will be names parameterised by the free variables in a default. There
are three reasons for wanting to do this

1. Théy make it better for printing explanations;

2. When implementing our system we need only worry about the name,
and can essentially compile out the structure of defaults. I show
(theorem 5) that no power is lost by restricting the system to very
simple forms of defaults.

3. We want to be able to explicitly talk about a default so that we can,
for example, explicitly say when it is not applicable. This is useful
for solving multiple extension problems.

If w[z] is a default with free variables £ = zi, ..., T, then we can name
w with py(z1,...,Z,) where p,, is an n-ary predicate symbol not appearing
elsewhere in the system (i.e., in ¥ and A).

In this section, we want to show how to use a name. Essentially we
make A contain only the name of defaults, and have the name implying
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the default as a fact. First, we want to show that restricting A to names
does not reduce the power, or change the semantics of the system. We then
discuss how to use the name to solve multiple extension problems. The
use of naming is very closely related to McCarthy’s abnormality predicate
[McCarthy86|, and indeed the translation is similar to that of [Grosof84]
and the use of the APPL predicate of [Brewka86].

Given ¥ and A, define

A" = {py(Z) s.th. w[z] € A}
F' = FU{VZ pu(T) = w[T] s.th. w[z] € A}

That is ', A’ is the system where all defaults are named, and they replace
the defaults in A. The following theorem shows that this can always be
done without any unexpected side effects.

Theorem 5 (Renaming) If the predicate symbols p,, do not appear in
¥, A or g, then g is explainable from # and A if and only if g is explainable
from ¥' and A'.

Proof: Suppose g is explainable from ¥ and A, then there
is some explanation D = {w[c|} where w[Z] € A, such that
FUD |= g and F U D is consistent.

Let D' = {py(€) s.th. w[é] € D}. Toshow F'UD' |= g. Suppose,
on the contrary, ¥'U D' U {—g} is true in interpretation I. Now
¥ and —g are true in I. For each w[é¢] in D, we know p,,(¢) and
Pw(T) = w[z| is true in I and so w|¢] is true in I, which makes
I a model of ¥ U D U {—g}, a contradiction to ¥ UD = g. So
no such model can exist, so 7 U D' |=g.

To show ¥ U D' is consistent, suppose I is a model of ¥ U D.
Let I' be an interpretation which is identical to I except that
pw(€) is true in I' exactly when w(¢) is true in I. Then I' is a
model for F'U D', as ¥ is true in I' (as p,(c) does not appear in
F,and ¥ is true in I), p,(Z) = w(Z] is true in I' by definition,
and D' is true in I' as D is true in I.

For the only-if half of the theorem, suppose g is explainable
from ' and A'. Then there is some D' such that U D' = ¢
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and F'UD' is consistent. Let D = {w|¢] s.th. p,(¢) € D'}. By a
dual argument to that above, #UD |= g and FUD is consistent.
O

This shows that we can work in the named system as well as in the
general system, and that we are not restricting the power of the system by
only having atoms as defaults.

6 A Programming Language for Defaults

So far we have given a semantics for default reasoning. In this section we
present a programming language for default reasoning (called Theorist),
and give a programming methodology, such that problems of undesirable
multiple extensions can be solved.

We define a very simple language, with the following declarations?:

fact w.
where w is a formula, means “Vw” € ¥.

default n.
where n is a name (predicate with only free variables as arguments)
means n € A.

default n : w.
where w is a formula, and n is a name with the same free variables
as w, means that w is a default, with name n. Formally this means
that n € A and “Vn = w”€ ¥.

explain g¢.
where ¢ is a formula, asks whether we can explain J¢g from the ¥ and
A. A consistent explanation is returned.

Within the programming language, we follow the Prolog convention
of having variables in uppercase, constants in lower case, and unbound
variables being implicitly universally quantified. We also use the symbol
“~” as material implication, read “if”.

2Yw is the universal closure of w. That is, if w is a formula with free variables ¥, then
Yw means Vo w. Similarly Jw is the existential closure of w, that is 37 w.
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Example 2 the birds flying example above could be given as:

default birdsfly(X) : flies(X) « bird(X).
fact — flies(X) «— emu(X).

fact bird(X) «— emu(X).

fact bird(tweety).

fact emu(polly).

Here the query
explain flies(tweety).

comes back with the answer “yes”, assuming {birdsfly(tweety)}. Note that
the explanation gives the assumptions used to support our prediction. It
tells us the reason we are predicting the result. We predict Tweety flies, as
Tweety is a bird, and birds fly.

The query

explain flies(polly).

comes back with the answer “no” (meaning that it could not be explained).

6.1 Programming Methodology and Multiple Exten-
sion Problems

The idea of writing programs in this system is to add generalised knowledge
as defaults, and to add knowledge that we know is true as facts. Also we
add knowledge as to when a default is not applicable (by using the name
of a default), as follows

If we have formula w which we want to use as a default, and we know
that it is not applicable under condition ¢, we can give the system,

default n : w.
fact n «— c.

We are saying that we can assume n and so infer w. This is inconsistent
(and so cannot be used) if we can prove ~w or if we prove c. The second
rule corresponds to the cancellation of inheritance axioms of [McCarthy86,
p. 93].
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Example 3 Consider the following:

default mammals-don’t-fly(X) : —flies(X) — mammal(X).
default bats-fly(X) : flies(X) « bat(X).

default dead-things-don’t-fly(X) : ~flies(X) «— dead(X).
fact mammal(X) < bat(X).

fact bat(dracula).

fact dead(dracula).

We can explain —flies(dracula) with
{mammals-don’t-fly(dracula)}

That is, we predict that Dracula does not fly because Dracula is a mammal,
and mammals, by default, don’t fly.
We can explain flies(dracula) with

{bats-fly(dracula)}

That is, we expect Dracula flies, because he is a bat, and bats typically can
fly.
We can also explain —flies(dracula) with

{dead-things-don’t-fly(dracula)}

We can predict that Dracula doesn’t fly as he is a dead bat, and dead bats
don’t fly by default.

If we don’t like the first explanation because we don’t want the first
default to be applicable to bats, we can add

fact ~mammals-don’t-fly(X) « bat(X).

Thus if we can prove X is a bat then we cannot use the default that X
doesn’t fly because X is a mammal and mammals don’t fly.
If we don’t want the second explanation for dead bats we can add

fact —bats-fly(X) — dead (X).

In the resulting system, we can not explain flies(dracula) and can only
explain —flies(dracula), for the right reason: because he is a dead bat,
and dead bats typically don’t fly.
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Example 4 This example is from [Reiter81] where it is claimed that nor-
mal defaults are not adequate to allow explicit exceptions to rules

default unemp-if-st(X) : —employed(X) « uni-student(X).
default emp-if-ad(X) : employed(X) « adult(X).

default ad-if-st(X) : adult(X) « uni-student(X).

fact uni-student(paul)

we can explain employed(paul) with

{emp-if-ad(paul), ad-if-st(paul)}

That is, we can predict that paul is employed as he is a student, and so,
by default an adult and so by default is employed.
We can explain ~employed(paul) with

{unemp-if-st(paul)}

If we don’t like the first explanation because we don’t want the emp-if-ad
default to be applicable to university students, we can add

fact —emp-if-ad(X) < uni-student(X).
This makes the first explanation inconsistent.

Note that here we are talking about predicting using defaults rather
than explaining observations. In this case it is reasonable that there are
some cases where we can explain some proposition and its negation. This
means that we have evidence for both predictions and so, on semantic
grounds none is preferred (There may, however be heuristic grounds, e.g.
probability, to prefer one explanation over the other [Neufeld87]).

Example 5 Consider, for example, the quaker-republican example of [Reiter81]

default quakers-are-pacifists(X) : pacifist(X) < quaker(X).
default republican-so-not-pacifist(X) : —pacifist(X) « republican(X).
fact —quakers-are-pacifists(X) — republican(X).

fact —republican-so-not-pacifist(X) «—quaker(X).

fact republican(ron).

fact quaker(george).

fact quaker(dick).

fact republican(dick).
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Here we can explain pacifist(george) with the explanation {quakers-are-
pacifists(george)}. We can explain —pacifist(ron) with the explanation
{republican-so-not-pacifist(ron)}. We cannot explain anything about Dick’s
pacifism.

7 Pruning the set of scenarios

The preceding section showed how many cases where it was deemed neces-
sary to have semi-normal defaults [Reiter81|, can be solved without adding
anything beyond a simple form of normal defaults. There is however, a
problem which still arises.

Example 6 ([Etherington87b]) Consider the problem of being able to
assume that some person is a suspect. If we can show they are not guilty,
then they should not be a suspect, however we should not conclude that
they are guilty just because they are a suspect. In the first case we
want some constraint on the possible scenarios, namely —guslty(X) =
—suspect(X). We want to eliminate any scenario in which someone is not
guilty and still a suspect. However we do not want this constraint as a
fact, otherwise we can conclude that someone is guilty because they are a
suspect.

It seems as though we need a way to prune the set of scenarios which is not
just adding more facts.
A similar problem arises when cancelling defaults:

Example 7 Assume we have the following Theorist fragment

default birdsfly(X) : flies(X) « bird(X).
fact —birdsfly(X) «— emu(X).

This is meant to say that we can use birdsfly(X) to predict some bird
flying, but that this is not applicable if we can prove the X is an emu.
There are, however, other predictions which can be drawn from these.

From this we may assume birds fly(b) for any b. This predicts ~emu(b).
Thus we can explain ~emu(b) for any b. One can argue that this is reason-
able, since if we can assume that birds fly and that this doesn’t apply to
emus, we are implicitly assuming that anything is not an emu.
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Using the default we can also explain —bird(b) from — flies(b). This also
could be argued to be reasonable, in much the same way as contrapositives
are sensible when doing deduction.

Example 8 Suppose that we want to have the default that if X is a person
then we can assume that they are not a diabetic. This can be expressed as

default not-diabetic-if-person(X) : ~diabetic(X) «— person(X).

This can be used to explain —diabetic(robin) from person(robin) but can
also be used to explain —~person(john) from diabetic(john).

There seems to be two points of view of what is happening here. The
first is saying that there is nothing wrong here. When you are assuming
that if something was a bird it would fly, you are implicitly assuming that it
is not an emu. For the first example there is an incorrect interpretation of
the term “guilty”; “if someone is not guilty they are not a suspect” is false
in the intended interpretation. If we instead mean “possibly guilty” then
there is no problem. The problem with example 8 is that the restriction
of person(X) on the right hand side is irrelevant to the default (if it was
not irrelevant then the conclusion that non diabetics are not human is
reasonable). In fact all of the examples of [Reiter81] and [Etherington83]
work using just the naming conventions described in the last section.

There is also the point of view which says that the above derivations
are wrong. Users of the Theorist system have found that they needed a
way to say “this default should not be applicable in this case”, without any
side effect of doing this. In this section we define the notion of constraints
which allow one to do exactly this. They have been found to be a very
useful mechanism in practice. Other systems overcome such derivations
by allowing the defaults as rules which can only be used in one direction
and have explicit exceptions [Reiter80] or by having fixed and variable
predicates [McCarthy86).

The idea is to define a set of constraints used to prune the set of scenar-
jos. They are just used to reject scenarios and cannot be used to explain
anything. Constraints are formulae with which scenarios must be consis-
tent.
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We introduce a set C of closed formulae called the set of constraints3.
The definition of scenario is revised as follows:

Definition 4 a scenario of ¥,C,A is a set DU F where D is a set of
ground instances of elements of A such that DU F U C is consistent.

The definitions of explainable and extension are correspondingly changed.
The following is a corollary of theorem 3. The proof is a paraphrase of
the proof for theorem 3.

Corollary 6 In the system with constraints o is ezplainable if and only if
o 13 tn some extension.

We extend the programming language to have the declaration:
constraint w.

where w is some formula (free variables are implicitly universally quantified)
to mean “Vw”€ C.

We can use constraints to prevent a default d being applicable under
circumstances ¢, without allowing an explanation of —¢ by giving

constraint —~d <« c.

All this constraint does is to reject any scenario which implies both d and
c¢. It has no other affect.
We can prevent the use of the contrapositive of

default d : ¢ < b.

(that is, we prevent the use of default d to derive —b from —c) by adding
the constraint

constraint —d «— —c.

If we know that c is not true, we cannot use default d. The only affect this
constraint has is to not allow any scenario which implies both —¢ and d.

Note that here ¥ U D still has first-order semantics,so that a < b and
—b «— —a are logically equivalent. We have added constraints to restrict
the circumstances in which the default can be used.

3|Gagné87| also describes such conditions, and calls these “the restrictive facts”.
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Example 9 From

default birdsfly(X) : flies(X) « bird(X).
constraint —birdsfly(X) « —flies(X).
fact bird(polly).

fact —flies(bruce).

we can explain flies(polly), but cannot explain —bird(bruce) (as we could
if the constraint was not there) or explain flies(david) (as we could if the
constraint was a fact).

Example 10 Consider example 3. We can change it to not allow con-
trapositives or conclusions that something is not a bat or is not dead, by
specifying the following:

default mammals-don’t-fly(X) : ~flies(X) «— mammal(X).
constraint ~mammals-don’t-fly(X) — flies(X).
default bats-fly(X) : flies(X) « bat(X).

constraint —bats-fly(X) «— —flies(X).

constraint ~mammals-don’t-fly(X) « bat(X).

default dead-things-don’t-fly(X) : ~flies(X) — dead(X).
constraint —dead-things-don’t-fly(X) « flies(X).
constraint —bats-fly(X) «— dead(X).

fact mammal(X) « bat(X).

fact mammal(bruce).

fact bat(paul).

fact bat(dracula).

fact dead(dracula).

Here we can conclude that Bruce cannot fly, that Paul can fly and that
Dracula cannot fly. For each of these we cannot also explain their negations.
We also claim that there are not any unexpected side effects.

8 Reiter’s General Defaults

In section 4 we showed how our defaults can be seen as a restriction of
Reiter’s normal defaults. In this section we want to argue that the extra
expressiveness of Reiter’s general defaults are not needed.
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Reiter’s general defaults are of the form:

a(z) : M Bi(%),...,M B,.(T)
(%)

(where Z is the set of free variables). This is intended to mean that if a(¢)
is proven and the §;(¢) are consistent then () can be inferred.

This can be simulated in Theorist by creating the name Mp, for each
B; and the relations Mg, (Z) which we can assume any instance of as long
as we cannot prove the corresponding instance of —3;(Z). This is done by
having for each ¢,

default Mg, ().
constraint —M;, (Z) — —6:(Z).

and the fact
fact (%) «— Mp, (%) A ...Mp, (Z) A ().
This is very close to [Reiter80] if the defaults are semi-normal. For
example, the default
o(z) : M B(E) A ()
()

can be approximated using the above technique by creating the name Mj,
with the following definitions

default Mg, (Z) : 7(z) < afT).
constraint Mg, () — —B(ZF).
constraint ~Mp,(z) «— ().

The first constraint says that we cannot use any instance of the default for
which we can prove —=3. The second prevents the use of the contrapositive
of the default.

This translation is not exact. The following is an example where they
produce different answers. I would argue that Reiter’s defaults gives unin-
tuitive results when they differ.
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Example 11 Consider the case where we have, by default, emus and os-
triches both run, and we know that Polly is either an emu or an ostrich
(they do look similar). In Reiter’s notation this can be written as

emu(polly) V ostrich(polly)
emu(X) : M runs(X)
runs(X)
ostrich(X) : M runs(X)
runs(X)
we cannot derive runs(polly) in Reiter’s system as we cannot prove the

antecedent of either default. If we consider the Theorist translation we
have

fact emu(polly) v ostrich(polly).

default emus-run(X) : runs(X) — emu(X).
constraint —emus-run(X) — -runs(X).

default ostriches-run(X) : runs(X) « ostrich(X).
constraint —ostriches-run(X) «— —-runs(X).

From this we can explain runs(polly) with
{emus-run(polly), ostriches-run(polly)}

which is consistent (even if we have emus and ostriches are disjoint classes).
Note that the use of constraints is not what is important in this example,
but rather the special status of the preconditions of Reiter’s defaults.
Note also that slight changes to the representation of the domain makes
Reiter’s system give different answers. For example, if there was a class of
big birds with short feathers, which covered both emus and ostriches, and
they, by default run, then Reiter’s system can explain that Polly runs.

The second difference is that we do not have the problems of semi-
normal defaults not having extensions [Etherington87a|. Etherington give
the following example:

tAAN-B :BA-C :CA-A
A ’ B ’ C
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Using the above translation from general defaults, this is translated into*

default manb: a.
default mbnec : b.
default mcna : c.
constraint -manb « b.
constraint -mbnc « c.
constraint -mcna < a.

Here we have three extensions, one for each case of assuming one of the
defaults. For example, we can assume manb, which allows us to predict a.
The first constraint says that we have implicitly assumed —b. The problem
with the semi-normal defaults not having an extension arises because they
have not allowed the recording of what assumptions have been implicitly
made.

Theorem 7 (Monotonicity of Defaults) Adding defaults can only in-
crease the number of things explainable, adding constraints can only de-
crease the number of things explainable.

Proof: Suppose g is explainable from ¥, A, C. Then there is
some D, a set of instances of elements of A such that FUD = ¢
and ¥ U DU C is consistent. If A C A’ then g is explainable
from ¥, A', C using the same D. If C' C C, then g is explainable
from ¥, A,C'as FUD =g and F U DU (' is consistent. [

Corollary 8 there is always an eztension if ¥ U C is consistent.

One useful case for which we can guarantee this is if

1. the explicit facts (those added with the fact declaration) are consis-
tent,

2. all of the constraints are of the form —d «— ¢ where d is a default
name, and

4Note that we don’t need the constraint that -manb «— —a as we have a «— manb as a
fact.
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3. there are no default names appearing in the explicit facts. This means
the only default names in 7 are there by virtue of being in a default
declaration.

This is because the interpretation which is the model of the explicit facts,
but with all default names false is a model of ¥ U C.

The translation of Reiter’s defaults follows this convention, and so if the
facts are consistent, there is always an extension.

Theorem 7 has consequences beyond just ensuring that we have exten-
sions. Consider the following example:

Example 12 Suppose we have a system with the defaults

A:B A:C C:-BAD
B’ C’ D

According to the semantics of [Reiter80] there is one extension contain-
ing B and C and not D. The first default forces the third default to be
inapplicable.

In our translation, we have two extensions, one containing B and C,
and the other containing C and D. The second extension is obtained by
using the third default which implicitly assumed that B is false, and so
making the first default inapplicable.

8.1 Inheritance Networks

Another interesting feature of our translation of semi-normal defaults is in
the translation of inheritance networks with exceptions [Etherington87a].
We can follow Etherington’s translations, but do the translation defined
above from semi-normal defaults into Theorist®. This is done by having
the defaults named, so that the default IS-A from A to B becomes the
declaration

default b-if-a(X) : b(X) « a(X).
constraint —b-if-a(X) — -b(X).

5We assume that the reader is familiar with the translation in [Etherington87a, p. 56).
We use only the different convention of having variables in upper case.
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the default ISN’T-A similarly has the translation

default not-b-if-a(X) : ~b(X) « a(X).
constraint —not-b-if-a(X) « b(X).

The exception links translate into into constraints. The arc from node ¢
to the arc representing the default named d (given the name in the default
above) becomes

constraint —d « c.

Here we have modular statements with each arc in the inheritance hi-
erarchy becoming a small number of rules in the default system. There
are no translated rules which depend on other arcs. This translation thus
overcomes the objections that Touretzky has to Etherington’s translation
[Etherington87a, p. 63-64].

9 Implementation

The implementation of Theorist is very simple, is closely related to the top
down default proof of [Reiter80|, and is described elsewhere [Poole87a].

To find an explanation of g, we attempt to prove g with the facts, 7,
and possible hypotheses, A, as axioms. We make D, the set of instances of
elements of A used in the proof, and make D, a grounding of D, (replacing
all free variables with unique constants). We then know

?UDll:g

We can use a complete theorem prover to prove that ¥ U CUD; is consistent,
by failing to prove it is inconsistent. In general this is undecidable, but has
not been a problem in the domains we have considered.

There is currently an interpreter for Theorist [Poole87a], based on a
complete theorem prover written in Prolog. There is also a compiler which
transforms Theorist facts, constraints and defaults into Prolog. We are
currently working on a system based on truth maintenance and dependency
directed backtracking [Doyle79,de Kleer85]. We are also building a system
which does concurrent consistency checking.
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We have avoided the problems that arise with existential and universally
quantified variables in defaults [Poole87b] by requiring that we only use
ground instances of defaults in theories.

10 Conclusion and Future Work

We have presented here a thesis that the problem of default reasoning is not
a problem with logic, but with how logic is used. Not many people would
disagree with the proposition that we need to do some sort of hypothetical
reasoning; we are investigating what can be done with a very simple form,
namely where we have the user providing the possible hypotheses they are
prepared to accept in an explanation. We have shown how the use of theory
formation, using constrained forms of hypotheses, can be used as a basis
for default reasoning.

A simple “semantics” was proposed and compared in detail to the pro-
posal of [Reiter80]. This has the advantage of simplicity, of being defined in
terms of a semantic characterisation rather than just a proof procedure, and
of not needing to change the underlying semantics to do default reasoning.

This approach gives us a neat way to examining other problems. One
of the interesting questions concerns the comparison of scenarios. That is,
determining when one scenario is “better” than another for some purpose.
[Poole85] argues that the problem of inheritance in semantic nets can be
best done by preferring the most specific theory. That is, when there is
specific knowledge and more general knowledge available, then we prefer
to use the most specific knowledge. [Goebel87] shows how the multiple
extension problem in axiomatising the frame axioms can be solved in the
Theorist framework by preferring the chronologically maximally persistent
theory. For a diagnostic system we may prefer the most likely explanation
[Neufeld87].

This theory provides the basis for the Theorist system [Poole87a], which
we are using for a variety of domains, including diagnosis, building user
models, problem solving by analogical reasoning, pronoun resolution and
diagnosis of students with learning disabilities.
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Abstract

This paper presents a simple logical framework for default rea-
soning. The semantics is normal first order model theory; instead
of changing the logic, the way in which the logic is used is changed.
Rather than expecting reasoning to be just deduction (in any logic)
from our knowledge, we examine the consequences of viewing reason-
ing as a very simple case of theory formation. By treating defaults as
predefined possible hypotheses we show how this idea subsumes the
intuition behind Reiter’s default logic. Solutions to multiple extension
problems are discussed. A prototype implementation, called Theorist,
executes all of the examples given.

1 Introduction

There are arguments that we need to have at least the first order predicate
calculus in any representation system that is capable of reasoning about in-
dividuals and relations amongst individuals [Hayes77,Moore82,Genesereth87].
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There has, however, been a perceived problem with using traditional logic
for commonsense reasoning, as it is monotonic (as we add new axioms to
a logic the set of logical consequences increases but people seem to re-
vise old opinions with new knowledge). There have been many proposals
for augmenting classical logic to allow it to do non-monotonic reasoning
[Reiter80,McDermott80,McCarthy86,Moore85].

If one accepts the importance of logic (and the importance of meaning
and semantics), there seems to be two approaches to solving this problem
of non-monotonicity:

1. The first is to claim that there is obviously something wrong with
(say) classical logic and so there is a need to define a new logic to han-
dle nonmonotonic reasoning (e.g., [Reiter80,McDermott80,Moore85,Delgrande87]).
If one was to follow this path, then one would define a syntax, se-
mantics and a proof procedure and have theorems of soundness and
completeness for this logic.

2. An alternative is to say that there is nothing wrong with classical
logic; we should not expect reasoning to be just deduction from our
knowledge. Circumscription [McCarthy86] can be seen in this light:
defaults are implicit assumptions; we have to make these assumptions
explicit by adding the circumscription formula. From the completed
knowledge base we can then do deduction.

The proposal in this paper follows this second approach (but in a very
different way to circumscription, although some of the details on how to
use it are very similar). I argue that, rather than being a problem with
logic, nonmonotonicity is a problem of how logic is used. This follows in
the spirit of [Israel80].

There are arguments that say that a reasoning system must do some hy-
pothesising and testing. There has been much study of this, particularly in
the area of scientific theory formation [Popper59,Quine78,Hempel65,Rescher70].

Here we consider the simplest case of hypothetical reasoning, namely
where the user provides the form of possible hypotheses they are prepared to
accept in an explanation. We deliberately avoid the most difficult question
of science, namely “How can we generate the hypotheses?”.
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We show that this idea of theory formation from a fixed set of possible
hypotheses is a natural and simple characterisation of default reasoning.
Rather than defining a new logic for default reasoning, we would rather say
that it is the natural outcome of considering reasoning, not as deduction,
but as theory formation. It is logic which tells us what our theory predicts.

The thesis this paper is trying to defend is If one allows hypothetical rea-
soning then there is no need to define a new logic to handle nonmonotonic
reasoning.

We give a semantics for our proposal, and show how this can be incor-
porated into a system for default reasoning. A programming methodology
is given which, if followed, allows one to avoid many problematic multiple
extensions.

2 Semantics

The intuitive idea is, given a set of observations to be explained, a set of
facts known to be true, and a pool of possible hypotheses, to find an ex-
planation which is a set of instances of possible hypotheses used to predict
the expected observations (i.e., together with the facts implies the obser-
vations) and is consistent with the facts (i.e., does not predict anything
known to be false). This ezplanation should be viewed as a “scientific the-
ory” based on a restricted set of possible hypotheses. It is also useful to
view the explanation as a scenario in which some goal is true. The user
provides what is acceptable in such scenarios.

The framework is presented in terms of the first order predicate calculus,
although the idea is independent of the particular logic used. We want a
set of possible hypotheses which (together with the facts) implies the goal
and does not imply an absurdity (or something known to be false).

We assume that we are given a first-order language over a countable
alphabet [Enderton72]. By a formula we mean a well formed formula in
this language. By an instance of an formula we mean a substitution of
terms in this language for the free variables in the formula.

We assume we are given the following sets

¥ is a set of closed formulae, which we are treating as “facts”. We as-
sume the facts are consistent. These are intended to be statements
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which are true in the intended interpretation. More precisely these
are statements we are not prepared to give up for some application.

A is a set of formulae, called the set of possible hypotheses. Any ground
instance of these can be used as a hypothesis if it is consistent.

Definition 1 a scenario of ¥, A is a set DUF where D is a set of ground
instances of elements of A such that DU F is consistent.

Definition 2 If g is a closed formula then an explanation of g from 7, A
ts a scenario of ¥,A which implies g.

That is, g is explainable from 7, A if there is a set D of ground instances
of elements of A such that

FUD |= g and
¥ U D is consistent

F U D is an explanation of g.
The first condition says that D predicts g, and the second says that D
does not predict something which we know is false.

Definition 3 an extension of ¥,A is the set of logical consequences of a
mazimal (with respect to set inclusion) scenario of ¥, A.

The question that arises is whether this is really a semantics. It is
certainly not as complex as other semantics; it is trying to inherit all of its
semantics from the first order predicate calculus.

Semantics is the linking of symbols and sentences in our language with
the semantic domain. The semantic domain I am interested in is the real
world. This is not a subset of the Herbrand Universe, some Kripke structure
or some other mathematical structure (though it may have some relation
to such structures), but rather a world consisting of trees and chairs and
people and diseases. It is this world that my robot must walk in, and this
world that my diagnostic program must reason about to determine what is
wrong with a patient.

The joy of classical (Tarskian) semantics is that if I choose a denotation
for the symbols in my language (i.e., for each symbol in my language 1
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decide that it denotes an individual or relation in the world), and write
down in axioms statements true in the world, then all theorems of my
axioms will also be true in the world.

Defaults do not exist in the world. “Birds fly” is not a statement which
is true or not of a world; in the world there are birds, some fly and some
don’t. Defaults are assumptions used in building our theory of the world.
When we have this theory (a theory being the set of logical consequences
of a scenario), then we can talk about semantics and logical consequence.
It is these scenarios which have a semantic link to the world.

2.1 Properties of the Definitions

One interesting question is whether scenarios are finite. Note that an ex-
tension is not finite nor necessarily finitely axiomatisable (that is, there
may not be a finite D such that the extension is the logical consequence of
FuD).

The following lemma follows directly from the compactness theorem of
the first order predicate calculus [Enderton72, p. 136].

Lemma 1 If g is ezplainable from ¥, A then it is ezplainable using a finite
scenario.

The following lemma trivially holds.
Lemma 2 (monotonicity) If D, € D; and FUD, E athen FUD, | a

There is a very close connection between explainability and being in an
extension:

Theorem 3 a is explainable if and only if « is in some extension.

Proof: If a is explainable, there exists a scenario S which
implies a. Any extension of S, A is an extension of ¥, A which
contains a by lemma 2. One exists as S is an extension.

Conversely, suppose that a is in some extension. Then a €
Th(S)* for some scenario S. So, S is consistent and S = ¢, so
S is an explanation for . O

Lf A is a set of formulae, Th(A) is the set of logical consequences of A.
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3 Default Reasoning

Here we show that, if the possible hypotheses are defaults, the semantics
above gives an account for default reasoning.

We are considering defaults to be possible hypotheses which can be used
in an explanation. Explainability corresponds to following from the default
assumptions. A default is something that someone is prepared to accept as
part of an explanation of why something is expected to be true.

When considering possible hypotheses to be defaults, the thing to be
explained is intended to be something which we are predicting, rather than
something we are actually observing.

Example 1 Consider the statement “birds fly”. This can be expressed as
the default:

A = {bird(z) = flies(z)}

This means that, for a particular value b of z, if bird(b) can be proven, so
can flies(b), as long as the default has not been contradicted for that par-
ticular b. If bird(b) and —flies(b) are provable, the default is contradicted
for that particular b, and so cannot be used.

Suppose that, together with the above assumption, we have the facts
that emus are birds which do not fly, Polly is an emu and Tweety is a bird.
This can be expressed as:

¥ = { Vz emu(z) = bird(z),
Vz emu(z) = —~flies(z),
emu(polly),
bird(tweety)}

flies(tweety) is explainable by
{bird(tweety) = flies(tweety)}

which is consistent with the facts. This should be translated as meaning
that we expect tweety to fly as tweety is a bird and we know birds, by default
fly, and there is no reason to believe that tweety doesn’t fly. flies(polly) is
potentially explainable by

{bird(polly) = flies(polly)}
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but this is not consistent with the facts, as its negation can be proved. So
flies(polly) is not explainable.

4 A comparison with Reiter’s logic

We make two comparisons with Reiter’s default logic [Reiter80]. In this
section we show that the above logic is a restricted case of his normal
defaults, and section 8 shows how to get the power of more general defaults
without sacrificing the simple semantics.

The default w € A is a syntactic variant of Reiter’s normal default

‘Mw
w

Reiter’s logic for closed defaults is defined in terms of “extensions”. In
this section we show that our own notion of an extension (definition 3) in
terms of a maximal scenario corresponds to Reiter’s definition in terms of
fixed points.

The following theorem parallels the definition of a closed extension given
in [Reiter80]. This shows that our definition of an extension in terms of
maximal theories corresponds to his definition in terms of fixed points.

Theorem 4 Suppose E is an extension of #,A. Then

1. 7CE
2. Th(E)=E

3. If a is a ground instance of an element of A, and —a &€ E then a € E

Furthermore E is minimal with respect to the above three properties.

Proof: If E is an extension of of ¥, A, then E = Th(¥ U D)
for some (possibly infinite) maximal set D of ground instances
of elements of A.

1. follows since # C Th(¥ U D) for any D

2. follows from the properties of Th, since Th(Th(S)) =
Th(S) for any S.
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3. Suppose a is a ground instance of a possible hypothesis,
and ~a ¢ E. If a ¢ E, then ¥ UD U {a} is a strict
superset of ¥ U D and is consistent (as ~a ¢ Th(E)) which
contradicts the maximality of E.

To show E = Th(¥ U D) is minimal with respect to the above
three properties, suppose E' C E, E € E'; and E' is a set
with the above three properties. There must be some ground
instance a of an element of A such that « € D and a ¢ E'
(as if every element of D is in E', we have ¥ U D C E' and so
E =Th(¥ UD) C Th(E') = E'). « is a ground instance of a
possible hypothesis, and ~a ¢ E' (as E' C E and —a ¢ E (as
a € E and E is consistent)). But a ¢ E', contradicting 3, so
no such E’' can exist. O

5 Naming Defaults

One of the things that turns out to be useful is the ability to name defaults.
These will be names parameterised by the free variables in a default. There
are three reasons for wanting to do this

1. They make it better for printing explanations;

2. When implementing our system we need only worry about the name,
and can essentially compile out the structure of defaults. I show
(theorem 5) that no power is lost by restricting the system to very
simple forms of defaults.

3. We want to be able to explicitly talk about a default so that we can,
for example, explicitly say when it is not applicable. This is useful
for solving multiple extension problems.

If w(z] is a default with free variables ¥ = z;,...,z,, then we can name
w with py(z,,...,z,) where p,, is an n-ary predicate symbol not appearing
elsewhere in the system (i.e., in ¥ and A). .

In this section, we want to show how to use a name. Essentially we
make A contain only the name of defaults, and have the name implying
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the default as a fact. First, we want to show that restricting A to names
does not reduce the power, or change the semantics of the system. We then
discuss how to use the name to solve multiple extension problems. The
use of naming is very closely related to McCarthy’s abnormality predicate
[McCarthy86|, and indeed the translation is similar to that of [Grosof84]
and the use of the APPL predicate of [Brewka86].

Given ¥ and A, define

A' = {p,(T) s.th. w([z] € A}

F' = FU{VZ pu(z) = w[z] s.th. w([z] € A}

That is 7', A’ is the system where all defaults are named, and they replace
the defaults in A. The following theorem shows that this can always be
done without any unexpected side effects.

Theorem 5 (Renaming) If the predicate symbols p, do not appear in
F, A or g, then g is explainable from ¥ and A if and only if ¢ is explainable
from 7' and A'.

Proof: Suppose g is explainable from ¥ and A, then there
is some explanation D = {w(¢]} where w[Z] € A, such that
FUD kg and FU D is consistent.

Let D' = {pu(c) s.th. w[¢] € D}. Toshow F'UD' |= g. Suppose,
on the contrary, ¥'U D' U {—g} is true in interpretation I. Now
F and —g are true in I. For each w(c] in D, we know p,, () and
pw(Z) = w[T] is true in I and so w(¢] is true in I, which makes
I a model of ¥ U D U {—g}, a contradiction to ¥ UD [=g. So
no such model can exist, so #UD' = g.

To show ¥' U D' is consistent, suppose I is a model of ¥ U D.
Let I' be an interpretation which is identical to I except that
pw(€) is true in I' exactly when w(c) is true in I. Then I' is a
model for F'UD', as ¥ is true in I' (as p,,(¢) does not appear in
#,and ¥ is true in I), py,(Z) = w(Z] is true in I' by definition,
and D' is true in I' as D is true in I.

For the only-if half of the theorem, suppose g is explainable
from 7' and A'. Then there is some D' such that #UD' |=¢
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and F'UD' is consistent. Let D = {w]¢] s.th. p,,(¢) € D'}. By a
dual argument to that above, FUD |= g and FUD is consistent.
O

This shows that we can work in the named system as well as in the
general system, and that we are not restricting the power of the system by
only having atoms as defaults.

6 A Programming Language for Defaults

So far we have given a semantics for default reasoning. In this section we
present a programming language for default reasoning (called Theorist),
and give a programming methodology, such that problems of undesirable
multiple extensions can be solved.

We define a very simple language, with the following declarations?:

fact w.
where w is a formula, means “Vw”¢ 7.

default n.

where n is a name (predicate with only free variables as arguments)
means n € A.

default n : w.
where w is a formula, and n is a name with the same free variables

as w, means that w is a default, with name n. Formally this means
that n € A and “Vn = w”€ 7.

explain g.
where ¢ is a formula, asks whether we can explain 3¢ from the ¥ and
A. A consistent explanation is returned.

Within the programming language, we follow the Prolog convention
of having variables in uppercase, constants in lower case, and unbound
variables being implicitly universally quantified. We also use the symbol
“—” as material implication, read “if”.

2Vw is the universal closure of w. That is, if w is a formula with free variables ¥, then
Vw means VY9 w. Similarly 3w is the existential closure of w, that is 37 w.
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Example 2 the birds flying example above could be given as:

default birdsfly(X) : flies(X) « bird(X).
fact —flies(X) < emu(X).

fact bird(X) « emu(X).

fact bird(tweety).

fact emu(polly).

Here the query
explain flies(tweety).

comes back with the answer “yes”, assuming {birdsfly(tweety)}. Note that
the explanation gives the assumptions used to support our prediction. It
tells us the reason we are predicting the result. We predict Tweety flies, as
Tweety is a bird, and birds fly.

The query

explain flies(polly).

comes back with the answer “no” (meaning that it could not be explained).

6.1 Programming Methodology and Multiple Exten-
sion Problems

The idea of writing programs in this system is to add generalised knowledge
as defaults, and to add knowledge that we know is true as facts. Also we
add knowledge as to when a default is not applicable (by using the name
of a default), as follows :

If we have formula w which we want to use as a default, and we know
that it is not applicable under condition ¢, we can give the system,

default n : w.
fact -n «— c.

We are saying that we can assume n and so infer w. This is inconsistent
(and so cannot be used) if we can prove —~w or if we prove c. The second
rule corresponds to the cancellation of inheritance axioms of [McCarthy86,
p. 93].
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Example 3 Consider the following:

default mammals-don’t-fly(X) : ~flies(X) — mammal(X).
default bats-fly(X) : flies(X) « bat(X).

default dead-things-don’t-fly(X) : ~flies(X) «— dead(X).
fact mammal(X) < bat(X).

fact bat(dracula).

fact dead(dracula).

We can explain —flies(dracula) with
{mammals-don’t-fly(dracula)}

That is, we predict that Dracula does not fly because Dracula is a mammal,
and mammals, by default, don’t fly.
We can explain flies(dracula) with

{bats-fly(dracula)}

That is, we expect Dracula flies, because he is a bat, and bats typically can
fly.
We can also explain —flies(dracula) with

{dead-things-don’t-fly(dracula)}

We can predict that Dracula doesn’t fly as he is a dead bat, and dead bats
don’t fly by default.

If we don’t like the first explanation because we don’t want the first
default to be applicable to bats, we can add

fact —‘ﬁmmmals-don’t-ﬂy(X) — bat(X).

Thus if we can prove X is a bat then we cannot use the default that X
doesn’t fly because X is a mammal and mammals don’t fly.
If we don’t want the second explanation for dead bats we can add

fact —bats-fly(X) « dead(X).

In the resulting system, we can not explain flies(dracula) and can only
explain - flies(dracula), for the right reason: because he is a dead bat,
and dead bats typically don’t fly.
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Example 4 This example is from [Reiter81] where it is claimed that nor-
mal defaults are not adequate to allow explicit exceptions to rules

default unemp-if-st(X) : ~employed(X) « uni-student(X).
default emp-if-ad(X) : employed(X) — adult(X).

default ad-if-st(X) : adult(X) « uni-student(X).

fact uni-student(paul)

we can explain employed(paul) with
{emp-if-ad(paul), ad-if-st(paul)}

That is, we can predict that paul is employed as he is a student, and so,
by default an adult and so by default is employed.
We can explain ~employed(paul) with

{unemp-if-st(paul)}

If we don’t like the first explanation because we don’t want the emp-if-ad
default to be applicable to university students, we can add

fact —emp-if-ad(X) «— uni-student(X).
This makes the first explanation inconsistent.

Note that here we are talking about predicting using defaults rather
than explaining observations. In this case it is reasonable that there are
some cases where we can explain some proposition and its negation. This
means that we have evidence for both predictions and so, on semantic
grounds none is preferred (There may, however be heuristic grounds, e.g.
probability, to prefer one explanation over the other [Neufeld87]).

Example 5 Consider, for example, the quaker-republican example of [Reiter81]

default quakers-are-pacifists(X) : pacifist(X) — quaker(X).
default republican-so-not-pacifist(X) : ~pacifist(X) « republican(X).
fact —~quakers-are-pacifists(X) «— republican(X).

fact —republican-so-not-pacifist(X) < quaker(X).

fact republican(ron).

fact quaker(george).

fact quaker(dick).

fact republican(dick).
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Here we can explain pacifist(george) with the explanation {quakers-are-
pacifists(george)}. We can explain —pacifist(ron) with the explanation
{republican-so-not-pacifist(ron)}. We cannot explain anything about Dick’s
pacifism.

7 Pruning the set of scenarios

The preceding section showed how many cases where it was deemed neces-
sary to have semi-normal defaults [Reiter81], can be solved without adding
anything beyond a simple form of normal defaults. There is however, a
problem which still arises.

Example 6 ([Etherington87b]) Consider the problem of being able to
assume that some person is a suspect. If we can show they are not guilty,
then they should not be a suspect, however we should not conclude that
they are guilty just because they are a suspect. In the first case we
want some constraint on the possible scenarios, namely —guilty(X) =
—suspect(X). We want to eliminate any scenario in which someone is not
guilty and still a suspect. However we do not want this constraint as a
fact, otherwise we can conclude that someone is guilty because they are a
suspect.

It seems as though we need a way to prune the set of scenarios which is not
just adding more facts.
A similar problem arises when cancelling defaults:

Example 7 Assume we have the following Theorist fragment

default birdsfly(X) : flies(X) « bird(X).
fact -birdsfly(X) «— emu(X).

This is meant to say that we can use birdsfly(X) to predict some bird
flying, but that this is not applicable if we can prove the X is an emu.
There are, however, other predictions which can be drawn from these.

From this we may assume birdsfly(b) for any b. This predicts ~emu(b).
Thus we can explain ~emu(b) for any b. One can argue that this is reason-
able, since if we can assume that birds fly and that this doesn’t apply to
emus, we are implicitly assuming that anything is not an emu.



A Logical Framework for Default Reasoning 15

Using the default we can also explain —~bird(b) from —flies(b). This also
could be argued to be reasonable, in much the same way as contrapositives
are sensible when doing deduction.

Example 8 Suppose that we want to have the default that if X is a person
then we can assume that they are not a diabetic. This can be expressed as

default not-diabetic-if-person(X) : ~diabetic(X) «— person(X).

This can be used to explain —~diabetic(robin) from person(robin) but can
also be used to explain —~person(john) from diabetic(john).

There seems to be two points of view of what is happening here. The
first is saying that there is nothing wrong here. When you are assuming
that if something was a bird it would fly, you are implicitly assuming that it
is not an emu. For the first example there is an incorrect interpretation of
the term “guilty”; “if someone is not guilty they are not a suspect” is false
in the intended interpretation. If we instead mean “possibly guilty” then
there is no problem. The problem with example 8 is that the restriction
of person(X) on the right hand side is irrelevant to the default (if it was
not irrelevant then the conclusion that non diabetics are not human is
reasonable). In fact all of the examples of [Reiter81] and [Etherington83]
work using just the naming conventions described in the last section.

There is also the point of view which says that the above derivations
are wrong. Users of the Theorist system have found that they needed a
way to say “this default should not be applicable in this case”, without any
side effect of doing this. In this section we define the notion of constraints
which allow one to do exactly this. They have been found to be a very
useful mechanism in practice. Other systems overcome such derivations
by allowing the defaults as rules which can only be used in one direction
and have explicit exceptions [Reiter80] or by having fixed and variable
predicates [McCarthy86).

The idea is to define a set of constraints used to prune the set of scenar-
ios. They are just used to reject scenarios and cannot be used to explain
anything. Constraints are formulae with which scenarios must be consis-
tent.
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We introduce a set C of closed formulae called the set of constraints3.
The definition of scenario is revised as follows:

Definition 4 a scenario of #,C,A is a set DU F where D is a set of
ground instances of elements of A such that DU F U C is consistent.

The definitions of explainable and extension are correspondingly changed.
The following is a corollary of theorem 3. The proof is a paraphrase of
the proof for theorem 3.

Corollary 6 In the system with constraints a is ezplainable if and only if
o is tn some eztension.

We extend the programming language to have the declaration:
constraint w.

where w is some formula (free variables are implicitly universally quantified)
to mean “Vw”e€ C.

We can use constraints to prevent a default d being applicable under
circumstances ¢, without allowing an explanation of —¢ by giving

constraint —~d « c.

All this constraint does is to reject any scenario which implies both d and
c. It has no other affect.
We can prevent the use of the contrapositive of

default d:c « b.

(that is, we prevent the use of default d to derive —b from -c) by adding
the constraint

constraint -~d «— —c.

If we know that c is not true, we cannot use default d. The only affect this
constraint has is to not allow any scenario which implies both —¢ and d.

Note that here ¥ U D still has first-order semantics,so that a — b and
—b <« —a are logically equivalent. We have added constraints to restrict
the circumstances in which the default can be used.

3|Gagné87] also describes such conditions, and calls these “the restrictive facts”.
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Example 9 From

default birdsfly(X) : flies(X) « bird(X).
constraint —birdsfly(X) « ~flies(X).
fact bird(polly).

fact - flies(bruce).

we can explain flies(polly), but cannot explain —bird(bruce) (as we could
if the constraint was not there) or explain flies(david) (as we could if the
constraint was a fact).

Example 10 Consider example 3. We can change it to not allow con-
trapositives or conclusions that something is not a bat or is not dead, by
specifying the following:

default mammals-don’t-fly(X) : —flies(X) «— mammal(X).
constraint ~mammals-don’t-fly(X) « flies(X).
default bats-fly(X) : flies(X) « bat(X).

constraint —bats-fly(X) « —flies(X).

constraint ~mammals-don’t-fly(X) «— bat(X).

default dead-things-don’t-fly(X) : ~flies(X) «— dead(X).
constraint —dead-things-don’t-fly(X) « flies(X).
constraint —bats-fly(X) — dead(X).

fact mammal(X) < bat(X).

fact mammal(bruce).

fact bat(paul).

fact bat(dracula).

fact dead(dracula).

Here we can conclude that Bruce cannot fly, that Paul can fly and that
Dracula cannot fly. For each of these we cannot also explain their negations.
We also claim that there are not any unexpected side effects.

8 Reiter’s General Defaults

In section 4 we showed how our defaults can be seen as a restriction of
Reiter’s normal defaults. In this section we want to argue that the extra
expressiveness of Reiter’s general defaults are not needed.
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Reiter’s general defaults are of the form:

a(i) : M ﬁl(f)!""M ﬂn(i)
1(Z)

(where Z is the set of free variables). This is intended to mean that if a(e)
is proven and the §;(c) are consistent then ~(¢) can be inferred.

This can be simulated in Theorist by creating the name Mg, for each
B: and the relations Mg, (Z) which we can assume any instance of as long
as we cannot prove the corresponding instance of —f;(z). This is done by
having for each ¢,

default Mg, (z).
constraint ~Mjp (Z) — —5;(%).

and the fact
fact (Z) — Mg, (Z) A ...Mp, (T) A a(T).
This is very close to [Reiter80] if the defaults are semi-normal. For

example, the default
a(Z) : M () A y(T)

7(2)
can be approximated using the above technique by creating the name Mg,
with the following definitions

default Mg, (Z) : 4(Z) <« a(z).
constraint -Mgy,(Z) — -6(T).
constraint Mg, (z) «— -(z).

The first constraint says that we cannot use any instance of the default for
which we can prove ~3. The second prevents the use of the contrapositive
of the default.

This translation is not exact. The following is an example where they
produce different answers. I would argue that Reiter’s defaults gives unin-
tuitive results when they differ.
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Example 11 Consider the case where we have, by default, emus and os-
triches both run, and we know that Polly is either an emu or an ostrich
(they do look similar). In Reiter’s notation this can be written as

emu(polly) V ostrich(polly)
emu(X) : M runs(X)
runs(X)
ostrich(X) : M runs(X)
runs(X)
we cannot derive runs(polly) in Reiter’s system as we cannot prove the

antecedent of either default. If we consider the Theorist translation we
have

fact emu(polly) V ostrich(polly).

default emus-run(X) : runs(X) «— emu(X).
constraint ~emus-run(X) <« -runs(X).

default ostriches-run(X) : runs(X) « ostrich(X).
constraint —ostriches-run(X) — —runs(X).

From this we can explain runs(polly) with
{emus-run(polly), ostriches-run(polly)}

which is consistent (even if we have emus and ostriches are disjoint classes).
Note that the use of constraints is not what is important in this example,
but rather the special status of the preconditions of Reiter’s defaults.
Note also that slight changes to the representation of the domain makes
Reiter’s system give different answers. For example, if there was a class of
big birds with short feathers, which covered both emus and ostriches, and
they, by default run, then Reiter’s system can explain that Polly runs.

The second difference is that we do not have the problems of semi-
normal defaults not having extensions [Etherington87a]. Etherington give
the following example:

tAAN-B :BA-C :CA-A
A ’ B ’ C
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Using the above translation from general defaults, this is translated into*

default manb : a.
default mbnc : b.
default mcna : c.
constraint -manb « b.
constraint -mbnc « c.
constraint -mcna « a.

Here we have three extensions, one for each case of assuming one of the
defaults. For example, we can assume manb, which allows us to predict a.
The first constraint says that we have implicitly assumed —b. The problem
with the semi-normal defaults not having an extension arises because they
have not allowed the recording of what assumptions have been implicitly
made.

Theorem 7 (Monotonicity of Defaults) Adding defaults can only in-
crease the number of things ezplainable, adding constraints can only de-
crease the number of things ezplainable.

Proof: Suppose g is explainable from 7, A, C. Then there is
some D, a set of instances of elements of A such that FUD = ¢
and ¥ U D UC is consistent. If A C A’ then g is explainable
from 7, A’, C using the same D. If C' C C, then g is explainable
from 7, A,C'as FUD =g and F U DU (' is consistent. [J

Corollary 8 there is always an eztension if ¥ U C is consistent.

One useful case for which we can guarantee this is if

1. the explicit facts (those added with the fact declaration) are consis-
tent,

2. all of the constraints are of the form —d « ¢ where d is a default
name, and

4Note that we don’t need the constraint that ~manb < —a as we have a «— manb as a
fact.
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3. there are no default names appearing in the explicit facts. This means
the only default names in ¥ are there by virtue of being in a default
declaration.

This is because the interpretation which is the model of the explicit facts,
but with all default names false is a model of ¥ UC.

The translation of Reiter’s defaults follows this convention, and so if the
facts are consistent, there is always an extension.

Theorem 7 has consequences beyond just ensuring that we have exten-
sions. Consider the following example:

Example 12 Suppose we have a system with the defaults

A:B A:C C:-BAD
B’ C’ D

According to the semantics of [Reiter80] there is one extension contain-
ing B and C and not D. The first default forces the third default to be
inapplicable.

In our translation, we have two extensions, one containing B and C,
and the other containing C and D. The second extension is obtained by
using the third default which implicitly assumed that B is false, and so
making the first default inapplicable.

8.1 Inheritance Networks

Another interesting feature of our translation of semi-normal defaults is in
the translation of inheritance networks with exceptions [Etherington87a).
We can follow Etherington’s translations, but do the translation defined
above from semi-normal defaults into Theorist’. This is done by having
the defaults named, so that the default IS-A from A to B becomes the
declaration

default b-if-a(X) : b(X) « a(X).
constraint —b-if-a(X) « -b(X).

5We assume that the reader is familiar with the translation in [Etherington87a, p. 56].
We use only the different convention of having variables in upper case.
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the default ISN’T-A similarly has the translation

default not-b-if-a(X) : ~b(X) « a(X).
constraint —not-b-if-a(X) «— b(X).

The exception links translate into into constraints. The arc from node ¢
to the arc representing the default named d (given the name in the default
above) becomes

constraint -d — c.

Here we have modular statements with each arc in the inheritance hi-
erarchy becoming a small number of rules in the default system. There
are no translated rules which depend on other arcs. This translation thus
overcomes the objections that Touretzky has to Etherington’s translation
[Etherington87a, p. 63-64].

9 Implementation

The implementation of Theorist is very simple, is closely related to the top
down default proof of [Reiter80], and is described elsewhere [Poole87a].

To find an explanation of g, we attempt to prove g with the facts, ¥,
and possible hypotheses, A, as axioms. We make D, the set of instances of
elements of A used in the proof, and make D, a grounding of D, (replacing
all free variables with unique constants). We then know

7UD1|=g

We can use a complete theorem prover to prove that ¥ U CUD; is consistent,
by failing to prove it is inconsistent. In general this is undecidable, but has
not been a problem in the domains we have considered.

There is currently an interpreter for Theorist [Poole87a], based on a
complete theorem prover written in Prolog. There is also a compiler which
transforms Theorist facts, constraints and defaults into Prolog. We are
currently working on a system based on truth maintenance and dependency
directed backtracking [Doyle79,de Kleer85]. We are also building a system
which does concurrent consistency checking.
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We have avoided the problems that arise with existential and universally
quantified variables in defaults [Poole87b] by requiring that we only use
ground instances of defaults in theories.

10 Conclusion and Future Work

We have presented here a thesis that the problem of default reasoning is not
a problem with logic, but with how logic is used. Not many people would
disagree with the proposition that we need to do some sort of hypothetical
reasoning; we are investigating what can be done with a very simple form,
namely where we have the user providing the possible hypotheses they are
prepared to accept in an explanation. We have shown how the use of theory
formation, using constrained forms of hypotheses, can be used as a basis
for default reasoning.

A simple “semantics” was proposed and compared in detail to the pro-
posal of [Reiter80]. This has the advantage of simplicity, of being defined in
terms of a semantic characterisation rather than just a proof procedure, and
of not needing to change the underlying semantics to do default reasoning.

This approach gives us a neat way to examining other problems. One
of the interesting questions concerns the comparison of scenarios. That is,
determining when one scenario is “better” than another for some purpose.
[Poole85] argues that the problem of inheritance in semantic nets can be
best done by preferring the most specific theory. That is, when there is
specific knowledge and more general knowledge available, then we prefer
to use the most specific knowledge. [Goebel87] shows how the multiple
extension problem in axiomatising the frame axioms can be solved in the
Theorist framework by preferring the chronologically maximally persistent
theory. For a diagnostic system we may prefer the most likely explanation
[Neufeld87].

This theory provides the basis for the Theorist system [Poole87a], which
we are using for a variety of domains, including diagnosis, building user
models, problem solving by analogical reasoning, pronoun resolution and
diagnosis of students with learning disabilities.
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