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Abstract

This research follows from the idea that the problem of nonmono-
tonicity is not a problem with logic, but is a problem with how logic
is used. In this paper we consider a simple form of theory formation
using normal logic. A system, called Theorist, based on theory for-
mation using a fixed set of possible hypotheses has been built and
used on a number of domains. In this paper we investigate a num-
ber of distinctions that have been found to be important: between
predicting whether something is expected to be true versus explain-
ing why it is true; and between conventional defaults (assumptions
as a communication convention), normality defaults (assumed for ex-
pediency) and conjectures (assumed only if there is evidence). The
effects of these distinctions on recognition and prediction problems are
presented, along with algorithms, proofs and examples. This is also
argued to be the basis for a theory of model based diagnosis (where
there are fault models) and as a framework towards solving multiple
extension problems.



Defaults and Conjectures 2

1 Introduction

One way to do research into Artificial Intelligence is to argue that we need
a certain number of tools and to augment these only when we have shown
that they are not adequate for some task. In this way we can argue that
we need at least the first order predicate calculus if we want to reason
about individuals and relations amongst individuals (given that we want
to indirectly describe individuals, as well as talk about the conjunction,
disjunction and negation of relations) [Hayes77,Moore82,Genesereth87].

Non-monotonicity has often been cited as a problem with using logic as
a basis for commonsense reasoning. In [PGA87| it was argued that instead
of deduction from our knowledge, reasoning should be better viewed as a
process of theory formation. In [Poole87a] it was shown that default rea-
soning can be viewed in this way by treating defaults as possible hypotheses
that can be used in an explanation.

It has also been recognised (e.g., [Charniak85,PGA87,Cox87]) that ab-
duction is an appropriate way to view diagnostic and recognition tasks.
Here the diseases and malfunctions are the possible hypotheses that can be
used to explain some observations.

So, we can also argue that we want to do some hypothetical reasoning.
This research is part of considering the simplest form of hypothetical rea-
soning, namely where there is a fixed set of possible hypotheses. This is
the framework of the Theorist system [PGAS87].

This work is done in the spirit of providing a very limited set of tools.
Given a number of tools, we investigate how these tools can be used to solve
problems. A repertoire of techniques can then be built to determine how
to appropriately use these tools. Only when these tools can be shown to be
inadequate, or we have very good reasons why they should be augmented
do we add to our set of tools. In this manner, the distinctions outlined in
this paper were found from experience by using the system, explaining to
others how to use the system and in building applications [Poole87b].

2 Distinctions

Example 1 Consider the following example:
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A person can possibly have a brain tumour,

a person can possibly have a broken leg,

a brain tumour typically produces a head ache, and

a broken leg typically produces a sore leg and a bent leg.

On the basis of this knowledge, if we observe that Randy has a bent leg, it is
reasonable to hypothesise that he has a broken leg and that the broken leg
produced the bent leg. If we subsequently ask whether we predict a sore
leg, we would say yes, as we hypothesise a broken leg which is typically
sore. If we were asked whether we predict, on the evidence of a bent leg,
that Randy has head ache we would say no, there is no reason to assume
that he has a brain tumour given no evidence for it.

This simplistic example indicates a distinction between ezplaining observa-
tions and predicting what we ezpect to be true. There is also a distinction
between normality assumptions (which we want to assume given no ev-
idence to the contrary) and abnormality assumptions which we want to
assume only if we have evidence.

Each of these distinctions is discussed in this section, and a system
which respects such distinctions is outlined in the next section. Formal
definitions, outlines of implementations and applications are discussed in
later sections.

2.1 Defaults and Conjectures

Example 1 shows a distinction between what I will call defaults (or “nor-
mality assumptions” which are assumed to be true, given no evidence to
the contrary) and conjectures (or “abnormality conditions”) which are as-
sumed only if we have evidence (for example, diseases or malfunctions in a
system for diagnosis or prototypes in recognition or design tasks).

Defaults and conjectures are similar in that they are both statements
that we can hypothesise, but differ markedly in the evidence required to
allow the hypothesising.

Defaults can be used unless there is reason to believe otherwise, for
example, that some device is working correctly, that if you have broken
your leg it is sore, that a bridge will not fall down on top of you. These
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can be used to predict or explain observations unless there is evidence that
they are incorrect.

This is contrasted with conjectures which one has up one’s sleeve if one
needs to to explain some observation!. These may include such hypotheses
as: someone has some disease, some device is malfunctioning in some way,
or there is some object in a scene in a recognition task. Evidence is needed
to assume these conjectures.

This distinction seems to be more a notion of difference in degree rather
than a difference in kind (for example, in example 1 above, one could say
that maybe Randy has a sore head because he may have a brain tumour
which would cause a sore head). I would argue that the distinction is
important to make, particularly when one must act on one’s conclusions (If
one doesn’t act on one’s conclusions, it doesn’t seem to matter what one
concludes).

I propose that defaults and conjectures should be treated as different
categories of possible hypotheses.

There seems to be two alternate ways to incorporate abnormality con-
ditions (those we only want to assume if we have evidence):

1. One alternative is to make the conjectures the conclusions of defaults.
Thus if we have conjecture ¢ which we want to consider when a holds,
we can have a = ¢ as a default, which is to mean that if we can deduce
¢ from a if it is consistent.

Often the sort of reasoning we are considering is causal reasoning,
where for example, if a causes b and we observe b, we want to conjec-
ture a. In Theorist this would be encoded by having a = b as a fact
(or a default) and having a as a conjecture. The alternate is to have
the evidential default b = a so that when the observation b is added
as a fact, we have a as a default conclusion [Pearl87).

There are a number of disadvantages of this alternate approach:

(a) As pointed out in [Pearl87] there are problems which occur if one
does not distinguish between evidential and causal defaults and

!The user provides the system with formulae that can be used as conjectures if there
is evidence for them. The term “conjecture” is used here to mean these formulae that the
system has available to conjecture.
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their resulting conclusions. Our proposal is an alternate to his;
example 7 below shows that the problems that he found with
this way of viewing causes does not arise in our proposal.

As pointed out by McCarthy?, it is the mapping from reality
to appearance which is much more stable (which corresponds to
the causal rules above) than the mapping from appearance to
reality (which corresponds to the evidential rules above). It is
more reliable to have knowledge of the form “a pen in an image
looks like a long thin thing” rather than “a long thin thing in an
image is a pen”, because there may be many things which are
long and thin. The use of conjectures and defaults allows the
use of this more stable mapping.

Using the evidential rule approach, there is no notion of how
causes are grouped. For example, consider a causes both d and
e, b causes d and c causes e, and we observe d Ae. With the con-
jecture approach, there are two simplest explanations, namely
the one with a and the one with b and ¢. If these were written
as evidential rules (dAe = a, d = b, e = ¢) we can conclude the
conjunction a A bA c¢. In this representation there is no notion of
the grouping of these conjectures. It also seems strange that we
have evidence for the conjunction of all three and not just the
disjunction of the three or some other grouping.

A problem related to the previous occurs when some of the con-
clusions of evidential rules are inconsistent. For example, if we
have a, b and ¢ each causing g, we need the evidential rules
g=>a,g=>b,g=c. If aandb are inconsistent, this gives two
extensions; one with a and ¢ and one with b and ¢. This is a
strange result considering the symmetry of the problem.

there may be no observation which is sufficient in all cases to
allow one to hypothesise some conjecture. For example if all
one knew was that someone was sneezing, this may be enough
to hypothesise that the person has hay fever. If, however we
knew a lot of information about the person then knowing that

2AAAI Presidential Address, Austin Texas, 1984.
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they are sneezing may not be enough information to allow the
hypothesising of hay fever (as some other disease may be a better
fit to all of the evidence), even if it was not inconsistent.

2. A second alternative is to only have defaults and to make conjectures
the negation of normality defaults (as in [Reiter87]). In this case
we assume the negation of a conjecture if it is consistent, that is a
conjecture is only concluded if its negation is inconsistent with all
other assumptions. There are a number of reasons for preferring not
to do this:

(a)

(b)

In a diagnostic setting one may not want to believe that some
person does not have a disease, but would rather just not believe
that the person does have that disease.

It seems to be an unintuitive view of recognition to have the de-
fault that a person and a chair and an emu is not at every place
in a picture, and to recognise them by finding that these as-
sumptions are inconsistent. Allowing one to hypothesise objects
if there is evidence for them seems to be more intuitive.

Showing that the negation of some condition is inconsistent is
the same as proving the condition. Often there is nothing which
allows one to prove that a person is in the image or that some-
one has some disease (albeit conditioned on some other assump-
tions). It is better to say that having some disease accounts for
the evidence.

There may be lots of diseases which cause some normality con-
dition being wrong. There is a difference between saying that
there is something wrong with some component and hypothesis-
ing what that problem is.

In less understood domains than, say, circuit diagnosis, there
will often be no symptoms which are actually inconsistent with
some diseases or their absence. Diseases interact and one often
wants possible grouping of diseases. The system outlined in this
paper allows one to build a model of how diseases interact.

If we have shown the negation is inconsistent, then we have
proven the conjecture based on other assumptions. Thus, the
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sort of knowledge required is of the form of evidential rules rather
than just the causal rules. All of the disadvantages pointed out
before then arise.

The solution proposed here of distinguishing between defaults and conjec-
tures does not get into these problems.

2.2 Normality defaults and conventional defaults

We can distinguish two types of defaults:

e reasonable assumptions, which may be incorrect, but for the time
being we will assume that they are true.

e communication conventions, where we know that something is true if
we have no statement to the contrary.

An example of the second is the following

We send out invitations to a party saying that we assume that
single people are coming by themselves and attached people are
coming with their partner, unless they tell us to the contrary.
If Bruce is single and accepts the invitation without mentioning
a partner, then according to our convention he is not bringing
someone else. If he tells us that he is bringing someone else, then
that is OK, as our convention was only a default. If we know
Eric is married and he doesn’t mention that he is coming by
himself then we know he is coming with his wife. If Bruce brings
someone else, or Eric doesn’t bring his wife, it is reasonable to
get mad at them because they mislead us.

This seems to use a different sort of default to having something typically
being true, and so assuming it for expediency. For example, if we know
that broken legs are typically sore, it is reasonable to predict that someone
with a broken leg has a sore leg; they may not, however, but I would still
not plan a long hike for their visit. We need to make some guesses to get
anywhere.
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The classic Al example is that we have the default that birds fly, and
know that Tweety is a bird, and know nothing else about tweety, we con-
clude that Tweety flies. How one interprets this conclusion depends on
whether the default is a normality default or a conventional default. If it is
the former, the answer should mean that “we expect that Tweety flies, as
birds typically do, but maybe she doesn’t”; if the default was a conventional
default, the answer should mean that “Tweety flies, as if she didn’t fly you
would have told us according to the convention that we have between us”. 1
would claim that the second is still using default reasoning, but this distinc-
tion seems to be the distinction that Moore [Moore85] was making when
he claimed that autoepistemic reasoning was not default reasoning.

This distinction is also important in solving the “multiple extension
problem”. Multiple extensions seem natural and to be expected for nor-
mality conditions, where if some individual is in two classes which normally
have incompatible properties, it is to be expected that we can predict dif-
ferent things based on the two classes. For conventional defaults, multiple
extensions indicate a bug in our convention, as we have evidence that there
is a consistent conclusion which we can draw which is incorrect (one of
the extensions must be incorrect, as they all can’t be correct as multiple
extensions are always incompatible).

These defaults, however, seem to be used in the same way (this is sup-
ported by [Konolige87], where the formal equivalence between Default logic
[Reiter80] and Autoepistemic Logic [Moore85] was proved). For the rest of
this paper we will put both of these into one class called the defaults.

2.3 Prediction and Explaining Observations

In example 1 we saw a distinction between predicting what we expected to
be true versus explaining actual observations made about some system.
There are a number of reasons for such a distinction:

1. there are some things which we only want to hypothesise if we have
evidence. We don’t want to hypothesise an invisible person in a pic-
ture or a rare disease in a patient if there is no evidence for them.
There are different things we bring to bear when asked whether we
expect something is true or whether we are told that something is
true and asked to find a plausible explanation of why it is true.



Defaults and Conjectures 9

2. If we are trying to explain the observation g, it seems irrelevant that
—g is also explainable; this just means that in some other circum-
stances ¢ is not true. If, however we are asked whether we predict g,
it seems very relevant whether we can also explain its negation.

3. an observation is like a fact, in the sense that all of our theories must
be consistent with it (in fact, in the proposed system they imply the
observations) whereas a prediction may or may not be explained or
consistent with all future theories.

For an explanation of an observation we want to be able to hypothesise
both defaults and conjectures; one useful heuristic is that we want each
scenario with minimal conjectures as our possible explanations.

When making predictions, we want to be only able to hypothesise de-
faults (and not conjectures for which we have no evidence). It is argued in
section 3.1 that we want to predict things which are in all extensions.

This distinction between prediction and explaining observations is a
difference in kind, not a difference in degree (this is important to avoid the
question why isn’t there a continuum of values between them?).

2.4 Facts and Constraints

The other part of the formalism is the class of facts. These are intended to
be things which are true in the domain we are considering. More precisely
they are things that we are not prepared to give up for the sake of the
computation.

It is assumed for the sake of the computations that the facts are consistent>.
This is a useful assumption to make when implementing systems, as we do
not want to have to worry about checking inconsistencies in the facts them-
selves.

One thing that happens to useful is the ability to prune the set of
scenarios without adding new facts. For example, we may want to say that
default § is not applicable under condition ¢, without always being able to
explain —¢ by assuming 6. For example, if we know someone is not guilty,

3Formally we do not need to make this assumption, as if the facts are inconsistent
(using classical logic), nothing is explainable but everything is provable.
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they should not be a suspect, however we should not conclude that they
are guilty just because they are a suspect. This leads us to the class of
constraints* [Poole87a,Gagné87]. Constraints are formulae which must be
consistent with any scenario, but are not part of that scenario. If we add
—(c A §) to the constraints, this prevents both ¢ and 6 being in a scenario,
without allowing the explanation of —¢ by assuming 6. There seems to
be no elegant way to do this without inventing the category of constraints.

Constraints can also be used to prevent the contrapositive of a default being
used[Poole87a).

2.5 Facts and Defaults

One of the questions that arises when one is using Theorist is when should
some piece of knowledge be a fact and when should it be a default. The
answer is that it is relative to the problem at hand. One person’s facts may
be another’s hypotheses. This should not be seem as a bug in the theory,
but as a feature.

The facts are those pieces of knowledge that for the sake of some argu-
ment we are not prepared to give up. A default is some piece of knowledge
we are prepared to give up if there is evidence to the contrary. In a similar
way that our answers will be conditioned on the defaults used to conclude
them, the set of explanations is conditioned by the meta-level assumptions
made in building the knowledge base (these may or may not be explicit).
Assumptions are made when building a knowledge base; if these are found
to be wrong, we try to debug the knowledge base. This framework is the
same theory formation and revision framework that the reasoning system
itself uses.

One may often want to condition diagnoses with “assuming that the dis-
eases are not acting pathologically and the problem is amongst the known
diseases, the diagnosis is ...”. If the symptoms cannot be explained, we
know that this assumption is incorrect, and we can try to make explicit
our assumptions to try to find out the correct diagnosis. This building of a
new layer of the Theorist framework is not any different to the other tasks.

4The use of constraints is not essential to the point of this paper, but is included here
for completeness and compatibility with [Poole87a]. We tend to be schizophrenic about
whether we like them or not.
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In the rest of this paper, we assume that we are operating in one level of
this hierarchy. The problem of having multiple layers is not considered.

2.6 Facts and Observations

Perhaps a more difficult question is what knowledge should be added as
facts and what should be added as observations. Facts and observations are
both true of the domain under consideration, but they play very different
roles as part of the framework. The answer “observations are those things
we observe that need explaining” is a rather vacuous and unsatisfactory
answer if there is no way to say what needs explaining and what does not.

Instead I propose a convention that the facts consist of the general
knowledge about the domain as well as physical constraints that we are
not prepared to give up. The observations are all the things we observe
about the particular case in hand. As far as the user is concerned, all she
sees about a particular case are observations. The designer of the system
can decide that some observations can be treated as facts by making those
possible observations as conjectures (see section 5.3.2). This is perfectly
consistent with the idea that conjectures are the base causes that we can
hypothesise if we have evidence.

2.7 What this is not

This paper is not intended to be a theory of how one changes ones be-
liefs (i.e., how one changes from attending one scenario to another). That
seems to be either the role of a psychological theory (e.g., How many sce-
narios do people consider at once? How many scenarios do people con-
sider at all? How much evidence is required before someone changes their
mind? [Harman86]) or an implementation decision (e.g., Should we build
one theory at a time and undo relevant assumptions if we get into trouble?
[Doyle79] or should we try to build all theories at once? [de Kleer86]). Both
of these are very important issues but are not the subject of this paper.
This is intended to be a competence theory and not a performance
theory of nonmonotonic reasoning. This paper talks about consistency
as something which can and should be checked in order to hypothesise
something. It does not consider that people jump to conclusions with very
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little reasoning and only fix up their beliefs when they are convinced they
are inconsistent, nor does it talk about how the processes can be done in
real time. The psychological validity of this theory is not what is being
considered here, neither are very efficient proof procedures.

Although this is presented in a theory formation framework, the pro-
posed system is not intended to be a learning system. There is no way in
this framework to generate new hypotheses. We are not trying to automat-
ically generate general theories which are applicable to other cases.

3 Formal Semantics

We assume that we are given a standard first order language over a count-
able alphabet [Enderton72]. By a formula we mean a well formed formula
in this language. By an instance of a formula we mean a substitution of
terms in this language for free variables in the formula.

The semantics is defined in terms of three sets of formulae. For different
purposes what we are considering to be given and what we take as our
possible hypotheses may vary.

A a set of closed formulae which we are taking as given (usually these are
the facts, or some current theory of the world under consideration),

C a set of closed formulae taken as constraints®, and

H a set of formulae which we take as the possible hypotheses; the elements
of H are the generators of the formulae that are allowed to be hy-
pothesised. For some purposes these will be just the defaults and for
other purposes H will be the defaults and the conjectures.

Definition 1 a scenario of A, H is a set DU A where D is a set of ground
instances of elements of H such that DU AU C is consistent.

This definition is intended to be independent of the logic being used.
We want a scenario to be possibly true in the world under consideration
(whether it is the real world or some imaginary world), so at least it should

5Usually we have C as implicit in the following definitions; we will not mention it
explicitly, but will assume that scenarios are consistent with the constraints.
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be consistent. In this paper the first order predicate calculus is used as the
logic for Theorist.

Definition 2 If g is a closed formula then an explanation of g from A, H
s a scenario of A, H which implies g.

That is, g is explainable from A, H if there is a set D of ground instances
of elements of H such that

AUD |=g and
AU D UC is consistent

AU D is an explanation of g.

Definition 3 an extension of A, H is the set of logical consequences of a
mazimal (with respect to set inclusion) scenario of A, H.

In [Poole87a] the correspondence between this definition of extensions
and the definition of [Reiter80] (where § € H corresponds to the default
: 6/6 in [Reiter80]) was proved. The following theorem was proved in
[Poole87a] and follows from the compactness theorem of the first order
predicate calculus [Enderton72]

Theorem 1 g is explainable from A, H iff g is in some extension of A, H

3.1 Prediction

When predicting what we expect to be true, the possible hypotheses we are
prepared to use are the set A of defaults. The given A is either the facts or
some other scenario about the world. We want to predict some proposition
g based on A and A if, assuming that everything that is not known to be
acting “abnormally” is acting “normally”, we expect that g is true.

Definition 4 We predict g based on A, A if g is in every extension of
A A.
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If g is not in every extension of A, A, there is some scenario S of A, A,
such that g is not explainable from S, A (see theorem 5, below, for a proof
of this). Based on our normality conditions and what we are given we
cannot rule out S, and so we should not predict g.

Note that we do not predict something if we can just explain it, as we
may be able to explain it and its negation. It seems wrong to both predict
some proposition and also predict its negation. It is also not adequate to
predict some proposition because we can explain it and cannot explain its
negation. Consider an example where we can explain a and can also explain
—a. We do not want to predict that a is true. If the only rule about g is
a = g, then if we can’t predict a, we do not want to predict g, even though
there is no way to explain —g.

There seems to be two other candidate definitions for prediction

1. To predict only what is logically implied by an explanation of our
observations. This is a very weak notion of prediction which does
not allow the use of defaults. Note that if A = g then g is in every
extension of A, so that the above definition is more liberal in its
predictions than this alternative. Note that this alternate definition
of prediction has one nice property, namely that if A predicts g, and
we subsequently observe —g, then we know that A is wrong. In the
definition above, if we subsequently observe —g, we have to update
A, but cannot just reject it.

2. To predict what is in one extension [Reiter80]. That is, to predict g if
g is explainable. This is using prediction in the sense of g is predicted
if g is “maybe” expected to be true. The difference between this case
and predicting only what is in all extensions arises only arises when
we can explain some proposition and also explain its negation (if we
can’t there is only one extension, and the definitions coincide). When
predicting what is in all extensions, we are just eliminating from the
set of predictions those propositions for which they and their negation
can be explained, and any propositions which can be explained only
by virtue of assuming one of those is true. Note that according to
definition 4, if either a or b are in every extension then aV b is in every
extension. Although scenarios are conjunctions of formulae, what is
predicted is the disjunction of each extension.
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3. An alternative is to have a probabilistic prediction. In this case we
can assign a weight (e.g., probability or some utility value) to each
extension (or to each scenario), and have the probability of some
proposition as the weighted sum of all of the extensions in which it
is in. Predicting what is in every extension, is then the case of what
we can predict with probability 1, assuming that the extensions are
covering (i.e., if we assume that the extensions cover all possibilities,
then what is in all extensions, is what must be true). This idea
is not persued more in this paper, but is covered in more detail in
[Neufeld87b]. (i.e., if we have enough

So without any preference criteria for scenarios (see section 4), it seems
as though definition 4 is the correct definition for prediction.

3.2 Explaining Observations

When we are explaining actual observations, we want to build a scenario
as to why those observations could have occurred. We want to be able to
hypothesise conjectures and defaults which would account for these obser-
vations.

If we are given facts F, constraints C, conjectures Il and defaults A,
and O is observed then we want to explain O from F,II U A. That is, we
want sets P and D, instances of elements of II and A respectively, such
that

FUPUD =0 and
FU PUDUC is consistent

The pair < P, D > is said to be the assumptions of the explanation.

4 Scenario Comparators

As first noticed by William of Occam in the twelfth century, not all expla-
nations are born equal.
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In this section we want to describe features that we believe such com-
parators should possess and show on what axes we expect them to exist®.

There are a number of axes in which we can compare scenarios. The first
is the use to which the scenario is being put. There can be comparators for
explanations of observations as well as comparators for making predictions.

For explaining observations we would expect comparators to say when
one explanation of the observations is better (for some use) than another.

For prediction comparators, we would expect that some extensions will
be preferred over others. Instead of predicting what is in all extensions we
predict what is true in all preferred extensions. An example of this are pre-
ferring the most specific default [Poole85] when there is more specific and
more general knowledge we prefer to use the most specific knowledge we
have available. Another example is in preferring the chronologically most
persistent extension [Goebel87,Goodwin87| in temporal reasoning when us-
ing frame defaults.

An extension can be seen as the complete world description based on a
maximal set of things acting normally. As such, we could define preference
over extensions and predict g if g is in all preferred extensions. Alterna-
tively, we would expect to predict g if all of the scenarios which explain ¢
are preferred over those scenarios from which g cannot be explained.

The other distinction to make is between

heuristic comparators where all we are saying is that one scenario is pre-
ferred over another, but it could be the case that a non-preferred one
is the correct one. An example of this is the use of probability to
discriminate amongst diagnoses in a diagnostic system [Neufeld87a)|.
In these cases the predictions should be weighted according to the
likelihood or utility of the scenarios which support or reject such pre-
dictions. We should take all scenarios into account.

semantic comparators where a less preferred scenario is known to be not
the scenario that is wanted. An example of this is to have a preference
for more specific defaults in a communication convention. Here the

SMuch of this section formalises distinctions given in [Neufeld87a]. Here we concentrate
on the semantics comparators rather than the heuristic comparators that were discussed
in that paper.
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extension with the more general default is just wrong. For example
we could say that birds typically fly and emus typically don’t fly
and that Polly is an emu and if we have the convention of using the
most specific default then we know that Polly does not fly as we have
more specific knowledge about emus than the more general knowledge
about birds. These semantic comparators are used to prune the space
of acceptable scenarios. They are called semantic because they are
making semantic statements about some scenarios not being correct.

Note that prediction comparators are used when explaining observa-
tions. For example, if we have the semantic prediction preference for the
most specific default, and have birds fly, emus don’t fly, and flying emus fly
as defaults, and observe that polly is an emu and flies, then we don’t want
to say that polly is a bird and so flies and polly is an emu, its just that
the default that polly does not fly cannot be used as it is inconsistent with
what is known. We have to say that emus not flying is more specific than
birds flying means that the default about birds flying is not applicable to
polly. The desired answer is that polly is a special type of emu, namely a
flying emu.

4.1 Three Comparators for Explaining Observations

Three useful comparators for explanations are discussed here:

1. the minimal explanation, that is to prefer the explanations that makes
the fewest (in terms of set inclusion) assumptions”.

2. the least presumptive ezplanation. Explanation E, is less presumptive
than E, if E; = E;. That is, if E, makes less (in terms of what can
be implied) assumptions than E,.

3. the minimal abnormality ezplanation. Explanation E; with conjec-
ture assumptions P, and default assumptions D; is less abnormal
than E, with assumptions < Py, D; > if E5 |= Py and either E; [~ Py

"Note that I am not advocating comparing scenarios by counting the number of as-
sumptions in them. Such comparators have too many problems of slight rerepresentations
of the problem domain giving different answers.
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or (E, |= P; and E, |= Dy). That is, if it makes less abnormality as-
sumptions or it makes the same abnormality assumptions and fewer
normality assumptions.

The first two can both be seen as preferring the minimal explanation,
the first if we treat a scenario as a set of axioms, the second if one equates
a scenario with its logical theory (i.e., considers the set of all logical con-
sequences of the explanation). The first two comparators can be seen as a
semantic comparators in that if there is one correct® explanation, there is
a minimal and a least presumptive explanation which is also correct.

I cannot think of a situation where one would not want the minimal
explanation (i.e., why one would want to make extra unneeded assump-
tions). Although there are cases where no least presumptive explanation
exists (see example 4 below) as well as cases where it can be argued that
the least presumptive explanation may not be the “best” explanation (see
example 5 below), it seems as though the least presumptive explanation is
often the desired explanation.

Example 2 Let
IT = {broken(leg),broken(tibia)}
A = {broken(leg) = sore(leg)}
F = {broken(tibia) = broken(leg)}

if we observe sore(leg) there is one least presumptive explanation:
{broken(leg),broken(leg) = sore(leg)}

That is we conjecture that the person has a broken leg and that the broken
leg caused the sore leg. The explanation:

{broken(tibia),broken(leg) = sore(leg)}

is another minimal explanation, however it is not a least presumptive ex-
planation. There is no evidence that the tibia is broken over the leg is
broken; assuming the tibia is broken implies that the leg is broken.

8Correct in the sense of true in the intended interpretation. This is a property which
can be verified by an oracle observer of the system.
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The third definition is more heuristic. It may be the case that the
minimal abnormality explanation is not the correct one, however we may
not want to consider more abnormalities than we have evidence for.

The following two theorems give the relationships between these three
comparators.

Theorem 2 A least presumptive explanation is always equivalent to a min-
imal explanation.

Proof: Suppose E is a least presumptive explanation and sup-
pose that E' is an explanation such that E' C E, then E |= E',
so E' = E otherwise E' is less presumptive than E. So if there
is a smaller explanation than a least presumptive explanation,
then they are equivalent. [J

Note that this does not mean that a least presumptive explanation is
always a minimal explanation, as we can always throw in hypotheses and
conjectures implied by a least presumptive explanation into the explanation
and it is still least presumptive, but no longer minimal.

Theorem 3 A minimal abnormality explanation is always a least presump-
tive explanation.

Proof: Suppose E is a minimal abnormality explanation with
assumptions < P,D >. We need to prove that there cannot
be an explanation which is strictly less presumptive than E.
Assume that explanation E', with assumptions < P', D' >, is
strictly less presumptive than E (i.e., E |= E' and E' [ E); we
want to show that E' is strictly less abnormal than E.

We know E|=P' and E|=D' (as E = E'). E' - Por E' [t D
otherwise E' = PA D and so E' = E. So we know E |= P’ and
(E'f= Por E'f- D) and E |= D', and so E |= P' and E' [ P
or (E' £ D and E |= D'), that is, E' is less abnormal than .

Suppose E is less abnormal than E'. In this case E' = P and,
as we know E |= P', E' = D. We then have E' = P A D so
E' |= E, a contradiction to E' being strictly less presumptive
than F.
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So if E is a minimal abnormality explanation, there is no strictly
less presumptive explanation. OJ

The converse is not always true.
Example 3 Consider the following system

A = { bird-so-flies(X),
emu-so-doesn’t-fly(X),
flying-emu-so-flies(X),
bird-so-feathered(X)}
I = {bird(X), emu(X), flyingemu(X)}
F = { VX bird(X) A bird-so-flies(X) = flies(X),
VX emu(X) A emu-so-doesn’t-fly(X) = — flies(X),
VX flyingemu(X) A flying-emu-so-flies(X) = flies(X),
VX emu(X) = bird(X),
VX flyingemu(X) = emu(X),
VX bird(X) A bird-so-feathered(X) = feathered(X)}

C = { VX emu(X) = —bird-so-flies(X),
VX flyingemu(X) = —emu-so-doesn’t-fly(X)}

If we observe that Polly is feathered, there is one least presumptive expla-
nation, namely

{bird(polly), bird-so-feathered(polly)}
There are other explanations for the observation, for example
{emu(polly), bird-so-feathered(polly), flying-emu-so-flies(randy)}

but all of these make extra assumptions for which we have no evidence
(and, together with F', imply the least presumptive explanation).

If we observe that Tweety flies, there are two least presumptive expla-
nations:

1. Tweety is a bird, and tweety flies because birds fly. This is given by
the explanation

{bird(tweety), bird-so-flies(tweety) }
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2. Tweety is a flying emu, and tweety flies, because flying emus, by
default, fly. This is given by the explanation

{flyingemu(tweety), Aying-emu-so-flies(tweety)}

The first explanation is the minimal abnormality explanation, as it makes
less assumptions about Tweety than the second (as it only assumes that
Tweety is a bird, not that she is a flying emu). Note that as far as we have
evidence, either explanation could be correct, it is just that we do not want
to make any abnormality assumptions for which we do not have evidence.
We have evidence that tweety is a bird, we do not have the extra evidence
that tweety is a flying emu.

One problem that arises is that there may not be a least presumptive
explanation:

Example 4 Consider the following system:

I = {p(X)}
F ={ VN p(N +1) = p(N),
int(0),

VN int(N) = int(N + 1),
VX int(X) A p(X) = g}

there is no least presumptive explanation of g. There is an infinite chain of
less presumptive explanations. There are infinitely many minimal explana-
tions of g (one for each integer).

There are also cases where one can argue that the least presumptive
explanation is not necessarily the best explanation:

Example 5 Suppose we are building a user modelling system, and want
to be able to conjecture the interests of people and have the following
conjectures:
IT = { interested-in-hardware,

interested-in-formal-Al,

interested-in-logic,

interested-in-CS}
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The defaults of the interests are given as defaults:

A = { interested-in-hardware = interested-in-logic A interested-in-CS,
interested-in-formal- Al = interested-in-logic A interested-in-CS,
interested-in-logic = borrows-logic-books,
interested-in-CS => writes-computer-programs}

If we observe that someone borrows logic books then it is reasonable to
conjecture that they are interested in logic. This is the least presumptive
explanation. If we observe that someone borrows logic books and writes
computer programs then there is one least presumptive explanation, namely
that they are interested in computer science and interested in logic. The
alternate explanations, namely that they are interested in formal Al or
interested in hardware are not going to be least presumptive, although one
could argue that they are the best explanations. The problem here is that
there is some notion of simplicity in gauging the best explanation. It is best
to get to the root cause of the problem rather than just giving the weakest
explanation.

This is similar to what was argued in [Popper62, p. 219| that one does
not always want the most likely explanation. He proposes a verisimilitude
for comparing theories. [Quine78, chapter 6] defined five virtues on which
to compare explanations.

Much more work needs to be done on defining appropriate scenario
comparators.

5 A Default Reasoning System

5.1 Architecture

The architecture we are considering is one where the system is provided
(see section 5.2 for how this is done) with the facts, constraints, defaults
and conjectures. We assume that these provide the general knowledge
about the domain that is being modelled (i.e., how diseases interact and
how symptoms work in a diagnosis system, and general knowledge about
objects, occlusion etc., in a recognition task), all specific knowledge about
the particular case is added as observations (see section 5.3 for a description
of the programming methodology).
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We have a sequence of observations given to the system which builds
up its best (according to the explanation comparisons given) explanations
of the observations. From each of these explanations we can ask what
they predict and what is expected. The system can also propose what
observations it would like about the world in order to prune and refine its
explanations.

5.2 Interacting with the system

When implementing Theorist we want a system in which we can add facts,
defaults, etc., and then give observations and ask predictions based on what
the system has been told.

The state of the system can be described as a tuple

< F,C,AII,O,¢ >
where

F is the set of facts

C is the set of constraints

A is the set of defaults

IT is the set of conjectures

O is the set of observations that have been made

€ is the set of preferred (according to some preference criteria) explanations
of the observations O.

The input language to the system is defined below. The syntax of each
command is given, along with how the command affects the state of the
system, assuming the current state is < F,C,A,II,0,€& >.

fact w.
where w is a formula, means “Vw”® is a new fact. That is the re-
sulting state is < FU {Vw},C,A,II,0, &' > where £' is the resulting

9Vw is the universal closure of w, that is, if w has free variables v then Yw means Vv w.
Similarly Jw is the existential closure of w.
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explanations given Vw as a fact (see section 6.1 for a description of
how this can be computed).

constraint w.
where w is a formula, means “Yw” is a new constraint. That is, the
new state is < F,C U {Vw},A,II,0, &' >, where £' is the set of new
minimal explanations.

default n.
where n is a name (predicate with only free variables as arguments)
means n is a new default. Formally this means that the new state is

< F,C,Au{n},I,0,&" >
where &' is the resulting explanations given the new default.

default n : w.
where w is a formula, and n is a name means that w is a default, with
name n. Formally this means that the new state is

<Fu{¥V(n=w)},C,AU{n},I1,0,& >
See [Poole87a| for a discussion on naming defaults.

conjecture n.
where n is a name means that n is a new conjecture. the new state is

< F,C,A,TIU{n},0,&" >

conjecture n : w.
where w is a formula, and n is a name means w is a formula with
name n. The new state is

< Fu{¥(n=w)},C,A,TTU{n},0,&" >

observe g.
where ¢ is a closed formula, means that g is a new observation. The
new £ is the set of preferred explanations of all of the observations
(i.e., O A g).
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predict ¢, S.
where g is a formula and S is a scenario (usually one of the elements
of E), returns yes (together with the instance) if some instance of g
is in every extension of S and no otherwise (not that we predict that
g is false, but rather that we do not predict that it is true).

predict g.
where g is a formula returns yes (together with the instance) if some
instance of g is in every extension of E,A for all E € £, and no
otherwise.

It is assumed that essentially all of the “general knowledge” about a sys-
tem is added as facts, and that all specific knowledge about the particular
case at hand is added as observations.

Example 6 Example 1 can be specified as follows:

conjecture brain-tumour.

conjecture broken-leg.

default tumoured-heads-ache: brain-tumour = head-ache.
default broken-legs-are-sore: broken-leg => sore-leg.
default broken-legs-are-bent: broken-leg => bent-leg.

If we make the observation
observe bent-leg.
we have one minimal and least presumptive explanation:
{broken-leg, broken-legs-are-bent}
If we subsequently ask:
predict head-ache.
the answer is no. If we ask
predict sore-leg.

the answer is yes.
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Example 7 (Pearl) [Pearl87, p. 371] gives the following example to argue
that there should be a distinction between causal rules and evidential rules.
Here we show how the problems he was trying to solve do not arise in our
system. We add the causal rules as defaults (or facts if we do not want to
consider them having exceptions)

default rained-so-wet: rained-last-night = grass-is-wet.
default sprinkled-so-wet: sprinkler-was-on = grass-is-wet.
default wet-so-cold: grass-is-wet => grass-is-cold-and-shiny.
default grass-wet-so-shoes-wet: grass-is-wet = shoes-are-wet.

Instead of adding the reverse of these rules as Pearl does, we make the
possible causes we are considering as conjectures:

conjecture rained-last-night.
conjecture sprinkler-was-on.

If we observe that it rained last night, we have one explanation:
{rained-last-night}

Form this we can predict that the grass is wet, that the grass is cold and
shiny and that my shoes are wet. There is no way to predict that the sprin-
kler was on last night (which was the problem with having the evidential
rules as explicit rules (see section 2.1)).

If we had instead observed that the grass is cold and shiny, there are
two explanations:

{rained-last-night, rained-so-wet, wet-so-cold}

{sprinkler-was-on, sprinkled-so-wet, wet-so-cold}

From both of these we can predict that my shoes are wet.

5.3 Programming Methodology

It is not adequate to just define a representational language and leave it at
that; it is also necessary to say how this language can be used to solve the
sorts of problems we want to solve. This knowledge can only come from
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experience with using the system. In this section we discuss some useful
ways to use the system that we have found.

Essentially statements that one would expect to be true under normal
circumstances should be added as defaults. Cases where one would not
want to assume these would be added as facts or constraints (depending
on whether one wants to be able to conclude other things from assuming
the default). For anything which could possibly be observed, one has to
consider what an appropriate explanation for that observation would be.
This may be the observation itself (section 5.3.2) or some more complex
formula where the observation is broken down into more primitive obser-
vations which would in turn need to be explained. The implication of the
observation from these causes can be any mixture of facts, defaults and
conjectures. So for example if g is a possible observation and c is a possible
cause for g, then ¢ and ¢ => g should be considered either as facts, defaults,
conjectures or other observations which need in turn to be explained. There
is nothing in the formalism which makes us think that ¢ = ¢g should be a
default and ¢ a conjecture (although, indeed they may be).

5.3.1 Parameterising Possible Hypotheses

When building systems using Theorist it is important to know how the way
possible hypotheses can be parameterised to have different effects.

In general the free variables in possible hypotheses are the values on
which the truth of the hypothesis depends. If, for example, the truth of a
hypothesis depends on the time, then time should be a parameter of the
possible hypothesis (then contradicting it at one time should not contradict
it for other times). If the identity of some parameter is irrelevant to the
truth of a hypothesis, then it should not be free in the possible hypothesis.

Example 8 Consider the statement “you may assume that a person likes
all dogs”. This can be used to predict that some person likes some dog
unless there is evidence to the contrary. If there is one dog which they do
not like then we cannot assume that they like other dogs. This can be given
by

default likes-all-dogs(P) : person(P) A dog(D) = likes(P, D).
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which means likes-all-dogs(P) is an element of A and
VPV D person(P) A dog(D) A likes-all-dogs(P) = likes(P, D)

is a fact. By making P a parameter of the default, and not D means that
the default is contradicted for a person if there is one dog they do not like.
For example, given also

fact dog(fido).
fact dog(honey).
fact person(randy).

fact person(sumo).
fact —likes(randy, fido).

we can explain likes(sumo, fido) but cannot explain likes(randy, honey),
as likes-all-dogs(randy) is inconsistent with the facts.

This should be contrasted to the statement “you may assume that any
person likes any dog”. Here the existence of one dog that a person does not
like should not prevent us from assuming they like other dogs. This can be
specified by

default likes-dog(P, D) : person(P) A dog(D) = likes(P, D).
which means likes-dog(P, D) is an element of A and
VPV D person(P) A dog(D) A likes-dog(P, D) = likes(P, D)

is a member of F.
In this case, from the above facts we can explain ltkes(sumo, fido) and
likes(randy, honey) but not ltkes(randy, fido)

In contrast to other proposals where the hypotheses must be consistent
with our observations (e.g., [Reiter87,de Kleer87|), our hypotheses must
have the power to predict the observations. To do this the conjectures
should be parameterised by the relevant inputs on which the cause depends
as well and the possible outputs.

For example if we want to consider malfunction d, and it depends on pa-
rameters Iy, ..., I, (for example, incoming current, time of day, temperature
in Antarctica) and predicts values for Oy, ..., O,, (for example, temperature



Defaults and Conjectures 29

of a person, output current) then the conjecture should be specified as be-
ing parameterised by all of these, namely as hasmaly(Iy, ..., I, O1, ..., Om).
We are then allowed to hypothesise that the system has some outputs for
the inputs given as

fact input([y, ..., In)A
hasmaly(Iy, .., In, O1, .oy Om) A
reln(Iy,..., 15,01, ...,0m
= output(Oy, ..., Om).
constraint ¢(Iy,..., I, 01, ...,0n) =
—hasmal (I, ..., I, O1, ..., Ony).

Where reln is some relation that must hold between the inputs and the
outputs before we can use the hypothesis to predict the output for the
given input, and ¢ is some relation which cannot hold between the input
and the output. If we observe some output produced from some input, and
if it fits the constraints of the malfunction (i.e. reln is true of them, and
we cannot prove that ¢ is true of them) then the appropriate instance of d
can be conjectured as a cause of the output.

Example 9 Consider the problem of having a lamp connected to a battery.
Suppose if the battery is acting normally its voltage is between 1.2 and 1.6;
if it is overcharged, above this, and if it is flat the voltage is below this
range. The lamp will be normally be lit if the voltage is over 1.3 and will
be dim if the voltage is between 1.0 and 1.3, however if the voltage ever
gets over 1.8 then the lamp will blow and never be normal again.

The following relations are relevant:

voltage(V,T) means that at time T the voltage across the battery (and
also across the lamp) is V' volts.

battOK(V,T) means that at time T, the battery is working OK and is
producing V volts.

overcharged(V,T) means that at time T', the battery is overcharged and is
producing V volts.

flat(V,T) means that at time 7', the battery is flat and is producing V
volts.
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lampOK (T) means that at time T', the lamp is working normally.
dim(T) means that the lamp is dim at time 7'

l1t(T) means that the lamp is lit at time T'.

We can specify that the battery normally produces some voltage be-
tween 1.2 and 1.6 by

fact battOK(V,T) = voltage(V,T).
default battOK(V,T).
fact battOK(V,T) = 1.2 <V AV < 16.

We can also specify how the problems/malfunctions manifest themselves:

fact overcharged(V,T) = voltage(V,T).
conjecture overcharged(V,T).

fact overcharged(V,T) =V > 1.6.

fact flat(V,T) = voltage(V,T).
conjecture flat(V,T).

fact flat(V,T) =V < 1.2.

We can also state that there cannot be two different voltages at any time
(Note that this could have also be achieved by making voltage a function
from time to the voltage at that time.)

fact voltage(Vy,T) A voltage(Vy, T) = Vy = V.
Similarly we can axiomatise how the lamp works normally

fact lampOK (T) A voltage(V,T) AV > 1.3 = lit(T).

fact lampOK (T)Avoltage(V,T)A1.0 < VAV < 1.3 = dim(T).
default lampOK(T).

fact lampOK (T) A voltage(V,T) =V < 1.8.

fact ~lampOK (T,) A before(Ty, Ti) = ~lampOK (T}).

Given no observations, as we would expect, we cannot predict for example
that the voltage is 1.5 volts (as that is not true in all extensions), however
we can predict

VT3V V >1.2AV < 1.6 Avoltage(V,T)
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Given no observations, if we were asked to predict whether the lamp
is lit at some time ¢, then the answer is no, as {battOK(1.25,t)} is a
scenario from which [it(t) cannot be explained. We can, however, predict
lit(t) v dim(t). There are infinitely many explanations of lit(t) V dim(t),
namely consisting of

{battOK(V,t),lampOK (t)}

for every V such that 1.2 <V < 1.6, and there is no scenario of F, A from
which lit(t) V dim(t) cannot be explained.
If we observe dim(to), then there are the least presumptive explanations:

{battOK (V,to),lampOK (to)}
for 1.2 <V < 1.3 and
{flat(V,to),lampOK(to)}

for 1.0 < V < 1.2. Only the first are minimal abnormality explanations.
We only predict things which are true in all extensions of these.

If we later observe that the voltage is indeed 1.25 at time ¢y, then there
is one explanation, namely

{battOK (1.25,1,),lampOK (to)}

5.3.2 Observations and Facts

In section 2.6 it was claimed that all of the generalised knowledge about a
domain should be added as facts and all knowledge about a particular case
should be added as observations. This convention makes a clear distinction
for the user of the system, but requires the builder of the knowledge base to
be aware of this. The conjectures that the designer provides should include
all of those possible observations that one want to treat as facts. This
is entirely withing the spirit of conjectures; we just don’t want a deeper
analysis of the cause of these observations.

For example, if we want the age of a patient to be able to be added as
an observation, but we do not want a deep analysis of why we think this is
the observed age, then we can add
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conjecture age(P, A).
If we find out the age of a particular person, then this is added as
observe age(jenn,23).

This will have the same effect as adding age(jenn,23) as a fact as the least
presumptive explanations will always be the ones that contain age(jenn, 23).

The conjectures should then be whatever we are prepared to accept
as explanations for the observations whether they are things which don’t
really need to be explained or deep causes for complex behaviour.

5.3.3 Causes and Symptoms

One of the ways of looking at recognition and diagnostic tasks is to find
the causes of symptoms [Cox87|. There are cases when something can be
considered a cause sometimes and symptom at other times. If not handled
appropriately, this may become a problem in our system if we prefer the
least presumptive explanation (see section 4). This can, however, be fixed
by an appropriate structuring of the knowledge base. Consider the following
example:

Example 10 Suppose we want to represent the sentences

People sneeze because they have a cold.
Sometimes people just sneeze.

One representation of this may be

conjecture sneezes(X).
conjecture has-cold(X).
default sneezing-because-of-cold(X): has-cold(X) =>sneezes(X).

If we observe
observe sneezes(eric).

there is one least presumptive explanation, namely

{sneezes(eric)}
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The explanation that eric has a cold is not considered because it is more
presumptive than the other explanation. There is a problem here with
interpretation; we should not consider this answer as meaning the second
sentence above (i.e. that he is just sneezing for no reason). This answer
means that he is sneezing, and that is considered as a cause in itself. It
does not exclude that he is sneezing because of a cold.

If, however, we want to distinguish between the two causes then the
appropriate way to represent this is

conjecture random-irritation(X).
conjecture has-cold(X).
default sneezing-because-of-cold(X): has-cold(X) =>sneezes(X).

default just-sneezing(X): random-irritation(X) = sneezes(X).

In this case there are two least presumptive explanations of eric sneezing:
{random-irritation(eric), just-sneezing(eric)}

{has-cold(eric), sneezing-because-of-cold(eric)}

Here, we have the appropriate diagnoses.

6 Implementation

In this section we how how theorem provers (see e.g., [Chang73]) can be
used to implement this system.

One of the things that we want to know is whether we can do a localised
search rather than always having to do a full consistency check. We would
like to only search the part of the space that is relevant to what is being
added or asked. We do not want to have to search other parts of the space;
we would like to know that irrelevant parts of the knowledge base are indeed
irrelevant.

One way that this can be done is to only assume a limited form of
completeness of the theorem prover. We want our theorem prover to be
sound, but only require completeness in the sense that if there is a relevant
proof of some goal, it can be found. A proof of g from A (denoted A + g) is
assumed to be sound (i.e., if A F g then A |= g), but it need only be complete
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in the sense that if A is consistent and A |= g then A |- g. Linear Resolution
[Chang73| with head clause g is such a proof procedure. Hopefully such
deduction systems can be much more efficiently implemented as they do
not need to consider irrelevant reasons for something following from a set
of axioms.

The following two theorems are important for implementing the system

Theorem 4 If AU C is consistent, g is explainable from A, H if and only
if there is a ground proof of g from AU D where D = {di,...,dn} is a set
of ground instances of elements of H such that AN C A {dy,...,d;_1} I/ —d;
for allv = 1..n.

Proof: If g is explainable from A, H, there is a set D of ground
instances of elements of H such that AUD |=gand AUDUC
is consistent, so there is a proof of g from AUD. AUDUC is
consistent so there can be no sound proof of inconsistency.That
is, we cannot prove A A C A {dy,...,d;_1} F —d; for any 1.

If there is a proof of g from AUD then AUD |=g¢g. If AUDUC
is inconsistent there is some least ¢ such that AUC U {d,, ..., d;}
is inconsistent. Then we know AUC U{dy,...,d;_1} is consistent
and AUCU {dl, ceey di—l} ': ﬂd,’ so AUCU {dl, ...,d,'_l} [ ”‘ld,'.
So, if there is no ¢ such that AU C U {d,,...,d;_1} F —d; then
AU DUC is consistent. [

This leads us to the algorithm: to explain g from A, H

1. For each d; € D try to prove g from A U H, and make D the set of
instances of elements of H used in the proof.

2. ground D (make all free variables in D ground). We thus have created
a ground proof of g from AU D.

3. try to prove —d; from A A {dy,...,d;_1}. If all such proofs fail, D is an
explanation for g.

Theorem 5 The following are equivalent:

1. g is in every extension of A, H
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2. there does not exist a scenario S of A, H such that g is not explainable

from S, H.

3. there is a set £ of (finite) explanations of g such that there is no
scenario S of A, H such that VE € £, S is inconsistent with E.

4. there is some D such that AN Dt g such that if d € D and —d is
explainable by D;, then g is in every extension of AN D;, H.

Proof: 2 = 1. If g is explainable from all scenarios, it is
explainable from all maximal scenarios, that is it is in every
extension.

3 = 2. Suppose 3 holds, and there is a scenario S from which
g is not explainable. Then each E € & is inconsistent with S
(otherwise E U S is an explanation of g from S, H).

1 = 3. Suppose 1 holds. The set of all maximal scenarios
has the property given in 3 (except the finite membership). By
the compactness theorem of the first order predicate calculus
[Enderton72] there is a finite subset £ of the maximal scenarios
which imply g. If some S were inconsistent with all elements of
€ it would be inconsistent with the maximal scenarios, and we
know that such an S cannot exist. So £ is a set which satisfies
3.

3 == 4. Suppose 3 holds, then the set £ is countable (as it
is a subset of the set of finite strings in a language with finite
generators). Let D be the minimum element of £ according to
some ordering. Then we know A A D F g. As g is in every
extension of A, H it is in every extension of A A D;, H.

4 = 2. Suppose 4 holds and there is some scenario S such that
g is not explainable from S. D is inconsistent with S (otherwise
S U D is an scenario of S, H which explains g), so there is some
d € Dwhich follows from consistent S' = S U D' where D' C D
and so by 4, g is in every extension of S’', and so is in one
extension of S', a contradiction to g not being explainable from
S. O
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Note that the set of explanations referred to in 3 is countable, but not
necessarily finite. The following example has an infinite set of possible
explanations to check.

Example 11 Let H = {p(X)}
F ={ q(0),
Vn q(n) = q(s(n)),
pos(s(0)),
Vn pos(n) = pos(s(n)),
Vn pos(n) = 1t(0,n),
Vn¥m lt(m,n) = lt(s(m), s(n)),
Vn¥m lt(m,n) = —(p(m) A p(n)),
(3z p(z) A q(z)) = g}

Here ¢ is true of all numbers, and p is true of at most one positive
number. There are infinitely many extensions, one for each positive integer
(each one containing p(n) for some positive integer n). ¢ is in all extensions,
but there is no finite set of proofs which are applicable for all extensions,
without jumping out of the system and arguing as we have been here.

Point 4 of Theorem 5 leads to the algorithm: to prove that g is in every
extension of A, H

1. try to prove g from AUH, and make D the set of instances of elements
of H used in the proof.

2. ground D (make all free variables in D ground). We thus have created
a ground proof of g from AU D. Let D = {dy, ..., d,}.

3. try to explain —d; from A A {dy,...,d;_1}, H. If there is an explana-
tion using no assumptions then D is inconsistent; for each other D;
explaining d;, we try to prove g is true in all extensions of AU D;.

The best way of looking at this algorithm is that the third step is trying
to construct the scenario which is potentially inconsistent with the part of
the other explanations needed to prove g.

6.1 Building and Maintaining the Knowledge Base

There are a number of choices that the designer of a system can make as
to how the knowledge base is maintained. The following are possible:
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1. record just what was explicitly told and then compute all answers
when asked.

2. maintain one explanation for the observations and build another if
this one proves to be wrong (e.g., [Doyle79]).

3. maintaining multiple, but not all explanations. For example, main-
taining just those minimal abnormality explanations and only consid-
ering others if these prove inadequate. As example 13 below shows,
it is often difficult to make sure that one is maintaining the minimal
abnormality explanations without also maintaining all of the other
least presumptive explanations.

4. maintaining parts of all of the least presumptive explanations. This
may make it easier to see when one explanation can be replaced by a
better explanation. For example [Neufeld87a] describes an algorithm
which always maintains the most likely explanation by maintaining
enough of other explanations to ensure that they will be less likely
than the preferred one.

5. maintain all least presumptive explanations (or all minimal explana-
tions). The ATMS of [de Kleer86] can be seen as doing this.

6. maintaining a representation of all extensions (e.g., the generating
hypotheses). This may make building the knowledge base inefficient,
but may make it easier to query.

Which of these is better may depend on efficiency grounds (minimising
space, time or interaction with the user) as well as psychological grounds
(e.g., wanting to model an agent who has one line of beliefs and then changes
these, or an agent that doesn’t consider some line of reasoning unless other
lines have been exhausted).

Unless one is not maintaining explanations, we want to know how adding
facts, constraints, defaults, hypotheses and observations affects the expla-
nations generated.
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6.2 Incremental Observations

One of the things that would be nice to know is to what extent one can
incrementally build explanations for observations as they come in. We
are assuming that we do not just receive one big conjunction of all obser-
vations, but rather get our observations incrementally. We would like to
know whether the resulting explanation built incrementally is the same as
that built from the conjunction of the observations. The following shows
that this can be done if we maintain the minimal explanations or the least
presumptive explanations, but not if we just maintain the minimal abnor-
mality explanations.

Theorem 6 We can build minimal explanations incrementally. That is, of
Sy,...S, are the minimal ezplanations of g, from F,II, A then the minimal
ezplanations of g; from the S;,II, A are ezactly the same as the minimal
explanations of g1 A gz from F,II, A.

Proof: If E is an explanation of g; A g2 from F,II, A then E'is
an explanation of g; from F,II, A, so 3S C E such that S is a
minimal explanation of g;. Then F is an explanation of g, from
S, and is minimal.

Similarly if E is an explanation of g, from some S; then E
is an explanation of g; A g; from F. Hence, if the minimal
explanations of g; from the S; are selected then these are the
minimal explanations of ¢g; A g2 from F. O

Theorem 7 If Sy, ..., S, are the least presumptive ezplanations for g1 from
F,II, A then the following are equivalent

1. S is a least presumptive ezplanation of g1 A g from F,II, A.

2. S is a least presumptive scenario of the explanations of ga from S;, 1L, A.
That is, it is a minimal element, in terms of least presumptiveness,
of the set {E : E is an ezplanation of g; from S;,II, A for some i}

Proof: 1 = 2. Suppose S is a least presumptive explanation
of g A g; from F. Then S is an explanation of g;, so one
S; implies S. S is an explanation of g, from S;; we need to
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show that it is least presumptive. Suppose S' is a strictly less
presumptive explanation of g, from S;, then it is an explanation
of g1 A g; from F less presumptive than S, a contradiction to
the minimality of S.

2 = 1. Suppose S is a least presumptive explanation of g, from
S; S is an explanation of g; A g; from F. We need to show
that S is least presumptive. If S’ is a strictly less presumptive
explanation of g; A g2 from F, then it is also an explanation
of g, from F, and so there is some S; which implies it (by the
minimality of the S;). S'is an explanation of g, from S;, which
is less presumptive than S, a contradiction to the minimality of
S, so no such S’ can exist. OJ

This leads us to a way to think about the system, namely that there is a
sequence of observations, and we collect all the minimal or least presump-
tive theories at each step. At the end of the observations, we know we have
the least presumptive explanations for the conjunction of the observations.

N.B. these theorems do not mean that we can build explanations in
isolation of each other, without considering the other (minimal or least
presumptive) explanations. Consider the following example

Example 12 Let

I ={a,b,c}

A={}

F={a= ¢,
b= g1 A ga}

If we observe g; there are minimal (and least presumptive) explanations,
namely {a} and {b}. If we then observe g, there is one minimal explana-
tion, namely {b}. Note that we can explain g, from {a}, but this explana-
tion is subsumed by a simpler explanation.

Theorem 7 does not work for minimal abnormality explanations. Con-
sider the following example:

Example 13 Let
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M = {a,b,c}

A= {d17d2’d3}

FZ{ aANbAdy = g1 A gs,
aAdy; = g,

bAcAds= gs}

The least presumptive explanations for g, are
{aa ba dl}

{a,d;}

the second of which is the minimal abnormality explanation. The least
presumptive explanations for g; A g, are

{d,, ba dl}

{a3 d2a b’ ¢, d3}

the first of which is the minimal abnormality explanation.

This means that one cannot simply find the minimal abnormality explana-
tion by maintaining minimal abnormality explanations and using them to
explain new observations.

In the rest of this section we will assume that the minimal explanations
are maintained, and we will consider the effects of making new declarations
to the system.

6.3 Adding new facts

In this section we wish to answer the question of how the set of explanations
should be changed when a new facts is added. A new fact may remove
old explanations (by making them inconsistent or making one theory less
presumptive than a previously least presumptive explanation) or add new
explanations.

The command

fact w.
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means that the knowledge base is changed from
< F,C,A,II,0,¢ >

to
< Fu {‘v’w},C,A,H,O,é” >

We would like to know how the set of explanations has changed by
adding this new fact. That is we would like to build the new &' from the
old £ by only doing local search from the newly added fact. In general we
would like to build €' by adding and removing elements from €.

For all E € £ we know

FUE[EO
F U E U C is consistent.

If E' € £' then FU {Vw} U E' |= O so either

1. FUE' = O in which case E' is an explanation of O from F. E' € £
as there can be no smaller explanation of O from F, otherwise it is a
smaller explanation of O from F U {Vw}. We can thus carry over the
old explanation over from €.

2. FUE' [~ O and so F U E'U -0 is consistent and implies —~Vw.

The newly added fact may make some previous explanations inconsis-
tent. If £ € £, then E is not in €' if F U {Vw} U E UC is inconsistent. In
this case F U E U C is consistent and implies ~Vw, and so there is a proof
of -Vw from FU EUC.

This implies that when a new fact is added, we need to do three things

1. try to explain —=Vw from F U -0, A UII. The generated explanation
should be checked consistent with F' U {Vw} U C'. We thus only need
to consider relevant proofs from the added fact, and not start from
scratch building new explanations.

2. try to prove -Vw from F U E U C, for each E € £, and remove any
explanation which is proven inconsistent.
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3. remove any explanations which are no longer minimal (as the first
step may have created an explanation simpler than a previous expla-
nation).

If we are maintaining least presumptive explanations, then we have
to worry about the newly added fact making one explanation which was
previously least presumptive no longer least presumptive. This can happen
by the newly added fact adding an implication between two previously least
presumptive explanations. Suppose E' is less presumptive than E when Vw
is a fact and is not otherwise. That is FU{Vw}UEFE |= E' and FUE [~ E'
and so -Vw can be proven from consistent F U E U —E'. This can be
recognised by trying to explain -Vw from F U E, A UTI for each F € €£.

6.3.1 Adding Constraints

Adding constraints can only remove explanations from the set of explana-
tions by making them inconsistent. We cannot add new explanations, nor
can we make one explanation less presumptive when it previously was not.
If £ was the set of explanations before the constraint w was added, then
E € &' where £' is the set of least presumptive explanations if and only if
E e & and FUCU E I/ ~w. Thus we can just try to prove the negation of
the newly added constraint.

6.3.2 Adding Defaults and Conjectures
Consider the problem of adding the default
default d : w.

where d is a new name (as we would normally expect it to be). Note that
exactly the same analysis carries through for adding constraints.

Theorem 8 (Semimonotonicity) If £ is the set of exzplanations before
the default was added and &' the ezplanations after then £ C £'.

Proof: If E € £ then FUE |= O and so FU{Vd = w}UFE |= O.
FUFEUC is consistent, and so has a model M. The model which
is the same as M but with all instances of d false is a model
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for FU{Vd = w} U EUC. So E is an explanation of O from
Fu{vd = w}, AUd,II. It is minimal as any smaller explanation
would also be an explanation of O from F,A,Il, as “Vd = w”
cannot play a role if d does not appear in F, F, O, A or II. O

We now have to consider the case of there being a new explanation of O
by virtue of the default being added. Suppose E € £' — £. We then know

FU{Vd=>w}UE O

There is some instance § of d in E (otherwise E € £). F U {Vd = w} U
(E — {6}) U {—O} is consistent (otherwise E is not minimal) and implies
—6.

Hence when a new default is added all we need to do is to try to explain
—~d from F U {Vd = w} U {0}, A U {d},II, checking consistency with
Fu{vd=w}UC.

7 A Theory of Diagnosis

In this section I wish to argue that the preceding outline is a good basis
for formalising model-based diagnosis. This theory, as a theory of diagno-
sis, is an attempt to bridge the gap between diagnosis from first prin-
ciples [Reiter87,Davis84,Genesereth84,de Kleer87|, and more experience-
based diagnosis based on knowledge as to how diseases and malfunctions
normally manifest themselves [Weiss78,Patil81,Popl83,Brown82].

In diagnosis from first principles, one has a model of the intended be-
haviour of the system. Any discrepancy between the predicted and observed
behaviour means that the assumptions that components are working cor-
rectly is inconsistent with the observations, and so we can prove that some
components are not working correctly. Reiter [Reiter87] defines a diagno-
sis as a minimal set of assumptions that components are faulty, together
with the assumption that all other components are working correctly that
is consistent with all observations of the system.

In section 2.1 some arguments were given as to why the Theorist ap-
proach is different and has some advantages over Reiter’s methodology. In
this section I wish to give a more pragmatic comparison.
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When doing a diagnosis, we want to find out what is wrong with some
system. We thus want to find out some minimal set of components we need
to assume are faulty given our evidence. Somehow we have to make these
assumptions relevant to the observations and not to always say that we
should just assume nothing. Reiter minimises abnormality assumptions and
maximaises normality assumptions so that the observations are consistent.
In the framework suggested in this paper, we minimise all assumptions,
however to stop always degenerating to the case of making no assumptions,
we must have our assumptions implying the actual observations.

The main consequences of this distinction is that we have the ability
as well as the obligation to state how problems manifest themselves. We
must not only state how normal components act, but also how abnormal
components act. This is not as big an imposition as it may seem as we can
always say that a component is abnormal if it is working in some way that
is different to what was designed.

Example 14 (Genesereth and Reiter) This example is derived from
[Genesereth84, Fig. 8, p416| and [Reiter87, Example 2.2, p. 60]. To spec-
ify the intended action of an and-gate, Reiter give the axiom (here we
have modified Reiter’s notation slightly to allow multiple observations as
in [Genesereth84))

andg(X) A —ab(X) = out(X,T) = and(tnl(X,T),in2(X,T))

This axiom tells us what happens if a gate is working normally. It does not
tell us what happens if the gate is acting abnormally. By abnormal, Reiter
means that there exists some value for which it gives the incorrect value.
In Theorist, we parameterise the assumption so that we can talk about
acting normally for some inputs and acting abnormally for other inputs. If
we decide that the relevant parameters to the normality assumption are the
inputs to the gate (i.e., not on the time of day'?, or the amount of money in
my bank account), then we use the relations ab(X, I, I, 0) which means
that gate X is working abnormally for inputs I; and I;, and producing

9By not making the value depend on the time, we are making the non-intermittency
assumption, namely that the value of the outputs of a gate depends only on the inputs
and not on the time. If we did not want to make this assumption, we could add T as a
parameter to our assumptions.
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output O, as well as the corresponding ok (X, I, I;,0). The operations of
the gate can then be specified as

fact andg(X) A ok(X,in1(X),n2(X), out(X))
= out(X,T) = and(inl(X,T),in2(X,T)).
default ok(X, I1,12).
fact andg(X) A ab(X,inl1(X),in2(X),V)
AV # and(inl(X,T),in2(X,T))
= out(X,T)=V.
conjecture ab(X, I1,12,0).

The first fact says that the output of a normal and gate is the conjunction of
the inputs. The second fact says that the output of an abnormal gate (i.e.
abnormal for the particular input values) is some value which is different
to the conjunction of the inputs.

The main differences between the diagnoses is that Theorist does not
need to make assumptions about parts which are not relevant to the di-
agnosis (we minimise all assumptions, whereas Reiter maximises normality
assumptions). By ok we mean that the gate is working normally for the
particular inputs being considered. Reiter means (by —ab(X)) that X is
working normally for all inputs. Theorist can have a gate being OK for
some inputs and not OK for other inputs.

It is simple to incorporate fault models into Theorist. For example, if
we want to say that faulty gates are either stuck at one or stuck at zero
(admittedly a very naive assumption), this can be specified by restricting
what can be conjectured:

fact andg(X) A stuck(X,V) = out(X,T) = V.
conjecture stuck(X,V).

Reiter would specify this as

andg(X) A ab(X) A —ab' (X) = stuckl(X) V stuckO(X)
stuckl(X) = out(X,T) =1
stuck0(X) = out(X,T) =0

Note that the use of this axiom is very different to the use of the Theorist
version. This is only used to say that a gate by default is not broken
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because it is not stuck at one or stuck at zero. This is only useful if we
can indeed prove that one of these is not the case. For more complicated
cases it is easy to imagine a situation where we cannot actually prove that
some abnormality does not occur. This is very different to being able to
conjecture a fault. Also Reiter’s diagnosis does not say that the gate is
stuck at one, it just says that the gate is abnormal.

8 Conclusion

In this paper I have tried to present an argument as to why some dis-
tinctions are important to make in hypothetical reasoning, and proposed
a system which uses these distinctions and have attempted to examine the
consequences of these distinctions particularly with respect to prediction
and explanation problems.

An important feature of this work is that I have not proposed a new
logic in any shape or form. I have tried to be careful in arguing that there
are useful ways to use logic and to then consider consequences of these
strategies on building Al programs. The success of this can be gauged by
finding how many problems go away when logic is viewed in this way as
the basis for a hypothetical reasoning system.
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