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Abstract

Given a point set in the plane and a fixed planar region (window) a
window query consists of enumerating the points in a translate of the
region. A recently presented result demonstrates that there is a static
data structure, of optimal size, that solves window queries for convex
regions in optimal time. We give a data structure, of optimal size,
that not only supports window queries in optimal time for, possibly
non-convex, polygonal windows, but also allows updating of the point
set in optimal time.

1 Introduction

Many new algorithms and data structures have been implemented in the still
blossoming area of multidimensional searching and computational geometry.
Nevertheless, efficient dynamic solutions for many multidimensional search-
ing problems have still to be discovered. Here we assume that we are given
some initial set of objects and we want not only to answer certain queries
on the set of objects but also allow the user to insert new objects and delete
existing objects from the set.

In this paper, we consider the dynamic fired windowing problem for point
sets in the plane. It can be posed as follows: For a given point set P in two-
dimensional space and for a given fixed window W, find a data structure
to represent P and design algorithms to carry out the following operations

*This work was partially supported by grant Ot64/4-2 from the Deutsche Forschungs-
gemeinschaft and partially under a Natural Sciences and Engineering Research Council of
Canada Grant No. A-5692

tInstitut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitit
Karlsruhe, Postfach 6980, D-7500 Karlsruhe, West Germany.

#Data Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada.



2 Klein, Nurmi, Ottmann, and Wood

efficiently: Insertion of points, deletion of points, window-queries, that is,
for an arbitrary query translate Wy, = W + q, report the points in W, N P.

Recently Chazelle and Edelsbrunner [4] have presented a solution for the
static fixed windowing problem, that is, no insertions or deletions of points
are allowed. Their solution is optimal with respect to the query time and the
space required by the data structure. They allow arbitrary convex figures as
a (fixed shape) window. The solution of [4] can be dynamized by well-known
general dynamization methods (see, for example, [3,8,9,11]). However, a
much simpler approach works if we do not allow curves in the windows, but
only allow polygons. This approach leads to an optimal solution with respect
to query and updating time and the size of the data structure.

In Section 2 we solve the dynamic fixed windowing problem for rect-
angular windows. (Think of an interactive graphical display screen.) Our
solution exploits the features of the priority search trees of McCreight [6].
We, in particular, propose double-ended priority search trees as appropriate
structures to implement the solution. In Section 4 we show how to extend
this solution to triangular and polygonal windows.

The variants of priority search trees discussed in this paper are of interest
in their own right. The algorithms and data structures developed for solving
the dynamic fixed windowing problem have direct applications to computer
graphics, VLSI-design, and other areas.

2 Rectangular windows

In this section we first introduce some notation and then discuss the case
where the given dynamic set of objects is a set of points in the plane and
where the given window is a two-dimensional range, that is, a rectangle.

We assume a system of cartesian (z,y)-coordinates in the Euclidean
plane. For two points a = (az, ay) and ¢ = (¢z, gy) the translation of a by ¢
is given by a + ¢ = (az + ¢z, ay + ¢) and for a point set A and a point ¢ we
have

Ag=A+q={(az+ e, 0y + q)la € A}

Let P be a set of n points and let W be a rectangular window given by
its left, right, bottom, and top boundaries, that is, W = (zi, z, ys, y¢). For
an arbitrary point ¢ we want to carry out the following operations:
insert(P,q): P — PU{q}.
delete(P,q): P — P\ {q}.

windowy (P, g): report all points in P NW,.
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Figure 1: Slabs and groundedness.

A representation of the set P together with algorithms for performing
an insert, delete, and window operation on P will be called a solution of the
dynamic rectangular fixed windowing problem for points (DRW-problem for
short).

In order to solve the DRW-problem we first, conceptually, slice the Eu-
clidean plane into horizontal slabs of height ¥ = height(W) = y; — y5. We
call s; = {p|tY < p, < (¢ + 1)Y'} the ith slad. If p € s;, we call ¢ the slab
number of the point p and denote it by s(p). The slab number of a point
can be computed in constant time with respect to the point set.

The decomposition of the plane into slabs of height Y has the following
important consequences:

1. For any query point ¢, W, intersects at most two adjacent slabs.
2. For any slab s and for any query point g, we have

(a) either Wyns=10
(b) or WyNs # @ and (W, is south grounded on s or W, is north
grounded on s).

Here we use the notation of groundedness introduced in [4]: For a query
region (a window) R and a slab s we say that R is south grounded (north
grounded) on s if the intersection of R with the lower, that is, the southern
(the upper, that is, the northern) boundary of the slab s equals the orthog-
onal projection of R onto this boundary. In Figure 1 W, is south grounded
on sj;; and north grounded on s;. Clearly, if the translate W, is north
grounded and south grounded on s then W, Ns = W,.

The basic idea for solving the DRW-problem is now easily described:
To each slab s we associate a pair of priority search trees for the points of
PN s; see Figure 7?. The priority search trees of McCreight [6] allow us to



4 Klein, Nurmi, Ottmann, and Wood

y }priority order

priority search tree
for north grounded
range queries

}slab S

priority search tree
for south grounded
priority order range queries

Figure 2: Arrangement of priority search trees.

carry out insertions and deletions of points and to report all points falling
into a south (north) grounded range. Here we need “(z,y) priority search
trees”: The trees are leaf search trees for the z-values of the stored points.
Each point is stored on a root-to-leaf path to the leaf corresponding to its
z-value, according to its y-value which determines the priority order of the
points. Because the priority search tree is a leaf search tree for the z-values
of the points, it supports range queries for z-intervals; because it is a heap
for the y-values of the points, it allows the reporting of all points whose
y-values do not exceed a given threshold. Combining both features allows
us to answer grounded queries: South grounded queries require us to store
the points with smaller y-values closer to the root, that is, the priority order
is the increasing y-ordering. North grounded queries require us to store the
points with larger y-values closer to the root , that is, the priority order
is the decreasing y-ordering. Thus, using a pair of priority search trees for
the n points in a slab s allows us to carry out insertions and deletions in
time O(logn) and to answer a north or south grounded range query in time
O(logn + k), where k is the size of the answer. Here we assume that the
priority search trees are organized as fully dynamic structures and not as
semidynamic ones over a bounded universe (see [6] for details). Note that
a priority search tree for n points requires O(n) space. In order to achieve
logarithmic performance and linear space in the number N of points we have
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to avoid any explicit representation of the empty slabs. This can easily be
achieved by maintaining the slab numbers of exactly the nonempty slabs in
a balanced binary search tree Ty: To each slab number in T, we associate
a pair of priority search trees for exactly those points of P with this slab
number. To complete the solution of the DRW-problem we describe how to
carry out the required operations.

insert(P, g): Determine the slab number s(g) of g; search the tree T, for
s(q); if s(q) occurs in T, insert ¢ into the two priority search trees
associated to s(g), otherwise (that is, if s(q) does not occur in Tj)
insert s(q) into T, create a new pair of priority search trees associated
to s(g) both for the only point g.

delete(P, q): Analogous to insertion.

windoww (P, q): Use T, to determine the, at most two, nonempty slabs
that intersect W, and use the associated priority search trees to report
the points in the south — or north — grounded intersection of W,
with these slabs.

It is evident from the above description that both insertion and deletion take
time O(log N). A window operation can be carried out in time O(log N +
k), where k is the size of the answer. The structure requires O(N) space;
therefore, the solution is optimal.

Because both the priority search trees of a slab contain the same z-order
the space bound can be improved by a constant factor, without significant
influence on the time bound, by constructing only one leaf search tree for
the z-coordinates. The points are then stored twice in the tree: once in
increasing y-order and once in decreasing y-order. When answering a south
grounded query only the fields storing the increasing order are inspected;
when answering a north grounded query only the decreasing order is of
interest.

In the next section we introduce a combination of priority search trees

and the double-ended heaps of [1]. These allow us to store each y-value
exactly once thus saving still more space.
Remark: The restriction to a fixed window W is not essential. As long as
the height of the window is not smaller than the height of the slabs the same
structure can still be used for other rectangular windows. However, the time
to carry out the above algorithms now increases with a factor proportional
to (window height/slab height).
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3 Double-ended priority search trees

The priority search trees of McCreight [6] are leaf search trees for one coor-
dinate of the points and heaps for their other coordinate. Depending on the
priority order of the heaps, they provide efficient enumeration of points in a
“half-rectangle ” of type either [a,b] X [c, 00] or [a, b] X [—00, c]. By replacing
conventional heaps by the double-ended ones of Atkinson, Sack, Santoro,
and Strothotte [1] we obtain a compact data structure that provides enu-
meration of points in both half-rectangles. These trees preserve the efficient
updating properties of the ones of [6].

In order to explain the details of the new data structure, we need the
following definition.

Definition 3.1 Let A = {z;|0 < ¢ < n} be a point set in R. We say that a
permutation m of these points is ¢ minmax order if

Tr(2i) < Ta(j) wheni=0,1,...,|n/2] and2i < j<n
and
Tx(2i+1) > Tn(j) wheni=0,1,...,|n/2] —1and 2i+1<j5<n

There is only one minmaz order if all the z;’s are distinct. An arrangement
of these points in a list by w is said to be a minmax list of A.

In a minmax list, the first element is the minimum of the whole point
set, the second one is its maximum. The third element is the minimum of
the rest, the fourth one is the maximum of the rest, and so on.

Now we are ready to define our data structure. Let S be a set of points
in R2. A double-ended priority search tree for these points is a leaf search
tree for their z-coordinates such that

1. Each point occurs only once,

2. Each point (z,y) occurs at a node on the path from the root to the
leaf which corresponds to its z-value.

3. The y-coordinates of the points on a path from the root to any leaf
form a minmax list.

4. If no point occurs at some node, then the nodes of the subtree rooted
at this node are empty, too.

Let h be the height of the underlying search tree. We count the level of
nodes starting with level zero at the root. Any point (z,y) can be found
in the structure in time O(h) by checking the points along the path to the
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leaf which corresponds to z (Property 2). Moreover, the points in an upper
(lower) “half-rectangle” [a,b] X [c,00] ([a,b] x [—0c0,c]) can be reported in
the following manner. Assume that each node p in the tree is of type

node = record
split : real,;
point : pair;
left : 1 node;
right : T node
end

where split contains the maximal z-value in the left subtree rooted at p.left 1
and

pair = record
z : real;
y : real
end

Then the following procedure, when invoked for the root of the the tree,
enumerates all points in the upper half-rectangle [a, ] X [c, o0].

procedure Enumerate — uhr(a,b,c : real;p: node);
begin
if {p.point is defined}
then if p.point.y > corlevel(p) mod 2 =0
then
begin
if p.point € [a,b] X [c, 0]
then report p.point;
if p.split > a
then Enumerate — uhr(a,b,c,pleft1);
if p.split < b
then Enumerate — uhr(a,b,c,p.right 1);
end
end

In order to deal with a lower half-rectangle [a, b] X [-00, c] line 4 of the above
algorithm has to be replaced by

then if p.point.y < c or level(p) mod 2 =1
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Assume that we are visiting a node p. If p does not hold a point, the subtree
rooted at p can be left unvisited (Property 4). If the level of p is odd (even)
and y < ¢ (y > ¢) then the subtree at p can be left unvisited too (Property
3). Otherwise, let the point (z,y) be stored in p. If (z,y) € [a,d] X [c, 0]
([@, 8] x [—o0,¢]) it is reported.

We see that a node is visited only if the point stored in it, its father, or its
grandfather is reported or if the node itself, its father, or its grandfather lie
on the path from the root to the leaf cooresponding to a or b, because each
point (z,y) in a node that lies strictly between the paths from the root to a
and b has its z-value in [a,}]. Thus, the points in the query half-rectangle
are reported in time O(h + k), where h is the height of the tree and k is the
number of reported points.

Before we describe the updating operations we explain two auxiliary
operations for maintaining the correct heap structure. Following the termi-
nology of [1] we call them “bubble up” and “trickle down”

Let us suppose that we have a tree which satisfies Properties 1-3 but
Property 4 is violated. Let p be an empty non-leaf node such that all the
subtrees of p satisfy Property 4. If the level of p is odd(even) we choose a
point with the smallest (greatest) y-value among the points of the sons and
grandsons of p, store this point at p, and make the corresponding son or
grandson empty. Then, we recursively fill the emptied node if one of its sons
(when present) is non-empty. This “bubble up” operation needs O(h) time,
where h is again the height of the tree. After the operation, the subtree
rooted at p satisfies Property 4 and the whole tree Properties 1-3.

Let us assume then, that we have a tree which satisfies Properties 1-3,
and it has a non-leaf node p such that Property 4 is satisfied in the subtree
at p. We wish to make p empty in such a way that the whole tree still
satisfies Properties 1-3 and the subtrees of p satisfies Property 4. If p is
already empty, we are already done. Otherwise, let (z,y) be the point in
p. We shift (z,y) downwards in the tree in the direction of the leaf which
corresponds to z. This leaf must be empty (Property 1). If the son of p on
the path to the z-leaf is empty, (z,y) is stored in that son. Otherwise, we
empty the grandson of p recursively and store (z,y) in the emptied node.
This “trickle down” operation requires O(h) time, too.

Now we can insert a point (z,y) into a tree in the following way: First,
we insert a leaf for the z-value (and update the routing information appro-
priately). After this, we search for the y-value from the minmax list of the
nodes along the path from the root to the z-leaf. This node is emptied by
the “trickle down” operation and (z,y) is stored in the empty node. An
insertion takes O(h) time.

When we want to delete a point (z,y) from the tree, we first search for
it, empty the corresponding node, and then we fill the emptied node by the
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Figure 3: A triangular window.

A deletion takes O(h) time.

We can guarantee the height of the underlying tree to be O(log N) (N is
the number of points) if we choose a balancing scheme for the tree (see for
example, [8] for a survey of balanced trees ). One rebalancing operation (ro-
tation) changes the links of some non-leaf nodes, but the number of changed
links is constant. In order to preserve the minmax order we first empty
all the nodes whose links are to be changed, by “trickle down” operations.
After the structural changes we again fill them by “bubble up” operations.
Thus, a rotation takes O(log N) time.

If we choose the balancing scheme of Olivié (7] or the one of Bayer [2] we
need O(1) rotations after an insertion or a deletion (see Tarjan [10]). Thus
we can conclude that our algorithms require O(log N + k) time for reporting
the points in a half-rectangle, O(log N) time for an update operation, and
the data structure requires O(N) space (N is the size of the point set and
k the size of the answer to a query).

4 Triangular and polygonal windows

Now let us assume that a fixed triangular window W is given with edges
parallel to three lines v, w and z, see Figure 3. We want to extend our solu-
tion of the rectangular windowing problem to give a solution of the dynamic
triangular fixed windowing problem. Again we are going to decompose the
plane into disjoint regions in such a way that every window query W, will be
split into a bounded number of grounded queries for some regions. Further,
each grounded query will be of one of a bounded number of types (in the
rectangular case the regions are horizontal slabs, any translated window W,
intersects at most two slabs, and the resulting queries are north or south
grounded).

A partition into horizontal slabs does not, in general, lead to grounded
queries having two parallel edges and a third bordering side because all of
the three edges of W, might intersect one slab. So we choose the cells of the
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Figure 4: An induced decomposition.

20

Figure 5: Wy N Ry is a north-grounded query.

lattice Z - vo ® Z - wp as regions, that is the decomposition

®*=|J Ri;

i,j€Z

where R;; = R+ tvo + jwo, for two vectors vo and wp; see Figure 4. It
seems quite natural to choose two of the directions given by W’s edges —
here v and w — as coordinate axes of the lattice. Now any translate W,
of W will intersect some of the cells. We choose vp and wg short enough
so that at most two edges of W, are intersected by one cell. Whether the
choice of coordinates is indeed wise and how large the cells should be will
be discussed later. The intersection of W, with R; (see Figure 5) leads to
a north grounded or, more precisely, a (w = oo)-grounded query for this
cell with respect to (w,v)-coordinates. In Figure 6 v is marked as range
coordinate and w as threshold coordinate. Again we can use a (dynamic)
priority search tree to answer this query type for R; efficiently because
priority search trees can be organized with respect to any non-cartesian
coordinate system. There is no need for rectangular axes; sce for example,
[5]. In general, if we are given two nonparallel lines r and t a priority search
tree can be organized with respect to r and t that supports grounded skew
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Figure 7: Grounded skew queries.

queries. In (z,y)-coordinates this looks like Figure 7, where a (t = —oo)-
grounded skew query is shown for an r-range [r1,r;] and a t-threshold ¢;.
The intersection of W, and R; in Figure 5 may also be regarded as a special
case of a (w = oo)-grounded skew query with respect to (w, v)-coordinates.
The situation is different in R3 where the third of W’s edges brings a new
direction into play. However, if we introduce a third coordinate axis —
namely z — parallel to this edge we can regard W, N R3 also as the region
of a grounded skew query for Rs, that is, with respect to (v, 2)-coordinates

as shown in Figure 8. In Figure 8 we have to answer a (z = —o0)-grounded
skew query with range coordinate v and threshold coordinate 2.
In the same way, W, N Ry is the query region of a (w = —o0)-grounded

skew query for R4 with respect to (z,w)-coordinates; see Figure 9. The
situation in Rs (Figure 10) can be treated as a special case. In the sequel
the cells are labelled by the lexicographically ordered index k = (¢,7) where
¢+ and 7 are the coordinates of the cell.

Now we solve the dynamic triangular windowing (DTW) problem for
points in the following way:

To each cell Rj we associate three dynamic priority search trees to hold
the points of PN Ry, with respect to the different coordinate systems. Again
we avoid the overhead of empty structures by maintaining a balanced search
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Figure 8: W, N Rz is also a grounded skew query.

_ n =

T
»”°
' d
s

Figure 9: W, N Ry is too.

/A‘\>
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P —
rd l’

Figure 10: W, N Rs is a special case.
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tree Tg for the indices k of the nonempty cells Rx. The operations insert
(P, q) and delete (P, q) are similar to those of the DRW case in Section 2.

windowr (P, q): Compute the bounded number of indices of cells which
intersect W, ; use the tree Tk to determine those of them which are
nonempty. For each such cell decide which kind of grounded skew
query applies, compute an appropriate range and threshold and use
the corresponding priority search tree; report the points transformed
into the (z, y)-coordinate system.

Again, our solution requires O(N) space for N points, O(log N) time
for insert and delete operations, and a window operation takes time
O(log N + k). So this solution of the DTW problem is asymptotically both
time and space optimal.

The constants hidden in the asymptotic time and space bounds depend
on the choice of the partitioning regions. These regions Ry, do not necessarily
need to be parallelograms; any partition of R? into disjoint convex regions
Ry will do as long as the following requirements are fulfilled:

1. For any q and all &, the interior of R} intersects at most two edges of
Wy

2. For any q, W, intersects at most c regions Ry, for some fixed constant
¢ (which may depend on W, of course). Then for any query point g
and any region Rj, we have either

(a) Wygn Ry =0 or

(b) Wy N Ry # 0 and W, N Ry is the query region of a grounded
skew query for R; with respect to one of three fixed coordinate
systems.

3. Furthermore, the R; must be such that

(a) for any g, the (at most c) region indices k with W, N Ry, # 0 and
the intersections of the boundaries of W, and R can be computed
in constant time, and

(b) for any query point p, the region index of p (that is, the % for
which p € Ry) can be computed in constant time.

Observe that with respect to Condition 2(b) we have to avoid situations like
those of Figure 11 where W, N Ry is a proper subset of the corresponding
skew query region GSQ N Ry for region Rj;. This is because p € P would
be reported although P is not located in the query window W. Clearly our
convexity assumption makes such phenomena impossible. But the situation
in Figure 11 also contradicts Condition 1 as can be seen by moving W,
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W,
K\\ ANNNN N
§G’§Q\ W\\ /m.
p Ry

Figure 11: A situation to be avoided.

further downwards. So it remains open how the assumption that all Ry’s
are convex can be weakened without violating the Condition 2(b). To speed
up the calculation of intersections and point locations (Conditions 3(a) and
3(b)) a lattice partition of the plane seems to be an appropriate choice
(because the cells are polygons). But it is not clear how large the cells should
be made. On the one hand, they must be small enough to satisfy Condition
1 and, on the other hand, time and space performance are improved if we
make them as large as possible. For larger cells require fewer data structures
storing the point set P, and a translated window W, intersects fewer cells
making querying faster. Furthermore, it is, a priori, not clear which axes
should span the lattice.

Let us fix a coordinate system (a,b) and consider (a,b)-oriented cells,
that is, parallelograms. Observe that only the relative positioning of the
triangle W and the cells is important. So we can, for convenience, consider
the triangle as being fixed and translate one such parallelogram, for example,
the one lying in the positive quadrant nearest to the origin. Let R denote
this parallelogram. From this point of view we may reformulate Condition
1 as:

(1') For any ¢, R, intersects at most two edges of W.

We claim that the parallelogram R satisfies Property 1' if and only if R can
be translated into W, that is, if there is some vector ¢ such that B, C W.
To prove the “only if” part, assume that R satisfies Property 1" and let R
sink down from above until it touches or kisses the ground edge g of W; see
Figure 12. Note that we do not call this kissing an intersection. If R now
intersects the two other edges I and r of W, we can move R down slightly
thereby turning the kiss into a third intersection, in contradiction to our
assumption. If there are no intersections at all we are finished. So the case
of one intersection — say with W’s right edge » — is left. Shifting R to
the left will either transform this intersection into a kiss without causing
any new intersection with I/ (otherwise moving R back slightly would give a
contradiction as above) or stop at the left end of g with R still intersecting
r. But in this case R kisses g and intersects or kisses /; so a slight movement
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/W \
g

Figure 12: Letting R kiss W.

Figure 13: A contradictory position.

will again lead to a contradiction; see Figure 13. To prove the “if”-part,
assume Ry C W for a vector ¢. If we try to translate R, further in order to
intersect as many of W’s edges as possible, we will capture at most two of
them and always lose contact with the third. This proves the assertion.

In order to maximize the area of R while maintaining Property 1', we,
therefore, have to find the maximal (a, b)-oriented parallelogram that can
be inscribed in the triangle W. Such a parallelogram must be in contact
with all of W’s edges; otherwise it can be moved towards an edge it doesn’t
touch and enlarged; see Figure 14. Two cases now arise. Either W can be
translated in such a way that one of the angles of W, contains an angle of
the coordinate axes, or this kind of translation is impossible. In the first

W

Figure 14: Enlarging R to kiss all edges of W.
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Figure 16: Case 2: W cannot be translated.

case the situation looks like that shown in Figure 15. The upper vertex of
R is fixed, because it has to touch both of the upper edges. The left vertex
| may vary in the range denoted by r, and the bottom vertex must lie on
the ground edge of W between the a and b axes. In the second case, we
can translate W so that the origin of the (a, b)-coordinate system falls inside
W, and the axes intersect two of W,’s vertices; see Figure 16. These axes
divide R into disjoint parts R;, Ry, Rs, and Ry. The upper vertex of R; is
the origin in the (a, b)-coordinate system. The left vertex of Ry, I, can vary
in the interval r, the part of the negative b-axis contained in W,. For each
choice of ! in r, all vertices of R are uniquely determined; three of them lie
on different edges of W,. It is easy to see that the ratio of the widths of R
and Rj in direction of the b-axis is constant. The same holds for Ry, R;, and
the a-axis. Thus, the areas of Ry, Rs, and Ry are linear functions of the area
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(0’ “g)

[

Figure 17: The quadratic optimization problem.

of R;. Therefore, both cases reduce to the simple quadratic optimization
problem depicted in Figure 17, that is, to maximize the area

A()=1(cl+d)singp

of Ry for I in [—d/c,0], where ¢ and d are constants from the equation
a = cb+d of the ground edge of W, and ¢ is the angle between the coordinate
axes. Since

dA(l
da(n) = sin p(2¢l + d)
dl
the maximum occurs at | = —%. So the maximal R; has — with respect to

(a, b)-coordinates — half the ground size and half the height of W, (Figure
18). Therefore the maximal R; has half the area of the triangle W;. Note
that this also holds for R; U Ry and W7 U Ws.

To summarize, we have shown how to find a maximal parallelogram with
Property 1 for any pair of prescribed coordinate axes a and b. If we are free
to choose them, as is the case in the DTW-problem, we must select, say, a
parallel to one of W’s edges and b must be chosen in such a way that it is
not contained in the two angles of W adjacent to a, in order to avoid Case
1. Giving R half the ground size and half the height with respect to a, b
leads to a maximal parallelogram which has Property 1'; it is half as large
as the triangular window W. Furthermore, this choice is also optimal with
respect to the maximal number of regions a translate Wy can intersect. It
is not hard to see that this number is bounded by eight (see Figure 5) and
no other lattice having Property 1 can do better. Note that we may use
a rectangular grid as a partition of R? whenever it seems convenient. As
before in the DRW case of Section 2, our data structure enables us to answer
triangular window queries with respect to not only the given window W but
also to any other fixed triangular window W' if
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Figure 18: The maximal Rj.

e the edges of W' have the same orientation as those of W and
e the cell R of the lattice chosen for W can be inscribed in W'

It is clear that this solution leads immediately to an asymptotically opti-
mal solution to the dynamic fized polygonal windowing (DPW) problem for
points. We triangulate the window and, hence, reduce the DPW problem
to a fixed number of DTW problems. These may be solved separately using
different lattices. Each point p € P is stored three times per lattice and
each window query leads to at most eight grounded skew queries per lattice.

However, it is more space efficient to decompose the given polygon into
convex subpolygons. For a convex m-gon PG we can proceed as follows:
Choose a lattice such that Condition 1 is satisfied, that is, in any translate
PG, each cell intersects at most two edges of PG, and when a cell intersects
two edges they must be adjacent in PG. To each nonempty cell associate
m priority search trees that support grounded skew queries with respect to
the m pairs of adjacent edges of PG.

Note that, for m > 3, it is no longer the case that a parallelogram satisfies
Condition 1’ if it can be inscribed in PG; see Figure 19. To find an optimal
lattice seems to be somewhat more complicated than in the triangular case.
However, a (good) cell-decomposition can be easily found as follows. Fix
a pair of coordinates a, b, triangulate PG, and construct for each triangle
the maximal parallelogram with respect to a and b as shown above. Now
take the minima of all the widths and heights as the width and height of
the desired parallelogram.

Again, our construction enables us to answer queries with respect to any
fixed convex polygon PG' as long as its corresponding m edges are parallel
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——

Figure 19: Condition 1’ is not necessarily implied.

-

NN

Figure 20: Convexity appears to be necessary.

to those of PG and Condition 1 is fulfilled.

Let S be the set of orientations of the edges of PG. If each nonempty
cell is associated with (’;’) priority search trees corresponding to all pairs of
edges of PG we can also answer all fixed S-oriented (see [5]) convex polygonal
window queries as long as Condition 1 is not violated. But convexity seems
to be essential because priority search trees do not support queries of type
“cell \ grounded skew region” (see Figure 20) which may arise in the non-
convex case. Note that we can combine two priority search trees to give
one double-ended priority search tree (as we did in the rectangular case in
Section 3) whenever there are two vertices whose adjacent edges are pairwise
parallel as shown in Figure 21. The queries concerning vertices 7 and s can
be treated as (w = —o0)-, respectively, (w = co0)-grounded skew queries and
answered by consulting one double-ended priority search tree.
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,,
N

)
1)
Figure 21: Combining two priority search trees.

5 Conclusions

In Sections 2 and 3 we have proved the following theorem:

Theorem 5.1 The dynamic fized polygonal windowing problem can be solved
in space O(N) and time O(log N) for insert and delete operations and
O(log N + k) time for window operations, where N is the number of points
and k is the size of the output.

For fixed windows this solution is asymptotically time and space optimal.
If the number of edges of the query window is a parameter of the problem we
see that the time and space bounds grow linearly with this parameter. How
the constants of the time and space bounds can be minimized was discussed
in some detail in the rectangular and triangular case.

Unfortunately, the approach of using priority search trees seems not to
work if the window is not a polygon. So we leave open the question of
an optimal solution for the dynamic fixed circular windowing problem for
points, and, more generally, for the dynamic fixed windowing problem, where
the window is an arbitrary region in the plane.
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