J University of Colorado at Boulder

Department of Computer Science

ECOT 7-7 Engineering Center
Campus Box 430

Boulder, Colorado 80309-0430
(303) 492-3902

June 13, 1988

Attention Technical Reports
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

I would like to obtain copies of the following papers:
1. W. H. Cheung, J. P. Black and E. G. Manning. A Study of Distributed Debugging. Research report
CS-87-53, University of Waterloo. Department of Computer Science., 1987. T

2. Y. Igarashi and D. Wood. Roughly Sorting: A Generalization of Sorting. Research'/ rt CS -87-5;: \)
University of Waterloo. Department of Computer Science., 1987.
-

If you could send me copies of these papers, I would appreciate it.

Sincerely,

%

Michael F. artz
Assistant Professor

?«v’g A ngz of é '
«L)L ‘ N \r\/takgvaiu I)\.(m:"“cktn Co
e Tije ué Versme,\ | wm&se&

‘ 'le—d- &‘CL%\ . *
Sorae J.,,mcus:e{
| Betre Belqum |

%? S f/{g/:g/éé’ -

E BEEARTMENT

E DEPARTMENT
CE DEPARTMENT

S

WA
W
UNIVERSITY OF WATERLOO COMPUTER SC

MPUTER
MPUTER

ATERHSR &8

3

1
Y
ITY

&

ovER

Roughly Sorting:
A Generalization of Sorting

Yoshihide Igarashi
Derick Wood

Data Structuring Group
Research Report CS-87-55

September, 1987

Roughly Sorting: A Generalization of Sorting*

Yoshihide Igarashi t Derick Wood *

September 25, 1987

Abstract

We study roughly sorting and roughly sorted sequences. A sequence
a = (ay,...,ap) is k-sorted if and only if « is a sequence satisfying the
conditions: (1) there is no j such that j < ¢ — k and a; < a; and (2)
there is no 7 such that § > ¢ + k and a; > a;. A O-sorted sequence
is a sorted sequence in the usual sense. We first give a local charac-
terization of k-sorted sequences and then design a k-sorting algorithm
which we call k-bubble sort, since it is a generalization of bubble sort.
An algorithm for sorting k-sorted sequences is also designed. For each
k > 1, a lower bound on the number of comparisons needed to sort k-
sorted sequences is obtained by a decision tree argument. We show that
0.69428n and 1.1265n are average case lower bounds on the numbers
of comparisons for sorting 1-sorted and 2-sorted sequences of length n,
respectively.

1 Introduction

Sorting is an essential part of data processing and algorithm design. How-
ever, in some applications we are asked to nearly or roughly sort sequences
rather than to completely sort them. There are also some applications in
which efficient algorithms for completely sorting nearly sorted sequences are
required. The concept of roughly sorting has appeared in the papers by Sado
and Igarashi [7,8] on parallel sorting on a mesh-connected processor array.
They have designed fast parallel sorting algorithms in which a method of
iteratively merging roughly sorted subfiles is incorporated. The notions of

*Part of the work was carried out while the first author was a visitor in the Department
of Computer Science, University of Waterloo. This visit was supported by Japan Society
for the Promotion of Science and the Natural Sciences and Engineering Research Council
of Canada. The work of the second author was supported under a Natural Sciences and
Engineering Research Council of Canada Grant No. A-5692

tDepartment of Computer Science, Gunma University, KIRYU 376, JAPAN

#Data Structuring Group, Department of Computer Science, University of Waterloo,
WATERLOO, Ontario N2L 3G1, CANADA

2 Roughly Sorting

presorted and nearly sorted lists discussed in [2,5,6] are related concepts,
but different from roughly sorted lists, as [3] prove.

In this paper, we study roughly sorting and roughly sorted sequences.
Roughly sorting is a generalization of sorting. In Section 2, we formalize
our notion of roughly sortedness giving k-sorted sequences and we give a
local characterization of k-sorted sequences. In Section 3, we design a k-
sorting algorithm that is a generalization of bubble sort. In Section 4, we
design an algorithm for sorting k-sorted sequences and an algorithm for
merging two k-sorted sequences to give a sorted sequence. In Section 5, we
show that the worst case optimal number of item comparisons for sorting
1-sorted sequences of length n is n — 1. For each k we estimate the number
of k-sorted sequences of length n. From these estimates and a decision tree
argument we derive lower bounds on the number of comparisons needed to
sort k-sorted sequences.

2 Roughly Sortedness

We begin by formalizing our notion of roughly sorted sequences.

Definition 2.1 A sequence o = (ai,...,an) is k-sorted if and only if the
following two conditions are satisfied:

1. For all j such that 1< j <1 —k, a; < a;.
2. For all j such thatt+k < j < n, a; < aj.

From the above definition « is sorted if and only if « is O-sorted. We now
introduce the notion of a b-block which is important for the following results.

Definition 2.2 Given a sequence a = (ai,...,an), & non-negative integer
b, and an integer 1, 1 < i < n—>b+1, the b-block of o at position 1 s
the subsequence (a;,...,ai+b—1) of o. A b-block of a is a b-block at some
posttion t.

As is well known, O-sorted sequences can be characterized by the following
local condition:

a = (ay,...,a,) is sorted if and only if for every 7, 1 <7 <
n—1, a; < ajt1, that is, @ = (ay, ..., ap) is O-sorted if and only
if every 2-block is O-sorted.

This local characterization of sorted sequences can be generalized as follows.

Theorem 2.1 Let a = (ay,...,a,) and k be a nonnegative integer. Then
a is k-sorted if and only if every (2k + 2)-block of « is k-sorted.

Igarashi and Wood 3

A}
— 1
Ty
//
a
a4 g // 6
/ /
I ‘ ‘
[s] \ (Q ;
4 a {
1 ya 3

Figure 1: A Hasse diagram specified by the 2-sorted condition.

Proof: It is immediate that every (2k + 2)-block of a k-sorted sequence
is k-sorted. Therefore suppose that every (2k + 2)-block of a is k-sorted.
Let (ai,...,ai+2k+1) be a (2k + 2)-block of a. If { + 2k + 1 < n, aj 441 <
@i2k+2 since (@iy1,...,@it+2k+2) is k-sorted. Since a; < ajtk4+1, We ob-

tain a; < a;y2p+2. Clearly, this argument holds for any 2k + 2-block
(@i4js---»@it2k+5+1), where 1 < j < n — ¢ — 2k. Therefore, for all ¢ such
that 1t + k+ 1 < t < n, we have a; < a;. A similar argument obtains for

1 <t <1 -k —1; hence, a satisfies the two conditions of Definition 1. O

One natural question is whether (2k + 2)-blocks are necessary in the above
theorem; that is, does it hold for (2k + 1)-blocks, for example? This is not
the case as the following theorem demonstrates.

Theorem 2.2 For every k, k > 0, there exists a sequence o satisfying the
following two conditions:

1. a is not k-sorted.
2. Every (2k + 1)-block of a is k-sorted.

Proof: Suppose that every (2k + 1)-block of a = (ay,...,a,) is k-sorted.
This implies that the relative order of a; and a; ;241 is not specified, for all
1,1 <1 < n-—2k—1. Therefore, if n > 2k+ 2, we can assign an appropriate
value to each a;, 1 < ¢ < n, so that a is not k-sorted. For example, let
a1 =2;a;=1,for2<i<i+kja; =2, fork+2 <1< 2k+1; and
azk+2 = 1; then (ay,.. ., ask+2) satisfies the two conditions of the theorem.
O

Example 1. Suppose that every 5-block of & = (ai,...,a7) is 2-sorted.

Then, the partial order it specifies is depicted in Figure 1. If & = (6,2, 3,7,8,5,9),

this sequence is consistent with the partial order shown in Figure 1, but it
is not 2-sorted.

4 Roughly Sorting

3 The k-Bubble Sort

As is well known any sequence of length n(an n-sequence for short) can be
sorted by at most n — 1 bubbling passes, where the ¢-th bubbling pass is
described as follows:

for j:=1ton—1do
if aj > ;41 then exchange(o, 0j+1)

Note that c; is synonymous with a; and, in the following text, a; ; denotes
the subsequence (a;,...,a;)

The bubbling operation compares two adjacent items and exchanges
them if they are not in sorted order. In other words, bubbling 0-sorts 2-
blocks. We now extend the bubbling operation so that it k-sorts a (2k + 2)-
block. This operation is called k-bubbling. Obviously, ordinary bubbling
is 0-bubbling. We give an algorithm, k-bubble sort, that k-sorts a given
sequence by means of k-bubbling. Note that, in general, there are many
k-sorted sequences corresponding to a (2k + 2)-block and, for that matter,
many k-sorted sequences corresponding to any given sequence. Uniqueness
is achieved only when k = 0. Therefore, k-bubbling transforms a (2k + 2)-
block into one of its k-sorted sequences. However, for technical reasons
we specify that k-bubbling be a particular transformation defined by the
following procedure.

procedure k-BU BBLE(a, 7,5 + 2k + 1);
begin
if j = 1 then k-sort(a, j,j + 2k +1)
{ To give any one of its k-sorted sequences}
else a;iar+1 is exchanged with the maximum
among the items in o; j+k and oj42k+1
end

Using k-BU BBLE a k-bubbling pass from the first (2k +2)-block to the
last (2k + 2)-block can be described as follows:

for j:=1ton—2k—-1do
k-BUBBLE(c, 5,7 + 2k + 1)

At the beginning of the j-th (5 > 2) stage of a bubbling pass, the items
in ajik+1.5+2k are k-sorted, since these items are k-sorted at the previous
stage. Therefore, it is desirable that these items are not disturbed during
the j-th stage. This is the reason why we specify k-bubbling as described
in k-BUBBLE.

Lemma 3.1 Suppose that a = (ai1,...,an) and the following k-bubbling
pass is executed:

Igarashi and Wood 5

forj:=1ton—-2k-1do
k-BUBBLE(a,j,5 + 2k + 1)

Then, for all ¥ such that n — k < 1 < n, a; is greater than or equal to
any item in oy i—x—1; that is, the last k + 1 items are k-sorted with respect
to a.

Proof: The proof is by induction on the leftmost position j of the 2k + 2
positions currently being processed in the k-bubbling pass. These 2k + 2
positions are called the window of the k-bubbling pass.

Basis: 5 = 1. At the end of the first stage of the k-bubbling pass the
last k + 1 items, in o, 2k+2, are obviously k-sorted.

Induction step: 5 > 1. Suppose that at the end of the j-th stage of the
k-bubbling pass, the last k+1 items in the window are k-sorted with respect
to ai. j+2k+1. During the 5 + 1st stage, the items in a; k42, j4+2k+1 remain
unchanged and any item in oy j+k+1 cannot be greater than the items in the
same position at the j-th stage. Hence, during the 5+ 1st stage, the items in
O +k+2.j+2k+1 are k-sorted with respect to aj. j42¢+2. From the induction
hypothesis, at the beginning of the j + 1st stage ;441 is no smaller than
any item in o;. ;. Furthermore, a;;2r+2 at the end of the j + 1st stage is
the maximum of the items in o1, j+x+1 and ajy2x4+2. Hence, ajygk42 is no
smaller than any item in a;_j4i+1 at the end of the 5+ 1st stage. Thus, the
items in oj4k42.j4+2k+2 are k-sorted at the end of the 5 + 1st stage. (The
situation for k = 2 is depicted in Figure 2.) Therefore, at the end of the
k-bubbling pass, the last k + 1 items in « are k-sorted with respect to the
whole sequence. O

From Lemma 3.1 we can design a k-bubble sorting algorithm as follows.
The k-bubble sort consists of [(n — k — 1)/(k + 1)]k-bubbling passes. The
length of the first bubbling pass is n — 2k — 1. The length of each subsequent
bubbling pass is k+1 shorter than the previous bubbling pass. The k-bubble
sort is a natural extension of bubble sort, and is also called the roughly bubble
sort. The algorithm can be described as:

procedure RBUBBLE(a,1,n,k);
begin
fori:=1to [(n—k—-1)/(k+1)] do
for j:=1ton—-k— (k+1)ido
k-BUBBLE(a, j,5 + 2k + 1)

If n—k— (k+1)i <1 then k-BUBBLE is executed once
in the second for loop

end

Lemma 3.2 ¢« is k-sorted by RBUBBLE(a,1,n,k).

6 Roughly Sorting

A[i+3] A[3+] A[3+5]

X indicates that the order may

A[j+6] be destroyed

A[j+4] A[3+5] Alj+6]

A[j+2] A[j+2]] “A[§+3]
| . '
(A[L. .3l)

Figure 2: The changeof a partial order by a one-position shift of the window
in a 2-bubbling pass.

Igarashi and Wood 7

Proof: Let P(i) be the following assertion

At the end of the i-th bubbling pass in the computation of
RBUBBLE(a,1,n,k), the last (k+ 1) items are k-sorted with
respect to the whole sequence.

If (k+ 1)i > n, the last (k + 1)¢ items in P(¢) should be read as the whole
sequence. We prove that P() is true for all4,1<¢ < [(n—-k-1)/(k+1)],
by an induction on 1.

Basis: 1+ = 1. By Lemma 3.1, P(1) is true.

Induction step: ¢ > 1. Suppose that P(¢) holds and ¢ < [(n — k —
1)/(k+1)]. From the definition of k-BU BBLE, during the ¢ + 1st bubbling
pass any item in @, (k+1)(i+1)+1.n—(k+1)i does not move unless it is smaller
than an item in @) n_(k+1)(i+1)- Therefore, the items in cp_(k41)i41.n Te-
main k-sorted throughout the ¢ + 1st bubbling pass. By Lemma 3.1, at
the end of the ¢ 4+ 1st bubbling pass the items in Oy (k+1)(i+1)+1..n—(k+1)i
are k-sorted with respect to o ,_(x+1);- Hence, at the end of the 7 + 1st
bubbling pass the last (k + 1)(¢ + 1) items in ;. ,, are k-sorted. Thus, the
lemma holds. O

We first evaluate the computing time of RBU BBLE as the number of calls
of k-BUBBLE. By a simple calculation we obtain:

Lemma 3.3 The number of calls of k-BUBBLE to k-sort a = (ay,...,an)
by RBUBBLE is |(n—k—1)/(k+1)|(n—2k+r)/2+ B(n), wherer =n
modulo (k + 1), and B(n) = 0 if r = 0, otherwise B(n) = 1.

Corollary 3.4 When n is a multiple of k + 1, the number of calls of k-
BUBBLE to k-sort o = (a1,...,a,) by RBUBBLE is (n — k — 1)(n —
2k)/(2k + 2).

We next evaluate the computing time of RBUBBLE in terms of the
number of comparison-exchange operations instead of the number of calls of
k-BUBBLE. Consider the sorting of a reverse ordered sequence of length
n by bubble sorting. The sequence is initially (n — 1)-sorted. Each bubbling
pass reduces the unsorted size of the sequence by one. Therefore, in the worst
case n — k — 1 bubbling passes are required to obtain a k-sorted sequence
from a given n-sequence. Thus, this straightforward method for k-sorting
takes (n — k — 1)(n + k)/2 comparison-exchanges. To evaluate the number
of comparison-exchanges of RBUBBLE, we need to specify the details of
k-BUBBLE. When j = 1, k-BUBBLE(c, 7,5 + 2k + 1) can be executed
as follows:

fori:=1tok+1do
for s:=1to 1 do
if agy14i < @, then exchange(agti+i, o)

8 Roughly Sorting

When j > 2, the sequence is k-sorted by k + 1 comparison-exchanges as
follows:

fori:=1tok+1do
if 0j42k+1 < @j4i—1 then exchange(a;tak+1, ¥jti-1)

Hereafter, k-BU BBLE means the computation specified by the above
algorithm. From Lemma 3.3 the next theorem is immediate.

Theorem 3.5 The number of comparison-exchanges to k-sort an n-sequence
by RBUBBLE is v(k + 1) + k(k + 1)[(n — k — 1)/(k + 1)]/2, where v
is the number of calls of k-BUBBLE given in Lemma 3.3 (that is, v =
|[(n—k—-1)/(k+1)](n—2k+ r)/2+ B(n)).

Corollary 3.6 When n is a multiple of k +1, the number of comparison-
ezchanges to k-sort an n-sequence by RBUBBLE is (n — k — 1)(n — k) /2.

From Corollary 3.6 we can say that RBUBBLE is faster than the
straightforward method (that is, k-sorting by bubble sorting) by k(n—k-1)
comparison-exchanges. This is a pleasant result. For large k, if we use an
O(klog k) sorting method for computing k-BU BBLE the computing time
given in Lemma 3.3 can be marginally improved. However, a faster and
optimal k-sorting algorithm is to be found in [3].

4 Sorting k-Sorted Sequences

In this section we study how to sort k-sorted sequences and how to merge
two k-sorted sequences into a sorted sequence. For a k-sorted sequence
a=(a1,...,an), for any ¢, k+2 < ¢ < n, we have a; > a; ift>754+k+1.
Therefore, the following scheme can be used to sort a k-sorted sequence:

1. Let a(1) = {a1,. . ., ar+1} and let a (1) be a smallest item in a(1).

2. Suppose that for each t, 1 < ¢ <1, a,(;) has been found. Let o(¢+1) =
(1) — {as)} U{ai+k+1}, and let ay(iy1) be a smallest item in a(i+1).
(Ifi+k+1>n, {@i+k+1} should be read as the empty set).

Theorem 4.1 For the above scheme, for all i, 1 < i < n, a,() is an 1-th
smallest item in o.

Proof: We prove the theorem by an induction on ¢. Since ay(1) is the
smallest item in {ai,...,ar+1} and (a1,...,an) is k-sorted, any item in
{ay,...,a,} is no smaller than a,(;). Suppose that a,(;) is the j-th smallest
item in o, for j = 1,...,7. At the 14 1st stage of the computation a,(;4+1) is a
smallest item in a(i+1). At least oneitemin {ay,...,@i+1} isin a(i+1), and

Igarashi and Wood 9

any item in {@;4+k+1,-..,@n} is no smaller than any item in {ay,...,a;+1}.
Hence, a,(;41) is a smallest item in a(¢ +1)U{aitk+1,---,an}. Thus, agiy1)
is an 1 + 1st smallest item in a. O

A heap is known as a suitable data structure for a priority queue. In the
following algorithm, based on the above scheme, we use a heap as a data
structure both for finding a,(;) in a(t) and for constructing a(i + 1).

procedure RHEAPSORT (e, 1,n,k);
begin
Construct a heap for {ai,...,ak+1};
fori:=1tondo
begin
choose the item at the root as the ¢-th smallest one;
ifi+ k+2 < n then
insert a;4r+2 at the root and trickle down
until the heap condition is satisfied
else
move the last item of the heap to the root
and trickle down until the heap condition is satisfied
end
end

If k=n—1, RHEAPSORT is exactly the same as the ordinary heap
sort. The number of comparison-exchanges to construct a heap of size k+1
is 2(k+ 1) — 2logy(k + 2), if k = 2* — 2 for some t, while for arbitrary k it is
bounded by 2(k +1). It takes at most 2|log,(k+ 1)) comparison-exchanges
to update the heap. Thus, the computing time of RHEAPSORT can be
estimated as:

Theorem 4.2 The number of comparison-ezchanges needed by RH EAPSORT
(a,1,n,k) is bounded by 2(k + 1) + 2(n — 1) |logy(k + 1)]~

As is well known the optimal number of comparison-exchanges for O-
sorting is ©(nlogn) [1,9]. From this fact and Theorem 4.2, the next corollary
is immediate.

Corollary 4.3 Let k = f(n). If lim,,(log f(n))/logn = O, then the
optimal number of comparison-ezchanges for k-sorting n items is ©(nlogn).

It is also well known that the optimal number of comparison-exchanges
for finding the median of n items is ©(n) [1,9], hence, we have:

Theorem 4.4 Let k be a linear function of n such that its coefficient is
less than 1 and greater than 0. Then the optimal number of comparison-
exchanges for k-sorting n items is ©(n).

10 Roughly Sorting

Proof: Suppose k = rn, where 0 < r < 1. We consider the following
algorithm for k-sorting o = (a1,...,a,). Let t be a natural number such
that 1/2¢ < r. We first find the median of o, and then partition « into two
parts so that one part consists of items smaller than the median and the
other consists of items equal to or greater than the median. We recursively
apply the same procedure to the partitioned parts until the size of each
partitioned part becomes smaller than n/2¢. Since we can find the median
of a set in a linear number of comparison-exchanges and ¢ is a constant, the
number of comparison-exchanges of the algorithm is linear in n.

We next prove that a linear function of n is a lower bound on the num-
ber of comparison-exchanges of k-sorting algorithms. For any k-sorting algo-
rithm, each of the items at positions rn+2 to n at the end of the computation
has been compared with some item at least once during the computation.
This fact is immediate from the following observation. If an item in this
range has not been compared with any item during the computation, it
may be the smallest item, in which case, the final sequence is not k-sorted.
Therefore, any k-sorting algorithm needs 2(n) comparison-exchanges. O

The technique used in RH EAPSORT can be used to to merge two k-
sorted sequences into a sorted sequence. We construct two heaps of size
k + 1 for this purpose. The algorithm is described by the following pro-
cedure. In the procedure we assume that we have two k-sorted sequences

a=(a,...,a,) and B = (by,...,bm).

procedure RMERGE(a,1,n,8,1,m,k);
begin
construct a heap Hy4 for {ay,...,ak+1}
and a heap Hp for {by,...,bk+1};
fori:=1tom+n do
begin
choose the minimum of the items at the roots
of H4 and Hp as the i-th smallest item,;
if the minimum item is chosen from H4 then
the first unprocessed item in « is inserted
at the root of H4 and Hj4 is updated
else the first unprocessed item in J is inserted
at the root of Hg and Hp is updated
{We update H4 or Hp in the same way as in RHEAPSORT.
For example, if the items in « are exhausted, the
last item in H 4 is moved to the root to update Hy4.
If H4 is empty, an item is chosen from the
root of Hg and Hp is updated.
Hp is updated in the same way as Hy4.}

Igarashi and Wood 11

end
end

The computing time of RM ERGE can be estimated in the same way as
that of RHEAPSORT.

Theorem 4.5 The number of comparison-ezchanges used in the computa-
tion by RMERGE(e,1,n,B,1,m,k) is bounded by 4(k + 1) + 2(m + n —
2)|log,(k + 1)} + min(m, n). '

5 The Number of k-Sorted Sequences

Throughout this section, we assume that all items of a given sequence are
distinct. We denote the number of k-sorted sequences of an n- sequence by
Ri(n) (that is, Rk(n) is the number of permutations of (1,...,n) that are
k-sorted). We estimate Ri(n) and derive a lower bound on the number of
comparison-exchanges for sorting a k-sorted sequence. We first consider the
case for k = 1. Suppose that @ = (ay,...,a,) is 1-sorted. The partial order
specified by the sequence is shown in Figure 3. The order of ¢; and a3 is
either a; < a2 or a; > az. The number of 1-sorted sequences such that
the first item is smaller than the second item (that is, the first item is the
smallest) is Rj(n — 1), and the number of 1-sorted sequences such that the
first item is greater than the second item is Ry(n — 2). Therefore, we have
the recurrence equation Rj(n) = Ri(n — 1) + Ry(n — 2). Since Ri(1) =1
and R;(2) = 2, Ri(n) is the n-th Fibonacci number. The asymptotical value
of Ry(n)/Ri(n — 1) is the positive root of z2 — £ — 1 = 0. Hence, the next
theorem is obtained.

Theorem 5.1 Rj(n) is the n-th Fibonacci number. For a sufficiently large
n, Ry(n)/Ri(n—1) ~ (14 /5)/2(=1.618---).

From the above theorem and a decision tree argument [1] the next the-
orem is obtained.

Theorem 5.2 A lower bound on the number of comparisons needed in the
average case for sorting a 1-sorted n-sequence is n log, 1.618—1 ~ 0.69428n—
1.

The bound given in the above theorem is also a lower bound in the worst
case. However, we can derive a better lower bound in the worst case.

Theorem 5.3 Any algorithm for sorting 1-sorted n-sequences needs n — 1
comparisons in the worst case.

12 Roughly Sorting

Figure 3: The partial order specified by the 1-sorted sequence (a1,as3," -).

Proof: Let a = (ay,...,a,) be a 1-sorted sequence. Any comparison of a;
and a; such that ¢ > j+2 or ¢ < j — 2 does not contribute to deciding the
order of any items of unknown order. Consider any algorithm for sorting
1-sorted sequences. Suppose that a; and a;;; are compared in the compu-
tation of the algorithm. If a; < a;41, this comparison does not contribute
to deciding the order of any other items apart from a; and a;41. If at each
comparison of a pair of successive items the first is no greater than the sec-
ond, the number of pairs of successive items of unknown order is reduced by
one. Since « has initially n — 1 successive pairs of items of unknown order,
the algorithm needs at least n — 1 comparisons to sort the sequence. O

For small k, RHEAPSORT is not particularly efficient. The straight
insertion method [4,9] may be a suitable method for sorting k-sorted se-
quences, if k is small. It takes at most k(n — 1) comparisons. However,
the straight insertion method needs O(k%n) item movements if it is imple-
mented in an array. The following algorithm sorts any 1-sorted n-sequence
in at most n — 1 comparisons.

procedure ON ESORT (e, 1,n);
begin
1:=1,
whilei <n-1do
if o; < @41 then ¢ :=1+1
else begin
exchange(os, ait1);
1:=1+2
end

Igarashi and Wood 13

Figure 4: The partial order of the 2-sorted sequence (aj,az,-).

end
From Theorem 5.3 and the above algorithm we have:

Theorem 5.4 The worst case optimal number of comparisons to sort 1-
sorted sequences of length n is n — 1.

Theorem 5.5 For sufficiently large n, the average number of comparisons
to sort 1-sorted sequences of length n by ONESORT 1is ~ 0.7236n.

Proof: After each comparison of two items in ON ESORT, { is incremented
by 1 or 2 in the while loop. The numbers of 1-sorted sequences (aiy---,an)
such that a; < @41 or such that a; > a;41 are Ri(n —1) and Ry(n—1— 1),
respectively. Since Ry(n — ¢+ 1) = Ry(n — 1) + Ri(n — 1 — 1), the expected
increment is Ry(n —1)/Ri(n— i+ 1)+ 2Ry(n — 1 — 1)/Ry(n — 1+ 1). Thus,
from Theorem 5.1, for sufficiently large n — 1, the expected increment is
1/r+2/r?, where r = (1+ v/5)/2. Hence, the expected number of compar-
isons is ~ n/(1/r + 2/r?) ~ 0.7236n. |

As shown in the above theorem, the average number of comparisons taken
by ONESORT(a) is close to the average case lower bound 0.69438n given
in Theorem 5.2.

A recurrence equation for Rz(n) can be derived by the following case
analysis on the partial order specified by a 2-sorted sequence o = (a1,az,:).
The partial order of « is shown in Figure 4.

1. The number of 2-sorted n-sequences such that a; < az as is Rz(n—1).

14 Roughly Sorting

2. The number of 2-sorted n-sequences such that a; < a; < ag is Ry(n —
2).

3. The number of 2-sorted n-sequences such that a3, a3 < a; is 2R;(n—3).

4. The number of 2-sorted sequences n-sequences such that a3 < a; < a3
and a3 < a4 is Rz(n — 3).

5. The number of 2-sorted n-sequences such that ag < a; < a2 and
a4 < ag is Rz(n - 4).

From the above case analysis we have the following recurrence equation
for Ry(n) :

Ry(n) = Rz(n — 1) + Ry(n — 2) + 3Ry(n — 3) + Ra(n — 4);

Rz(1) = 1; R2(2) = 2; Ry(3) = 6; Ry(4) = 12
Solving the recurrence equation we obtain:

Theorem 5.6 For sufficiently large n, Ry(n)/Re(n—1) ~ r ~ 2.1833, where
r is the positive root of * — 2% — 22 — 3z — 1 =0.

By a decision tree argument we have:

Theorem 5.7 A lower bound on the number of comparisons both in the
worst case and in the average case for sorting 2-sorted sequences of length
n is nlog, 2.1833 — 2 = 1.1265n — 2.

For larger values of k, the case analysis to obtain a recurrence equation
for Ri(n) seems to be complex. We, therefore, try to derive a recurrence
inequality for Ri(n). We focus our attention on the first k + 1 items of a
k-sorted sequence and estimate Ri(n) by the following case analysis:

1. The number of k-sorted n-sequences such that a; < az,as,...,ak+11s
Ri(n —1).

9. The number of k-sorted n-sequences such that as,...,at+1 < a1 <
@t42,. -, k41 is ! Rg(n —t — 1), where 1 <t < k.

3. The number of k-sorted n-sequences such that ay, ..., ak+1 < @Gg42,.--,8n
is (k+1)!Rk(n—k—1). k!Ri(n—k—1) sequences and Tk t!Re(n—k-1)
sequences among the above (k — 1)!Ri(n — k — 1) sequences have been
already counted in (1) and (2) above, respectively. Therefore, the
number of k-sorted n-sequences such that they are neither in (1) nor
in (2) above is more than ((k+1)! — k! — ok Y Rk(n —k—1).

Igarashi and Wood 15

From the above case analysis we have the following recurrence inequality:
Ri(n) > Re(n—1)+ZF (! Re(n—t—1))+((k+1)!— k! - Sf_ t)) Re(n—k—1)

R(@) =i i=1,... k+1

Therefore, for suffciently large n, Ri(n)/Rx(n—1) > r, where r is the positive
root of

H1 (zF 4+ sElught 4 (k+ 1)1 - k! - BE2]e) = 0.

By a decision tree argument, nlog, r is a lower bound on the number of
comparisons both in the worst case and in the average case for sorting k-
sorted sequences of length n, where n is sufficiently large. The positive roots
r of the above equations for k = 3, ..., 10 are given in Table 1. For example,
2.1183n is an average case lower bound on the number of comparisons needed
to sort an 8-sorted sequence of length n.

k lower bound on Rg(n)/Rk(n — 1)
3 2.57231

4 2.95041

5 3.30127
6
7
8
9

3.64575
3.99178
4.34201
4.69658
10 5.05497

Table 1: Lower bounds on Ri(n)/Rk(n — 1).

6 Concluding Remarks

We have defined the notion of roughly sortedness and studied several prob-
lems related to roughly sorting. For k = 1 and 2, the numbers of k-sorted
sequences have been estimated. From these estimates we have derived lower
bounds on the number of comparisons needed to sort 1-sorted sequences
and 2-sorted sequences. However, for larger k we have only been able to
underestimate such a number. If we could estimate these numbers, a bet-
ter lower bound on the number of comparisons needed to sort a k-sorted
sequence for larger k could be derived. A number of interesting problems
related to roughly sorting and roughly sorted sequences can be considered.

16 Roughly Sorting

We have designed the k-bubble sort as a generalization of bubble sort. We
are also interested in designing k-sorting versions of other well known sorting
algorithms, and an efficient algorithm for merging two k;-sorted sequences
into a kg-sorted sequence. Another interesting problem is the trade-off be-
tween the computing time and (kj, k2) of the above merging algorithm. All
problems discussed in this paper are in the case of serial computing. Paral-
lel algorithms related to roughly sorting are also interesting and worthy of
further investigation.

Acknowledgement

The first author wishes to thank Professor Maarten H. van Emden for his
useful discussions and encouragement during his stay in Waterloo.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Co., Reading, Mass.,
1974.

[2] C.R. Cook and D.J. Kim. Best sorting algorithms for nearly sorted lists.
Communications of the ACM, 23:620-624, 1980.

[3] V. Estivill-Castro and D. Wood. A New Measure of Presorting. Tech-
nical Report 87-CS-??, Department of Computer Science, University of
Waterloo, 1987.

[4] D.E. Knuth. The Art of Computer Programming, Vol.3: Sorting and
Searching. Addison-Wesley Publishing Co., Reading, Mass., 1973.

[5] H. Mannila. Measures of presortedness and optimal sorting algorithms.
IEEE Transactions on Computers, C-34:318-325, 1985.

[6] K. Mehlhorn. Sorting presorted files. In 4th GI Conference on Theory
of Computer Science, pages 199-212, Springer-Verlag, New York, 1979.

[7] K. Sado and Y. Igarashi. A Divide-and-Conquer Method of The Parallel
Sort. Technical Report AL84-68, IECEJ, 1984.

[8] K. Sado and Y. Igarashi. A Fast Parallel Pseudo-Merge Sort Algorithm.
Technical Report AL85-16, IECEJ, 1985.

[9] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1976.

	

