Akademie der Wissenschaften der DDR

Karl~WeierstraB-Iﬁstitut ’
fiir Mathematik

kristel Unger

. DDR 1086 Berlin

" MohrenstraBe 39 - PF 1304

Postkarte

CANAD

: ‘. Data Shwctus ”'? %, ‘;

ﬂcparf’Mc’nt afém/gut o

Uri versiy of Wedeloo

Pof, Derick Wood

- Waterho
Outovio NaL 364

Dear Sir,

1 w'oul,d greﬁtly, appr_eciéte a réprint of your paper
- A New Measure of Fresorbedness
~ Roughly bty - A Cenecahzaton of Jokng

I35,

and reta if you have distribution.

- Thanking you in advance, Yours sincerely

877 Druckerel ABmann . Bm 915/85 5,0 214

’W"‘r B e S NP o MW

. S?i? L L

uml\dd m on 2 thwoeopluastollows White and 3. On completion of order the Ydlowoopy . ‘4 thdlnclmulrlu quoting nquid-
- Yellow to Graphnc Services. Retain Pink will be retumed - wnh the primed) tion number and account numbw,
for your records. . material.] utomhn 451,

QR DESCRIPTION . A : o —_— ’ Co a o - Rt

‘New Measure of Presortedness ___ cs-87-58 ‘
% AEQUISITIONED " DATE REQUIRED ACCOUNT No.
FHONE
DEPT. . — eLoG. § RoOM NO. " % DELIVER
_Computer Science MC 6081E - P'CTUR

| hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise trom
.. the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the .

- University of Waterioo-from any liability which may arise from said processing or reproducing. | aiso acknowledgé that mmerlals :
processed as a result of this requlsluon are for educational use only.

JM!ER T ' NUMBER - - - NEGATIVES . QUANT!TV _ ER
- FUMAGES _ .. ____13,__....__.. OF COPRIES 150 R |

- : FiLM Sy

YPE OF PAPER STOCK Alpac IVL&—L-J-LQ‘-\-W A etetid bl

];puo Dnca_____rn g]u)veu ,_] sRISTOL [_]sunpu:u N 140M = ol ‘
"~ 10x14 Glosscdat:

APER SIZE

D“i'”,‘ o— Wli‘d IF‘-lMlllli.lJlll.n |J|||l||
o Nk Rolland Tint
| e e O e L UL
BN ' - NUMBERING ‘ S : ‘ o
leDE ___pes. K|z swoes ___ wes. FRoM . o i lF|L|M! T JL T lJl
’"ﬁuc/nmsumc T I PMT —
Yroriatine [stavumis] Punchen || wLasTic minG | IR L
Ty : : 1P T I 1
@oine/ 7x10 Saddle cutTing - _ . I-N‘sl . _.-l. - “ e J—“
e _ogdtched T [KLy 1Jl Ll

AgRiat Instructions

[PMT])) H 1L . JL__|_H L ..l-__C 0

PLATES T N -

_ |P|LIT“|]”& lﬂd s 0

(L T|/|/ /17Q_0_ﬂ 1 | L MLZZ_IM IZ A o0
',U’LITl _|__'|.1J[1 1 |JlJJ[LJ' leow

STOCK

LK 1&01\10ilW1@J| 1 1'1&_] L[ﬁl 1 |&é| _':
0 AL ool

PY CENTRE .. = QPER. o MACH. . R
L s [1 !J | | 1] M' |¢111d’i/|6ﬁgjgl
JESIGN & PASTESUP .~ . geer. .~ LABOUR L 1 1. LJ[T

L_[_]I | n{}llQ_&U_Jl ci Ll IJLI |

Ll 1 |[poya|[BmoERY
- |RLNnGl L a“n | H‘L”|
I'LHJ 1L | 1D011] "

\&ESETTING ‘. QUANTITY [RINIGl L1 l L J_lLJ l | ! JL l/lt 1 Jﬂ.B 0
._|P|0|0 0 00|OP| L1 Ul (ﬂ ! J/J_J ITIOIJ LRJNLGI L1 J_]l | ~1‘ JJLQ_&I[1 st BO‘;

{01010010|J[J ‘1._| 1 || LT LJ|T|01 LMJHSlOlOlOLQlOlJ[l ll ! J| 1. H 1 LJIBO

?;A1P|0;0|0 00, JLuv ol I7,0,1] OUTSIDE SERVICES _

. itBIth:A;rc:mk_gH 1 | 1UJ[F” L nml Eaeny \ .
: *'f‘l | T L_H 110 JL L | lJl || _ s

el L .._.ﬂn,n‘_, H..l

PARTMENT
PARTMENT
PARTMENT

ENCE BE
NGE B

E

ER
ER

|
T
T
T

U
U

|
S
OMP

3

YR

gF

o

VERSITY OF WATERLOO C

VE
VE

i

A New Measure
of Presortedness

Viadimir Estivill-Castro
Derick Wood

Data Structuring Group
Research Report CS-87-58

October 15, 1987

A New Measure of Presortedness *

Vladimir Estivill-Castro t Derick Wood!

October 19, 1987

Abstract

A new measure of presortedness is presented which we call Par(X).
It is proved that this measure is distinct from other common measures
of presortedness. We design a comparison-based sorting algorithm that
sorts arbitrary lists in O(n log n) comparisons and, moreover, is optimal
with respect to this new measure.

1 Introduction

We present a new measure of presortedness that is derived from the study
of parallel-sorting algorithms [6]. This measure which is based on the idea
of presortedness presented in [3] we call Par(X).

Intuitively, a list is p-sorted if, for each element z in the list, deleting
the p elements immediately before and after z, the resulting list has z in
its correct sorted position. We first introduce the formal definitions and
the fundamental properties of Par(X) in Section 2. Then, in Section 3,
we compare Par(X) with the measures: Inv(X), the number of inversions
in X; Runs(X), the number of runs in X; Ezc(X) = |X|-the number of
cycles in the permutation corresponding to X, and Rem(X) the minimum
number of elements that need to be removed to obtain a sorted list. It is
proved that Par(X) is not equivalent to any of these measures. We say these
functions measure presortedness since nearly sorted lists have small measure.
Mehlhorn [5], who coined the term presorted, called a list presorted if it has
a small Inv(X) value.

If m is a measure of presortedness, an m—optimal comparison-based al-
gorithm is an algorithm that sorts all lists, but performs particularly well
for lists having small m. A definition for optimality with respect to Inv(X)

*This work was supported under a Natural Sciences and Engineering Research Council

of Canada Grant No. A-5692
tData Structuring Group, Department of Computer Science, University of Waterloo,

WATERLOO, Ontario N2L 3G1, CANADA

was suggested by Mehlhorn in [5], the idea was studied empirically by Cook
and Kim [2], but the formal concept is due to Mannila [4]. An m-optimal
algorithm performs optimally with respect to a measure of presortedness if
it performs as well as any sorting algorithm that uses as input not only the
list X but also the value m(X).

We present a Par—optimal algorithm in Section 5, while Section 4 pro-
vides a lower bound for any algorithm that sorts p-sorted lists of length
n. Our algorithm is an O(nlogn) comparison-based sorting algorithm that
performs optimally with respect to the Par(X) measure.

For a list X, |X| denotes its length and for a set S, ||S|| denotes its
cardinality. Let X = (z1,...,2,) and Y = (y1,...,ym) be two lists; then
their catenation is denoted by XY and is defined as (z1,...,Zn, ¥1,---Ym)-
We denote the empty list as ().

2 Definitions

Let X = (z1,%3,...,Tn) be a list of length n of elements z; from some linear
order, that is, for all 1,5 € {1,2,...,n}, z; < z; or z; < z;. We also call X
an n-list.

Definition 2.1 X is p-sorted if and only f, for all 1,57 € {1,2,...,n},
t —J > p implies z; < ;.

The following are immediate properties of p—sortedness:

1. If a list is p-sorted, then it is (p + ¢)-sorted, for all ¢ > 0.

2. p-sorted does not imply (p — 1)-sorted.

3. A list is O-sorted if and only if it is sorted (completely sorted).

4

. The definition of being p—sorted is equivalent to:

X is p-sorted if and only if the following two conditions are satisfied:

(a) There is no j < ¢ — p such that z; < z;.
(b) There is no j > ¢ + p such that z; > z;.

Definition 2.2 Let X = (z1,...,z,) be a list. Y is said to be an m—
subsequence of X if Y = (z;(1), Zi(2), - - -» Ti(m)) and ¢ : {1,2,...,m} —
{1,2,...n} is injective and monotonically increasing. We say thatY is an
m-sublist of a n-list X #f Y = (z;, Tit1,- - ., Titm-1), for some i, 1 < ¢ <
n~—m-+1.

Igarashi and Wood [3] provided a useful equivalent local condition for
p—sortedness.

Theorem 2.1 A list X is p-sorted, if and only if, every (2p + 2)-sublist of
X is p-sorted. Moreover, for every p > 0, there is a list X satisfying the
following two conditions:

1. X is not p-sorted.
2. Every (2p+ 1)-sublist of X is p-sorted.

This theorem is the fundamental tool to prove that a given list is p—
sorted.

In the examples and the following definitions we assume without loss of
generality that the z; are nonnegative integers.
We now define the new measure of presortedness.

Definition 2.3 Let N<N denote the set of all finite sequences of nonnega-
tive integers. Define Par:N<N — N by:
Par(X) = p if and only if p = min{q|X is q-sorted }.

The following are some basic properties of Par(X):

1. For all X = (z1,72,...,2Zn), 0 < Par(X) <n-1.
2. Par(X) = 0 if and only if X is sorted.

3. For all X = (z;,z3,...,2%s), Par(X) =n—1if and only if z, < z;.

We now give the five axioms, proposed by Mannila [4], that a measure
of presortedness must satisfy and we verify that Par satisfies them.

Definition 2.4 Lettingm : N<N — N be some function, we say that m is
a measure of presortedness, if and only if:

1. If X is in ascending order, m(X) = 0.

2 If X = (z1,22,..,Zn), Y = (Y1, ¥2, ..., Yn) and z; < z; if and only if
¥ < yj foralli,je {1,2,...,n}, then m(X) = m(Y).

3. IfY is a subsequence of X then m(Y) < m(X).

4. If X <Y (that is, every element of X is no greater than every element
of Y), then m(XY) < m(X) + m(Y).

5. For all z in N, m({(z)X) < |X| + m(X).

Lemma 2.2 Par(X) is a measure of presortedness.

St

Proof: We verify the five axioms for Par(X).

1. This was already established as an immediate property.

2. Suppose Par(X) = p and Par(Y) = q and, without loss of generality,
assume p < ¢. Since Y is not (¢ — 1)-sorted, (¢ must be positive, since
0 < p < q) there exist y; and y; such that i — j = ¢, and y; > y;. This
implies z; > z; and 1 —3 = ¢ > p. Since X is p-sorted we must have z; < z;,
and we have obtained a contradiction.

3. Let X = (21,...,2,) and Y = (zy(3), .. ., Zi(s)), for some 5, 1 < s < m,
where 1:{1,...,s} — {1,...,n} is such that 1 < j < k < s implies i(j) <
(k). We wish to prove that k — j > p implies z;(;) < z;(x). Since ¢ is and
injection and monotonically increasing, k — 7 < ¢(j) —i(k). Hence,p < k—j
implies p < i(k) — i(5). In other words, z;(;) < z;(x) as desired.

4. If X <Y we claim that Par(XY) = maz{Par(X), Par(Y)}. Let
Par(X) = p, Par(Y) = q and r = maz{p, q¢}. We first prove that Par(XY) <
r. We write XY = (z1,29,...,2n4m), Where z; = z; if 1 < ¢ < n and
2 = Yi—n if n+1 <1 < n+m. We must show that if 1 — 5 > r, then z; < 2.
Suppose t — 5 > r.

Case 1: If1 < nthenj <iandzj = z; < z; = 2;, because Par(X) =p < r.

Case 2: If n+1 < j, then z; = yi—p, 2j = Yj—n, and (1—n)—(j—n) =1—j.
Thus 2; < 2;, because Par(Y)=q <r.

Case3: Ifj<nandn+1<1,then2;€ X and z; €Y. Since X <Y, we
conclude that z; < z;.

Notice that Par(XY) < maz{Par(X), Par(Y)} is enough to verify the
axiom since Par(X) > 0 and Par(Y) > 0. The reader can now verify that
Par(XY) > max{Par(X), Par(Y)}.

5. By the first basic property, Par({(z)X) < [(z)X| -1 = |X| <
Par(X) + |X|, since Par(X) > 0. u]

The concept of an optimal algorithm with respect to a measure of presort-
edness was given in a general form by Mannila [4].

Definition 2.5 Let m be a measure of presortedness, and S a sorting al-
gorithm which uses Ts(X) comparisons on input X. We say that S is op-
timal with respect to m (or m—optimal) if, for some ¢ > 0, we have, for all
X = (xl,l’z, .. .,xn):

Ts(X) < ¢ - max{|X]|,log(]|below(X, m)||)}

where below(X, m) = {r|r is a permutation of {1,...,n} and m(x(X)) <
m(X)}.

3 Comparing Measures of Presortedness
We now compare our measure of presortedness with other measures.

Definition 3.1 The number of inversions of X = (z1,...,2,) ts denoted
by Inv(X) and defined by:
Inv(X) = |{(#, 7)1 < i < j < n and z; > z;}|.

Lemma 3.1 For all X € N<VN, Par(X) < Inv(X).

Proof: Let Par(X) = p. If p =0, X is sorted, so Inv(X) = 0 and we are
done.

If p # 0, since X is not (p — 1)-sorted, there exists z; such that z;;, <
z;. Now consider the p — 1 elements z;;1, Tit2,..., Titp-1. If Ziy, with
s€{1,2,...,p— 1} is such that:

Case 1: 74, > ;. Then z;4, > z; > z;;p and 1+ p > 1 + 5, so we have an
inversion.

Case 2: z;4, < z;. Then 1 + s > 1 and we have an inversion.

For each s € {1,2,...,p — 1} we have an inversion and since z;4p < z;, we
have at least p inversions. Therefore Inv(X) > p = Par(X). O

Lemma 3.2 There is no ¢ > 0 such that, for all X € N<VN, Inv(X) <
¢+ Par(X).

Proof: Let X = (n,n—1,...,1). Then Inv(X) = n(n—1)/2 which is ©(n?)
while Par(X) =n— 1. a

Definition 3.2 The number of mazimal ascending subsequences of X is
II{f]1 £ ¢ < n and zi41 < z;}|| + 1. Since this is trivially not a measure of
presortedness, we define Runs(X) to be this value less one.

Lemma 3.3 1. There is no ¢ > 0 such that, for all X € N<N, Par(X) <
¢ - Runs(X).
2. There is no ¢ > 0 such that, for all X € N<V, Runs(X) < c-Par(X).

Proof: 1. Let X = (n,2,3,...,n—1,1) then Par(X) = n—1 but Runs(X) =
2.

2. Consider X = (2,1,4,3,6,5,...,n,n — 1) then Par(X) = 1 while
Runs(X) = |n/2]. m]

Definition 3.3 The length of the largest ascending subsequence is denoted
by Las(X) and is defined by: Las(X) = maz{t|3(1),4(2),...,i(t) | 1 <
i(1) < 4(2) < -+ < i(t) < nand z;q) < -+ < Ty(y)}. Since Las(X) # 0
when X is sorted, we define Rem(X) = |X|—Las(X). Rem(X) is a measure
of presortedness.

Lemma 3.4 For all lists X of length n, Las(X) > [n/(Par(X) + 1)].

Proof: Consider Z1, T14p+1, T1+2(p+1)s - - -» L1+k(p+1) With 1+k(p+1) < n <
1+ (k+1)(p+1). If X is p-sorted, the above sequence is in ascending order
and has length k£ + 1, but

n<l+(k+1)(p+1)

=>n<(k+1)(p+1)
= n/(p+1) < k+1< Las(X)

and Las(X) is an integer so Las(X) > [n/(p+ 1)].

Now consider the list X = (p+1,p,p-1,...,2,1,2(p+1),2(p+1)-1,..).
This list is easily seen to be p-sorted and not (p— 1)-sorted (using Theorem
2.1), so Par(X) = p and Las(X) = [n/(p+ 1)], proving that the bound of
the above Lemma is tight. On the other hand X = (p+1,1,2,3,...,p,2(p+
1),2(P+1)—P,2(P+1)"P+1,2(P+1) -p+2,.. -,2(P+1) —1,3(P+1),3(P+
1)-p,3(p+1)—p+1,...3(p+1) — 1,...) is such that Par(X) = p and
Las(X) > p|n/(p+1)]. This shows that, in general, we can have examples
with strict inequality and with Las(X) being far from [n/(Par(X)+1)]. O

Lemma 3.5 1. Rem(X) < |X|(1 - 1/(Par(X) +1)).
2. There is no ¢ > 0 such that, for all X € N<N Par(X) < ¢+ Rem(X).
3. There is no ¢ > 0 such that, for all X € N<N Rem(X) < c- Par(X).

Proof: 1. Rem(X) = |X| — Las(X) < |X| - |X|/(Par(X) +1).
2. Let X = (n,2,3,...,n—1,1) then Rem(X) = 2 while Par(X) = n—1.
3. Let X = (2,1,4,3,...) then Rem(X) = |n/2] but Par(X)=1. O

Definition 3.4 We now consider Ezc(X) = n— the number of cycles in
the permutation of {1,2,...,n} corresponding to X. Ezc is also a measure
of presortedness.

Lemma 3.6 There is no ¢ > 0 such that, for all X € N<N, Par(X) <
¢ - Ezc(X) and there is no d > 0 such that, for all X € N<VN, Ez¢(X) <

d- Par(X).

Proof: Let X = (n,2,3,...,n — 1,1) then the cycles of the permutation
are (1 n)(2)(3)...(n — 1) and then Ezc(X) = 1 while Par(X) =n—1, on
the other hand if X = (2,1,4,3,6,5,...,n,n— 1) we have Par(X) =1 but
Ezc(X) > [n/2]. a

We have compared the measure Par(X) with the most common measures
of presortedness and have shown:

Theorem 3.7 Par(X) is not equivalent to any of the measures of presort-
edness Inv(X), Rem(X), Runs(X) or Ezc(X), but, for all X € N<N:

1. Par(X) < Inv(X).
2. Rem(X) < |X|(1 - 1/(Par(X) +1)).

We conclude that Par(X) measures global presortedness and does not rec-
ognize local presortedness. In this sense Par(X) is similar to Inv(X).

4 A Lower Bound

We claim that any comparison-based algorithm that sorts any p-sorted list
of length n requires {}(max{n,nlog(p + 1)}) comparisons.
To show this, consider the set

Ai={1+i(p+1),2+i(p+1),3+i(p+1),...,p+i(p+1),p+1+i(p+1)}

Let B; be any permutation of the elements of A;. We build a list X by
catenation of the B;:

X = BoB1B; - Bjn/(p+1)|-1

It can be directly verified that X is p-sorted. Further, this shows that there
are at least (p + 1)!L*/ (P+1)] psorted lists. Hence, we conclude:

Theorem 4.1 There are at least (p+ 1)!1*/(?+1)] n-lists X with Par(X) <
p-

Therefore, any comparison-based algorithm that sorts p-sorted lists requires
at least [n/(p + 1)] log((p + 1)!) comparisons, that is, ((nlog(p + 1)) com-
parisons.

5 An Optimal Algorithm

We propose a comparison-based algorithm called the Try-to-Merge Sort
that given a list as input produces the corresponding sorted list as output.

Try-to-Merge Sort is an O(nlogn) worst-case sorting algorithm, but if the
input list X is p—sorted, then we can certify that the algorithm requires
O([log(p + 1) + 1]n) comparisons.

Letting X = (z1,...,%n) define : Xepen = (2,%4,...,%3|n/2)) and
Xodd = (21,Z3,.. ., T2[n/2))- We claim:

Theorem 5.1 1. If X is p—sorted then X,yen, and Xo44 are |p/2|-sorted.
Moreover, for every p > 1, there is a p-sorted list X such that X.yen
and X,44 are not (|p/2] — 1)-sorted.

2. For any n € N, there is a list X such that Par(X) > n and X.pen,
Xoda are both sorted.

Proof: 1. Let b and b; be elements of X,ven such that 7 —1 > [p/2]. We
must prove that b; > b;. Now bj = z3j, b; = z3;, and 25 — 2¢ = 2(j —1).
Since j — 1 is an integer, § — ¢ > p/2, and we obtain 25 — 27 > 2(p/2) = p.
Thus, since X is p-sorted, z2; > 2, that is, b; > b; . The claim for X,4q is
proved similarly.

Now, let p > 1. If p is odd, let X = (z1,23,...,Zps+3), Where z; = 2 + 1,
fori=1,2,...,p—1,2p =1, Zp41 = 2, Tpy2 = 3+p+2,and zp43 = 3+p+3,
and if p is even, let X = (zy,...,Zp44), where z; = 2+ 4, fori = 1...p,
Tpr1 =1, Tpr2 = 2, Zp43 =3+ p+ 3, and zp14 = 3 + p +4. We claim that
X is p-sorted and X,yen and Xo4q are not (|p/2] — 1)-sorted.

Suppose p is even, (p = 2k), z; and z,; belong to X,44, more precisely,
z; is the first element of X,44 and zp4y is the [(p + 1)/2] element in X,qq.
But [(p+1)/2]-1=k> |p/2] —1,and z; =2+ 1=23 > 1= zp41, hence
Xoaa is not (|p/2] — 1)-sorted. All other cases are verified similarly.

2. Finally, let n € N and define X = (zy,...Z2n43) by: z2; = ¢, for
i=1,2,...,n+1, and z3;-1 = n+2¢, fori = 1,2,...,n+ 2. It can be
verified that Par(X) = 2n + 1 and X,y.n and Xoq4q are sorted. |

We assume that we have a boolean function merge(X;, Xz, X) that attempts
to merge the two lists X; and X; as if they are sorted. If X; and X, are
sorted, it returns true and their merge is X, otherwise it returns false and
X is undefined. If the input lists X; and X, have lengths n; and n3, then
the merging algorithm has complexity O(n; + n3) .

5.1 Sorting Algorithm

Try-to-Merge Sort(X:list, n:integer) { |X|=n }
Input: X = (z1,23,...,Zn)-
Output: The elements in X in ascending order.

begin

if merge(X.ven,Xodd,X) then {successful}

else
begin
Try-to-Merge Sort(Xeven, |n/2]);
Try-to-Merge Sort(Xoad, [n/2]);
merge(Xeven ,Xodd;X)
end

end

5.2 Algorithm Correctness

We assume that the procedure that performs the merge operation is correct.

Lemma 5.2 For all lists X of length n, Try-to-Merge Sort(X,n) returns
X in sorted order.

Proof: We prove correctness by induction on the length of X.

Basis: If | X| = 0 then X = (), s0 X.ven and X,q4q are also empty, and
as merge(Xepen,Xoad,X) is true, it yields X = (). Clearly the empty list is
the correct result.

If | X| = 1 then Xo44 = X and Xegen = (), merge(Xeven,Xodd, X) is true.
It returns X,4q which is the correct result since a list of length one is always
sorted.

Induction Step: Assume that the algorithm works correctly for input
lists of length less than n, and we are given X of length n > 2. By the
assumptions about procedure merge(Xi, X3, X) we have two cases according
to whether this procedure returns true or false.

Case 1: If the merge is successful, that is, procedure merge returns true,
then it returns X is sorted order.

Case 2: If the merge is unsuccessful, the algorithm performs the ‘else’ part.
Since n > 2, n > [n/2] > |n/2] and, by the induction hypothesis, the
recursive calls to Try-to-Merge Sort return Xepen and Xodd in sorted
order. Hence, in the inner call to procedure merge they will be merged
successfully producing as output the lists of elements in X in sorted
order.

10

5.3 Algorithm Complexity

We now show that if we execute Try-to—Merge Sort(X,n), where n is the
length of the list X, then the algorithm performs O(nlogn) comparisons in
the worst case.

By a worst case analysis the number of comparisons that the algorithm
performs satisfies the recurrence relation:

T(1) =1

T(n) = 2T (n/2) + cn, for some constant ¢ > 0.

This has growth rate ©(nlogn); see [1].

5.4 Par(X)-optimality
We claim that

Lemma 5.3 If X is (2 — 1)-sorted, then the mazimum depth of recursion
of Try—to-Merge Sort(X, |X|) is 1.

Proof: We prove this claim by induction on 1.

Basis: If 1 = 0 then X is 20 — 1 = O-sorted. In this case X is sorted, so
X,pen and X,qq are sorted, therefore the merging is successful. X is returned
in ascending order and no recursive calls are made.

Induction Step: Assume that, forsomes > 1,ifk < {and X is (2k-1)-
sorted, then the depth of recursion of the call Try-to-Merge Sort(X,|X|) is
no greater than k.

Let X be (2 —1)-sorted, and suppose we call Try-to-Merge Sort(X,|X]|).
If the merging on the odd and even subsequences of X is successful, then we
produce the desired result with no recursive calls. But, in the worst case,
the merging is unsuccessful and we call recursively:

1. Try-to-Merge Sort(Xeven,||X|/2])
2. Try-to-Merge Sort(X,4d4,[|X|/2])

By Theorem 5.1 X being (2 — 1)-sorted implies that Xcyen is 1252 -
sorted, that is, Xeyen is 2071 —1/2] = (2*=! — 1)-sorted, and similarly Xo44
is (2°~! — 1)-sorted. By the induction hypothesis the above two recursive
calls have a depth of recursion of at most i — 1. Therefore the maximum
depth of recursion of the original call is bounded by :.

This completes our proof. O

Using this lemma, and the observation that at each level of recursion we
perform at most |X| comparisons, we conclude:

Theorem 5.4 If X is p-sorted and | X| = n, then Try-to-Merge Sort(X, n)
requires O([log(p + 1) + 1]n) comparisons in the worst case.

11

To prove that Try-to-Merge Sort is Par-optimal we need:

Lemma 5.5 There ts a d > 0 such that, for all n > 1 and for all m with
l1<m<n,
log(m!)
log(m) +1 < d|n/m)| —
. . _ log(3)+1

Proof: We claim that d = max{8,4 125 =1}

Let k = |n/m]|. Thenn/m < k+1,s01/n>1/m(k+1),n/m > 1, and
k/(k+1) > 1/2. Hence,

log(m!)

d|n/m] > d k log(m!) S dlog(m!)

k+1 m ~— 2 m

Case 1: m = 2.

Since d > 8, gk’;‘fnﬂ > 2 = log(m) + 1 as claimed.
Case 2: m > 3.

dlog(m!)

2 m

d d
=3 log((m!)"/™) > 4 (lo8(m) — log 2) = (d/4)(log(m) — 1)
By the definition of d and because m > 3

(6/4)tog(rm) ~ 1) 2 2EIE L og(m) - 1) > log(m) + 1

Theorem 5.6 Try—to—-Merge Sort is Par-optimal.

Proof: Let Tpars(X) be the number of comparisons that Try-to-Merge Sort
performs on input X. Since, by Lemma 4.1, there are at least (Par(X) +
1)1LX1/(Par(X)+1)] Jists in below(X, Par), we have
LIX]/(Par(X) + 1)] log((Par(X) + 1)!) < log(llbelow(X, Par)|l) (1)
and by Theorem 5.4 there is an e > 0 such that, for all X € N <N,
Toams(X) < e(log(Par(X) +1) +1)| X| (2)

Let X € N<V.

12

Case 1: Par(X) = 0. Since X is sorted if and only if Par(X) =0
log(|[below(X, Par)||) = log(|[{X}|]) = log(1) = 0

Moreover, in this case, the algorithm performs a successful merge.
Hence, there is a ¢; > 0 independent of X such that

Tpms(X) < 1| X| = c1 max{| X/, log(||below(X, Par)||)}
Case 2: Par(X) > 0. By Lemma 5.5, there is a d > 0 such that, for all X
where n = | X| and m = Par(X) +1,

| X| Jlog((Par(X) + 1))
Par(X)+1 | X|

Thus, there is a d > 0 such that

log(Par(X) +1)+1<d|

e(log(Par(X)+1)+1)|X| < e-dlmgl)_'_—l log((Par(X)+1)1) (3)

and by (1), (2), and (3), we conclude that there is a c; = e-d > 0 such

that
Tpms(X) < ca max{|X]|,log(||below(X, Par)||)}

Setting ¢ = max{cy, cz2}, we conclude that there is a ¢ > 0 such that, for all
XeN<N |

Tpoms(X) < cmax{|X|,log(]|below(X, Par)||)}

and the theorem is proved. O

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Co., Reading, Mass.,

1974.

[2] C.R. Cook and D.J. Kim. Best sorting algorithms for nearly sorted lists.
Commaunications of the ACM, 23:620-624, 1980.

[3] Y. Igarashi and D. Wood. Roughly Sorting — A Generalization of Sort-
ing. Technical Report CS-87-, Department of Computer Science, Uni-

versity of Waterloo, 1987.

[4] H. Mannila. Measures of presortedness and optimal sorting algorithms.
IEEE Transactions on Computers, C-34:318-325, 1985.

13

[5] K. Mehlhorn. Sorting presorted files. In 4th GI Conference on Theory
of Computer Science, pages 199-212, Springer-Verlag, New York, 1979.

[6] K. Sado and Y. Igarashi. A Parallel Pseudo-Merge Sort on a Mesh-
Connected Processor Array. Technical Report CS-85-3, Department of
Computer Science, Gunma University, 1985.

	

