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Abstract

Computational geometry is concerned with algorithms on geometric objects. For various
theoretical and algorithmic reasons, computational geometry has singled out a special class
of planar objects called orthogonal objects to investigate. Orthogonal objects are planar
objects whose edge orientations are restricted to be either horizontal or vertical. This thesis
demonstrates, through some example problems, that there is a much larger class of objects of
restricted orientation that are worth investigating. Restricted Orientation Geometry is the
study of the properties of planar geometric objects whose edge orientations are restricted.
More generally, it is the study of the interaction of subclasses of such restricted objects and

unrestricted planar objects.

In this thesis several results about restricted orientation convexity and visibility are
proved. It is shown how the two apparently different notions of convex sets and orthogo-
nally convex sets may be unified under restricted orientation convex sets. Further, several

otherwise unsupported observations in the literature are validated.

This thesis also makes contributions to the sub-area of modern algebra called abstract
convezity theory. A fundamental hull decomposition result follows from these contributions

and also a new proof of a decomposition result on locked transaction systems.

Finally, several algorithms for restricted objects are developed and analysed. In partic-
ular, algorithms are given to construct the convex hull, to construct restricted versions of

the kernel, and to place guards in restricted Art Galleries.
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Chapter 1

Introduction

The ezistence of analogies between central features of various theories implies the
ezistence of a general theory which underlies the particular theories and unifies

them with respect to those central features.

—E. H. Moore. Introduction to a Form of General Analysis, New Haven Math-

ematics Colloquium, Yale University Press, 1910.

1.1 Computational Geometry and Orthogonal Objects

Computational geometry, which might be defined as the study of algorithmic solutions to
geometric problems, has found application in computer graphics, VLSI design, robotics,

geographic databases, pattern recognition and computer aided design ([47]).

Within computational geometry the study of orthogonal objects has achieved a spe-
cial significance ([64]). An orthogonal object is a planar figure whose edges are parallel
to either the z or the y axis. Orthogonal objects are also known as rectilinear, isothetic,
iso-oriented, z-y or aligned objects. Not only are orthogonal objects simpler—that is, more

restricted—than arbitrary geometric objects but algorithms for geometric objects are of-
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ten more efficient, descriptively simpler, or both, when the objects are restricted to being

orthogonal.

Thus, orthogonal objects are of special interest to computational geometry both from
a theoretical and an algorithmic point of view. Indeed, a case could be made that planar
computational geometry has to some extent split into two camps—results for orthogonal
objects and everything else. As evidence, the reader should note that both of the two
textbooks in computational geometry ([47,38]) devote about one-sixth of their space to
these special objects. The ratio is about the same for the most recent ACM computational
gecmetry conference (Third Annual ACM Symposivm on Computational Geometry, ACM
Press, 1987).

This thesis examines to what extent these theoretical and algorithmic advantages are
restricted solely to orthogonal objects and whether such advantages can be extended to more
general objects. To accomplish this we ha;ve generalized the usual notions of convexity and
visibility and have establisked connections between the special case of orthogonal objects

and that of general objects. We call this sub-area Restricted Orientation Geometry.

1.2 Restricted Orientation Geometry

As mentioned previously computational geometry has been concerned, almost exclusively,
with orthogonal objects and arbitrary objects. Recently ([21,22,23,63,62]) there have been
attempts to unify these apparently disparate classes of objects by considering the geometry
of planar objects of restricted orientation, that is, planar objects whose edges have orienta-
tions that belong only to some given set of orientations, C. (The orientation of 2 line in

the plare is the smaller of the two angles the lice makes with the pesitive £ axis.)

i

The notion of O-orientation, for finite ¢, was introduced by Giiting in 1983, in [21], an
followed up in [22,28]. Giiting was concerned mainly with designing fast algorithms to find

intersections of C-oriented objects. The metric properties of O-oriented cbjects, (again for
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finite 0), were investigated, contemporaneously with the work reported in this thesis, by
Widmayer et al. [63,62]. Edelsbrunner [14] and also Culberson and Rawlins [9] considered

two related classes of restricted objects.

Restricted Orientation Geometry is the study of the geometric properties of planar ob-
Jects whose edge orientations belong to some set of orientations. More generally, it is the
study of the interaction of some subclass of such restricted objects and general objects in

the plane. In this thesis we will only be concerned with closed sets of orientations.

The reader should not be misled by the adjective “restricted” into thinking that re-
stricted orientation geometry is somehow a sub-area of Euclidean geometry, indeed we
allow any closed subset of the set of all possible orientations to be the given set of orienta-
tions. Thus restricted orientation geometry contains Euclidean geometry as a special case,
namely when the set of orientations is the set of all orientations. Of course, it also contains

orthogonal geometry as another special case.

1.3 Origins of the Dichotomy

Possibly the main reason for the distinction made between orthogonal objects and objects
of arbitrary orientation is that the major application areas of computational geometry,
namely: VLSI design; computer aided design; digital picture processing; computer vision

and computer graphics, have traditionally placed emphasis on orthogonally-oriented objects.

This traditional dependence on orthogonal objects is due, mainly, to technical restric-
tions; for example, most input/output devices and layout schemes have traditionally been
orthogonal. It may be also partly attributable to a form of mental laziness; we have been

conditioned by cartesian coordinates into thinking in terms of horizontal and vertical axes.

More recently, however, VLSI designs have allowed objects to have more than two orien-
tations and, as a result, designers are now concerned with horizontal, vertical, 45° and 135°

orientations (see Widmayer et al. [63,62]). Some companies even allow any finite number of



CHAPTER 1. INTRODUCTION ' 4

orientations. This suggests that we should investigate the geometry of objects whose edges

belong to more than the usual two, but less than all possible, orientations.

Another justification for the special study of orthogonal objects is that algorithms for
orthogonal objects are very “tight” since we can often examine all possible cases when
designing, and/or proving correct, our algorithms (see Sack [54]). It is natural to speculate
on whether we can increase the number of allowed orientations and still have fast and/or

easy to prove correct algorithms.

As in the digitization of images we ask whether efficient algorithms can be devised for
epprozimations of arbitrary objects where the original edges have been approximated by
edges chosen from some given set of orientations. The question arises: What can be said
about objects whose edges have orientations in some given set vis a vis the two extreme

cases of orthogonal objects on the one hand and arbitrary objects on the other?

The dichotomy between orthogonal and arbitrary objects is not specific to computational
geometry but can be seen in many areas of mathematics. For example, planar geometry can
be divided into the study of the (simple, well-defined, highly restricted) regular polygons
and arbitrary polygons. Once the more elementary properties of these two extremes are
exhausted (in any area) some suitable generalization is attempted that will throw light on
the objects “in between.” This thesis examines classes of objects in between orthogonal

objects and arbitrary objects with respect to the twin notions of visibility and convexity.

One of the more important questions to be answered is: is it possible to easily extend
algorithms designed for orthogonal cbjects to restricted orientation objects? For some
intersection problems Giiting [21] has shown that they can be solved in O(]O|®f(n)) time,
where O is a finite set of orientations and f(n) is the worst case time bound fer orthogonal
cbjects. This result should be contrasted with the optimal ©(f(n) + r) time solution for
the convex hull problem in chapter 7 (where C is an arbitrary closed set of crientations, r
is the number of disjoint ranges in 0, and f(n) is the worst case time bound for computing

the orthogonal convex hull).
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1.4 Convex Sets

A convez setis a set of points whose intersection with any line is either empty or connected.
Convex sets are a comparatively recent but fruitful concept in geometry having applications
in optimization, statistics, geometric number theory, functional analysis and combinatorics

(see Klee [32] and Preparata and Shamos [47]).

Computational geometry is directly concerned with such sets for several reasons. The
main reason is that the smallest convex set containing an object (the convez hull) is, typi-
cally, simpler than the object itself but is still representative of the object and so is much
used in testing for intersections among objects (see for example Preparata and Shamos [47]
and Toussaint [58]). Computer graphics and computer vision frequently use the “bounding

box” of an object for precisely the same reason.

Also, algorithms are often more efficient when restricted to convex polygons and so
polygons are often decomposed into convex subpolygons in order to answer various queries
efficiently (see Preparata and Shamos [48] and Toussaint [58]). Finally, the convex hull
was one of the first concepts studied in computational geometry (see Shamos [55]) and so

deserves especial attention.

1.4.1 Orthogonal and Restricted Orientation Convexity

A set is said to be orthogonally convez if its intersection with any horizontal or vertical line
is either empty or connected. Orthogonally convex sets were defined and investigated in
computational geometry as a byproduct of the emphasis placed on orthogonal objects. The
motivation for such a definition is that in many instances (for example, in VLSI design) the
possible lines are restricted to horizontal and vertical ones and intersection of these lines
and planar objects is the main concern. Orthogonal convexity has been defined not only in
computational geometry (see Wood [64] for further references) but also in digital picture

processing (see [53,29,6]) and in combinatorics (for example, see Bender [2]).
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It was felt that there should be a class of orthogonal objects analogous to normal convex
sets. The hope was that this class of objects would possess the same advantages as their
more general cousins (that is, normal convex sets). In particular, the notion of the hull
of an orthogonal object should be well defined and simpler, in general, than the original
object.

Several researchers attempted to define orthogonally convex sets and their associated
hulls in such a way as to retain all of the advantages of normal convex sets (see Nicholl
et al. [41], Montuno and Fournier [39] and Ottmann et al. [43]). However, in [44], it was
realized that there were several problems with the alternative definitions chosen and that
there needed to be more investigation to determine a better one. In this thesis we construct
a theory of O-conver sets which leads to a reasonable definition of orthogonal convexity
that, in a sense to be made precise later, maximizes the number of analogous properties

that can hold between convex and orthogonally convex sets.

A set is said to be O-convez if its intersection with any line whose orientation belongs
to the set of orientations O is either empty or connected. Earlier researchers worked under
the self-imposed (and unnecessary) restriction of only dealing with orthogonal sets. By
applying our definition to arbitrary sets of points we generalize all previous results and, at

the same time, verify some otherwise unsupported observations in the literature.

As it turns out, this is an advantageous generalization since the new notion completely
encompasses the old and there is no additional complexity. Indeed, the hull algorithms are
slightly simplified. The reason for the simplification is that the generalization allows the

elimination of inessential details that were specific only to orthogonal polygons.

Curiously, our investigation demonstrates that in the plane we may treat restricted-
orientation convexity just as if it were orthogonal convexity. In other words, it seems
that for convezity problems it is always possible to construct a case analysis which is only

concerned with at most two orientations at a time.
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1.4.2 Abstract Convexity and Abstract Visibility

Abstract convexity theory is a branch of Topology and Modern Algebra that is concerned
with classes of sets over some groﬁnd set which obey two weak axioms (closure under
intersection and possession of both the ground set and the empty set). Abstract convexity
theory could be said to have started with Levi’s ground-breaking paper ([35]) but has cnly

received real interest in the past four years or so (see Jamison [24] for further references).

Abstract convexity theory is a useful starting point to the work in this thesis because it
serves as useful point of vantage from which to view basic properties of convex sets. It is
quite easy to show that restricted-orientation convex sets form an abstract convexity space
and all algebraic results derivable from purely formal manipulation in abstract convexity

theory have analogues in the plane.

Unfortunately, researchers in abstract convexity have mainly limited themselves to the
study of “Helly-type” ([10]) properties (that is, mainly combinatorial properties) of such
topological spaces and not the more interesting (for computational geometry) problems of
visibility and connectedness in such topological spaces. As a result, abstract convexity
theory does not help us with questions related to visibility. In an attempt to remedy this
defect we add two simple axioms to the usual definition of a convexity space and lay the

groundwork for an abstract theory of visibility as well as convexity.

1.5 Description of this Thesis

This thesis is organized along the following lines:

Chapter 1 (this chapter) gives a statement of the general aims of the thesis and it points

to related work in this area.

Chapter 2 contains some of the definitions and conventions that are used throughout
the thesis. For the reader’s convenience, following chapter 8, there is a brief list of the

conventions followed and a glossary of terms used in this thesis.
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Chapter 3 defines the area of abstract convezity. It contains several useful lemmas and
theorems that find application in chapters 5 and 6. In particular, the Refinement Theorem
and (a weak) Decomposition Theorem are proved. This chapter ends with an application of

the results derived so far to locked transaction systems.

Chapter 4 defines the important concept of a siairline and considers some elementary
separation results. Stairlines are generalizations of lines that maintain the relevant prop-
erties that we need for our more generalized convex sets. Because they generalize lines
they are also fundamental to generalized visibility and separation. The chapter ends with

algorithms to find the intersection of two polygonal stairlines.

Chapter 5 develops the theory of restricted-orientation convex sets and contains the
proof of the Decomposition Theorem and related results. These results are used to charac-
terize the generalized convex hull and to reduce the time complexity of the hull algorithms
(given in chapter 7). Parts of this chapter, restricted to special cases, have appeared in [51].

A more comprehensive treatment has appeared as an internal report in [50].

Chapter 6 investigates a generalization of visibility based on the notion of a stairline
introduced in chapter 4. It considers several variant definitions of visibility and shows how
to unify them using some simple algebraic properties. For one of the variants of visibility
we Investigate the kernel and starshaped sets. This chapter contains algorithms to find the
kernel and to place Art Gallery guards for special kinds of polygons and under special kinds
of visibility. It concludes with two generalizations of the well-known Art Gallery Theorem
of Chvital ([7]).

Chapter 7 gives convez hull algorithms for polygons arising from the theoretical consid-
erations of chapters 4 and 5. It also gives algorithms to find the hulls of point sets. An

early version of the work reported in chapter 7 has appeared in [49].

Finally, chapter 8 concludes the thesis with a list of open problems.



Chapter 2

Definitions and Conventions

In this thesis, all objects defined and results stated are in the plane (®?).

In this chapter we give short, intuitive definitions of several basic topological, geometric,
and computational concepts. The interested reader is referred to [4] for the topologmal

[”0 17] for the geometrical, and [47] for the computational definitions.

2.1 Topological Background

If we treat the plane as a rubber sheet then any deformation of the plane without tearing or
folding is called a topological transformation. A set of points in the plane is simply connected
if it is the image of a disc under a topological transformation. A point set is path connected
if for every two points in the point set there is a continuous path in the point set joining
the two points. A neighbourhood of a point is the set of all points within some disc centered
at the point. The boundary of a point set is the set of points in the point set all of whose
neighbourhoods contain at least one point in the point set and one point not in the point
set. Notice that a point may be on the boundary of a set and not actually be in the set.
The interior of a point set is the set of all points in the point set which are not boundary

points. A set is said to be closed if it contains all of its boundary points.

9
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In this thesis connected is used to mean path connected. Also, to avoid special
cases, we define the empty set and all singleton sets to be (vacuously) con-

nected.

2.2 Sets of Points and Polygons

We shall, without further comment, dencte subsets of % by bold face capital letters
(e.g., P and Q) and elements of such sets by lower case italic letters (e.g., p and g). We
treat a subset of R? as a set of interior points together with its boundary. That is, unless

specified otherwise, all subsets of ®? we consider are assumed to be closed.

By a curve we mean the image of [0, 1] under any continuous function (see [4]). We
assume that all curves are simple (that is, they do not cross themselves, see figure 2.1).
A polygonal curve is a finite sequence of line segments such that each segment endpoint is
shared by at most two line segments. Moreover, we allow the first and/or last line segment
to be rays (that is, to extend to infinity). We assume that all polygonal curves are simple

(see figure 2.2).

Figure 2.1: Simple and Non-Simple Curves

A closed polygonal curve is a finite sequence of line segments such that each segment
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Figure 2.2: Simple and Non-Simple Polygonal Curves

endpoint is shared by exactly two line segments. A polygon is a connected region of the plane
which is bounded by a closed polygonal curve. Note that a polygon is not necessarily simply
connected (that is, the topological image of the unit disc) since line segments making up its
boundary may cross each other at points other than their endpoints and the closed polygonal
curve may be disconnected—that is, the polygon may contain holes (see ﬁgure‘ 2.3). A
polygon is simple if it is simply connected. All polygons and polygonal curves discussed
in this thesis are simple unless explicitly stated otherwise. We assume that polygons are
described as a list of vertices in clockwise order where no three consecutive vertices are
collinear. It is common to treat polygons both as regions of the plane and as polygonal
curves (that is, the boundary of such a region) ([47]). We will follow this convention

wherever it does not lead to confusion.

2.3 Ranges

We use the convention that a square bracket (“[” or “]”) bracketing a range on one endpoint
implies that the endpoint is included in the range and a parenthesis (“(* or “)”) implies

that the endpoint is excluded. So, the range “[fy,62)” is half-open.
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(D 2l

Figure 2.3: Simple and Non-Simple Polygons

We use-angle brackets (“(” or “)”) when we wish to make statements that apply whether
one or both of the endpoints are included. Thus, for example, any statement involving the
range “[f1,8,)” applies whether 93 is or is not included in the range, that is, whether the

range is closed or half-open.

2.4 Sets of Orientations

The orientation of a line is the smaller of the two possible angles it makes with the positive
z-axis (see figure 2.4). For the purposes of this thesis, all orientations are assumed to
be mapped into the range [0°,180°) and we assume that 0° is identified with 180°. This
identification has the technical corollary that the set of orientations [0°, §;] U [42,180°) is

connected.

The symbol O, with or without subscripts, is used to refer to a {possibly empty) closed

set of orientations, that is:
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Figure 2.4: The Orientation of A Line

e O C[0°,180°) and

e O consists of a set of closed disjoint ranges.

For example, C may be the set 0 = {0°,05,05} U{0 |9, <9< 8:}u{0]|8:3<0< 04}
where each set is disjoint and 0° < §; < 180° for all 1 < ¢ < 4.

For conciseness, we abuse set notation and abbreviate the description of O by listing its
(maximal) ranges within braces unless O consists of one range in which case we write the
range with no surrounding braces. For example, we describe the above set of orientations
as {0°, [01, 03], (93, 04], 85, 06}, where it is understood that 0° < 8; < 83 < 03 < 0y < 05 <

8¢ < 180°, but the set of orientations {6 | 8; < 8 < 8.} is written as (61, 02).

Since O is a subset of an ordered set and each range is disjoint, the nezt range in O
after a given range is well-defined (the successor of the last range is the first range). In the

above example, [0, 02] is the next range after the range 0°(= [0°,0°]).

The range (0;,0z) is said to be O-free if O N (81,02) = @. Observe that, if a range is
empty, then it is O-free. The range (8y,0,) is said to be a mazimal O-free range if it is

O-free and it is not a proper subset of any other O-free range. In the above example the
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maximal O-free ranges are (0°,6), (92, 9s), (64, 9s), (9s,9s) and (ds, 180°).

A collection of lines, line segments or rays is said to be O-oriented if the set of orientations
of the elements of the collection is 2 subset of 0. Thus we speak of “O-lines,” “O-line
segments,” “QO-rays,” “O-polygonal curves” and “0O-poivgons” to mean O-oriented lines,

line segments, rays, pclygonal curves and polygons.

2.5 The Orthogonal Transformation

For any collection of lines some of which have one of two orientations 4; and #; {0° < §; <
fs < 180°) we may rotate the collection until the #; lines are horizontal. Thus assume
without loss of generality that we are given a collection of lines each of which is either
horizontal or has crientation 4 (0° < § < 180°).
The transformation
sind 0
—cosf 1
maps all horizontal lines to horizontal lines and maps all §-lines {0° < # < 180°) to vertical
lines. Since the transformation is affine (see Gans [17]) all incidences are preserved and

none are introduced.

T is said to be the orthogonal transformation. The existence of T implies that any
geometric problem for lines of two orientations which is not distance related can be trans-
formed into a similar problem for orthogonal lines. Thus, when faced with a collection
of lines, line segments and rays, we may, without loss of generalily, assume that any two

distinct orientations are orthogonal.

2.6 Lines, Line Segments and Halfplanes

For two distinct peints p and ¢, we use the notation Zlp, q| to mean the line passing threugh

them and, simiiarly, the notation £S{p,q) toc mean the (open, half-open or closed) line
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segment with endpoints p and q. As with endpoints of ranges we use the convention that
a square bracket implies closure at that endpoint, a parenthesis implies non-closure at that
endpoint, and an angle bracket implies either. We use the notation L[, p] to mean the line

of orientation # passing through the point p.

We use the notation ¥ (£, p| to mean the (open or closed) halfplane bounded by the line
L that includes the point p. Again, we use ¥ (£, p] (respectively, ¥[L, p]) if the halfplane is
open (closed).

We also use the notation ©(L) (where L is a line, line segment or ray) to mean the
orientation of £.! If ©(L) & O, then by the mazimal O-free range of £ we mean the unique
maximal O-free range which contains ©(Z). If ©(L) € O, then £’s maximal O-free range

is empty.

As noted in the previous section any collection of lines, line segments or rays of exactly
two orientations can be mapped bijectively to another collection having the same incidence

structure as the first but with two completely different orientations.

When considering a particular £ and O where ©(Z) ¢A O and O has two or

more orientations, we assume, for ease of exposition, that (0°,90°) is £’s maximal

QO-free range.

2.7 Monotone, Convex and Starshaped Sets

P is said to be monotone with respect to a line £ if for every line £; orthogonal to £ the
intersection of P and £ is either empty, a point or a line segment (the figures in figure 2.5

are monotone with respect to the z axis).

P is said to be convez if for every line £ the intersection of P and £ is either empty,

!This notation conflicts with the usual convention used to state optimality of algorithms (see the section
on order notation), however, this should cause no confusion as it should be clear from the context which

meaning of “©” is being used.
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Figure 2.5: A Monotone Polygonal Curve and a Monotone Polygon

a point or a line segment. As we have defined the empty set and all singleton sets to be
connected, we simplify this definition to: P is said to be convex ifv£, PnL isconnected.
Alternately, P is convex if Vp,g € P, LS[p,¢| € P. I P is convex then P is monotcne with

respect to every line L.

The smallest convex set containing P is said to be the convez hull of P and is denoted

hull(P) (figure 2.6 shows the convex hull of the dashed line polygon).

Figure 2.8: The Convex Hull of A Polygon

A line [ is said to separate two sets P and Q if P and Q lie wholly in separate halfplanes
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bounded by L. L is a line of support of P if L intersects P and P lies wholly in one of the
two halfplanes defined by £. A point p in P is an eztremal point of P if there is a line of
support of P through p. If P is convex then every point on P’s boundary is an extremal
point of P.

Apoint pin P is éaid to see a point ¢ in P if LS[p,q] C P. P is said to be starshaped
if there is a point in P which sees every point in the set, that is, P is starshaped if dpeP
such that Vg € P LS([p,q] C P. The set of all points that see every point in P is called the
kernel of P. If P is convex then P is starshaped and the kernel of P is P itself.

Figure 2.7: Convex and Starshaped Polygons

2.8 Order Notation

For two positive functions f and ¢

e g(n) = O(f(n)) if there exists positive constants ¢ and ng with g(n) < c¢f(n), Yn>

no.
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o g(n) = Q(f(n)) if there exists positive constants ¢ and ng with g(n) > ¢f(n), Vn >
ng.

® g(n) = ©(f(n)) if there exists positive constants ¢;,¢s and ng with ¢; < g(n) <
czf(n), Vn 2 no.

* g(n) = o(f(n)) if limp—co g(n)/f(n} = 0.

2.9 Models of Computation

In this thesis we adopt the following two models to demonstrate upper and lower bounds

on various problems.

For upper bounds we use a modification of the standard rapdom-access machine (RAM)
model of computation (see [1]) called the real RAM model. Besides the standard attributes
of a RAM the real RAM has the following extra capabilities:

1. Each memory location is capable of holding a single real number.

2. A single arithmetic operation (+, —, X, /); a comparisen between two reals; a single
k** root, k** power, or trigonometric operation; and a single indirect memory address

each cost unit time.
For lower bounds we use the algebraic decision tree model of computation (see [11])
which may be described as follows:

An algebraic decision tree on a set of variables {zj,...,2,} is a finite, loop-iree binary

tree program with statements Ly,..., L, of the form:

1. Compute y := f{z1,...,2Zn); if y = O then goto L; else goto L;. (Here, f is an

algebraic function).

2. Halt and output ‘YES’.
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3. Halt and output ‘NO’.

It has been shown that algebraic decision trees and real RAMs behave identically for a
wide class of problems ([11]). This class includes the prc}blems discussed in this thesis.

Within the algebraic decision tree model the following problem has been shown ([11])

to take Q(nlgn) time on inputs of size n:

The Element Uniqueness Problem: Given n real numbers decide whether any two are

equal.

We will use this problem and its lower bound to establish lower bounds on two problems
in this thesis.



Chapter 3

Abstract Convexity

A convez set is a set of points whose intersection with any line is connected. An orthog-
- onally convez set is a set of points whose intersection with any horizontal or vertical line
is connected. Given a set of orientations 0 a set of points is said to be 0-convez if the
intersection of the set with any {-line is connected. Clearly this definition includes both
of the above definitions as special cases. In this chapter we investigate an abstraction of
convex sets (known as an abstract convezity space) which includes O-convex sets as a special
case. We show that classes of abstract convexity spaces obey a (weak) decomposition result
(theorem 3.4.2) and we apply this result to a problem in locked transaction systems. A

strengthened form of this decomposition result also finds application in chapter 5.

3.1 Convexity Spaces

Abstract convexity theory is concerned with collections of subsets of a set which obey two
weak axioms. Such a collection of sets has been variously called a convezity space ([35}),
converity structure ([56]), alignment ([24]), or algebraic closure system ({8]). We shall use
the term “convexity space” since we are more interested in the geometry, as opposed to the

algebra, of such a collection. A convexity space, in the sense we use it here, is intended fo

20
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be an abstraction of the more essential properties of convex sets in R".

Definition: Given a set, §, and a family, C, of subsets of $ the structure (8,C) is said to be

a convezity space if

1. 3,8 €C and

2.¥CcC, NCcec,

where (C = Nxec X.

$ is called the groundset of the convexity space and any element of the family C is said
to be C-convez. The interpretation of the family C is that it is the set of all convex sets over
some space, where we have deferred the operational question of what we mean by convexity.

The dominant characteristic of convex sets is taken to be closure under Intersection.

Definition: Given a convexity space (S, C) we define the associated hull operator, C-hull, as
follows:

YPCS, ChullP)=(KQ|PSQ A Qe(}

It is straightforward to show that C-hull(P) exists, is unique and is the smallest C-convex

set which contains P.

3.2 Example Convexity Spaces

Here are some example convexity spaces: -

1. The trivial convezity space (S,{D, S}). In this convexity space there are only two

convex sets—@ and S—thus the hull of any non-empty subset of § is § itself.
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2. The complete convezity space (S, P(S)) where P(S) is the powerset of §. In this
convexity space every set is its own hull, or to put it another way, all subsets of § are

convex since VP C §, P € P(S) and so

P(S)-hullP)={QIPSQ A Qe P(S)}=P.

3. The partition convezity space (S,{D,8} U {S; | { € I}) where the §;’s partition §.
That is, UiesSi = § and ¥i,j €I, i#j=> $n$;=0.
As a special case we have the point convezity space ($,{9, S} U {{s}|s € §}).
As this example shows the points (elements) of § are not necessarily C-convex.
4. (8§, T(S)) where S is the complete graph on n ncdes and T(S) is the set of all
 transitively (or reflexively or both) closed subgraphs of .

This convexity space is usually expressed in terms of relations. For example, if R is a

relation then the transitive closure of R is the smallest relation R+ such that:
® RC Rt and

e if (a,b) € RT and (b,¢) € R then (a,c) € R*.

We now show that, for any set of orientations O, the set of all O-convex sets over the

groundset R? forms an abstract convexity space.
Lemma 3.2.1 For any set of orientations O, if P is convez then P is 0 -convez.

Proof: If 0 is empty then, vacuocusly, all sets are 0-convex. Suppese that O is non-empty.

Since convex sets are by definition sets whose intersection with any line is connected then

they are @ fortior: O-convex for any 0. =

The following sets are convex, and hence (-convex for any O: the empty set, R? and,

any point, line, line segment, ray or halfplane in ®°.
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Lemma 3.2.2 For any set of orientations O, if C is a non-empty collection of O-convez

sets, then N C is O-convez.

Proof: The result is vacuously true if O is empty since all sets are @-convex. Assume that O
is non-empty. If there are no two points in (] C which lie on an O-line then the intersection
of any O-line and (C is either empty or a single point and such sets are defined to be
connected. On the other hand, if there are two points in ()¢ which lie on an O-line then
they belong to each member of C. Since each member is O-convex, the segment joining

such a pair is in each member of C and so is in (JC. Hence | is O-convex. =

THEOREM 3.2.1 For any set of orientations O, let C O be the set of all O-convez sets in
R

Then (®?,C() is a convezity space.

Proof: (1) @ and R? are both convex sets and every convex set is O-convex for each O
(lemma 3.2.1), thus @,R? € Cy. (2) Cp is closed under intersection (lemma 3.2.2). Thus,

every choice of O gives rise to a convexity space. m

3.3 Basic Results

The results stated in the following theorem are well-known in abstract convexity theory

(see Kay and Womble [27]).

THEOREM 3.3.1 Given a convezity space (S,C); then VP,QC §

1. C-hull(P) € C;

2. P C C-hull(P);
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3. C-hull(P) =P + P e(;
4. P C Q=> C-huli(P) C C-hull{Q);

5. C-hull(C-hull(P)) = C-hull(P).

In topology any operator which has properties (2), (4) and (5) is known as a closure
operator ([13]). Although we do not do it here it is possible to show that a closure operator
induces a convexity space. That is, given a set § and a closure operater C, the set of all

C-closed sets over § is a convexity space.

3.4( The Refinement Theorem

Part of the aim of this thesis is to elucidate the geometry of families of convex sets each
convex with respect to a particular set of orientations 0. Each choice of O generates a
different set of “convex” sets. Thus it is natural for us to consider famz‘lz’esv of convexity
spaces over a fixed groundset $. In the Refinement Theorem (theorem 3.4.2) we show that
the union of several hulls of a set, where each hull is formed in a distinct convexity space, is a
subset of a “composed” hull formed from the separate hulls, and, the composed hull is in turn
a subset of the hull with respect to the intersection of the different convexity spaces. In the
Decomposition Theorem (theorem 3.4.3) we specialize the refinement theorem to convexity
spaces which act as if they were independent of each other (so called, invariant convexity
spaces). The decomposition theorem is then applied to a problem on locked transaction

systems.

Definition: Let (§,C;1) and (§, C2) be two convexity spaces defined on the groundset S. Then
the space (§,C3) is said to be a refinement of the space (§,Cy1) if C1 € Ca. Alternatively,

(8,C1) is said to be coarser than (S, Cs). Intuitively, any Cy-convex set is Ca-convex.

Notice that in the example convexity spaces given previously the complete convexity

space is a refinement of the trivial convexity space. Indeed, the complete convexity space is
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a refinement of all convexity spaces over § and the trivial convexity space is coarser than

any other convexity space over §.

Definition: Let (§,C;) and (S, C2) be two convexity spaces defined on the groundset §. We
use the notation C; A C2 to represent the subset of C; produced by composing the two hull

operators. That is,
CiACe= {Crhull(Cz—hull(P)) |PC S}

Observe that we may simplify this definition to

C1AC2={C1-hull(P) | P € C3}

The following example shows that the composition of two convexity spaces is not nec-

essarily a convexity space:

Let § = {ay b, c}; C1= {Q, S, {aa c}) {ba c}’ {c}}; Ce = {Q, S, {a}: {b}}l then C; A C2 =
(9, S,{a,c},{d,c}}. But C1AC; isnot a convexity space since {a,c}N{b,c} = {c} & C1ACs.

Although the composition of two convexity spaces is not necessarily a convexity space
we can extend the notion of a hull operator to such families of sets as follows: Given a
family of subsets C of S and a set P C §, the C-hull of P is the intersection of all sets in ¢
which contain P. Note that if (§,C) is not a convexity space, the hull of a set may not be
in C. Furthermore, the C-hull of P is not defined if P is not in at least one set in C.

Definition: Let (§,C1) and (8, C2) be two convexity spaces defined on the groundset §. We
use the notation (Cy A C2)-hull to represent the composition of the two C-hull operators.
That is, (C1AC2)-hull(P) = C1-hull(C2-hull(P)). Note that for all P C §, (C1AC2)-hull(P)
i1 well-defined.

The following example shows that hull operators do not commute under composition:
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Let § = {a,d,c}; C1 = {D, S,{a}}; C2 = {B, §,{a,b}}. Then (C1 A C3)-hull({a}) = $
but (C2 A C1)-hull({a}) = {a, b}.

The following theorem establishes a weak form of commutativity of composed hull op-
erators. We show here that two hull operators commute if one of the convexity spaces is
a subset of the other. In fact, in this case the composed hulls are both equal to the hull

formed by the coarser of the two convexity spaces.

THEOREM 3.4.1 Let (§,Cy1) and (§,C2) be two convezity spaces defined on the groundset
S then

C1CC: <= (1) YPCS Co-hull(P)C Cy-hull(P)
< (2) YPC S (C2ACy)-hull(P)=Cy-hull(P)
= (3) vPCS$ (C1 A Cz)-hu”(P) = Cl-hu"(P)

Proof: .

1. ¥Ci; CCa thenVP C S CrhuH(P) € C2. Hence, VP C § Cz-hu.”(P) C Ci1-hull(P).

Conversely, suppose that VP C § C3z-hull(P) C Ci-hull(P). P € C; then P C
Ca-hull(P) C C1-hull(P) = P. Therefore P = C3-hull(P) and hence P € C2. Hence

C1 C Cs.

2. If Cy C Cz then VP C § Cy-hull(P) € C2. Hence, YP C § Ca-hull(C1-hull(P)) =
C1-hull(P).
Conversely, suppose that YP C § (C2 A C1)-hull(P) = C1-hull(P). I P € C; then
C1-hull(P) = P and hence C3-hull(P) = P, hence P € C;. Hence C; C Ca.

3. If C; C C; then from (1) we have that VP € § C2-hull(P) C C1-hull(P).
This implies that VP C § Cy-hull(Ca-hull(P)) C C1-hull(C1-hull(P)) = C1-hull(P).
But C;-hull(P) C C1-hull(C2-hull(P)). Therefore, C1-hull(Co-hull(P)) = C1-hull(P)
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We prove the converse by proving its contrapositive.

Suppose that VP C §  (C1 A C2)-hull(P) = Cy-hull(P). KP & C; then P C
C2-hull(P). But this implies that P C C;-hull(C2-hull(P)) = C;-hull(P). Therefore,
P ¢ C1. Hence C1 g Cz. n

Result (1) has been previously proved by Sierksma ([56]). We now prove that convexity
spaces over the same groundset are closed under intersection but not union. This is used

in the proof of the refinement theorem below.

Lemma 3.4.1 Let {(S,C;) | ¢ € I} be a non-empty family of convezity spaces defined on
S; then the structure (§, n Ci) is a convezity space on §.
1€l
Proof: @,8€(C;, Vie I = Q,Seﬂc.-.
i€l

CCC=>CCCi, VieI=(\Ce(; VieI=[]Ce[Cim
iel : i€l

The following example shows that a similar result does not hold for the union of convexity

spaces:

Let § = {a,b,c}; C1 = {0,8,{a,b}}; C2 = {8,5,{a,c}}; and ¢ = C;UCs =
(92, 5,{a,b},{a,c}}. But (S,C) is not a convexity space since {a,b} N {a,c} = {a} &€ C.

THEOREM 3.4.2 (The Refinement Theorem) Givenn > 1 convezity spaces ($,C;), 1<
' < n, then, YPC S,

O(C;-hulI(P)) - (/n\ Ci)-hull(P) < (ﬁ Ci)-hull(P) |

=1 =1 =1
Proof: The proof is by induction on n.

The theorem is vacuously true for n = 1.
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Let n = 2. From theorem 3.3.1(2) we have P C Cs-hull(P) and, hence, from theorem
3.3.1(4) we have Cy-hull(P) C C1-hull(C2-hull(P)). Also, from theorem 3.3.1(2) we have
C2-hull(P) C C1-hull(Ca-hull(P)). Hence, (C1-hull(P)UC2-hull(P)) C C1-hull(Cs-hull(P)).

Since €3 N Ca C Cs theorem 3.4.1(1) implies C2-hull(P) C (Cy N C3)-hull(P). Hence,

C1-hull(Co-hull(P)) C C1-hull((C1 N C2)-hull(P)) = (C1 N Ca)-hull(P).
Thus, (C1-hull(P) U Ca-hull(P)) C C1-hull(Co-hull(P)) C (C1 N C2)-hull(P). Hence the

theorem holds for n = 2.

Suppose now that the inductive hypothesis holds for all 2 < k¥ < n. Consider the two

innermost operators of the composite operator:

( /'{\ Ci)-hull(P) = Cy-hull(...Cpoy-hull(Co-hull(P)) .. )

i=1

From the theorem for n = 2 we know that

Cre1-htll(Co=hull(P)) C (Cne1 N Cn)-hull(P)

Since there are no more than n — 2 operators surrounding these inner operators we can

‘apply the inductive hypothesis to conclude that
n n—2
(A Co)-rull(P) = (N Ci)-hull(Cn1-hull(Cp-hull(P)))
=1 =1
n—2

c ﬂC,-)-hull(C,,_1-hull(C,,,—hull(P)))

i=1
But both (227 Ci)-Aull and (Cp—1 N Cn)-kull are hull operators (lemma 3.4.1). There-

fore from the theorem for n = 2 we have that

(ﬁzC¢)-hull(C,._.phull(C,,-huII(P))) c ('ﬁzc,-)-hun((c,,_,,nc,,)-huzz(P))
t=1 =1
n—=2

S () €5) N (Cams O Ca))-hull(P)

=1

= (ﬁ C:)-hull(P)

i1=1
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Thus . .
(A Co)-rull(P) < ([ Ci)-hull(P)

i=1 i=1
All that remains is to show that

Ochati®) € (A co-hutt(e)

i=1 i=1
Consider the 5*# hull operator in the composition:
n
(A Ci)-hull(P) = Ci-hull(...(C;-hull(...(P)..))..)
=1

Consider the set on which C;-hull acts. That is, the set (...(P)...) produced by the
hull operators inside the inner pair of brackets. This set must contain P since each hull

operator is expansive (theorem 3.3.1(2)).

Thus from theorem 3.3.1(4) we have, for any 1 < 5 < n,

Ci-hull(P) C ...(Cj-hull(...(P)..))...

Thus

UJ(chuti(®)) € (A Co-hull(®)

=1 =1

Note that this result is true independent of the order in which the hulls are composed

in the middle term.

The following example shows that, in general, we cannot replace any of the containments
by equality:

Let § = {a,b,¢,d}; C1 = {9, S, {a},{a,b,c}}; C2 = {9, 5,{a,b}};and C = C1 N (s =
{03, S}. Then Ci-hull({a}) U Ca-hull({a}) = {a,b}; (C1 A C2)-hull({a}) = {a,b,c}; and
C-hull({a}) = S.
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However, if the hull operators are invariani in the sense defined below then the second
two terms are equal (that is, the composition hull is equal tc the intersection hull). I
chapter 5 we show, with respect to O-convex sets, that all three terms are equal for the

special class of connected point sets.

Definition: Given two convexity spaces (§,C;) and (§,C2), C2 is said to be Cy-invariant i:
VP el Ci-hull(P) €Cs.

The idea is that €3 is Cy-invariant if forming the Ci-Auli of any set which is alread:

Cs-convex does not destroy the Lo-convexity of the set.

THEOREM 3.4.3 {(The {Weak) Decomposition Theorem) Le: {§,(;) and (3,C3) &
iwo convezily spaces defined on the groundset 3.

If C3 is Cy-invariant then VP C § (C1 A C2)-hull(P) = (C1 N Ca)-huli(P)

Proof: Let P be a subset of §. By definition, C1-Aull{P) € C3. If €3 is Cy-invariant ther
Cy-hadl(Ca-hull(P)) € Ca. But & 1-hull(Ca-hell(P)) € C1. Therefore Ci-hull(Co-hull(P)) <
Ci N Ca. But {Cy N C3)-huwll(P) is a subset of all (C; N Ca)-convex sets which contain P
Therefore (C1 N C2)-hull(P) C (Cy A Ca)-hull(P).

But from the refinement thecrem we know that VP C § (C1 A Ca2)-aull(P) C (C1 1
C2)-huil(P). Hence the resuit follows. =

The following example shows that the union of two hulls is not necessarily equal to thei-
composition {and their intersection) even if the convexity spaces are invariant.

Let § = {a,d,¢,d};Cy = {0, §,{a.b}}; C2 = {3, S,{a,c}};and C =C1 Ny = {D, §}
Then (g is Cy-invariant but Cy-huli{{a})uls-huli({a}) = {a,d,c}; {C1ACs}-Auil{{a}} = 3
and C-Aull{{a}) = ¢.
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3.5 Convexity Spaces and Locked Transaction Systems

As an illustration of the generality of the previous results we discuss how they apply to a

problem on locked transactions in a database.

In attempting to solve a database concurrency problem Yannakakis et al. ([66]) found
a correspondence between the safety of a locked transaction system and what was later
to be called the NESW-closure of a collection of orthogonal rectangles. Lipski and Pa-
padimitriou ([36]) then found an O(nlgnlglgn) time O(nlgn) space algorithm to find the
N ESW-closure of a set of orthogonal rectangles. Later, Soisalon-Soininen and Wood ([57))
proved that the NESW-closure can be decomposed into the composition of two simpler
closures. With this decomposition result in hand they were able to derive a simple—and
optimal—O(nlgn) time and O(n) space algorithm to find the NESW-closure. We re-
prove their decomposition result for connected sets using the results proved in the previous

sections.

Definition: Let p = (z1,y1) and g = (=2, y2) be two points in the plane. p and q are said to
be comparable if p and ¢ lie on a line of positive slope (that is, if (z; — z2)(y1 — y2) > 0).

Similarly, p and q are said to be incomparable if p and q lie on a line of negative slope.

Definition: Let p = (z1,¥1) and g = (z3, y2) be two incomparable points and assume that pis
to the left of g. The point (z2, y1) ((21, y2)) is said to be the N E-conjugate (SW-conjugate)
of p and ¢. If p and ¢ are comparable we have the NW- and S E-conjugates respectively.

Definition: P is said to be N E-closed if for every incomparable pair of points p and ¢ in
P, NE-conjugate(p,q) € P. Similarly, we define NW-, SE- and SW-closed sets. If P
in both N E-closed and SW-closed P is said to be NESW-closed and similarly we obtain
VW S E-closed sets. If P is both N ESW-closed and NW S E-closed P is said to be R-closed.
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N E-conjugate(p, q)
Pro=—========- 1

- o cm e o e o O e w—

SW-conjugate(p, q)
Figure 3.1: N E- and SW-Conjugates

This is a relaxation of the definitions used by Soisalon-Soininen and Wood since they

required that the two points be connected in the given set.

Definition: For any X € {NE,SW,NW,SE,NESW,NWSE,R} Q is said to be the

X-closure of P if Q is the smallest X-closed region containing P.

It is easy to prove that, forany X € {NE,SW,NW,SE, NESW,NWSE, R}, X-closure
is a hull operator. That is, the set of all X-closed sets forms a convexity space. From this

it follows that all of the results given in this chapter apply to X-closed sets.

The fundamental decomposition result Soisalon-Soininen and Wood needed was the

following theorem (compare the Orientation Decomposition Theorem—theorem 5.4.1):

THEOREM 2.5.1 (The NESW Decomposition Theorem) VP

N E-closure(SW -closure(P)) = NW -closure(S E-closure(P)) = N ESW -closure(P)

Soisalon-Soininen and Wood proved their results by examining the boundaries of the
various closures. We re-prove their results for the special case of connected regions by
showing that N E-closure is SW-invariant (invariance of NW-closure with respect to SE-
closure is similar). The above decomposition theorem restricted to connected regions then

follows from theorem 3.4.3.

In thecrem 3.5.2 we show that N E-closure is SW-invariant (the other invariance proof

is similar). First however we need the following simple lemma.
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Lemma 3.5.1 Ifp € SW-closure(P)\P then the vertical line through p intersects P above
p and the horizontal line through p intersects P to the right of p.

Proof: If p € S"W-cl osure(P) \ P and the vertical line through p does not intersect P above
p then we may delete p and all points in SW-closure(P) above p and still have a SW-closed
set. Since no points in P were deleted this set still contains P. But SW-closure(P) is the
smallest set which both contains P and is SW-closed, a contradiction. Thus the vertical
line through p must intersect P above p. A similar argument applies to the other condition.

THEOREM 3.5.2 N E-closure is SW -invariant.

Proof: We show that if P is N E-closed then
Vp,q € SW-closure(P), N E-conjugate(p,q) € SW-closure(P).

This establishes that if P is N E-closed then SW-closure(P) is N E-closed.

Let p and ¢ be in SW-closure(P) such that p and g are incomparable. If no such points
nxist we are done. Assume, without loss of generality, that p is north-west of ¢ (see figure

1.2).

Case 1: p,q € P. In this case N E-conjugate(p, q) € P since P is N E-closed.

Case 2: pe P, ¢ € P. Since ¢ ¢ P, from lemma 3.5.1 we know that the horizontal line
through ¢ must intersect P at some point « to the right of ¢ and the vertical line

through g must intersect P at some point 8 above g.
Case 2a: g is on the horizontal line through p. In this case N E-conjugate(p,q) =
BeP.

Case 2b: g is below the horizontal line through p. In this case N E-conjugate(p, q) =
N E-conjugate(p, ) € P.
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Case 2c: fis above the horizontal line through p. In this case N E-conjugate(p, q) =
SW-conjugate(N E-conjugate(p, &), B) € SW-closure(P).

Case 3: p € P, g € P. This case is a mirror reflection of case 2.

Case 4: p,q € P. Since p,q € P, from lemma 3.5.1 we know that the horizontal line
through p must intersect P at some point « to the right of p and the vertical line

through g must intersect P at some point G above gq.
Case 4a: « is left of ¢ and S is below p. In this case
N E-conjugate(p, q) = N E-conjugate(a, §) € P.
Case 4b: ¢ is right of ¢ and 3 is above p. In this case
N E-conjugate(p, q) = SW-conjugate(, a) € SW-closure(P).

Case 4c: « is left of ¢ and 3 is above p. Again from lemma 3.5.1 we know that the
horizontal line through ¢ must intersect P at some point 4 to the right of ¢. In
this case

N E-conjugate(p, q) = SW-conjugate(3, N E-conjugate(a,v)) € SW-closure(P).

Case 4d: «is right of ¢ and g is below p. This case is a mirror reflection of case 4c.

Hence in all cases if P is N E-closed SW-closure(P) is N E-closed. =
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Figure 3.2: The Various Possible Cases




Chapter 4

Stairlines

4.1 Lines and Staircases

In the study of orthogonally convex sets a staircase ([64]) is defined as a polygonal curve
made up of orthogonal line segments. The line segments are connected such that they ar
alternately horizontal and vertical. As we shall see in chapter 5, with respect to orthogonall:
convex sets, staircases play the same role as lines do for convex sets. In this chapte
we investigate a class of curves which generalize them both. We call these curves “C
stairlines,” deriving the term as a portmanteau of (orthogonal) staircases and (straighf
lines. We present a simple characterization of O-stairlines in terms of the orientations the
cover (their spens) and we completely characterize the union of the set of all O-stairlir
segments between any two points (their O -parallelogram). These characterizations will be
fundamental importance in the theory of O-convex sets developed in chapters 5 and 6. V
then briefly examine one possible way to define the notion of parallelism for O-stairlines a1
sketch algorithms to find the intersection point(s) of two parallel or non-parallel polygor
O-stairlines.
Recall that a convez set is a set whose intersection with any line is connected;

orthogonally convez set is a set whose intersection with any horizontal or vertical line

36
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connected; an O-convez set is a set whose intersection with any O-line is connected.

4.2 (O-Stairlines

Definition: A curve § is said to be an O-stairline if § is O-convex.

By analogy with lines we also use the terms “O-stairsegment” and “O-stairray” with the
obvious meanings. We derive an equivalent but more convenient definition of an O-stairline

in lemma 4.2.1 below.

Definition: A set P is said to have span (¢;,8,) (where 8; < 02) if Vp,q € P, where p # ¢,
O(L[p, q]) € (91,92) and this is true for no smaller range. The span of the empty set or an
isolated point is empty.

At this point the reader should recall that 0° and 180° are identified. Thus, any span
which crosses the horizontal is still connected even though it is described as the union of

two (apparenily) disjoint ranges.

Observe that P has a single orientation in its span if and only if P is a subset of a
line. Also note that the span of a set is not necessarily a closed range, it may be open or

half-open.

If P’s span is O-free then there are no two distinct points in P lying on an O-line and
thus P is O-convex. The converse is false in general as R? is always O-convex but its span
in never O-free (unless O is empty). However, as we show, if P is a curve then a slightly

wonker converse holds.

Lemma 4.2.1 4 curve with span (81,02) is an O-stairline if and only if the open range

(01 ) 02) is o-ﬁ‘ee'

Proof: Suppose that § is a curve with span [0}, 8] (the other cases are handled similarly).
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If $ is O-convex then the open range (01, 82) must be O-free, hence conversely, suppose |

that the open range (61, 82) is O-free.

If O is empty then every set is O-convex and, in particular, § is O-convex, so suppose
that O is non-empty. If #; = §2 then § is a line, line segment or ray and hence is O-convex
from lemma 3.2.1. Suppose then that 8; # 6;. Without loss of generality assume that
[61,82) = [0°,90°]. (Recall that the orthogonal transformation given in chapter 2 allows us

to assume this and it also preserves incidence.)

Suppose that there exists an O-line £ which cuts § at two distinct points p and ¢. Since
(0°,90°) is O-free, £ can only be horizontal or vertical ($’s span is [0°,90°]). Suppose that
L is horizontal and that p is to the left of ¢. Consider any point * on § in between p and
g. Suppose that r € £S(p, ¢) and, without loss of generality, that r is above £LS$(p, q).

Either L[g, r] is vertical or r is to the right of ¢ otherwise ©&(L[q, r]) € [0°,90°]. Consider

a line £; through g of orientation § where 8 > 90° (see figure 4.1). Since S is connected,

p and r are connected and so £; must cut § at some point other than ¢q. But this means

that there exist two distinct points in § whose line segment has slope outside of $’s span,

"a contradiction. Hence r cannot be abéve (or similarly, below) £S(p,q). Therefere r €
LS(p,q) for all r in § in between p and ¢. That is, between p and ¢, S is a line segment.

Hence, even if §; (or 82) is an orientation in O then § is O-convex. =

Observe that if §; = 03 then (01, 02) is empty and hence is (vacuously) O-iree and sc

any line (line segment or ray) is an O-stairline (O-stairsegment or O-stairray).

Definition: If an O-convex curve divides the plane into two halfspaces the two halfspace

are said to be O-stairhalfplanes.

The following lemma is straightforward:
Lemma 4.2.2 If P is an O-stairkalfplane then P is O -convez.

Observe that any closed curve divides the plane into two @-stairhalfplanes.
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Figure 4.1: r must be on £S[p, q]

Definition: An O-convex polygonal curve is said to be a polygonal O-stairline. If § is a
polygonal O-stairline made up of n lines, line segments or rays then § is said to be of length

n.

It is easy to show that if a polygonal curve made up of lines, line segments or rays
£1,L2,...,Ln (n 2 1) forms a polygonal O-stairline, O-stairsegment or O-stairray with
span (61, 02) then

1. It is monotone with respect to the orientations 6, + 90° and 6, + 90°.1

2.V1<i<n, O(L)E (61,6,).

Definition: An O-oriented polygonal O-stairsegment is called an O-staircase.

'Recall that all orientations are taken modulo 180°.
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See figure 4.2 for examples of an O-stairsegment, a polygonal O-stairsegment, and an

O-staircase for 0 = {0°,90°}.

7 |

Figure 4.2: Example O-Stairsegments

4.3 O-Parallelograms

We now wish to characterize the set of all O-stairsegments joining any two points in the

plane.

Definition: We call the union of all O-stairsegments joining p and ¢ the O-parallelogram of

p and q and write O-||[p, q|.

Observe that £S[p, g| is always an O-stairsegment and thus LS [p,q] € O-ll[p, q] for all

See figure 4.3 for examples of 0-||[p, q] for 0 = {0°,90°}.

\q re-—-== -1q
! i ¥
P p--q
Figure 4.3: Example O-Parallelograms

Our next three results show the term “parallelogram” to be a misnomer! A parallelogram

is only the non-degenerate case; there are three possible degeneracies.

Lemma 4.3.1 ¥p,q if ©(LS[p,q]) € O then O-||[p, g} = LS]p, q].

Proof: Any curve that connects p and g which departs from £S[p, q] cannot be &(LS(p, 4])-

convex. The proof of this claim is similar to the proof of lemma 4.2.1 and is omitted. =
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Corollary 4.3.1 If O = [0°,180°) then, Vp,q O-|[[p, q] = LS]p, q].

For the next result recall that ¥ denotes a halfplane; ¥[£, p] denotes the closed halfplane
with boundary line £ containing the point p; and L£[f,p] denotes the line through p of

orientation 4.

THEOREM 4.3.1 (O-Parallelogram Characterization) Vp,gq

1. If O = @ then 0-||[p,q] = R?
2. If 0 =9 then O-||[p,q] = X[L[8,p],q] N X[L]9,q],7]

3. If|0| 2 2 then

o

O-lllp,q] = ¥[L[61,7],9] N X[L[81,ql,p] N X[L[62,p],q] N X[L[82,q],p]

(where (81,82) is L[p, q]’s mazimal O-free range).

I'roof: If ©(£[p,q]) € O then O-|llp, g = LS[p, q] and the theorem follows. Suppose then
that ©(L[p,q]) € O.

Case 1: |0| =0. If O is empty then every range is O-free and so any curve connecting p

and ¢ is an O-stairsegment, hence @-||[p, g] = RZ.

Cane 2: [O| = 1. If O = 4 then any curve connecting p and q which leaves the infinite slab
bounded by the two §-lines passing through p and ¢ cannot be #-convex. Further, if
r is any point in the infinite slab then the curve £S(p,r] U L$[r, g] is 6-convex and so
is a f-stairsegment. Thus, any point in the infinite slab is in 8-||[p, q].

Cano 3: |0| > 2. Without loss of generality, let (0°,90°) be £[p, g]’s maximal O-free range.

If any curve connecting p and q leaves the orthogonal rectangle with diagonal endpoints

p and ¢ then it can only be monotone in either the horizontal or vertical direction but
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not both and so cannot be an O-stairsegment. Hence when O contains two or more
orientations then all O-stairsegments must lie within the parallelogram with diagonal
endpoints p and gq.

If r is any point in the orthogonal rectangle then, as in case 2, the curve LS[p, FlU
L3S[r,q] is an O-stairsegment connecting p and ¢ passing through r. In fact we can
just as easily construct an O-staircase connecting p and g passing through r (see figure

4.4 for a simple example O-staircase for 0 = {0°,90°}). =

pL——L ________ -4

Figure 4.4: Any Point in O-||[p, q] lies cn an O-Stairsegment Connecting p and ¢

Definition: If |0] > 2 and ©(L[p,q]) € O then the two extremal O-staircases bounding
0-||[p, q] are said to be the arms of O-||[p, q]-

For example, in figure 4.4 the two dashed line segments connecting p, N W-conjugate(p, q),
and q form the upper arm of O-||[p, g]. Similarly, the lower arm is the length 2 O-staircase

joining p, S E-conjugate(p, q), and g.

Remark: As can be seen in the above theorem, the special case |O| < 1 gives odd results,

but proof techniques for |O| < 1 are similar to those for |0] > 2.

|
In the remainder of this thesis we will often only discuss the case [O] > Z|

since results for the two special cases can be proved by similar techniques to

those given for the general case.
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4.4 The Analogy Between Lines and O-Stairlines

With respect to O-convex sets, O-stairlines are perhaps the most natural analogues of
straight lines with respect to convex sets, in that: the intersection of an O-line and an
O-stairline is connected (as we saw in the proof of lemma 4.2.1), and, two O-stairlines with

disjoint spans intersect in at most one point.

Unfortunately, the intersection of two O-stairlines whose spans are non-disjoint is ;.either
empty, connected or disconnected—unlike the simpler case for straight lines. Further, O-
stairlines can be non-intersecting without being parallel (in the Euclidean sense). Finally,
two points no longer necessarily define a unique O-stairline—so, in general, this is not an

incidence geometry.

Ideally, we would- like to say that two O-stairlines are non-parallel if their spans are
disjoint, for then their intersection is guaranteed to be connected. However, there is another

condition which guarantees a connected intersection and so we use the following scheme:

Definition: Two O-stairlines are said to be non-parallel if they intersect and either

1. the spans of the two O-stairlines are disjoint or

2. at least one of the the O-stairlines is an O-line.

If noither condition holds the two O-stairlines are said to be parallel.

If a collection of O-stairlines are pairwise non-parallel then they have most of the prop-
ertios of lines that are relevant to convex sets (for example, they intersect exactly once, are

I-separable continua etc.).

Note that under this definition of parallelism Euclid’s fifth postulate dces not hold
(unless O is the set of all orientations); lines, having only one orientation in their spans,
munt always have a connected intersection; and finally when O is the set of all orientations

then an O-stairline is a line and two lines are parallel if and only if they do not intersect.
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4.5 Computing 0-Stairline Intersections

We now sketch an algorithm to find the intersection of two polygonal O-stairlines assuming
that we are told whether or not they are parallel (in the sense defined in the previous sec-
tion). For simplicity of description assume that two parallel O-stairlines share the common
span [0°,90°] and two non-parallel O-stairlines have disjoint spans [0°,90°] and (90°,180°).
We assume that the O-stairlines are given as a sorted list of their vertices and that we can

randomly access this list.

4.5.1 Non-Parallel Polygonal O-Stairlines

First observe that it is sufficient to solve this problem for doubly infinite O-stairlines (that is
O-stairlines that go to infinity at both ends) since if one or both are not doubly infinite then
we adjoin up to four rays and find their common intersection. After finding the intersection

we can decide, in constant time, whether the intersection was caused by the adjoined rays.

If either of the O-stairlines are lines then we perform a binary search to find their
intersection point. If both are lines then we find their intersection point in constant time.

Thus we have reduced the problem to:

Problem: Given two doubly infinite O-stairlines, over disjoint spans, and each with two

or more turns, determine their common intersection.

Let the O-stairlines be Sy and Sa. Assume that §;’s span is [0°,90°] and that §2’s span
is (90°,180°). Let their vertices be py,p2,...,Pn and 41,02,--:9m respectively. Assume
that py is the lowest vertex in S and that gy is the highest vertex in Sa.

Consider O-||[p{n/2]> 9\m/2 {]. There are four pcssible cases and in each case we: find the
intersection; discard half of the vertices of §;; discard half of the vertices of Ss; or discard

half of the vertices of both.

1. pin/2) 20d q|m/2 share neither an = nor a y coordinate. Suppose that pin/z| is below

and to the left of q|m/2] (the other three possibilities are similar). In this case we
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discard the lower half of §; since it cannot contain the intersection point (see figure

4.5).

Figure 4.5: Mlustrating Case 1

2. P\n/2) and g|m/s) share both z and y coordinates. Halt; intersection found.

3. P\n/2) and g|m/2| share an z but not a y coordinate. In this case we discard half of
S1 and half of §,.

4. P|n/2) 2nd g|m/2) share a y but not an z coordinate. This case is similar to the last.
If after discarding some number of vertices we have not found the intersection point and

we have reduced §; or §3 to one edge then we perform a binary search for the single edge

in the remaining list of vertices.
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The recurrence governing the number of comparisons that must be done in the worst

case is:
Ign m=1

f(n,m) << Igm n=1
mex{f(n, |m/2]), f(|n/2],m)}+ ¢ otherwise

This? implies that

f(n,m) = O(lgn +1gm) = O(max{lgn, lgm})

The O-stairline intersection finding algorithm sketched above can be seen as a general-
ization of the O(lgn) algorithm to discriminate a point against a monotone chain given in

[47] pg. 49. (Discriminating a point against a curve means determining which side of the

curve the point lies on.)

We can establish a lower bound of {(max{lgn,lgm}) on the number of comparisons
needed to find the intersection point by reducing the problem of searching for an element
in a list of either n or m elements (whichever is larger) to finding the intersection of a line
and a polygonal (-stairline. Hence the above algorithm is optimal in the worst case in the

algebraic decision tree model.

4.5.2 Parallel Polygonal O-Stairlines

When S; and Ss are parallel O-stairlines then there can be O(min{n, m}) intersectic
points (for example, see figure 4.6). Thus any algorithm to solve this problem cannot d:
better than a linear number of comparisons in the worst case. It is simple to find th
intersection points in linear time by stepping along the vertices of S; and §3 in sequence

that is, perform essentially a linear merge of the two sorted lists.

2This is a well-known recurrence, it is the dual of a recursive algorithm to find the boundary of the conve

hull of n points (see [30]).
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Figure 4.6: Parallel O-Stairlines Can Have O(n) Intersections
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Chapter 5

Restricted Orientation Convexity

In this chapter we see how the notions of convexity spaces and {-stairlines can be com:
bined to construct a theory of O-convex sets. C-convexity serves as a useful vantage poin
to survey and unify scattered results and observations in the literature of computationz
zeometry. In this chapter we show that many of the more important properties of conve.
sets in the plane are special cases of the more general properties of O-convex sets whes
restricted only to connected sets. Thus O-convexity is a reasonable generalization of bot:
normal convexity and orthogonal convexity. Further, we show that the O-convex hull {de
fined in an analogous manner to the hull defined in chapter 3) obeys a strong Decompositio

Theorem (theorem 5.4.1) when restricted to connected sets.

5.1 Properties of Convex Sets

To provide an appropriate generalization of convex sets we need {o know what properti-
of convex sets distinguish them from other sets. What makes them useful, siegant, -
important? We list below some of the most salient properties of planar convex sets (s

Grilnbaum [20}}, where P is 2 planar convex set:
1. P is simply connected.

48
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2. The intersection of P and any line is connected.

3. P is the intersection of all convex sets which contain it.
4. If p & P then there exists a line separating p and P.

5. PY is the intersection of all halfplanes which contain it.

6. If p,g € P then LS[p,q] C P.

Except for property (1), all of these are defining characteristics of convex sets. In
the concluding section of this chapter we list analogous properties of O-convex sets which

include these as special cases.

6.2 (O-Convex Sets

Figure 5.1 contains some example figures which are O-convex for various 0. Figure 5.1 (a)
i not O-convex for any non-empty O, but is O-convex if O = @, as are all the other figures.
Figures (b) and (c) are convex with respect to any horizontal line, as are (d), (e) and (f),
so they are all 0°-convex besides being @-convex. Note that (b) and (c) are not convex for
any other orientation. Figures (d), (e) and (f) are convex with respect to any vertical line
aa well and so they are also {0°,90°}-convex. Note that (d) is not convex for any other
orientation. Figures (e) and (f) are convex with respect to any line with orientation in the
range [90°,180°] and so they are also [90°, 180°]-convex. Note that (e) is not convex for any

other orientation. Figure (f) is O-convex for any 0.
In lemma 3.2.1 we showed that every convex set is O-convex. In the following lemma

we completely characterize convex sets as a subclass of O-convex sets:

Lemma 5.2.1 VP, P is convez if and only if P is O-convez, for O = [0°,180°). Moreover,
this 13 not true for any O C [0°,180°).



CHAPTER 5. RESTRICTED ORIENTATION CONVEXITY 50

(b)

(d) (e) (f)

Figure 5.1: Some Examples of O-convex Sets

Proof: From property 2 above P is convex if and only if P is O-convex, for 0 = [0°,180°).
It is easy to construct examples to show that this is true for no smaller set of orientations
For example, if we delete just one orientation (say 61) then any set consisting of just twc
distinct points on a §;-line is §-convex for all § # 8, but is, of course, not convex. Indeed.
such examples demonstrate that “for all P, P is connected if P is O-convex” holds if and

only if O = [0°,180°). =

Definition: The intersection of all O-convex sets containing P is said to be the 0-hull of P

and is denoted O-hull(P) (cf. the definition of the C-hull in chapter 3).
Observe that if O or P is empty then O-hull(P) =P. When 0 = 4 and P is a polygon
then the O-hull of P has been called the “f-visibility hull” of P ([54,60))-

As examples of hulls observe that in figure 5.1, () is the O-hull of (a) for any non-empty
0 and (d) and (e) are the 90°-hulls of (b) and (c) respectively.

Theorem 3.2.1 established that every choice of O gave rise to a convexity space thus w:

may employ the results of chapter 3. From theorem 3.3.1 we have:

Corollary 5.2.1 ¥0,P,Q
P C O-hull(P)
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O-hull(P) =P <= P is O-convez

P C Q= 0-hull(P) C 0-hull(Q)

Note that the second relation is equiva.lent to property (3).

Observe that if 01 C O, then, for all P, 01-hull(P) C 03-hull(P) as was proved
in theorem 3.4.1, although the reader should note that the inclusion is reversed since if
01 C Oz then the set of 0z-convex sets is a refinement of the set of O1-convex sets. That

in, if 01 € O3 then every Oj-convex set is 0y-convex.

In some sense as a set of orientations 0 “grows” to include all possible orientations then

O-hull(P) “grows” to be the convex hull of P. Indeed we have the following theorem:

THEOREM 5.2.1 The set of all O-convez sets over R? for all O form a lattice under re-
finement. The set of [0°,180°)-convez sets is the supremum of this lattice and the set of

()-convez sets is the infimum.

Proof: Gritzer ([19] exercise 9.(i), page 7) shows that the set of all subsets of a set form a
lattice under inclusion. We need merely observe that refinement is equivalent to inclusion

for O-convex sets. =

Figure 5.2 shows a small sublattice of this lattice. Each bullet is meant to indicate the

et of all O-convex sets for that O; as usual the lines indicate dominance.

Observe that if 03 € 02 we can always construct sets which are O1-convex but not
013-convex, we call such sets strictly O-convez sets. For example, the dashed polygons in
fgure 5.3 are O-convex only for special sets of orientations. For example, (a) is O-convex
i and only if 0 C {0°,90°}, (b) is O-convex if and only if O C {0°,45°,90°} and (c) is
O -convex if and only if O C {0°,45°,90°,135°}.

Now we wish to establish conditions on when an O-convex set is connected or simply

connected to match property (1).
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[0°,180°)

{135°}

%)

Figure 5.2: A Sublattice of the Lattice of O-Convex Sets
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Figure 5.3: Strictly O-Convex Sets

Lemma 5.2.2 If O is non-empty and P is connected, then O-hull (P) is simply connected.

Proof: If P is empty we have nothing to prove, so suppose P is non-empty.

Suppose that O-hull(P) is disconnected. Since P is connected it can only belong to
one of the connected components of 0-hull(P) (it must belong to at least one otherwise
O-hull(P) does not coﬁtain P). This component must be O-convex, otherwise the entire
hull is not O-convex. Hence we may discard all of the other components of O-hull (P) arnd
have a smaller O-convex set which contains P. But O-hull(P) is the smallest such set.
Therefore O-hull(P) must be connected if P is connected.

Suppose that O-Aull(P) is connected but contains a hole. Since O is non-empty there
eniats at least one O-line which cuts this hole. Hence there exists an O-line whose inter-
esction with O-hull(P) is not connected. But this implies that O-hull(P) is not O-convex

hence O-hull(P) must be simply connected. =

Corollary 5.2.2 If O is non-empty and P is connected and O -convez, then P is simply

evnnected.

Proofs If P is O-convex then it is its own hull. =
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Since convex sets are [0°,180°)-convex sets (lemma 5.2.1) and O = [0°,180°) is non-
empty, by corollary 5.2.2 every convex set is simply connected as stated in property (1) in
the first section.

Lemma 5.2.3 A set is O-convez if and only if it consists of a set of disjoint connected
components such that each component is Q-convez and no O-line intersects any pair of

components.

Proof: Let P consist of a set of disjoint connected components such that each component is
a connected O-convex set and no O-line intersects any pair of components. Since no O-line
can intersect any two of them simultaneously and each component is separately O-convex,

the entire collection is 0-convex.

Conversely, let P be disconnected and O-convex. If any one of its components is not
QO-convex then P cannot be O-convex. Similarly, if there exists an O-line which intersects

any two components then P cannot be O-convex. =

Observe that if O is the set of a.ll orientations then for each pair of connected components
there exists at least one O-line which intersects them. Hence, all [0°, 180°)-convex sets are
connected. Thus, lemma 5.2.3 together with corollary 5.2.2 implies property (1) when
0 = [0°,180°).

5.3 The Separation Theorem

Now we establish a strong result (the Separation Theorem) from which. will follow the
generalization of the separation property (property 4) of convex sets. Further, we use the

separation theorem to prove the Decomposition Theorem in next section.

Lemma 5.3.1 IfP is connected and p € O-hull(P), then each O-line through p intersecis
P.
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Proof: If O is empty, P is empty, or both, then the lemma is vacuously true since in each
case O-hull(P) = P. Further, if p € P we have nothing to prove. So suppose that both O
and P are non-empty and that p € P.

Suppose that there exists a § € O such that the f-line through p does not intersect P.
Then there exists a convex set (and hence an O-convex set) which contains P and does not
contain p, namely, any halfplane bounded by a §-line separating p and P. Hence p cannot
be in the intersection of all O-convex sets which contain P and so cannot be in its O-hull.

Thus, each O-line through p intersects P. m

This lemma is false if P is disconnected as the following example shows. In figure 5.4 P
1 the pair of points indicated by the bullets. The point p is not in P yet it is in O-hull (039)]

whenever 0° € 0. However, only one O-line through p is guaranteed to intersect P.

[ 4 X o

p
Figure 5.4: Disconnected Point Sets Do Not Force Intersection

THEOREM 5.3.1 (The Separation Theorem) Let P be connected and p & P. p €
O-hull(P) if and only if there ezists a § € O such that the 0-line through p intersects

I' 1n, at least, two points on either side of p.

I'roof: If either O or P is empty then the theorem is vacuously true since O-hull(P) = P.

o suppose that both O and P are non-empty.

If p € P and there exists an O-line which intersects P at two points which bracket p
then p must be in the O-hull of P (otherwise the O-Aull would not be O-convex).
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Conversely, if P is connected and p € O-hull(P) \ P then all O-lines through p must
intersect P (lemma 5.3.1).

We prove the claim for the three cases in which we have exactly one orientation in O,
two or more with at least one O-free range and, finally, if all orientations are in O (thatis,

there are no O-free ranges).

Case 1: 0 =4.

The #-line through p must cut P. Suppose that it only cuts it on one side of p (say
to the right of p). Then we may delete p and all other points in §-hull (P) on the left
g-ray from p and so obtain a smaller f-convex set which contains P. But -hull(P)
is the smallest such set. Hence p cannot be in §-hull(P). Hence the f-line through »

must cut P on both sides of p.

Case 2: O contains two or more orientations but not all.

Every O-line through p must cut P. Suppose that none of them cut P both to the
left and to the right of p. We show that if P is connected that this implies that there

is an O-stairhalfplane containing P and not p.

Assume, without loss of generality, that 0° € 0. p divides the horizontal line through
p into two rays, arbitrarily call one ray the “left ray” and the other the “right ray.”
The horizontal line through p is an O-line and so either the left or the right ray cannot
intersect P. By assumption, at least one must intersect P. Assume, without loss of
generality, that the right ray intersects P (and, consequently, that the left ray does
not).

Let 8, be the largest orientation in O such that the @;-line through p intersects I
on the right. Similarly, let 82 be the smallest orientation in O such that the §z-line
through p does not intersect P on the right. Since O is closed #; and #; always exist.
By construction, the range (f1,0z) is O-free, for if there exists a § € (61, f2) such that

9 € O then either 8, is not the largest or 92 is not the smallest such orientation.
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Assume, without loss of generality, that [f1, 85] = [0°,90°]. From the above argument
we know that (0°,90°) is a maximal O-free range; that the 0°-line through p intersects
P to the right of p (and does not intersect P to the left of p); and that the 90°-line
through p intersects P below p (and does not intersect P above p). Thus, the curve
made up of the horizontal ray to the left of p and the vertical ray above p does not
intersect P. Further, this curve has span [0°,90°] and the open range (0°,90°) is
O-free thus, from lemma 4.2.1, this curve is an O-stairline. Since P is connected it
lies wholly in one of the two O-stairhalfplanes this O-stairline defines (in this case the
complement of the “north-west” quadrant). Thus there is an O-convex set containing
P and not p. Hence p is not in the intersection of all O-convex sets containing P, and

80, p & O-hull(P), a contradiction.
Hence at least one of the O-lines through p must cut P to the left and to the right of
p- (See figure 5.5 for a simple example with 0 = {0°,90°,135°}).

Case 3: 0 = [0°,180°).

Here O-hull(P) is the convex hull of P. The result then follows from the well-known

separation theorem of Fenchel ([16]). m
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Figure 5.5: A Simple Example of the Separation Theorem

This theorem is false if P is allowed to be disconnected as the following example shows.
In figure 5.6, P is the set of points indicated by the bullets. The point p is not in P yet it
w in O-hull(P) whenever {0°,90°} C O. However, there does not exist an O-line through
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p which cuts P on both sides of p.

X

Figure 5.8: Disconnected Point Sets Do Not Support Separation

Corollary 5.3.1 Let P be connected. If p & O-hull(P) then there ezists an O-stairlin:
separating p and P.

Proof: Let P be connected. If p & 0-Aull(P) then from theorem 5.3.1 there exists nt
6 € O such that L[9,p] intersects P on both sides of p. Thus we may construct an 0-
stairline separating p and P as in the proof of theorem 5.3.1. m

When O = [0°,180°) all O-stairlines are lines and this corollary becomes property (5).

Corollary 5.3.2 IfP is connected then O -hull(P) is the intersection of all O -stairhalfplan. s

containing P.

Proof: Since C-hull(P) is a subset of every O-convex set which contains P it then follow
that O-hull(P) is a subset of the intersection of all O-stairhalfplanes which contain P.

If p & O-hull(P) then from corollary 5.3.1 there exists an O-stairline separating p an
P. Thus, there exists an O-stairhalfplane containing P and not p. Thus, p is not in tk
intersection of all O-stairhalfplanes which contain P. Therefore, if p € 0-hull{P) then p
not in the intersection of all O-stairhalfplanes which contain P. Thus, contrapcsitively, tt -
intersection of all O-stairhalfpianes which contain P is a subset of O-Aull{P). Hence t:
result follows. &



CHAPTER 5. RESTRICTED ORIENTATION CONVEXITY 59

When O = [0°,180°) all O-stairhalfplanes are halfplanes and this corollarj becomes
property (5).

The following example shows that this corollary is false if P is disconnected. In figure
5.7(a) P is the set made up of the three points indicated by the bullets. If 0 = {0°,90°}
then O-hull(P) = P but the intersection of all O-stairhalfplanes containing P is figure
5.7(b).

(2) (b)

Figure 5.7: Intersection of O-Stairhalfplanes Do Not Form the Hull of Disconnected Sets

5.4 The Decomposition Theorem

[ntuitively, we may think of forming the O-hull of a set P by sweeping a line of each
orientation in O across P and adding suitable line segments to the hull formed so far so
that it is convex in each orientation in O (if O is empty then we do not add anything to
I’). Thinking of it this way it appears reasonable that the hull we eventually produce i
unchanged if we choose a different sweeping order. As we prove in theorem 5.4.1 this is, in
t.ict, the case but only for connected sets. For disconnected sets lemma 5.4.1 is the stron gest,
assible result.

As a by-product of the following theorems we establish the validity of two assumpt.ion
inade in the literature for orthogonal hulls. Sack ([54]) showed, in the orthogonal c:uic,
“hat the horizontal hull of the vertical hull of an orthogonal polygon (or alternately the
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vertical hull of the horizontal hull) is equivalent to the union of both hulls. It was taken
as self-evident that their union is the smallest horizontally and vertically ccnvex polygon
enclosing the orthogonal polygon. Theorem 5.4.1 validates this assumption. Toussaint and
Sack ([60]) made the observation that the convex hull is the union of the “visibility hulls”

over all directions of visibility. Thecrem 5.4.1 supplies the proof for this observation.

The following lemma follows from the refinement theorem (theorem 3.4.2). Observe that
the hull with respect to the intersection of the set of convexity spaces has been replaced
by the hull with respect to the union of the sets of orientations. This is because when we
form the union of two sets of orientations the hull with respect to their union is convex with

respect to both sets of orientations.

Lemma 5.4.1 Given n > 1 sets of orientations O;, 1<i < n; then, VP,
n 7 n
U (0s-hull(P)) C (/\ 0;)-hull(P) C (U 0:)-hull(P)

=1 =1 =1

Simple counterexamples (see figure 5.8) show that this result is the best possible, in that
there exists sets for which the respective converses are false. However, we can strengthen
lemma 5.4.1 considerably by restricting P to be connected. As we prove below when P
is connected the containment relations in lemma 5.4.1 become equalities. Thus, in the
language of chapter 3, with respect to connected subsets of R any two orientation convezity

spaces are mutually invariant.

THEOREM 5.4.1 (The Orientation Decomposition Theorem) Given n > 1 sets of

orientations 0;, 1 <1 < n; if P is connected,

0(0;-hull(P)) =( /"\ 0;)-hull(P) = (0 0;)-hull(P)

=1 =1 t=1
Proof: Because of lemma 5.4.1 we need establish only that if P is connected then

(U, 0:)-hull(P) C UR,(0s-hull(P)). I P or (UL 0;) is empty then this holds, so

assume that both are non-empty.
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{0"}-hull(P) P {90°}-hull(P)

A
N

" hll({0°}-Aull(P)) {0°,90°}-hull(P) {0°}-Rull({90°)-hutiti" ..
Figure 5.83: Hulls of Disconnected Sets Are not Decomposable

l
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Let p € (Ui 0:)-hull(P). If p € P then p € U, (0:-hull(P)). So suppose that p €
(Ui 0:)-hull(P) \ P. From theorem 5.3.1, we know that there must exist a § € (Ui, Os)
such that the #-line through p cuts P to the left and right of p. This means that p must
be in O;-hull(P) for some ¢ such that § € O;. Hence, p € U (0i-hull(P)) and the result

follows. m

This decomposition result immediately yields an algorithm to find the hull of any con-
nected set given that we can find the hull in one orientation and that we can find the union
of two or more hulls. As it turns out, however, connected O-convex sets have considerably
more structure than this and we can exploit this structure to construct optimal algorithms

to find the hull of any connected set. We return to this topic in chapter 7.

5.5 Characterizing Connected 0-Convex Sets

In this section we characterize connected O-convex sets by a necessary and sufficient con-
dition on the shape of their boundary and we prove a generalized version of property (6).
Recall that a point is eztremal in P if it is a point of support of P with respect to some
line.

Definition: p is said to be O-extremal in P if p is a point of support of P with respect to

an O-line.

Definition: A subset of a curve is said to be a mazimal O-stairsegment in the curve if it is

an O-stairsegment and it is not a proper subset of any other O-stairsegment in the curve.

We now show that the boundary of a simply connected O-convex set may be completely

characterized in terms of maximal O-stairsegments.

THEOREM 5.5.1 (The Boundary Theorem) If|0| > 2 and P is a simply connected set
then P is O -convez if and only if the poriions of its boundary between any two consecutive

0 -ezxtremal points are mazimal O -stairsegments.
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Proof: If P is simply connected and its boundary is made up only of O-stairsegments
meeting at O-extremal points in P then the only way in which P could fail to be O-convex
i3 if some O-line intersects one of the O-stairsegments more than once, since no O-line can
intersect the boundary of P more than twice. But this is impassible, since the intersection
of an O-line and an O-stairline is connected. Hence P must be O-convex.

Conversely, suppose that P is O-convex. Consider any pair of distinct consecutive O-
wxtremal points p and g of P. Let $[p, g] be the portion of P’s boundary connecting p and q.
If ©(LS[p, q]) € O then $[p,q] = LS[p, ] (since p and q are consecutive O-extremal points
of P) and £S$[p, q] is an O-stairsegment. Hence assume that O(LS(p,q]) & O. Without loss
of generality, assume that £S[p, g]’s maximal O-free range is (0°,90°) and that p is below
wuid to the left of ¢ (see figure 5.9).

Figure 5.9: §[p, q] is a Maximal O-Stairsegment

Now sweep a horizontal line, that is, a 0°-line, from q down to p. ‘If at any time in this
wweep this line intersects $[p, q] more than once then P cannot be O-convex, and similarly
tur a vertical line sweeping from p to g. Hence S[p,q] is an O-stairsegment connecting p
and ¢. Trivially, it is maximal since its endpoints are O-extremal in P. =

Observe that for the convex hull (that is, 0 = [0°, 180°)) all boundary points are O-
~xtremal and so the maximal Q-stairsegments in the boundary can only be points, lines,
line segments, or rays.

In the theory of convex sets two points are said to be mutually vistblein a given set if the
nne segment joining them lies wholly in the set. Thinking of O-stairlines as the analogues

| itvaight lines we are led to define a generalized form of visibility in which two points in
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a set are mutually visible if there exists at least one O -stairsegment joining them which lies
wholly in the set. This leads to the next characterization of O-convex sets and again it only
applies to connected O-convex sets. In particular, when O = [0°,18C°) this characterizatior

corresponds to property (6), since convex sets are connected.

THEOREM 5.5.2 (The Visibility Theorem) If|0| > 2 and P is a simply connected se:
then P is C-convez if and only if for all p and q in P there ezists an O-stairsegment in P
with endpoinis p and q.

Proof: Suppose that P is simply connected and for all p,g € P there exists an O-
stairsegment joining them lying in P. If ©(LS[p, q]) € O then O-||[p, q] = LS[p, g]. Henc=
there is only one O-stairsegment joining p and ¢ and so it must lie in P. Hence P i3

Q-convex.

Conversely, suppose that P is connected and O-convex. If p,g€ P and (L S[p,q]) € ¢
then there exists an O-stairsegment lying in P joining p and g—namely, £S|p, ¢| (otherwis-
P is not O-convex). Suppose then that ©(LS[p,q]) € 0. Consider O-||[p, q]. If either arm
of O-||[p, q] lies in P then there exists an O-stairsegment lying in P joining p and ¢ since
either arm of O-||[p, q] is an O-stairsegment. Assume then that neither arm lies wholly in P.
Since the lower arm (say) consists of two C-segments and it does not lie wholly in P thes

it must intersect the boundary of P exactly twice (otherwise P would not be O-convex).

Both of these intersection points must belong to one maximal O-stairsegment since
if they belonged to separate maximal O-stairsegments then there must be at least one O-
extremal point on P’s bourndary between the two intersection points. This means that ther:

must exist at least cne O-orientation in £§{p, g|’s O-free range. But this is impossible.

Therefore we can construct an O-stairsegment lying in P connecting p and g by startir.
at p and following the lower arm of O-||[p, g| until we encounter P’s boundary then follo:

the boundary until we intersect the arm again, and then follow the arm tc ¢g. =
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With O-stairlines replacing lines we can generalize convexity in ways other than the oue
we investigate in this chapter. For example, a set P is said to be strongly O-convez if fur
every pair of points p and g in P all O-stairsegments with endpoints p and q lie in P. In the
next chapter we show that this definition of convexity always produces convez 0-oriented
sets. Indeed, when O = {0°,90°}, the strong O-convex hull of P is just the bounding boz of
IP. We shall see more of this and other variants of O-convexity in the succeeding chapters.

5.8 O-Convexity as a Generalization of Convexity

We have shown that O-convex sets are a generalization of both convex sets and orthogonally
convex sets and that the properties of both are special cases of the properties of O-convex
sets, '.lfho main characteristic of convex sets that we have lost in generalizing to O-convex
sets is connectivity. A convex set is always connected.

Connected O-convex sets have all of the properties of convex sets listed at the beginning
of the chapter if we replace “line” by “O-stairline” and “line segment” by “O-stairsegment.”
However, note that there is no longer 2 unique “line segment” Jjoining two points. In the
following we assume that P is a connected O-convex set.

L. If O is non-empty then P is simply connected (corollary 5.2.2). Indeed, the connected
components of any O-convex set are simply connected if O is non-empty (lemma
5.2.3).

[ 1]

- The intersection of P and any O-line is connected (by definition). This holds even if
P is disconnected.

3. P is the intersection of all O-convex sets which contain it (corollary 5.2.1). This halds

even if P is disconnected.

4. If p € P then there exists an O-stairline separating p and P (corollary 5.3.1).
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5. P is the intersection of all O-stairhalfplanes which contain it (corollary 5.3.2).

6. If p,q € P then there exists an O-stairsegment in P connecting p and ¢ (theorem

5.5.2).



Chapter 6

Restricted Orientation Visibility

Closure under intersection provides one of the main characterizations of convex sets. How-
ever, there is an equally important characterization of convex sets, namely, a set is convex
if every pair of points in the set see each other. In this chapter we investigate alternative
ways in which points may be said to “see” each other when we have a restricted set of
orientations. We also add the concept of visibility to abstract convexity spaces and show
how the new definitions of visibility may be unified. Finally, we give algorithms to find a
iseneralized kernel and we generalize Chvital’s Art Gallery Theorem.

6.1 Weak and Strong 0-Convexity

Definition: Given two sets P and Q, we say that pseesqinP via Qifp,ge Q, Q is
connected, and Q C P.

Definition: P is said to be weakly O-convez (strongly O-convez) if Vp,q € P p sees ¢ in P
via an O-stairsegment (via O-||[p, g]).

Observe that the set of weakly @-convex sets is just the set of all connected sets and that

there are only two strongly @-convex sets, namely, the empty set, @, and the whole plane,

67
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R2. Also, observe that the set of weakly O-convex sets is not closed under intersection and
so does not form a convexity space whereas the set of strongly 0-convex sets does. In fact,
as we show, the set of convex sets forms a convexity space which is a refinement of the set

of strongly O-convex sets.

A strongly O-convex set is the usual Minkowski convex set in an arbitrary metric space.
In a metric space two points do not necessarily have a unique line segment joining them
and a set is said to be (metrically) convex if for every pair of points in the set every line

segment they define is also in the set. It is straightforward to show that:

THEOREM 6.1.1 P is strongly O-convez if and only if the intersection of P and every

O -stairline is connected.

Observe that convex sets are a subset of weakly O-convex sets and that strongly O-
convex sets are a subset of convex sets. Further, both containments are proper. The three

definitions of convex sets are identical only when O = [0°,180°).

The notion of weak O-convexity coincides exactly with that of O-convexity when re-
stricted to connected sets. The following result is a restatement of the Visibility Theorem

(theorem 5.5.2).

THEOREM 6.1.2 P is weakly O-convez if and only if it is a connected O-convez set.

We now completely characterize strongly O-convex sets.
Lemma 6.1.1 If P is strongly 0-convez then P is convez.

Proof: I P is strongly O-convex then Vp,qg € P O-||[p, g] C P. Since £S[p,q] € O-||[p, 4!,

P is convex. &

THEOREM 6.1.3 P is sirongly O-convez if and only if P is a convez C-object.
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Proof: Suppose that P is a convex O-object and let p and q be two points in P. [f
©(LS[p,g]) € O then 0-||[p,q] = £5[p, q]. Thus, since P is convex, 0-|[p, q] € P. Other-
wise, if ©(LS[p,q]) & O suppose, without loss of generality, that (0°,90°) is £’s maximal
O-free range. Let p be below and to the left of . If O-||[p,q] Z P then there exists somo
point r € O-||[p, q] such that r & P. Since P is convex there must exist a line £ separating
P and r. Since p,q € P and P is convex, ©(L) € (0°,90°) (otherwise £ separates P and
g). Thus £ cuts off one of the corners of 0-ll[p, q], say N W-conjugate(p, q) (see figure 6.1).
Translate £ until it becomes a line of support for P. Since P is O-oriented and £ is not, no
edge in P’s boundary can be collinear with £. Thus its boundary nearest r must contain a

reflex angle. But then P is not convex, a contradiction. Thus for all P, 9€P O-||[p,q] C P.

Figure 6.1: The Strong O-hull Is A Convex O-Object

Conversely, suppose that P is strongly O-convex but is not an O-object. This means
that some section of its boundary, say between the two points p and ¢, is not an O-line
segment, that is, ©(LS[p,q]) € O. Since P is convex (lemma 6.1.1) we may assume that
p and ¢ are extremal in P. Without loss of generality, let (0°,90°) be £S[p, g]’s maximal
O-free range and assume that p is below and to the left of . Now N W-conjugate(p, q)

cannot be in P since p and ¢ are extremal in P. But this point must be in P since it is in



CHAPTER 6. RESTRICTED ORIENTATION VISIBILITY 7C

O-li[p, g} and P is strongly O-convex, a contradiction. Thus P must be an O-object.

8.2 (O-Starshapedness

In [54] Sack characterized starshaped sets for orthogonal polygons. However his definitios
of visibility was the usual one of straight iine visibiliiy. When talking about restricter
orientation sets it seems more reasonable to define visibility in terms of O -stairlines rathe
than lines. For example, Sack (see [54]) showed that under line visibility a starshape
orthogonal polygon is orthogonally convex. This is contrary to the expected analogy fror

convex sets since a convex set is starshaped but a starshaped set is not necessarily conves

Definiticn: p and g are said to be weakly O -visidie (strongly O -visible} in P if psees g in :
via an O-stairsegment (via O-||[p, q])-

Definition: The set of points in P which weakly (strongly] see all peints in Pissaid tot
the weak (strong) O-kernel of P. P is said to be weakly (strongly) O-starshaped if P
empty or if P is non-empty and the weak (strong) O-kernel(P) is non-empty.

Keil [28] investigates strong O-visibility in O-polygons for 0 = {0°,90°}. That is, tv
points see each other in P if the orthogonal rectangle they define is in P. Overmars ar

Wood ([46]), and Munro et al. 40| examine a variant of this version of visibility.

The proofs of the following results follow directly from the definitions and are omitte

THIOREM 6.2.1 VP,

If P is starshaped then P is weakiy O -starshaped.

[
«

2, P is strongly O -starshaped then 2 s starshaped.

3. Weak {sirong) C-kernel{P) is weakly (strongly) O -convez.
{ J
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4. P is weakly (strongly) O-convez if and only if weak (strong) O-kernel(P) = P.

Because of the similarity of the above results, in the next section we search for an

algebraic characterization of visibility which includes all three versions of visibility.

6.3 Abstract Visibility

Most results in abstract convexity theory are generalizations of combinatorial results such as
Helly’s Theorem, Caratheédory’s Theorem and Radon’s Theorem ([24]). Abstract convexity
theory needs a definition of visibility capturing the essence of visibility in the Euclidean
plane to make it more useful to geometers. The definition should be general enough so that
its results apply to most convexity spaces. In particular, they should be applicable to the
O-visibility spaces we have just defined. Towards this end we define the following visibility

relation:

Definition: Given a convexity space (S,C) and aset P C §, p is said to see ¢ginPifdQ e
such that p,g€ Q and Q C P.

This generalizes the notion of visibility in a set in R?, where instead of requiring that
the line segment joining the two points be in P we merely require that the two points be
In some convex set which is contained in P. Thus we avoid defining what, if anything, we
mean by a “line segment” since we have not given any metric to our space. The above
visibility relation includes line visibility since in normal convexity a line segment is convex.

It also includes weak and strong O-visibility.

Observe that we cannot remove the condition “Q C P” since otherwise all points would
see each other in every set since the groundset of a convexity space is always convex and

contains all sets in the space.

An alternative way to define visibility is to require that p sees q in P if C-Aull ({p,q}) C
P. However, this definition fails to give geometric insight if the hull of two disconnected
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points may be disconnected (as happens with weak O-visibility).

Definition: Given a convexity space ($,C) and a subset P of §, the C-kernel of P is the set
of all points in P which see every point in P. P is said to be C-starshaped if either P =@
or C-kernel(P) # 9.

Lemma 6.3.1 Given a convezity space ($,C), if P € C then C-kernel(P) =P.

Proof: We need merely take Q = P in the definition of the visibility relation. a

This result says that any two points in a given convex set “see” each other, which is just
what we want. It also establishes that every two points in a convexity space can see eack

other in the groundset since the groundset is always convex.
Corollary 6.3.1 Given a convezity space ($,C), if P is C-convez then P is C-starshaped.

As a first step in constructing a theory of abstract visibility we would like to at leas:
prove that the C-kernel of any set is C-convex. To prove this we add two simple axioms t¢

those of a convexity space to give what we call a visibility space.

Definition: Given a set, S, and a family of subsets, C, of §, the structure (S, C) is said t«:
be a visibility space if

1. 9,8 €¢;

2.vCecC, NCeC;

3.vpe S, {p}€s;

4. Vpe S,YC €C, Usec C-huli({p,q}) €C.
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Thus we require that every point be C-convex and that the cone created by a point an

any C-convex set be C-convex.

We can now prove a useful result which characterizes C-kernel (P) in visibility spaces
as the intersection of the “largest” convex subsets of P. From this result it will follow that

C-kernel(P) is C-convex since it is the intersection of a non-empty collection of convex sets.

Definition: We say that the C-convex set Q is mazimally C-convez in P if Q C P and there
does not exist a C-convex set R such that Q € R C P. We denote the set of all maximally

C-convex sets in P by Cp.

THEOREM 6.3.1 Given a visibility space (s,0),
VPCS, C-kernel(P)=[\Cp

Hence, VP C S, C-kernel(P) is C-convez.

Proof: We first prove that C-kernel(P) C N Cp. If C-kernel(P) = @ then C-kernel(P) C
N Cp so suppose that C-kernel(P) # @.

Let p be in C-kernel(P) and suppose that C; is a maximally convex subset of P such
that p € C;. Since pisin C-kernel (P), Vg € C; there exists a Cj € C such that p,q € C; and
C; C P (otherwise p cannot see g). Since C-hull({p, q}) is a subset of every C-convex set
which contains p and ¢ then C-hull({p, q}) C C; C P. Therefore, Uqec, C-hull({p,q}) C P.
But from axiom 4, Usec; C-hull({p, q}) is C-convex. Also, C; Usec, C-hull({p, q}) since
p € C;. But C; is maximal in P, a contradiction. Therefore, no such C; can exist and so,
pECp.

We now prove that NCp € C-kernel(P). If NCp = O then N Cp C C-kernel(P) so
suppose that N Cp # @.

Suppose that p € Cp. Let ¢ be in P. From axiom 3 we know that {q} is C-convex,

thus ¢ is in at least one C-convex set which is in P. This implies that there is a maximally
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convex subset C; in P such that ¢ € C;. But p € C; since p is in the intersection. Therefore,
both p and ¢ are in C; and C; is C-convex and is in P. Thus p sees q in P for all ¢ in P.
Hence, p € C-kernel(P). »

Corollary 6.3.2 VP C S, P =C-kernel(P) < P=C-hull(P) < Pe(

Observe that the strong O-visibility space is a visibility space, as is the normal convexity
space, however weak Q-visibility does not even give rise to a convexity space since the

intersection of two weakly O-visible sets is not necessarily weakly Q-visible.

Observe that our abstract definition of visibility does not imply that two points which
see each other are in fact connected (in the conventional sense) unless convex sets (however

they happen to be defined) are connected sets.

" 6.4 The Weak O-Kernel

In the rest of this chapter we investigate two ;:omputa.tional consequences of weak {-
visibility. From now on we restrict attention to weak O-visibility and so by the O-kerne:
we mean the weak O-kernel and by O -visibility we mean weak (-visibility. We develop an
algorithm to construct the O-kernel of a polygon in this section and we generalize Chvital’s
Art Gallery Theorem in the next section.

6.4.1 The 0°-kernel of a Polygon

We begin by giving an algorithm to compute the O-kernel when [0 = 1. We assum-:

without loss of generality that O = {0°}. In the next subsection we conmsider the cas-
10 2.

Given a polygon P, we wish to determine 0°-kernel(P). That is, the set of all point

which see every point in P via 0°-stairsegments which lie in P (figure 6.3(a) gives a
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example 0°-kernel). Recall that a 0°-stairsegment a 0°-convex curve, that is, a curve which
is monotone with respect to any vertical line. We develop an algorithm to find 0°-kernel ()

in linear time and space.

Consider any reflex angle in P at a vertex v; where v;_; and v;,; are either both above
or both below v; (see figure 6.2). These vertices create two types of “walls”—up-walls and
down-walls (in the figure the first wall is an up-wall).

vil1 Uit1 g------° '

Figure 6.2: Walls Created By Interior Angles

Lemma 6.4.1 Given a polygon P, 0°-kernel (P) les above any up-wall and below any

down-wall.

Proof: Consider an up-wall £. If 0°-kernel (P) lies below £ then either ¥j—1 OF v;41 cannot

be seen from 0°-kernel(P) since any curve crossing £ twice cannot be 0°-convex. m

To find 0°-kernel(P) we proceed as follows. In linear time we find ymaz and ymin—the
maximum and minimum y-values achieved by the vertices of P. yp.. and Ymin are the
initial boundaries of 0°-kernel (P). Scan the vertices of P starting from any vertex and
create the walls (if any). As each new vertex is examined it may create an up-wall or a
down-wall. If it creates an up-wall (say), check whether it is higher than ym,. If it is,
update Ymin and check that ym,, is still lower than Ymaz- If not then 0°-kernel (P) is empty
otherwise we will end up with a range of y-values [Ymin, Ymaz| in which 0°-kernel (P) must
lie. It is easy to show that since [Ymin, Ymaz] is above every up-wall and below every down-

wall (by construction), any point in P in this range is in 0°-kernel(P). Thus to find the
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0°-kernel we need merely scan P testing each vertex against [Ymin, Ymaz]- Since a polygeonal
description of the 0°-kernel is recoverable from [Ymin; Ymaz] in linear time we can assume
that all 0°-kernels are described by ranges. Since we must examine every vertex in P we

see that:

THEOREM 6.4.1 The 0°-kernel of an n-vertez polygon can be found in ©(n) time and ©(n)

space.

6.4.2 The O-kernel of a Polygon

In this section we show that the 0°-kernel finding algorithm outlined in the previous sectior
can be used to find the O-kernel for any 0. To demonstrate this we need the followin;

result:

THEOREM 6.4.2 Let P be a simple polygon.

Then
(U 0:)-kernel(P) = () O:i-kernel(P)

Proof: Let p be in (U; 0;)-kernel(P). For each q in P, p sees ¢ via a (U; O;)-stairsegmens
lying in P. Each such curve is (|J; 0;)-convex and hence O;-convex for each :. Hence,
for each ¢, p sees ¢ via an O;-stairsegment lying in P. Thus, for all i, p € O;-kernel(P)
Therefore, (U; O;)-kernel(P) C N; Oi-kernel(P).

Conversely, let p be in [; Os-kernel(P). For each ¢ in P, and for each 1, p sees g via au
O;-stairsegment lying in P. We wish to show that we can comstruct a (U; O;}-stairsegmen-
lying wholly in P connecting p and g. Observe that for each § € U; O; p must be able t>
see every point in P f-convexly (that is, for each ¢ in P there must exist some §-conve:

curve lying wholly in P connecting p and g).

If ©(£25[p,q]) € U; O; then from lemma 4.3.1 (U; Oi)-lllp, g} = LS[p, q|. Suppose th:
©(LS|p,q]) € 0j. L£S[p,q] is the only Oj-convex curve connecting p and ¢. Thus, sinc»
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p sees ¢ via an O j-stairsegment lying in P, p sees q via a (J; O;)-stairsegment lying in P,
namely L£S|[p, q]. Therefore, suppose that ©(LS[p, q]) € U; O; and let (6, 0;) be LS[p, q]’s
maximal (|J; O;)-free range. Since (8y,02) is (U; O;)-free then, from lemma 4.2.1, to prove
the claim it is sufficient to construct a {61, §2}-stairsegment lying wholly in P connecting p
and g¢. If one of the arms of {0y, 62}-||[p, g] does not intersect the boundary of P then tixat
arm is a {01,0;}-stairsegment lying wholly in P connecting p and q. Therefore, suppose
that both of the arms of {61,82}-||[p, ¢] intersect the boundary of P.

Assume, without loss of generality, that [8;,82] = [0°,90°]. The following arguments
hinge on the fact that p must be able to see every point in P 0°-convexly and 90°-convexly
(otherwise p & (; O-kernel(P)). Call the four line segments making up {0°,90°}-||[p, q] top,
bottom, left and right. Suppose that bottom intersects P’s boundary (if this isn’t the case
then right must intersect P’s boundary and a similar argument to that given below applies).

Let py be the first (leftmost) point on bottom which is on P’s boundary. Let Sy be the
boundary of P starting from p; that lies in {0°,90°}-||[p, g]. Since P is simple and p and ¢
are in P then §; must exit {0°,90°}-||[p, g] at some point. If $; intersects op then p cannot
see g 0°-convexly. If §; intersects left then either p cannot see ¢ 0°-convexly or p cannot see
q 90°-convexly. If §1 intersects bottom at some point r # pj then p cannot see r 0°-convexly.
Thus §; must exit {0°,90°}-|[p, ¢] through right. Further, S1 must be 0°-convex otherwise

there is a point on §; which p cannot see 0°-convexly.

Construct the curve S3 from §; by replacing each segment of $; which is non-90°-convex
by a vertical line segment (that is, form 90°-hull(S), here however we are only interested
in the portion of the hull on the same side as p). We claim that §; lies wholly in P, that
is, $2 does not intersect P’s boundary at any point not on S;. Let S’ be any boundary
segment of P in {0°,90°}-||[p, ¢] not contained in §;. Suppose that ' intersects § at some
point r. Since P is simple r cannot be on §;, therefore r lies on one of the vertical line
segments introduced to form the “hull” of §;. If §' enters and exits {0°,90°}-||[p, ¢] through

top then there is a point that p cannot see 90°-convexly (either the entry point or the exit
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point). §’ cannot enter or exit {0° 90°}-||[p, g] through right for either $' is a subset of §
or p cannot see g 90°-convexly. Thus $' enters through left. Further, $' must be 90%convex
otherwise there is a point which p cannot see 30°-convexly. Since §' is be 90°-convex and 7
ison §', §' intersects §3. But P is simple, a contradiction. Therefore, no §' can intersec:

S3 and s0 §3 lies wholly in P.

Therefore, the curve §; is connected, it lies wholly in P, it connects p and ¢ and it is
{0°,90°}-convex. Since (0°,90°) is (|J; O;)-free $; is a ({J; Os)-stairsegment connecting z
and ¢ in P. Therefore, p € (U; Oi)-kernel(P). =

Thus, we may generalize the previous algorithm $o find the O-kernel of an n-vertex
polygon in O{nr + rlgr) time and O(n) space where O consists of r ranges. We requir:
O(nr) time to find the 27 separate kernels and O(rlgr) time to find their intersection. This
time bound reduces to O(n) when r is constant, and this compares favourably with Lee anc
Preparata’s linear time kernel algcrithm ([34]). However, if r is an input parameter then w-
would prefer to have an O{nlgr + r) algorithm and we conjecture that such an algorithr
exists.

In figure 6.3 we provide some example O-kernels: (a) is the 0°-kernel; (b) is th
90°-kernel; (c) is the {0°,90°}-kernel; (d) is the [0°, 90°]-kernel; (2) is the [90°, 180°]-kernel
and (f) is the [0°, 180°)-kernel.

8.4.3 The 0°kerne! of a Polygon with Holes

In lemma 6.4.3 below we examine the possible effects of holes on the 0°-kernel. First thoug

we need the following resulit:

Lemma 8.4.2 Let P be a polygon with ai least one hole and let p be in P.

If £10°, 2] intersects o hole then p & 0°-kernel{P).
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N (fj

Figure 6.3: Some Example 0-Kernels of a Polygon

Proof: Suppose that p € P and L[0°, p] intersects a hole. £[0°, p| must cut P at some point
¢ on the opposite side of the hole to p. Since p and ¢ lie on a horizontal line, from lemma
4.3.1 0°-||[p, q] = LS[p, q], and thus, no 0°-convex curve lying wholly in P can connect p
and gq. Thus, p cannot be in 0°-kernel(P). n

Holes can affect the 0°-kernel beyond deleting a subrange from the range defining the
.0°-kernel of the “hole-less” version of the polygon. Call a hole 0°-convez if it is 0°-convex
when viewed as a polygon in its own right. In figure 6.4 we give three examples to illustrate
what happens when the hole is and is not 0°-convex. The hole in the first polygon is
non-0°-convex and we think of it as generating an up-wall and a down-wall. However, the
up-wall is above the down-wall and so the 0°-kernel of the polygon as a whole is empty
(no single point can see both indentations 0°-convexly). The hole in the second polygon
is also non-0°-convex, however in this case the hole only generates an up-wall. Thus the

0°-kernel may lie above this up-wall. Finally, the hole in the third polygon is 0°-convex and
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it generates neither an up-wall nor a down-wall. Of course, all three holes always eliminate

(at least) the subrange they define from the range defining the 0°-kernel of the hole-less
polygon.

S S N —-L 2

Figure 6.4: The Effect of Non-0°-Convex and 0°-Convex Holes

K

Lemma 6.4.3 If P is a polygon with at least one hole then 0°-kernel(P) may be discon-

nected.

Proof: If the 0°-kernel of the hole-less version of P is empty then 0°-kernel(P) is empty,
so assume that the 0°-kernel of the hole-less version of P is non-empty and let its range be

[Ymin> Ymaz]. Suppose that P has a hole lying in the range [yi, y2]-

From lemma 6.4.2 we know that no point in P in the range [y;, y2] can lie in 0°-kernel(P).
There are, essentially, four cases to examine with respect to [y1,¥2] and [Ymin, Ymaz] (We

illustrate the cases in figure 6.5):

Case 1: Ymin < Y1 < ¥2 < Ymaz

In this case 0°-kernel(P) can only lie in the ranges [¥min, ¥1) and (y2, Ymaz]- If the hole
is 0°-convex then this is its only effect on 0°-kernel(P). If the hole is non-0°-conve:
then it may eliminate either [Ymin,¥1), (Y2, Ymaz], or both, depending on whether i

generates an up-wall, a down-wall, or both.

Case 2: Y1 < Ymin < Ymaz < Y2.

In this case 0°-kernel(P) is empty.
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Case 3: y1 < Ymin < 92 < Ymaz (and similarly, ymin < y1 < Yag < Yz2).
In this case 0°-kernel(P) can only lie in the range (Y2, Ymaz) (respectively, [Ymin, v1)).
If the hole is 0°-convex then this is its only effect on 0°-kernel(P). If the hole is non-

0°-convex then it may eliminate (v2, Ymaz] (respectively, [¥min, ¥1)), if it generates a

down-wall (respectively, an up-wall).

Case 4: y1 < y2 < Ymin < Ymaz (and similarly, Ymin < Ymaz < Y1 < y2).

In this case 0°-kernel(P) can still lie in the Iange (Ymin,Ymaz]. If the hole is 0°-
convex then it has no effect on 0°-kernel (P). If the hole does not create a down-wall

(respectively, an up-wall) then it also has no effect on 0°-kernel(P). If the hole creates

a down-wall (respectively, an up-wall) then 0°-kernel (P) is empty. m

_1,,
"uyl
Ymaz
-ﬁyz . J-
1
"W wmin| 7T e
--------- -
Case 4

Figure 6.5: The 0°-kernel of a Polygon With Holes May Be Empty, Connected or Discon-

nected
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We can find the 0°-kernel of a polygon with holes by first finding the 0°-kernel of the
hole-less version. This gives us a single range of y values over which the 0°-kernel lies (if
it is empty we are done). Now we process the holes to determine the ranges they eliminate
from the allowed range. This takes linear time. Each hole eliminates some subrange of
y values over which the 0°-kernel may lie. Each such elimination can be accomplished in
O(lgn) time by performing a binary search into the O(n) remaining subranges. We now
process each hole to determine if any of them is non-0°-convex. In chapter 7 we show that
this can be accomplished in linear time. If none of the holes create any walls we are done.
If the walls they create move past each other then the 0°-kernel is empty, otherwise the
0°-kernel is unchanged. Thus the set of y ranges over which the 0°-kernel is defined can be
found in O(nlgn) time.

“Lemma 6.4.4 Finding the 0°-kernel of an n-vertez polygon with holes requires Q(nlgn)

time in the algebraic decision tree model of computation.

Proof: Suppose that Q(nlgn) is not a lower bound on finding the 0°-kernel of a polygen
with holes. We show how to solve the Element Uniqueness problem in o(nlgn) time, a

contradiction ([11]).

Given n values y1, ¥2, - . ., Yn, We construct a polygon with 4(n+ 1) vertices containing n
point holes as follows. The i** hole will be the point (,y;). Find the minimum and maximum
values in y and construct an appropriate surrounding box (see figure 6.6 in which the point
holes have been expanded to squares for clarity). All of these operations take linear time.
Run the 0°-kernel algorithm and count, in linear time, how many components compose the
0°-kernel. If the number of components is less than n + 1 then some pair of y coordinates

are equal otherwise they are all distinct. =

THEOREM 6.4.3 The 0°-kernel of an n-vertez polygon with holes can be found in ©(nlgn)

time and ©(n) space.
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Figure 6.6: Finding The 0°-kernel of a Polygon with Holes Requires O(nlgn) Time

6.4.4 The O-kernel of a Polygon with Holes

The {0°,90°}-kernel of a polygon with holes may have Q(n?) components if |0| > 2 and
O is not the set of all orientations (for example see figure 6.7 where O = {0°,90°}). Thus,
just to report each component of the O-kernel requires (n?) time in the worst case. The
kernel with respect to each range of orientations in O can be found in O(nlgn) time since
we need only find the intersection of the kernels with respect to the range boundaries. If
there are r ranges in O then the intersection of their kernels can be found in O(r?n?) time,

thus the O-kernel of a polygon with holes can be found in O(r*n?) time in the worst case.

Figure 6.7: The O-kernel of a Polygon With Holes May Have Q(n?) Components
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6.5 The Art Gallery Problem

Given a polygon P, whose edges represent an art gallery, and a set of points (representing
art gallery guards) in P, P is said to be guarded if for each point in P there is at least one
guard which sees that point via a line. The Art Gallery Problem is: How many guards are

necessary and sufficient to guard any n-vertex polygon?

In [7] Chvétal proved that |n/3] guards are necessary and sufficient to guard any simple
n-vertex polygon and Kahn et al. ([26]) showed that [n/4| guards are necessary and
sufficient to guard any orthogonal polygon. The latter result holds for any class of 0-
polygons for which |0| = 2. I |O| > 3 then there exist O-polygons which require n/3]
guards (see figure 6.8 in which {0°,45°,135°} C 0).

- - o= o

Figure 6.8: If |0| > 3 O-Polygons Require |n/3| Guards

In the above mentioned results the way in which the guards “see” is kept constant while
the class of polygons to be guarded is changed. We now examine the effect of modifying
the way the guards see as well as allowing the class of polygons to vary.

Definition: A guard which can see along any O-stairline is said to be an 0-guard.

Of course, when O is the set of all orientations O-guards are guards in the usual sense.
Reckhow and Culberson ([52]) have, independently, considered the special case of O-guards
in O-polygons when 0 = {0°,90°}. We call such O-guards, orthogonal guards. A number
of other variants of the art gallery problem have been defined: for example, O’Rourke [42]
considers mobile guards, and Keil [28] considers guards which see via rectangles instead of
lines. !

1As for O-visibility, we may define strong O-guards to be guards which see along any O-parallelogram.
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6.5.1 Orthogonal Guards in Orthogonal Polygons

Definition: Given an orthogonal polygon P, an edge of P is said to be a north edge of P if
the interior of P lies locally below the edge. Similarly, we define south, east and west edges
of P. A convex vertex of P is said to be a NE vertez of P if it is made by a north and east
edge of P. Similarly, we define NW, SE and SW vertices of P.

> H

NW NE

| I P P ,
SwW SE
Figure 6.9: Kinds of Convex Interior Angles for Orthogonal Polygons

Lemma 6.5.1 Every point in an orthogonal polygon sees at least one NE, NW, SE and
SW vertez via {0°,90°}-stairsegments. '

Proof: Let P be an orthogonal polygon and let p be a point in P. We shall prove the
result only for NE vertices, a similar construction works for any of the other three convex

vertices.

If p is at a NE vertex we are done. If p is on an east edge of P then travel up the edge
until the next vertex is reached. If this vertex is a NE vertex we are done, otherwise we are

at a reflex vertex. This brings us to the general case: p is somewhere in the interior of P.

(In this framework, the “O-guards® defined above would be weak O-guards.) Observe that Keil’s ([28])
“rectangle guards® would be the same as strong orthogonal gnards. It is possible to show that there exist
polygons which require infinitely many strong O-guards once O is not the set of all orientations.
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Given that p is in the interior of P construct the following polygonal curve. p can see
only one east edge, call it e;. Take the horizontal line segment from p to e; as the first edge
in the curve. If this terminates at a NE vertex then the curve is complete, otherwise this
new point on e; sees one north edge, call it n;. Add the vertical line segment to n; to the

curve.

The intersection point on nj can see only one east edge. Again add the horizontal line
segment to this new edge to the curve and so on inductively. Since P is a polygon it has
only a finite number of edges and we will eventually exhaust all of them so this process
must stop. At this point we are either facing east and are blocked by a north edge or we
are facing north and are blocked by an east edge. In both cases we are at a NE vertex. The
curve we have constructed consists of alternating horizontal and vertical line segments and
is horizontally and vertically monotone thus it is a {0°,90°}-stairsegment. Thus any point

in an orthogonal polygon can see a NE vertex via a {0°,90°}-stairsegment. =

THEOREM 6.5.1 |(n + 4)/8] 0°- or {0°,90°}-guards are necessary and sufficient to guard
an orthogonal art gallery.

Proof: From the previous lemma it suffices to place guards at ail of the NE, NW, SE or
SW convex vertices. We first determine which assignment gives the minimum number of
guards and assign guards to those convex vertices. By counting interior angles it is easy to
show that in an orthogonal polygon the number of convex vertices is (n + 4)/2. Thus the
number of {0°,90°}-guards placed is at most |(n +4)/8].

Since a {0°,90°}-stairsegment is a 0°-stairsegment this number of 0°-guards suffices as

well.

The necessity of this many guards in the worst case follows from the class of polygons

illustrated in figure 6.10(a). m

Thus it suffices to place the 0°-guards or {0°,90°}-guards only at convex vertices. This

result motivates us to ask whether a polygon can be guarded by placing O-guards only a:
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Figure 6.10: Orthogonal And Arbitrary Snakes

convex vertices? The counterexample in figure 6.11(a) shows that this is not possible if
[0] 2 2 (in the figure {0°, 90°} C O and no 0-guard placed at a convex vertex can see p via
a {0°, 90°}-stairsegment). Even if we restrict ourselves to O-polygons the counterexample
in figure 6.11(b) shows that this is not possible if |O] > 3 (in the figure {0°,45°,90°} C O

and no O-guard placed at a convex vertex can see q via a {0°, 45°,90°}-stairsegment).

(b) “

Figure 6.11: Counterexamples to Placing 0-Guards at Convex Vertices

6.5.2 The Art Gallery Theorems
THEOREM 6.5.2 (The Orthogonal Art Gallery Theorem) If |0| =0 then 1 O-guard
is necessary and sufficient to guard an orthogonal art gallery.

If|0| > 1 then |n/4| O-guards are necessary and sufficient to guard an orthogonal art
gallery.
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Proof: |0| =0 is trivial.

|0] 2 1: Since line-visible points are O-visible for all O sufficiency follows from the
quadrilateralization argument of Kahn et al. ([26]). Necessity follows from the class of
polygons illustrated in figure 6.12 (here 45° € 0). =

A

_l:

—
Figure 6.12: If |0| > 1 Orthogonal Art Galleries Require |n/4| 0-Guards
THEOREM 8.5.3 (The Art Gallery Theorem) If |O| = O then 1 O-guard is necessary
and sufficient to guard an art gallery. ‘

If|0| =1 then | (n+2)/4] O-guards are necessary and sufficient to guard en art gallery.

If|0| 2 2 then |n/3]| O-guards are necessary and sufficient to guard an art gallery.

Proof: |0| =0 is trivial.

|0| = 1: Sufficiency follows from an argument similar to placing 0°-guards at convex
vertices in orthogonal polygons. There are a total of at most (n + 2)/2 vertices which are
convex with respect to any fixed direction. The O-guards are placed at the convex vertices
which give the smaller number. Necessity follows from the class of polygons illustrated in
figure 6.10(b) (here 0° € 0).

|O] = 2: Since line-visible points are O-visible for all O sufficiency follows from the trian-
gulation argument of Chvétal ([7]). Necessity follows from the class of polygons illustrated
in figure 6.13 (here {0°,90°} C 0). n
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Figure 6.13: If |O| > 2 Art Galleries Require [n/3]| 0-Guards

L 1]



Chapter 7

Computing the Hulls

In this chapter we give optimal algorithms to find the O-hull and the strong O-hull of a
simple polygon. The algorithms have worst case time complexity ©(n + r) and use &(n)

space where n is the number of edges of the polygon and r is the number of ranges in 0.

7.1 The Three O-hulls

So far we have seen hull(P) (the convex hull of P), O-hull(P), the weak O-hull of P and
the strong O-hull of P. In [62] Widmayer et al. investigated O-oriented O-convex polygons
(for finite 0). They were interested in this class of polygons since, for their application area
(VLSI design), not only must all the polygons under consideration be O-oriented but also,
the only reascnable definition of “convexity” is O-convexity. The reason is that in VLSI
design not only are the polygons constrained to be O-oriented but so are the wires connecting
them. It is worth noting that all previous work on orthogonal convexity ([41,39,43]) also

assumed that an orthogonally convex set should be orthogonal.

If we restrict ourselves to considering only O-oriented polygons then the following defi-

nition of the O-hull is a natural one:

90
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Definition: Given two polygons P and Q, Q is said to be the O-oriented O-hull of 1°
(0 O0-hull(P)) if Q is the smallest O-convex O-polygon which contains P.

As we shall see, there is no reason to ;ieﬁne 0 O-hull(P) since in most cases it is equiv-
alent to the less restrictive O-hull(P); further unlike O-hull(P), it does not always exist.
Notice that since polygons are connected sets, from theorem 6.1.2 the weak O-hull of P is
just O-hull(P).

Recall that in theorem 6.1.3 we showed that the strong O-hull is convex and O-oriented.
Thus it is a natural generalization of the bounding box of a polygon, that is, the smallest
orthogonal rectangle which encloses the polygon. Bounding boxes are currently in use in
probabilistic tests of intersection: to test whether two objects intersect find their bounding
boxes and test whether they intersect, if they don’t then the objects don’t, otherwise test the
two objects by brute force. Of course, there is nothing_ sacred about the z and y directions,
we may expand the bounding box test to first pick some number of random arientations and
find the bounding boxes, that is, the strong O-hulls, of the two objects for these orientations

then test them for intersection.

Figures 7.1 and 7.2 show the various hulls for two example polygons where 0 =
{0°,45°,90°}. In figure 7.1 the polygon is O-oriented, whereas in figure 7.2 it is not.
Observe that the O O-hull of the non-O-oriented polygon (P2) does not exist.

7.2 Characterizing 0-Convex Polygons

From the boundary characterization result of chapter 5 (theorem 5.5.1) we may immediately

state the following special cases:

THEOREM 7.2.1 A polygon is O-convez if and only if its boundary consists of a sequence
of mazimal polygonal O -stairsegments meeting at O -eztremal points.
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P,

strong O-hull(Py) ‘ 0 0-hull(P,)
Figure 7.1: An O-Polygon and its Various Hulls

hull(P3) O-hull(P,)
P, -does not exist-
strong O-ull (P2) 0 O-hull(P3)

Figure 7.2: An Arbitrary Polygon and its Various Hulls
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Corollary 7.2.1 An O-polygon is O-convez if and only if its boundary consists of a s

quence of maxzimal 0 -staircases meeting at O -eztremal points.

For finite O corollary 7.2.1 has been stated in [62]. The characterization of the bound-
ary of O-convex polygons as a sequence of maximal polygonal O-stairsegments is a direct

generalization of the case for orthogonal polygons (see for example Wood [64]).

Theorem 7.2.1 enables us to prove:

THEOREM 7.2.2 If the ranges in O are given in sorted order, then testing a polygon P for
0 -convezity and strong O -convezity can be accomplished in ©(n + r) time (worst case) and

©(n) space, where n is the number of edges of P and r is the number of ranges in O.

Proof: We first consider testing for strong O-convexity. From theorem 6.1.3 we know that
a strong O-convex set is convex and O-oriented. Thus to test P for strong O-convexity we
check whether P is convex then check whether it is O-oriented. Both tests may be done
in linear time as follows. First find the range in O to which one of P’s edges belong, this
takes O(lgr) time if O has r ranges. Then from the next edge in P determine the order in
which to march along O (there are only two possible orders). Having found this examine
each new edge and check that it lies either in the current range or in the next one. If it
does not then P is not O-oriented. When we find that it lies in the next range the next
range becomes the current range and the process is repeated until we have exhausted the
edges. Since we either discard a range in O or an edge of P in constant time and we only

examine each range in O at most twice then this algorithm takes O(n + r) time.

To see that this is optimal consider a convex O-polygon. Such a polygon can be
constructed for any O (for example, see the solid line polygon in figure 7.3, here 0 =
{36°,72°,108°,140°}). Such a polygon will be non-0-oriented if one of its edges is not in
0. Since each range in O is represented in the polygon then any algorithm is forced to
examine each range in O at least once. Also any algorithm must examine each edge of the

polygon at least once thus it requires Q(n + r) time to test any polygon for O-convexity.
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We may test a polygon for O-convexity either using a slightly more complicated al-
gorithm than the one outlined above or we may use the monotone testing algorithm of
Preparata and Supowit ([48]). First find all directions of monotonicity using the algorithm
of Preparata and Supowit. This algorithm takes linear time and it outputs an ordered
doubly-linked list of orientations of size O(n). Transform the list in linear time to the set
of corresponding orthogonal orientations. That is, if § is in the monotonicity list, replace it
by 8 +90°. Now, find the first O-orientation in the list (linear time) then check each range
in O in order. This takes O(n + r) time overall.

To see that this is optimal consider an O-convex O-polygon which consists of alternating
convex and reflex angles. Such a polygon can be constructed for any O (for example, see

the dashed line polygon in figure 7.3, here 0 = {38°,72°, 108°,140°}).

Figure 7.3: Polygons Realising the Lower Bound

Such a polygon will be non-0-convex if any of the pairs of O-line segments making up a
reflex angle are non-consecutive in 0, and so any algorithm is forced to examine each range
in O at least once. Also any algorithm must examine each edge of the polygon at least once

thus it must take Q(n + ) time to test any polygon for O-convexity. »

7.3 Relatiénships Between the Hulls for 0-Polygons

If P is a C-polygon then all of the hulls exist and two of the hulls are always equal as we

now demonstrate.
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Lemma 7.3.1 IfP is an O -polygon then OO -hull(P) = O-hull(P)

Proof: If O-hull(P) is not O-oriented then it has some non-0-oriented edge L. £ cannot
be a subset of an edge of P since P is an O-polygon. Hence there is at least one point in
O-hull(P) between £ and the polygon, and this point can be removed by replacing a part
of £ by a length 2 O-staircase made up of line segments of orientations 61 and 95 whero

(61,62) is £’s maximal O-free range.

Such a replacement preserves the O-convexity of the hull because no O-line can cut both
of the new segments simultaneously and no O-line can cut £ and either one of the segments
since (0y,8;) is O-free. Therefore we have obtained an O-convex polygon which contains P

and is properly contained in O-hull (P), a contradiction. =

The above proof fails if P is not O-oriented.

Lemma 7.3.2 IfP is an O-polygon, then
P CO-huli(P) = 0 0-hull(P) C hull (P) € strong O -hull(P)

Proof: These containment results follow from the observations of the previous chapter that

strongly O-convex sets are convex, and convex sets are O-convex. m

These relationships hold even when P is not O-oriented except that, as is easy to show,

0 O-hull(P) may not exist (see figure 7.2).

7.4 Computation of the Hulls

Using the algorithms already developed for the orthogonal convex hull as our starting point
gives O(nr) time algorithms to find both the O-hull and the strong O-hull, respectively, of
an n-vertex polygon. This is because the algorithms presented in [41,39,43,54] essentially

decomposed the problem into finding the hull in first one then the other orthogonal direction.
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This approach also leads to a straightforward O(nr) time algorithm when we have r ranges.
That this can be improved upon is due to the high degree of structure possessed by both
the O-hull and the strong O-hull.

From theorem 7.2.1 we know that the O-hull of a polygon P must be the smallest
polygon which both contains P and is composed of a sequence of polygonal O-stairsegments
meeting at convex angles. If we were to find the convez hull of P, how would we have to
modify it to obtain O-hull(P)? (From [37,3,18,33] we know that hull(P) can be found
in ©(n) time.) It is easy to see that the boundary of 0-hull(P) must lie between the

boundaries of P and hull(P). In fact, we can prove—

Lemma 7.4.1 If P is a polygon then the extremal vertices of P, that is, the vertices of
hull(P), are vertices of O-hull(P) and the edges of O-hull(P) between any two consecutive

0 -eztremal vertices of P form a polygonal O -stairsegment.

Proof: The proof that the extremal vertices are vertices of the O-hull is similar to the
proof of case 2 of theorem 5.5.1 and is omitted. The second assertion is a slight refinement

of theorem 7.2.1. »

There is an analogous result for the strong O-hull of P.

We adapt the “gift wrapping” method used by Jarvis ([25]) to find 0-Aull(P) in O(n+r)
time. Consider how to construct the portion of the hull lying between two consecutive

extremal vertices of P. Let the two vertices be v; and v; where 1 < j.

If ©(LS[vi,v;]) € O then all we need do to process these two vertices is to add them to
the list of vertices that we have already found to be in the O-Aull. Also, if 7 = ¢+ 1 then we
will always add the two vertices to the list since v; and v; are extremal. Otherwise assume
without loss of generality that (0°,90°) is £ [vi, v;]’s maximal O-free range. Consider the
boundary of P from v; to v; (see figure 7.4).

If any vertex is obstructed in the z-direction from v; or in the y-direction from v; ther

it cannot be on the list of vertices belonging to O-hull(P). It is now easy to construct an
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Figure 7.4: Forming the O-hull

algorithm to step along the vertices in between each Pair of consecutive extremal vertices
of P and find the vertices of P which belong in O-hull(P). As in the proof of theorem 7.2.2
we need only to find the range that contains the orientation of any one of the line segments
defined by the consecutive extremal vertices of P and from that point on march along the
extremal vertices of P and the ranges in O in lock-step. Since we are examining the vertices
of a convex polygon (that is, the convex hull of P) in order we will only encounter any
one pair of consecutive O-range boundaries at most twice. Also, we will never see any two
consecutive extremal vertices more than once. So at each step we either discard one of
the vertices of the polygon or we discard one of the possible pairs of consecutive O-range

boundaries in constant time per step.

The strong O-hull of P is even simpler to compute, since the only vertex we need add
is one of the corners of O-|l[vi, v;] when v; and vj are extremal. For example, in figure 7.4

we need only add the new vertex « and delete v; if this would make it a collinear vertex.

Although both hulls may require the introduction of new vertices, the number of vertices

is not increased.
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Hence we have proved the following theorem:

THEOREM 7.4.1 IfP is a polygon then both O-hull(P) and the sirong O-hull of P can be
found optimally in ©(n + r) time in the worst case where n is the number of vertices of P

and r is the number of ranges in 0.

7.5 The O-hulls for Finite Point Sets

Case 1: 0 = @. The strong @-hull of any set containing at least two points is the entire
plane. The @-hull of any set is the set itself. Thus both O-hulls may be found in O(1)

time.

Case 2: O = 0°. The.strong 0°-hull is the infinite section of the plane bounded by
two horizontal lines through the points with minimum and maximum y coordinate. Thus
the strong 0°-Aull of a set of n points can be computed in O(n) time. Since finding the

minimum and maximum of n values requires {I(n) time this is an optimal procedure.

To find the 0°-hull sort the points by y coordinate and if any two points have the same
value then the horizontal line segment joining them is added to the hull. For a set of n
points this takes O(nlgn) time. From the Element Uniqueness problem, this is an optimal
procedure since whether a set of n values is uhique can be answered in the following fashion:
Construct a set of points whose y coordinates are the n values and whose z coordinates are
the numbers 1,2,3,...,n in succession. This can be done in linear time. Find the 0°-Aull
of these points and test whether the points form their own 0°-Aull. This can also be done
in linear time. At least one line segment is added to the set of points if and only if at least

two y coordinates are the same. -

Case 3: |O| > 2. The strong O-hull is the bounding box in at most r orientations. It
can be computed in O(nlgn + r) time by finding the convex hull then finding its strong
O-hull. Observe that if O is finite then there is an alternate algorithm with time bounc
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O(nr) (|0] = r). This algorithm finds the maximum and minimum of the points in each
orientation in order (following the order of the orientations in 0). We do not have a non-

trivial lower bound for this problem.

The O-hull may be computed in O(rnlgn) time by adapting the orthogonal hull algo-
rithm of Ottmann et al. ([43]). (nlgn) time is a lower bound since it is a lower bound
when |O| = 1.

We shall follow Ottmann et al. by first deciding which points belong in a connected
component of the O-hAull and then find the O-hull of each separate component.

Suppose that we are given a set of at most n points which belong to a connected
component of the O-hull. For each pair of adjacent range boundaries in O we run the
orthogonal hull algorithm to produce in O(rnlgn) time 2r partial hulls. The union of the
set of partial hulls is the O-hull of the set of points since, from the decomposition theorem,
if a set is connected then the union of the partial hulls is the O-hull.

Thus we have reduced the problem to identifying which points belong to separate con-
nected components in the O-hull. To decide this we proceed as follows: For each pair of
consecutive range boundaries in O run the connected components version of the orthogonal
hull algorithm on the set of points. This takes O(rnlgn) time and produces at most n
connected components. From lemma 5.2.3 we know that the 0-hull must be a collection of
disjoint connected components such that no O-line intersects any pair of components. That
is, each component must be separated from every other component by a f-line for every
8 € 0. We adapt the orthogonal hull algorithm to scan the set of partial hulls produced
and amalgamate any pair of components which share a f-range for some 4 in 0. Note that
it is sufficient to examine only the range boundaries in 0. This procedure takes O(rnlgn)

time and produces at most n disjoint connected components.

The set of disjoint O-hulls produced is then the O-hull of the set of n points since each

connected component is O-convex and they are all O-separable from each other.

It may be that this algorithm can be improved to O(nlgr) time using techniques similar
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to those of Kirkpatrick and Seidel (see [31]). This is quite possible if we know beforehand

that the points form a connected O-hull, however, it is not immediately obvious how to find

the connected components of the O-hull in O(nlgr) time.
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Conclusions and Open Problems

8.1 Open Problems

8.1.1 Decomposability

Probably the single most important observation arising from this work is that for convexity
and visibility problems it is no more difficult to work with O-objects than the more restric-
tive orthogonal objects. Indeed, in a sense, problems involving O-convexity are basically
orthogonal problems, that is, they can be decomposed so that at any point in time we need
only consider two orientations (the two nearest). The first open problem is to characterize

a priori those problems which are decomposable.

As a first problem to examine we suggest the following: Widmayer et al. [62] give an
O(|O|n) (Bnite O) algorithm to find the minimum distance between two O-convex polygons.

Can this be improved to O(n +r) as for our convex hull algorithms?

A related problem is to find the digmeter (least upper bound of distances between points

of the set) of an O-convex set.

Finally, how fast can we determine if a polygon is O-oriented? It is easy to construct

101
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an algorithm with time bound O(nlgr) (perform a binary search for each edge in 0). Can

this be improved?

8.1.2 Mathematical Underpinnings

Restricted orientation geometry gives rise to many interesting mathematical questions. The
most obvious one is “What are the purely metric and purely topological properties of the
metric space induced by 0?” (By the induced metric space we mean, following Widmayer et
al. [62], the metric space with distance function between two points defined as the Euclidean

length of the shortest O-staircase connecting the two points.)

On the algebraic side there is a powerful characterization of convex sets which we have

not been able to generalize:

P is said to be convezif Vp,g€P and VO < a <1, ap+(1-a)g€P.

This algebraic characterization allows the (simple and easily generalized) algebraic proof
of many of the other characterizations of convex sets. Further it makes it easy to discover

new applications of convex sets (usually to the theory of linear programming).

The open question is to characterize O-convex sets in a similar algebraic manner.

8.1.3 Algorithms on 0-Objects

O-Boolean Masking: (see [45] for definitions) Given r sets of possibly overlapping O-
polygons find their Boolean combination. Widmayer and Wood ([61]) show that the
O((n + k)(r + lgn)) time bound for the general case can be reduced to O(nlgn + k) by
restricting attention to orthogonal polygons. Can the time bound for this problem be

improved if the polygons are O-oriented?

O-Line Segment Intersection: Can this be done any faster than testing for intersection

in each of |O| directions? (Assuming finite 0.)
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O-Nearest Neighbour: Widmayer et al. ([62]) present several algorithms to anawer
closest point problems by building a Voronoi Diagram using the induced O-metric (non
Previous section). These algorithms were all for finite 0. Can they be generalized to

arbitrary O and still yield efficient solutions?

O-Convex Skull: How fast can the largest O-convex subpolygon of a polygon be found?
Wood and Yap [65] show that the time bound of O(n7) for the general case, that is the
convex skull of an arbitrary polygon ([5]), can be improved to O(n?) for the orthogonally
convex skull of an orthogonal polygon. Are time bounds improved if the polygon is 0-
oriented and we ask for the O-convex skull? As a special case consider finding the largest
empty O-parallelogram in a polygon.

8.1.4 Abstract Convexity

The Refinement and Decomposition Theorems (theorems 3.4.2 and 3.4.3) for abstract con-
vexity spaces were discovered as a result of research on O-convex sets. Because geometric
relationships are usually easy to see, O-convex sets can serve as an ideal testbed for various

conjectures on convex sets in an abstract convexity setting.

Also, abstract convexity theory has been severely criticized by many geometers for being
too sterile.! One possible reason for this is that abstract convexity has no notion of visibility.
The work in chapter 6 on abstract visibility provides a basis for a theory of visibility but
much remains to be done. As a first step we ask for the simplest (in some sense) new axiom
to add to the two convexity space axioms such that we are able to prove that for all of our

definitions of visibility the kernel under each of these definitions is convex.

!Peter McMullen, private communication.
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8.1.5 Properties of Convex Sets

Unlike convex sets, O-convex sets are not closed under affine transformations. But as we

have seen other properties of convex sets carry over directly—for example:
THEOREM 8.1.1 Thke intersection of two O -convez sets is O -convez.

Clearly not all theorems on convex sets carry over directly to 0-convex sets, the open
question being to determine which ones do. For example, for which notions of O-convexity

is the following result true?

THEOREM 8.1.2 Given an O-convez set P and a point p € P the set consisting of all

O -stairsegments from p to each point in P is again O -convez.

8.1.6 Other Definitions of 0-Convexity

There are many other interesting ways to define O-convex sets, in particular the following

variants should be investigated, as they may be of some relevance to robotic path problems.

Definition: P is said to be weakly (strongly) arm O-convez if Vp,q € P p sees ¢ in P via at
least one (both) of the arms of O-||[p, q].

It is easy to show that strong arm O-convexity is equivalent to strong O-convexity, what

though can be said about weak arm O-convexity?

Definition: P is said to be n-0-staircase O-convez if Vp,q € P p sees ¢ in P via an 0O-

staircase of length n.

This last definition is too restrictive when n = 1, since it requires that P be an C-line,

O-line segment or Q-stairray. But the following result should hold:

CONJECTURE 8.1.1 P s weakly arm O-convez if and only if P is 2-0-staircase O -convez.
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n-0O-staircase convexity is a special case of L -convezity introduced by ElGindy et al
in [15]. An Ln-convex set is a set for which every two points in the set can be connected
by a polygonal curve of length m. They present a linear time algorithm to triangulate any
L2-convex polygon and a quadratic time algorithm to check whether a polygon is L,-convex.
Since n-O-staircase convexity is a special case is there a linear time algorithm to determine

whether a polygon is n-Q-staircase convex?

We can extend n-staircase convexity to allow arbitrarily many turns in each staircase:

Definition: P is said to be 0-staircase O-convezif Vp,q € P P sees ¢ in P via an O-staircase.

The reader should observe that there are serious compatibility problems with O-staircase
O-convexity since an arbitrary line is not O-staircase O-convex unless the line happens to

be an O-line.

" Finally, we may define convexity “componentwise.”

Definition: P is said to be component weakly O-convez (component strongly O-convez) if

Vp,q € P, whenever p and ¢ are connected in P, p sees ¢ in P via an O-stairsegment (via

O-|l[p, ).

Component strong O-convexity is the same as Soisalon-Soininen and Wood’s “R-closure”
(see chapter 3), when O = {0°,90°}. Note that if P is weakly O-convex then P is O-convex
and if P is O-convex then P is component weakly O-convex and both containments are

proper. It is possible to prove that this last definition yields convexity spaces, that is:

1. The component strong O -convezity space (R?, set of all component strongly O-convex

sets). This convexity space is a refinement of the strong O-convexity space.

2. The component weak O -convezity space (R?, set of all component weakly O-convex
sets). This convexity space is a refinement of both the normal convexity space and

the component strong O-convexity space.
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8.1.7 Orientations as Lines

Rather than considering O to be a set of orientations we may consider it to be a pencil
of lines. This suggests that we generalize O to be a pencil of arbitrary curves. A set is
said to be O-convex if its intersection with any translate of an O-curve is connected. For
example, call a polygonal curve a broken line if it is made up of two rays. We may define
O to be a collection of broken lines. In particular, if the broken lines are made up of two
orthogonal rays and we add the extra condition that the intersection must be connected
and contain the corner point of the broken line then we have the N E- and SW-closures of

Soisalon-Soininen and Wood ([57]).

Drandell ([12]) has investigated some of the topological properties of such a pencil of
curves, however he requires that for every pair of points there is a unigue curve in the pencil
passing through them. Thus this generalization fails to include weakly O-convex sets. Note

though that any collection of O-stairlines with disjoint spans satisfies this requirement.

8.1.8 The Art Gallery Theorem

In chapter 6 it was shown that if O contains two or more orientations then |n/3| O-guards
are necessary and sufficient to guard any simple n vertex polygon. This result was shown
by appealing to Chvétal’s Art Gallery Theorem. Since Chvétal’s theorem is really only
a special case of the result we ask whether the more general result can be proved more
directly—perhaps by showing that a particular decomposition with respect to some set of

orientations in O always exists.

8.1.9 Decomposing Polygons

Many algorithms in computational geometry depend on decomposing an arbitrary polygon
into a collection of covering or partitioning subpolygons of some special type. For example,

polygons are often decomposed into monotone, starshaped, or convex subpolygons to answer
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point location problems more efficiently ([58]). In this thesis we have shown that tha

following containments amongst families of different kinds of “convex” sets hold:
strongly O-convex C convex € O-convex € monotone

strongly O-starshaped C starshaped C weakly O-starshaped

We ask whether efficient decomposition algorithms can be designed for monotone poly-
gons into O-convex polygons, O-convex polygons into convex polygons or for convex poly-

gons into strongly O-convex polygons and similarly for starshaped polygons.

Observe that starshaped polygons are not necessarily O-convex and that O-convex poly-
gons are not necessarily starshaped. Thus, although convex sets are a subset of starshaped

sets, starshaped sets are incomparable with O-convex sets.

8.1.10 Allowing Open Ranges and Directed Lines

Can the notion of O-orientation be generalized so that O may be any subset of the set of
all orientations? That is, can a reasonable theory be built up if we allow open or half-open
ranges in 0? The problem with allowing open ranges in O is that there is no longer any
notion of a nearest orientation in O to a given orientation not in 0. Many of our results

depend on identifying the two nearest orientations to a given orientation.

We ask the same question for O being a collection of directions as opposed to orienta-

tions. That is, we may distinguish between the two possible directions of a line.

8.1.11 Generalizing to Higher Dimensions

In attempting to generalize the notions of O-convexity and O-objects to higher dimensions
we would like to retain most, if not all, of the advantages of the two dimensional case.

Thus, we would like definitions which are easy to use and which are intuitive; which allow
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space-sweep algorithms which are easy to design; and which are—at least—sensible in three

dimensions. In the following we explore one such generalization.

There is a straightforward extension of O-orientation geometry to R” which singles out
a subclass, O, of (n — 1)-dimensional hyperplanes and in which a set is defined to be 0-
oriented if its boundary hyperplanes are translates of those in 0. However, the “natural”

definition of O-convexity under this definition soon leads to confusion.

The problem is that the natural definition of convexity is line convexity. That is, o}
should be a collection of lines and a set is said to be O-convex if its intersection with
any translate of a line in O is connected. Thus, for example, the natural generalization
of orthogonal convexity to R® entails that an orthogonally convex set have a connected
intersection with any line parallel to one of the three axes. As we show there is some
difficulty in having both “O-oriented objects” and “O-convex sets” for dimensions higher

than 2.

Suppose that we define a set to be O-convex if its intersection with any translate of
an O-hyperplane is connected. When n = 2 this definition is precisely the definition given
before since 1-dimensional hyperplanes are lines. Any k-flat in R®" is O-convex in this sense.
In particular, for n = 2, the flats are: any point (a O-dimensional hyperplane), any lire (a
1-dimensional hyperplane) and the whole plane (a 2-dimensional hyperplane). Moreover,

these are all “O-convex.”

However there is a problem with this definition once n > 3. Consider an empty box
in R3. Suppose that O is a set of three mutually orthogonal planes and that the box is
O-oriented. This box, although it is empty, is “O-convex” by our definition because we only

require that the intersection with any O-plane be connected and not simply connected.

If we try to remedy this by strengthening the definition to simple connectedness instead
of just connectedness then the following set will have to be accepted as “O-convex.” Con-
sider a (solid) box with a notch in it. The notch is in the shape of a smaller box cut out of

the large box such that two faces of the inner box are exposed. This object is “O-convex”
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even under the stronger “simply connected” definition of O-convexity.

Thus we might define O-convexity in the following way:

Definition: If ¥ is a hyperplane in O then the set P is O y-convez if the intersection of P
and any translate of ¥ is convex with respect to the family of lines generated on ¥ by every

other hyperplane in 0.

Definition: A set P is O-convez if for each hyperplane ¥ € O the intersection of P and any

translate of ¥ is O )-convex.

This definition corresponds to our intuition when n = 3, and the open problem is to

determine the “best” such generalization.

8.2 Conclusion

It may be argued that since computational geometry concerns itself with figures in R™ that
it is not necessary to develop the theory of O-oriented sets in as general a setting as is
possible. There are two obvious rejoinders to this point of view. First, the history of algo-
rithms for finding the convex hull of a polygon illustrates that unaided geometric intuition
is not sufficiently powerful to avoid incorrect algorithms as there have been several algo-
rithms proposed over time (and accepted as correct) which were later shown to be incorrect
(see, for example, (3,59,37]). Any theoretical machinery that may aid insight seems desir-
able. Second, there is a well-demonstrated synergism between theoretical investigations and
practical problems, in that Practice suggests new areas for theory and in turn a developing

theory suggests a broadening and sharpening of practique.

Further, I believe that this material may have at least one important application area—
specifically, restricted orientation VLSI design—and that it will be of continuing theoretical
interest. Also, this thesis has shown that the investigation of convexity and visibility topics

in restricted orientation geometry benefits from and can enrich subjects as seemingly far
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afield as abstract convexity theory. Finally, if any further Justification were needed, I submit

that the study of restricted orientation geometry is of interest in its own right.

While the practical concerns from which computational geometry grew will continue to
change and expand, the broad outlines of computational geometry that serve to delineate
it from classical geometry and combinatorial geometry are, in my opinion, sufficiently well
. defined that it can now, in its turn, give impetus to the development of new directions of

geometry. I submit that restricted orientation geometry is one such new direction.

In sum, it is my opinion that the field of computational geometry will benefit from a
full investigation of the notion of restricted orientation geometry in that the investigation

should continue to unearth hitherto unsuspected and theoretically pleasing generalizations.



Notation

0 A closed set of orientations.

R? The plane.

p,q Points in the plane.

P,Q Sets of points in the plane.

A A halfplane.

L A line.

(a, ) An indeterminate range. The range may be open, half-open or cloéed.

H(L,p| The (open or closed) halfplane bounded by the line £ and containing p.
Lo, p] The line of orientation 4 through p.
LS(p,q) The (open, half-open or closed) line segment through p and g.

(L) The orientation of the line (or line segment) £.
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Glossary

O-range A contiguous set of orientations in 0. All sets of orientations are described by

listing their (disjoint) ranges of orientations in order.
O-free range A contiguous set of orientations not in 0.

maximal O-free range An O-free range which is not a proper subset of of any other

O-free range. .
O-line A line whose orientation is in O.

O-extremal A point of support of some set with respect to an O-line.
O-convex set A set which has a connected intersection with every O-line.
O-stairline (Also, O-stairsegment, O-ray.) An O-convex curve.

O-staircase An O-convex QO-oriented polygonal curve.

O-parallelogram (Denoted O-||[p, g].) The union of all O-stairsegments connecting p and
q.

maximal O-stairsegment A subset of a curve which is an O-stairsegment and which is

not a proper subset of any other O-stairsegment in the curve.

span The span of a set is the smallest range of orientations which contains every orientation

defined by each pair of points in the set.
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O-hull(P) The smallest O-convex set containing P.

Weakly O-convex set A set such that there is an O-stairsegment joining each pair of
points in the set that is wholly in the set.

Strongly O-convex set A set such that every O-stairsegment joining each pair of points

in the set is wholly in the set.

Weak O-guard A point in a given set which can only see points connected to it by an

O-stairsegment that joins them and is wholly in the set.

Strong O-guard A point in a given set which can only see points connected to it by every

O-stairsegment that joins them and these must all lie wholly in the set.

Weak O-kernel(P) The set of points p which for each ¢ € P there is at least one O-

stairsegment connecting p and ¢ in P.

-Strong O-kernel(P) The set of points p which for each ¢ € P every O-stairsegment con-

necting p and ¢ is in P.
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