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Abstract

The advent of non-monotonic reasoning systems provides the opportunity
to explore solutions to the frame problem using consistency-based methods.
In particular, the Theorist theory formation framework, in view of its clear
semantics, is a good framework within which to pursue investigations of the
frame problem. Here, we examine the issues involved in using Theorist’s
defaults to represent frame axioms as a means of solving the frame problem.

This dissertation defends the thesis that theory formation, together with a
particular theory preference heuristic, is a simple, intuitively appealing way to
solve the frame problem. We call this preference heuristic chronological per-
sistence. We give evidence to support the claim that the only reasonable
approach to formalising rational belief is to use “‘scientific-like’ theory forma-
tion. Since viewing reasoning as theory formation, rather than as deduction
from our knowledge, has a solid basis in the philosophy of science, we believe
that the theory formationl/theory preference framework will turn out to be a fun-
damental paradigm for knowledge representation and rational reasoning in Al.

We present a theory formation representation scheme together with a
semantically well-defined theory preference heuristic for dealing with the
frame problem, and we specify a search procedure for selecting a preferred
theory. As well, an implementation of this search procedure is described.
Our approach to the frame problem is compared and contrasted with other
recent proposals. We also propose a continuum hypothesis — it seems that
axiomatisations based on theory formation/theory preference, circumscription,
and negation-as-failure can be viewed as different points on a continuum
where the degree of theory preference explicitness varies. For example, in
negation-as-failure, preference information derived from syntactic structure is
“compiled into” the proof procedure; while in circumscription, preference is
expressed as priorities. This dissertation is offered as evidence to support the
above claims.

(iv)
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Chapter 1
Introduction

1.1. Introduction

Change is a fundamental aspect of the world and dealing with it is intel-
lectually challenging. To succeed in a demanding environment requires
planning. Failure to plan can result in missed opportunities, unfulfilled
needs, and unsatisfied wants and goals. Planning involves choosing a course
of action which leads to a desired situation. To plan, it is necessary to envi-
sion the changes that ensue in following alternative paths. Performing
actions can set off long chains of cause and effect. The underlying difficulty
of envisioning future situations is, therefore, that of keeping track of all the
consequences of actions. Since all features of the world are subject to
change, describing the effects of actions requires specifying, for each feature,

if and how it is affected.

The problem of specifying the effects of actions in a practical way has
been called the frame problem. In view of the infinite number of possible
features, describing actions can be perplexing. Fortunately, there seems to be
a common sense approach to handling this difficulty. Because the world is a

fairly stable place (actions have limited impact), actions can be described by



stating the features of the world that are changed by the actions and by mak-
ing the assumption that all other features are unaffected. When contradic-
tions arise as a result of this assumption, measures can be taken to
re-establish consistency. Thus, contradiction and consistency-restoration are

fundamental aspects of planning in dynamic worlds.

The ability to recognise and recover from inconsistencies is important not
only to humans, but to the evolution of machine intelligence as well.
Without this ability, handling change is difficult, if not impossible. The
advent of non-monotonic reasoning systems provides the opportunity to
explore solutions to the frame problem using consistency-based methods. In
particular, the Theorist system [Poole87b], in view of its clear semantics,
seems to be a good framework within which to pursue investigations of the
frame problem. Thus, we propose to examine the issues involved in using
Theorist’s defaults to represent frame axioms as a means of solving the frame

problem.

1.2. Artificial Intelligence

Artificial Intelligence (AI) is the branch of computer science that studies
techniques for constructing programs that perform intellectually demanding
tasks. Since the goal of Al is to build programs that behave intelligently,
some notion of intelligence is needed to judge the results. Because intelli-

gence appears to involve many information-processing and information-



representing components, it has not been precisely defined; nor does it seem
possible to provide a definition in the usual sense. It is possible to give suffi-
cient conditions for general intelligence (cf. [Turing63]); however, a purely
behavioural description provides a clearer understanding of what intelligence
is. Intelligence can be treated as a black box whose properties can be ascer-
tained through observation of intelligent behaviour. Humans are said to pos-
sess natural intelligence; they exhibit certain behaviours associated with intelli-
gence (e.g., problem solving, learning, language comprehension). Animals,
like dolphins and chimpanzees, also possess a form of natural intelligence.
Machine intelligence and natural intelligence are both instances of general

intelligence.

Studies in artificial and natural intelligence share a symbiotic relation-
ship. What is learned about machine intelligence often provides insight into
natural intelligence and vice versa. Studying intelligence with machines has
the advantage of easy experimentation. It is usually a simple matter to add
or remove some piece of knowledge from a computer program. Animal
brains can not be ‘carved up’ with the same degree of precision. The ability
to add and delete pieces of knowledge allow their importance to be tested.
Machine studies of intelligence have another important advantage. Because
computer models are precise, implementing a theory can uncover conceptual

errors. Viewing computation as a metaphor for intellectual activity adds pre-



cision to theories of intelligence. Computer science concepts provide useful
analogies and a new language to describe thinking methods and epistemologi-

cal structures.

There are advantages to studying natural intelligence as well, since it has
ready-made subjects possessing intelligence (e.g., humans). Natural intelli-
gence also provides a metric by which to judge machine models of intelli-
gence. Thus, researchers in artificial and natural intelligence can benefit

from each other’s work.

This duality between artificial and natural intelligence suggests a metho-
dology for studying general intelligence. The behaviour of human subjects is
observed for some intellectual task. Certain intellectual mechanisms are pro-
posed to explain the observed data. These mechanisms are then imple-
mented on a computer. Experimentation with the machine models yield
predictions about behaviour that are then tested for in the human subjects.
The proposed theory is then revised as required to explain the differences
between the predictions and the observations and the cycle is repeated. It is
no coincidence that this process is similar to that used by other scientists. A
physical phenomenon is observed. A mathematical model is proposed to
explain it. The model makes certain predictions that are tested and the
theory is revised as needed. Both processes are instances of the scientific

method.



One difference, however, is that the pencil and paper models of the phy-
sicist are replaced by computer models of intelligent mechanisms. Like intel-
ligence, these models are objects of study in AI. This particular form of the
scientific method is an approach to studying general intelligence that is sug-

gested by the duality between artificial and natural intelligence.

Since Al is a branch of computer science, the ultimate concern must be
with machine implementations of algorithms aﬁd data structures. Many
abstract theories of intelligence are possible, but unimplementable theories
are of little worth. The only acceptable explanations of behaviour in Al are
those expressed in terms of computation. Embedded in the notion of
machine intelligence is the tacit assumption that there is nothing magical
about intelligence, that it is reducible to computation (symbol manipulation),
and that it can be embodied by computer programs. To the extent that this

is the case, Al research can provide insight into the nature of intelligence.

Together with the scientific goal of devising an information-processing
theory of intelligence, there is also an engineering goal of building programs
that solve problems. The goal of Al is not to create an artifact with human
intelligence; Al is not obsessed with mimicking humans. This does not, how-
ever, rule out using whatever human methods seem appropriate to the goal of
solving problems. In pursuing the engineering goal of Al, the scientific goal

should not be forgotten (and vice versa).



Al is a science — a computational study of intelligence. The test of an
Al theory’s mettle is how close the behaviour of its implementation is to the
behaviour that thc theory is trying to explain. Though AI is not as task-
oriented as engineering, it is concerned with solving problems. Therefore, Al
is an attempt to make computers more useful in solving problems by under-

standing and employing the principles underlying intelligence.

1.3. Knowledge Representation

Knowledge representation is recognised as one of the central problems in
AI Knowledge representation is an area of Al research that is concerned
with knowledge and its representation in machines. This definition leads to

two questions.

The first question is, ‘What is a representation?” A representation is a set
of conventions for describing things. According to Brachman and Levesque
[Brachman85], it involves recording, in some language, descriptions that
correspond to the thing being represented. The representation could be sym-
bolic or iconic. Symbolic representations describe things using inherently
meaningless symbols. A symbol becomes meaningful when a user assigns a
meaning to it and thereafter interprets it according to its assigned meaning.

Iconic representations describe things more directly (e.g., diagrams).



A knowledge representation scheme consists of a representation language
(with its associated semantics) and an inference mechanism. The representa-
tion language may be a formal language, a data structure, a diagram, etc.
In knowledge representation, the representation language is used to explicitly
express facts about the world. An inference mechanism is used to derive
implicit facts from expressions in the language. The nature of this mechan-
ism depends on the representation language. For logical languages, it is usu-
ally based on deduction. Generally, it is some set of procedures for manipu-

lating symbols or icons.

The second question the definition of knowledge representation leads to
is, ‘What is knowledge? This question is at least as difficult to answer as the
question, ‘What is intelligence?” Philosophers have been struggling with it
since the time of Aristotle. Ability to behave intelligently is often linked to
knowledge. Knowledge is often associated with facts, but this begs the ques-
tion, ‘What is a fact? Is it a fact that unsupported objects fall or is it a belief

based on the theory of gravity?

The question ‘What is knowledge?’, like that of ‘What is intelligence?’,
can best be dealt with by using the more pragmatic behavioural approach.
The computational metaphor used to deal with intelligence applies equally
well to knowledge. Thus, knowledge is represented as data structures and

procedures. The behaviour of such machine representations of knowledge



can then be compared with knowledgeable behaviour and judged accord-
ingly. A general hypothesis adopted by many researchers in Al is that a
computer program capable of acting intelligently must have a scheme for
representing its knowledge and beliefs, as well as a means of using that
representation scheme to determine its behaviour. This assumption is what

Brian Smith calls the knowledge representation hypothesis.

“Any mechanically embodied intelligent process will be comprised of

structural ingredients that a) we as external observers naturally take

to represent a propositional account of the knowledge that the overall

process exhibits, and b) independent of such external semantic attri-

bution, play a formal but causal and essential role in engendering

the behaviour that manifests that knowledge.” [Smith85, p. 33]
Most Al researchers accept the knowledge representation hypothesis, at least
as a working hypothesis. The origins of this hypothesis can be traced back to
McCarthy who believed that for a system to behave intelligently it must be
able to represent in language facts about the world, must be able to draw
conclusions based on the facts, and act based on the conclusions
[McCarthy68]. For McCarthy, the starting point in knowledge representation
is to view fact manipulation as the basis of intelligent behaviour. For a
machine to display intelligent behaviour, McCarthy argued, it would need an

adequate representation of the world and the ability to answer a wide variety

of questions based on that representation.



McCarthy and Hayes [McCarthy69, McCarthy77] showed how
knowledge representation schemes could be analyzed in two parts, which they
call the epistemological part and the heuristic part. What does the representa-
tion have to be like to allow all the kinds of knowledge needed for intelli-

gence to be expressed?

“What kinds of facts about the world are available to an observer
with given opportunities to observe, how can these facts be
represented in the memory of a computer, and what rules permit leg-
itimate conclusions to be drawn from these facts?”’ [McCarthy77]
The epistemological part of a representation scheme is concerned mainly with
the issue of expressiveness. A representation is called epistemologically ade-
quate if it is suitably expressive. The heuristic part of a knowledge represen-
tation scheme involves the reasoning process. It is concerned with the
representation’s use. Can the representation be used to answer questions or

solve problems in a reasonable amount of time? Efficiency in using the

representation determines its heuristic adequacy.

Although many knowledge representation schemes are possible, there is
widespread disagreement over what form of representation is most appropri-
ate. McCarthy advocates explicit representations based on logical languages
[McCarthy77]. Others have argued that knowledge should be represented
procedurally [Minsky72, Hewitt73, Winograd72]. The logic/non-logic,
declarative/procedural controversy has been discussed in many places (cf.

[Hayes77, Winograd85]).
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According to Winograd, the proceduralist’s position is based on the belief
that knowledge is primarily knowing how, and that knowledge is intimately
intertwined with procedures for its use. Some things we know are best
explained as procedures. It is easier to represent what we know about
processes (e.g., baking) with procedures. Another advantage to procedural
representations is the ease of use of second-order knowledge. The final
advantage is that it is simpler to incorporate domain-specific heuristic

knowledge in procedures.

The declarativist position is based on the belief that knowledge is mainly
knowing that. The basis of their approach to intelligence is a general set of
procedures for manipulating facts together with facts about the domain of
interest. According to Winograd, declaratives have the advantages of flexi-
bility and economy; that is, a single fact can be used in many ways. Pro-
cedural representations need separate procedures for each different use.
Declaratives also have the advantages of understandability, modifiability,
and learnability, because facts can be viewed independently. Interaction
between them is determined solely by the inference mechanism. Thus, they
are more modular. Finally, declaratives offer the advantages of accessibility
and communicability, since it is easier to explain to others what declaratives

mean.



11

Attempts have been made to develop representation schemes with the
advantage of both declaratives and procedures. One approach is to compile
declarative facts into procedures (cf. [Sandewall73, Sussman73]). Logic pro-
gramming can also be seen aé a way of combining declarative and procedural
representation. Here logic provides both declarative semantics and pro-
cedural semantics [Lloyd84]. Such work has lead to the blurring of
declarative/procedural distinctions. Though the cbntroversy has more or less

dissolved, the role of logic in knowledge representation is still in dispute.

Although the use of logic in AI has been the subject of heated debate,
many Al researchers have come to recognise the need for representation
languages with well-defined semantics. In the absence of an associated
semantic theory, just what an expression in a representation language says
about the world is unclear. Symbols alone are meaningless. The function of
a semantic theory is to assign meanings to the symbols of the language, and
to assure that all users of the language interpret the symbols in the same
way. Without such a precise specification of the meaning of expressions,
comparisons between different knowledge representation languages are
impossible. The advantage logical languages have over other representation
languages is their ready-made formal semantics (e.g., Kripke possible-world

semantics, or Tarskian semantics).
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McCarthy [McCarthy77] separates the use of logic into three areas
(epistemological research, representation structures, and programming
languages). He considers languages based on first-order logic to be suitable
for use in epistemological research. Viewing the world as consisting only of
individuals and relations, seems powerful enough to express most facts about
the world. Thus, logic is an adequate tool for analyzing knowledge.
McCarthy views the use of programs with data structures consisting of first-
order sentences to be analogous to the use of an interpreter. Such representa-
tions are easy to understand and are flexible; but, they are slow to use. Since
logic can be used as a programming language, logic can serve as the basis for

both specification and implementation.

Given a suitable representation for the facts about the world, by what
process can valid conclusions be drawn? A representation scheme must be
more than just a representation language; it must also provide an inference
mechanism, by which, implicit conclusions may be derived from explicit facts.
The need for inference mechanisms does not imply the need for logical deduc-
tion. What is needed, however, is a non-procedural specification of what
conclusions may be inferred. Here too, logic has an advantage over other
representation schemes. It has a ready-made specification for the set of
allowable conclusions — log.ical consequence. The proof theory of logical

languages derives all the logically valid conclusions providing it is correct
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(sound) and complete. The correctness and completeness of a proof procedure
for a logical language is determined by appealing to the semantic theory of

the language.

The intractability of all correct and complete proof procedures for first-
order logic is often cited as a criticism of logic. But as noted by Brachman
and Levesque [Levesque85], this is not a property of proof procedures, but of
the problem itself. Any representation with the expressive power of first-
order logic suffers from the same intractability problems. It is important to
note that intractability is the worst case behaviour and that the average case
behaviour may be quite reasonable. Brachman and Levesque suggest two
ways to minimise the effects of intractability: limit the expressiveness of the
language or relax the correctness and completeness requirement. Thus, the
criticism of logic, which is really a criticism of knowledge representation

languages in general, can be addressed.

1.4. Planning and Problem Solving

Another area of Al research is problem solving. This area investigates
methods of describing and solving problems on computers. What is a prob-
lem? The concept of problem has not been completely formalised. One
important paradigm in AI for the concept of problem is the situation-space
model. Though not all problems are easily described in this formalism, the

situation-space model has been found to be useful for investigating problem
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solving. For example, General Problem Solver (GPS) [Newell63] used a sim-

ple version of this model.

The situation-space model consists of two kinds of entities: situations and
actions. A situation is the complete state of the world at an instant of time.
In real world problems, it is usually impossible to completely describe a situa-
tion. Hence, the situation-space model allows for partially described situa-
tions. An action in the situation-space model is an entity that corresponds to
our intuitive notion of an action; that is, an action links a situation with the
situation that results from performing the action. A problem in the situation-
space model consists of an initial situation, a set of actions and their specifica-
tion, and a desired situation or goal. The specification of an action consists of
the rules governing its applicability and a specification of its effects (i.e., how
it transforms one situation into another). A problem in the situation-space

model can be further described by indicating situations to be avoided.

The situation-space model does not require complete specification of
situations or actions. The result of applying an action is not necessarily a
unique situation or unique partially described situation. There may be many
situations in the space of possible situations that correspond to the described
effects of an action. Consequently, it is not always possible to answer all
conceivable questions about a situation. Such ambiguities make problem

solving more difficult but not necessarily impossible.
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The solution to a problem in the situation-space model is any sequence of
actions that when applied to the initial situation leads to the desired situation
while avoiding the undesirable situations. The solution may be partially
specified. It could depend on conditions that cannot be determined in
advance. Thus, a solution may be a simple sequence of actions or a complex

network of conditionally selected paths.

Planning problems constitute an important class of problems. A planning
problem is one that involves deciding on a course of action to achieve some
purpose. The representation of a course of action is called a plan. It is a
solution in the situation-space model. Similarly, the purpose to be achieved
corresponds to the desired situation, and the world in which planning takes
place corresponds to the initial situation. The simplicity of this transforma-
tion seems to equate planning with problem solving. The situation-space
model was motivated by the planning problem, but planning is only an

instance of problem solving.

In planning problems, as in all problems, knowledge representation is a
major concern. How is the information about the world and its laws of
change to be represented in a machine? The situation-space model gives
insight into the nature of planning problems and their solutions, but it is not a
knowledge representation scheme. Therefore, a representation language, an
inferencing mechanism, and the corresponding semantic theory are needed to

mechanise planning problems in the situation-space model.
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The situation calculus of McCarthy and Hayes [McCarthy69] is one
knowledge representation scheme (based on classical first-order logic) for the
situation-space model. A problem in situation calculus is a theory in first-
order logic together with a conjecture (theorem) to be proved. The logical
theory describes the initial situation, the possible actions, and the rules
governing their applicability. The desired situation is specified in the conjec-
ture. The individuals of the world described by the theory are the situations
and objects. Actions may be treated as either functions (see Formulation I
below) or as individuals (see Formulation II below). Facts about the world
which are situation independent, are expressed as ordinary propositions. In

the theory ordinary propositions are typically represented by predicates.

McCarthy and Hayes introduce the notion of fluent for propositions and
functions whose denotation depends on the situation. Assertions which vary
with the situation are called propositional fluents. A propositional fluent is a
function whose domain is the space of situations and whose range is
{true,false}. Propositional fluents are typically represented by predicates with
a situation argument. Certain functions which vary with the situation and
whose values are situations, are called situational fluents. A situational fluent

is a function whose domain and range is the space of situations.

Propositional and situational fluents are used in the laws of motion.

These dynamic laws describe the effects of passing from one situation to
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another. In the theory, laws of motion are represented by axioms involving
predicates and functions, each having situation arguments (i.e., representa-
tions of propositional fluents and situational fluents). An action can be

represented, in the theory, as either a function or as an individual.

In Green’s formulation I [Green81], action functions are used to map
one situation into another. A typical law of motion, in this formulation, is

represented by an axiom of the form:

Vs [ P(s) D Q(f(s)) ]
where s is a situation variable,
is a proposition describing a situation,
f is an action function,

P
Q is a proposition describing the new situation,
f(s) denotes the new situation.

In contrast, Green’s formulation II [Green81] treats actions as individu-
als. Treating actions as individuals makes it possible to talk about actions
independently of situations. This method corresponds to the notion of state
transformations. A state transition function is introduced that maps situa-
tions to new situations depending on the action parameter. In this formula-

tion, typical laws of motion have the form:

Vs [ P(s) D Q(f(ay,9)) ]

where S is a situation variable,
P is a proposition describing a situation,
f is the state transition function,
a; is an action constant,
Q is a proposition describing the new situation,

f(a;,s) denotes the new situation.
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To make the use of the state transition function more convenient, Green

adds the axioms (which define nil and g):

Vs [ f(nil,s) = s ]
Vs,a;,3; [ 1(a;,f(a;,5)) = f(g(a;,ay),s) 1.

The first axiom indicates that the null action has no effect. A composite
action g(a;,a;) that has the same effect as the sequential execution of a; and a
is defined by the second axiom. These axioms make it possible to talk about
sequences of actions via an equivalent composite action. In Green’s formula-
tion II, the initial situation is represented as an individual constant and is
described by a set of axioms. Given this set of axioms and the axioms for
the laws of motion, certain conclusions can be drawn on the basis of the

inference rules of first-order logic.

As Green [Green69] has shown, the solution to a problem represented in
situation calculus can be found by question answering using resolution-based
theorem-proving. A statement corresponding to the question: ‘Does there
exist a sequence of actions which lead to a situation satisfying the conditions
of the desired situation?’, is posed as a conjecture to be proven. The form of

the conjecture is:

dp G(f(p,so))

where p is a sequence of actions,
G is a proposition describing the desired situation,
f is the state transition function,
So is a constant denoting the initial situation,

f(p,sp) denotes the desired situation.
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A value for the existentially quantified variable, which is a solution to the
problem, is found by the theorem-proving process. Green has also shown
how conditionals can be incorporated into the solution. As Green noted, for-
mulation II is more complex than formulation I, but this representation
allows quantification over, or specification of initial situation and action
sequence. Thus, situation calculus (formulation II, in particular) is an
epistemologically adequate representation scheme (for simple planning, at

least).

Kowalski [Kowalski79] has made a distinction between problem solving
by finding and problem solving by showing. Question answering without free
variables corresponds to showing there is a solution, while question answering
with free variables corresponds to finding a solution. For instance, the query
P(a) is a showing problem (i.e., try to show that P is true of individual a).
The query 3x P(x) is a finding problem (i.e., try to find an individual for
which P is true). In planning, it is important to know not only that a solu-
tion exists, but also what that solution is. Hence, planning problems are
solved by finding a solution (i.e., a plan). In general, the search space for

‘finding’ problems is larger than for ‘showing’ problems.

One of the major difficulties in planning is that of limiting search. If the
number of possible orderings of actions is considerable, how can an ordering

to achieve the goal be efficiently chosen? Many approaches to planning have
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been developed to address this issue. Nonhierarchical planning (e.g.,
STRIPS [Fikes71]) makes no distinction between actions on the basis of
importance. Consequently, nonhierarchical planners are easily bogged down
by unimportant details. Hierarchical planners (e.g., NOAH [Sacerdoti77])
address this problem by planning at various levels of detail. Script-based
planners (e.g., MOLGEN [Friedland79]) operate by retrieving and refining
stored skeletal plans. Finally, opportunistic planners have a more flexible
control strategy. The Hayes-Roths’ model of opportunistic planning [Hayes-
Roth80] uses a blackboard control mechanism. Planning decisions are made
only when there is a reason to do so. The problem of limiting search was a

motivating factor in the development of these approaches.

Another major problem in planning is that of interacting subgoals.
Whenever a problem has more than one condition to satisfy (comjunctive
goal), there is the risk of having conflicting goals. Sometimes solving
subgoals in the wrong order makes a solution impossible (e.g., painting the
ladder before painting the ceiling). Different strategies are used by the vari-
ous approaches for dealing with the interdependent subgoal problem. One
strategy is based on the linear assumption, that is, ‘subgoals are independent
and thus can be achieved in an arbitrary order’ [Sussman73]. Under this
strategy, actions are selected without regard to ordering and when interac-

tions arise, they are dealt with. Least-commitment is an alternative assump-
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tion used by NOAH. Action orderings are postponed as long as possible
under this strategy. The problem of interacting subgoals and the problem of

limiting search are both crucial issues in planning.

1.5. Frame Problem

In planning, it is necessary to envision the future situations that stem
from alternate courses of action; but performing actions can set off long
chains of cause and effect, making it difficult to keep track of all the conse-
quences. To determine the outcome of a sequence of actions, the effects of
the actions must be specified. By describing the changes, if any, of each

feature of the world, the effects of an action can be enumerated.

In the framework of logic, the effects of an action can be described by
indicating, for each relation in the world, whether its truth-value changes
when an action is performed. The trouble is that if there are M actions and
N relations then Mxn statements are required to describe all effects of the
actions. If most actions resulted in drastic changes in the world (e.g., earth-
quakes, wars), then this would not be unreasonable; however, since most
actions have only a small local effect on the world, one expects not to have
to explicitly state every unaffected aspect of a situation. This intuitive
knowledge that the world is relatively stable and not highly interconnected is
what Simon [Simon67] calls the empty world hypothesis. This problem of
specifying the effects of an action in a practical way (taking advantage of the

empty world hypothesis) is what is known as the frame problem.
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Hayes [Hayes73] describes the frame problem as the problem of finding
adequate collections of laws of motion. In the situation calculus, these
dynamic laws specify the effects of passing from one situation to another in
terms of propositional fluents. The situation resulting from performing an
action a in situation s is designated by do(a,s) (we will now use do instead of
f or result). As Hayes [Hayes71] points out, laws of motion of the form
A(s)DB(do(a,s)) are inadequate. The situations s and do(a,s) are different
(usually); therefore, inferring the properties of do(a,s) from the properties of s
cannot be justified, a priori. If a propositional fluent P holds in situation s,
there is no reason to deduce P holds in situation do(a,s), even if P and a seem
unrelated. So, in addition to describing properties which are changed, those
which are not changed must be described as well. Thus, dynamic laws of the

form C(s)>C(do(a,s)) are also necessary, according to Hayes.

Laws of this form that describe invariant properties are called frame
axioms. In general, many frame axioms are required to completely describe
actions. The number of frame axioms is determined both by the number of
actions and by the number of properties under consideration. For non-trivial
problems, the number of frame axioms becomes unwieldy. The frame prob-
lem, cast in situation calculus, is the problem of describing actions with laws

of motion and efficiently managing these laws.
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The frame problem is not a result of the choice of representation scheme,
nor is it simply an implementation difficulty, nor a problem resulting from
the use of logical languages; it merely reflects the difficulty in expressing all
the consequences of an action. The difficulty of maintaining internal
representations of a changing external environment is at the heart of the
frame problem. As will be seen later, this difficulty varies with the choice of
ontology. The frame problem is a problem of dynamic representation. It is
the problem of reconciling the structure of the internal representation with
the changes in the world brought about by performing actions. Thus, the

frame problem is a bona fide knowledge representation problem.

The example in [Raphael71] provides a illustration of the frame prob-

lem:

“Suppose the initial world description contains the following facts
(expressed in some suitable representation, whose precise form is
beyond our immediate concern):

(F1) A robot is at position A.

(F2) A box called B1 is at position B.

(F3) A box called B2 is on top of B1.

(F4) A,B,C,D are all positions in the same room.

Suppose, further, that two kinds of actions are possible:

(A1) The robot goes from x to y, and
(A2) The robot pushes Bl from x to y,

where x and y are in {A,B,C,D}. Now consider the following possi-
ble tasks:

Task (1): The robot should be at C.

This can be accomplished by the action of type Al, ‘Go from A to
C’. After performing the action, the system should ‘know’ that facts
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F2 through F4 are still true, that is, they describe the world after the
action, but F1 must be replaced by:

(F5, i.e., F1') The robot is at position C.

Task (2): B1 should be at C.

Now a ‘push’ action must be used, and both F1 and F2 must be
changed.

One can think of simple procedures for making appropriate
changes in the model, but they all seem to break down in more com-
plicated cases. For example, suppose the procedure is:

Procedure (a): ‘Determine which facts change by matching the task
specification against the initial model.’

This would fail in task (1) if the problem solver decided to get the
robot to C by pushing B1 there (which is not unreasonable if the box
were between the robot and C and pushing were easier than going
around), thus changing F2.

Procedure (b): ‘Specify which facts are changed by each action opera-
tor.’

This procedure is also not sufficient, for the initial world description
may also contain derived information such as

(F6) B2 is at position B,

which happens to be made false in task (2).

More complicated problems arise when sequences of actions are
required.

Consider:

Task (3): The robot should be at D and, simultaneously, B2
should be at C.

The solution requires two actions, ‘Push B1 from B to C’ and ‘Go
from C to D’, in that order. Any effective problem solver must have
access to the full sets of facts, including derived consequences that
will be true as a result of each possible action, in order to produce
the correct sequence.” [Raphael71, p. 160-161]

The frame problem is fundamentally the problem of dealing with change.
Any knowledge representation scheme for worlds that are subject to change

must somehow address the frame problem. Solving the frame problem means
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finding a way of specifying actions, while taking into account, the heuristic

knowledge that in applying actions most relations in the world are invariant.

1.6. Our Idea

This dissertation defends the thesis that theory formation, together with a
particular theory preference heuristic, is a simple, intuitively appealing way to
solve the frame problem. We call this preference heuristic chronological per-
sistence. We claim that the only reasonable approach to formalising rational
belief is to use “scientific-like”” theory formation. Since viewing reasoning as
theory formation, rather than as deduction from our knowledge, has a solid
basis in the philosophy of science; we believe that the theory formation/theory
preference framework will turn out to be a fundamental paradigm for knowledge

representation and rational reasoning in Al.

We also propose a continuum hypothesis — it seems that axiomatisations
based on theory formation/theory preference, circumscription, and negation-
as-failure can be viewed as different points on a continuum where the degree
of theory preference explicitness varies. For example, in negation-as-failure,
preference information derived from syntactic structure is “compiled into”
the proof procedure; while in circumscription, preference is expressed as

priorities.
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To support our thesis, we first trace the history of proposed solutions to
the frame problem in the first half of chapter 2. The proposed solutions are
divided into three groups: the axiomatisation approaches, the procedural
approaches, and the consistency approaches. The second half of chapter 2
discusses in greater detail a particular consistency approach, namely, theory
formation. The last section of chapter 2 discusses the need for theory prefer-
ence which arises because there can be multiple theories that explain our

observations.

Chapter 3 presents a theory formation representation scheme together
with a semantically well-defined theory preference heuristic for dealing with

the frame problem.

Chapter 4 provides a specification of a search procedure for selecting a
preferred theory. As well, an implementation of this search procedure is
described. The final section of chapter 4 discusses some additional imple-

mentation issues.

In the first section of chapter 5, our approach to the frame problem is
compared and contrasted with other recent proposals. The next section
speculates on future directions for research. In the final section, we give our

conclusions.



Chapter 2
Approaches to the Frame Problem

2.1. Introduction

The literature contains many suggestions for dealing with the frame prob-
lem. These suggestions can be classified (roughly) into three groups. The
first group, which we call the axiomatisation approaches, is characterised by
descriptions, axioms, or general rules for when properties do or do not
change. The second group, which we call the procedural approaches,
addresses the frame problem by providing specialised procedures for deter-
mining the effects of actions. The final group, which we call the consistency
approaches, makes the assumption that properties remain unchanged unless a

contradiction arises.

The first part of the chapter briefly surveys the proposed solutions to the
frame problem within each of these three classifications. It is important to
note the varying ontological commitments made in each proposed solution and
how those choices affect the success achieved by each approach. The last
part of the chapter contains a section which describes in detail the consistency
approach we have chosen to pursue, namely, theory formation. As well, a

section describing theory preference is provided.

27
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2.2. Axiomatisation Approaches

An elementary approach to the frame problem is the complete world
description approach in which each situation is explicitly represented. Each
complete world description is treated as an object and actions are treated as
operators that transform one object into another. A GPS-like system can
then be used for problem solving. While this method addresses the problem
of specifying the effects of actions, it is not practical for worlds described by
many facts, or for worlds with many possible actions, or for plans consisting
of long sequences of actions. Because it becomes impractical to generate and
store all the complete world descriptions in non-trivial problems, and because
this approach does not take advantage of the empty world hypothesis, this

approach is inadequate for solving the frame problem.

In the assignment approach [Manna70, Fikes70], changes in the world
due to actions are modelled by the device of assignment. The current world
is explicitly represented and the effects of actions are described by assignment
statements. Properties that are unaffected by an action are automatically
carried along when the current world is updated. The use of assignment to
depict the effects of actions seems to presuppose a world with trivial physics,
according to Hayes [Hayes71]. The lack of side-effects in assignments pre-
cludes the representation of complex interactions. Thus, this approach is also

inadequate for non-trivial problems.
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The situation variable approach [McCarthy69, Green81], improves on the
complete world description approach. Facts are associated with named situa-
tions and actions are viewed as functions that map situation names to situa-
tion names (i.e., the name of the situation, in which an action is applied, is
mapped to the name of the resulting situation). The problem with this
approach is that an inordinate number of frame axioms are needed to carry
unaffected facts along through situation changes (Some relief is obtained by a

slight change of ontology — cf. Kowalski’s meta-language approach).

Another approach to the frame problem suggested by McCarthy and
Hayes [McCarthy69] is based on the programming language notion of block
structures (or modules). Facts are classified into groups that are action-
independent (i.e., when an action is performed, it affects elements of one
group while leaving the other groups undisturbed). In blocks world prob-
lems, there is a common sense notion that moving a block leaves its colour
unchanged. This suggests that facts about colour and facts about location
should be grouped separately; however, this grouping is inappropriate, when,
for instance, the location is a bucket of paint. This approach does contribute
somewhat toward solving the frame problem, but it is insufficient in view of

the coarseness of classifications.

The causal connection approach of Hayes [Hayes71] axiomatises the

dependencies between the objects in the world. The scheme provides a finer
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degree of classification than the blocks approach. The basic idea is that pro-
perties of objects will not be affected by a given action unless the object and
the action are causally related. The causal connection approach, in effect,
axiomatises the common sense laws of cause and effect (cf. minimising
uncaused changes [Lifschitz87]). This method goes a long way toward solv-
ing the frame problem and it, unlike some of the others, has a clear semantic
theory. Nevertheless, it too is an inadequate solution, since it suffers from a
local version of the frame problem. The local frame problem, according to

Hayes, is:

“When some property, however trivial, of an object is altered by an
action, then the object must have been connected to the action, ... ,
and therefore any property of the object is liable to have changed
when the action is performed.” [Hayes71, p. 514]
Hayes observed this problem in his axiomatisation of the monkey and bana-
nas problem. In that formulation, there is a causal connection between the
thing held by the monkey and the monkey itself. There is also a connection
between the monkey and the action ‘move’. Thus, there is an indirect causal
link between the thing held by the monkey and the action ‘move’. Because
of this link, extra frame axioms are needed to infer that the thing held by the

monkey before it moves is still held afterwards. Thus, the causal connection

approach fails to solve the frame problem.
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The world predicate approach, due to Waldinger [Raphael71], views the
entire collection of facts about a particular world as a single entity (a model
M). A world predicate P with domain models X situation-names, is used in
defining situations and laws of motion. P(M,s) means that s is the name of a
world that M is a model of. The initial model M; can be specified as a set of
ordered n-tuples representing relations (e.g., <At,Robot,A>). The axiom
P(M;,Sy) defines the initial world (where M; is given explicitly and Sy is a
constant naming the initial situation). This method makes it possible to
describe, in a single axiom, the relations that change when performing an

action and those that do not. Raphael [Raphael71] illustrates this with:

Vx,y,w,s [ P({<At,Robot,x>,w},s) D P({<At,Robot,y>>,W},g0(x,y,s)) ]

where X,y are location variable
w is a variable representing all the unaffected
relations
S is a situation variable
P is the world predicate
g0 is an action function
At is a constant representing a relation
Robot is a constant representing a robot.

According to Raphael, this approach has the advantages of the situation vari-
able approach (i.e., problem solving and answer construction are handled by
the theorem-prover). Furthermore, the unaffected properties of the world are
automatically carried along through situation changes. In spite of these
advantages, the need for an extended logic to handle sets and n-tuples, the

requirement for complex pattern-matching, and the restrictions placed on
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inferencing (because properties are stored as data), render this approach

suspect.

Kowalski’s [Kowalski79] meta-language approach to the frame problem
treats both situations and statements as individuals. The binary relation,
holds(R,S), represents that statement R is true of situation S. Situations are
represented by constants or by a term of the form result(A,S) that names the
situation resulting from performing the action A in situation S. There is a
straightforward translation between statements in Green’s representation and
statements in Kowalski’s representation. The situation parameter of state-
ments in Green’s formulation is removed to form Kowalski-type statements.
In Kowalski’s representation, the situation parameter is an argument of the
holds relation. For instance, on(X,Y,S) in Green’s representation becomes
holds(on(X,Y),S) in Kowalski’s representation. This has the advantage that a

single frame axiom, namely,

holds(R,S) & preserves(A,R) D holds(R,result(A,S))

where R is a statement variable
S is a situation variable
A is an action variable
result(A,S) is the situation resulting from doing
action A in situation S
holds(R,S) means that statement R is true in

situation S
preserves(A,R) means that action A does not change
statement R

can be used to express all the statements that remain unchanged when an
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action is performed. The problem with this method lies in the definition of
preserves. Whenever the axiomatisation of the world is supplemented by
additional statements it is necessary to amend the preserves axioms for each
action. This is clearly unsatisfactory. Another problem is that Kowalski
defines preserves in terms of a syntactically defined relation diff. This jeopar-

dises the semantics of the frame axiom.

2.3. Procedural Approaches

Raphael’s context graph approach [Raphael71] deals with the frame prob-
lem by augmenting the standard theorem-proving approach with a data struc-
ture (a context graph) and procedures for manipulating it. A context is the
set of possible situations for which a given predicate is true. Predicates with
parameters determine families of contexts. The initial context is the set of all
possible situations satisfying the conjunction of all predicates defining the ini-
tial world. In this framework, solving a problem means finding any member
of the context corresponding to the goal predicate. Actions are specified by
an operator name, a parameter list, preconditions, and results. Any relation
in the preconditions may be designated as transient. For example, Raphael

defines the action go as:

go(x,y): { Path(x,y) A At(x) | At(y) }

where go is an operator name
X,y are parameters corresponding to locations
Path(x,y) means locations x and y are connected
At(x) is a transient precondition describing the

robot’s current location
At(y) describes the robot’s resulting location
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When an operator is applied, the defining predicate of the current context is
changed by deleting transients and conjoining results, thus, defining a new

(resulting) context.

Achievable contexts are those that can be reached by a finite sequence of
operators. A sufficient context is one from which a subset of the goal context
can be reached. The problem solving process, in this formulation, involves

finding an achievable context that is a subset of a sufficient context.

This can be done by working forward through achievable contexts, or
working backward through sufficient contexts or both. Ordinary theorem-
proving is used to test operators and results and to instantiate parameters, but
separate procedures are used to maintain the context graph (trees of achiev-

able and sufficient contexts together with the operators that connect them).

Difficulties arise when dealing with dependencies. All expressions previ-
ously deduced from a transient expression may no longer hold after it is
deleted. Further, it is not clear, how this approach can be adapted to worlds

with incomplete information.

The STRIPS approach [Fikes71] is related to the context graph approach.
It separates theorem-proving (used within a given world) from searching the
space of world models (for which it uses a GPS-like means-end analysis stra-
tegy). This separation allows STRIPS to have more complex and general
world models than GPS and more powerful search heuristics than Green’s

theorem-prover.
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STRIPS eliminates the need for frame axioms by making the assumption
that relations are not affected by a given action unless explicitly specified oth-
erwise. This is what Waldinger [Waldinger77] calls the STRIPS assumption.
Relations, in the STRIPS approach, are classified into primitive and non-
primitive. Non-primitive relations are defined in terms of primitive ones.
Actions are defined by three entities: an add list, a delete list, and a precon-
dition expression. If a world model satisfies the precondition expression of an
action then the action is applicable to the world model. The add list of an
action consists of the primitive relations that are added to a world model
when the action is applied. The delete list of an action consists of the primi-
tive relations that should not be automatically carried forward by the STRIPS
assumption. The initial world is given by an explicit list of relations and sub-

sequent worlds are described by cumulative add and delete lists.

This approach works well with simple problems, but the add-delete list
representation is too restrictive (difficult to describe complex actions). The
STRIPS assumption breaks down in complex worlds with many interactions
between objects. As well, adding a new primitive predicate requires chang-
ing the specification of all actions which affect it (i.e., specifications aren’t

modular). Thus, this approach is not suitable for complicated problems.

The Al programming language approach (e.g., PLANNER [Hewitt71],

QA4 [Rulifson72], CONNIVER [Sussman72], QLISP [Wilber76]) represents
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actions procedurally, but, as Waldinger [Waldinger77] noted, problem solvers
implemented in this way have the STRIPS assumption structurally embedded
within the language’s context mechanism. Typically, a context mechanism
operates in a similar way to variable scoping in conventional programming
languages. Assertions made in one context will be visible in descendant con-
texts (unless subsequently changed or retracted). There are many examples
of problem solving systems using this approach (cf. [Winograd72,
Buchanan74, Fahlman74, Fikes75]). Even though complex effects of actions
are easily represented in AI programming languages, the intimate structural
tie to the STRIPS assumption makes this approach inadequate. It suffers

from the same problems as the STRIPS approach.

2.4. Consistency Approaches

Rescher’s [Rescher64] approach to the analysis of counterfactual reason-
ing can be applied to the frame problem. The method employed in this
approach is to transfer properties from a situation to its successor as long as it
is consistent to do so. Thus, the effect of performing an action a in situation
s can be described as follows. If I is the set of properties describing the
situation s, and T'gyy) is the set of properties describing situation do(a,s), and
® 4o(a,s) 15 the set of properties of situation do(a,s) directly inferred from the
laws of motion (P goa,s) C Ldota,s)> then T'goga,s) is @ maximal consistent subset

(MCS) of the possibly inconsistent set T\U® go(a,5), that is:

Fdo(a 5) e MCS [ Ps U Qdo(a,s) ] A I‘do(a,s) D q’do(a,s)-
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According to Hayes [Hayes73], there are two major problems with this

approach:

1) Consistency is not decidable;
2) The MCS of an inconsistent set is not necessarily unique.

Rescher deals with the second problem through the use of modal categories.
These are hierarchical classifications of assertions. Thus, in addition to being
an MCS, a candidate for I'qoas must also satisfy a hierarchical restriction,
namely, preference is given to including properties that are in lower modal

categories. Formally,

[ ¢ € Taotas & 85 <412 [ (Tao@s) — {#i}) U {#} is inconsistent ]
where ¢ < qgi if property ¢; is in a lower modal category

than property ¢;.

Thus, if there is an MCS that includes ¢; then that MCS is preferred over
another MCS which differs from the first by including ¢; instead of ¢;. One
way to define the modal categories is to relate them to causal connection
[Simon66] (i.e., ¢;<¢; if ¢ causes ¢ or —¢;). The problems of this
approach are common to all consistency-based methods. Thus, consistency-
based solutions | of the frame problem all involve finding practical ways of
dealing with the problems of decidability and multiple maximal consistent

subsets.
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The formal literature approach [McCarthy69 also cf. Brown86] is another
consistency-based approach to the frame problem. A formal literature may
be thought of as a formal language with a history. The possible sentences of
a literature depend on previously asserted sentences (€.g., new terms can not
be used until they are defined and their usage is restricted by their defini-
tion). An example of a formal literature is first-order logic extended to
include the modal operators: consistent(¢), normally(¢), and probably(¢),

together with the following rules of inference:

1. If ¢ is consistent with o (the set of sentences in the literature so far) then

consistent(¢) may be added (this rule is non-computable, in general)
2. normally(¢), consistent(¢) + probably(¢)
3. ¢ | probably(¢)

4. If ¢1’¢2’ e ’¢n - ¢ then

probably(¢y), * * * ,probably(¢,) F probably(¢).

Whenever probably(m) and probably(—7) (and therefore, probably(false))
occur, a search for a contradiction is called for. This approach is unneces-
sarily complicated since it attempts to solve both the frame problem and the
problems associated with formalising the concepts of consistency, normality,
and likelihood in one fell swoop rather then dealing with the problems
separately. As well, this approach does little to solve the decidability and
MCS problems. In fact, things are made even worse because consistency

isn’t finitely axiomatisable.
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Sandewall’s [Sandewall72] approach to the frame problem is to introduce

the modal operator UNLESS, together with a frame inference rule:

IS(0,p,s)
UNLESS( ENDS(0,p,succ(s,a)) )
IS(o,p,succ(s,a))
where IS(o,p,s) means object o has property p
in situation s
succ(s,a) means the situation resulting from

doing action a in situation s
ENDS(o,p,succ(s,a)) means object o ceases to have
property p in situation succ(s,a)
IS(o,p,succ(s,a)) means object o has property p
in situation succ(s,a).

The frame inference rule is intended to mean: if IS(o,p,s) is provable and

ENDS(o,p,succ(s,a)) is not provable then IS(o,p,succ(s,a)) is proven.

This formalism suffers from the same problem as the other consistency-
based methods, since the provability of an expression is undecidable and
since multiple MCSs are still a problem. An example illustrating the MCS

problem is:

A
A A UNLESSB) > C
A A UNLESS(C) D B.

In this example, there are two MCSs: one of these contains B and the other

contains C. Sandewall suggested three ways of dealing with this problem:
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1. use a precedence ordering on the axioms;

2. restrict the expressiveness of the language to prevent such situations

from occurring; or,
3. allow a sentence to be: a theorem, not a theorem, or undetermined.

None of these suggestions is completely satisfactory. The first suggestion
gives no advice on how to arrive at the precedence ordering in advance. As
well, it is not clear that there always exists a precedence ordering which
uniquely determines the desired consistent subset. The second suggestion is
also unsatisfactory because it may be necessary to severely restrict the expres-
siveness of the language to eliminate multiple MCSs. Therefore, interesting
problems may no longer be expressible. The last suggestion is the least desir-
able of the three because it may be impossible to infer anything useful.
Unless a statement is true in every MCS or false in every MCS then its truth
value is undetermined. Overall, Sandewell’s approach, like the formal litera-
ture apprdach, fails to separate the representation and reasoning aspects of
the frame problem (since UNLESS, which essentially means not provable, is a

reasoning component).

The advent of nonmonotonic reasoning systems [McCarthy80, Reiter80,
McDermott80] has brought on a resurgence of effort into solving the frame
problem. Initial attempts using these systems met with difficulty [Hanks85].

Hanks and McDermott found that using default (or other nonmonotonic)
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reasoning to deal with the frame problem inevitably results in the need to
choose between extensions (or between models). They essentially
rediscovered the multiple MCS problem [Hayes73]. Several researchers have
turned their attention to this problem. The discussion of their work will be
postponed until chapter 5 where we can compare their results with our own.
The rest of the chapter will discuss the particular consistency approach that

we have chosen to pursue, namely, theory formation.

2.5. Theory Formation

The development of nonmonotonic reasoning systems was, in part,
motivated by the inability of logical deduction to capture certain forms of
rational inference. In order to draw useful conclusions about a domain for
which our knowledge is incomplete or inaccurate, we must make assump-
tions. Given additional information, we may retract some of our assump-

tions, and with them, the conclusions they entail.

Attempts to equate logical deduc;tion with rational inference quickly run
into trouble. Logical deduction is monotonic, that is, the conclusions sanc-
tioned by a set of axioms are still sanctioned when the set of axioms is aug-
mented with new axioms. Thus, McDermott and Doyle [McDermott80,
p. 44] note that: “Monotonic logics lack the phenomenon of new information
leading to a revision of old conclusions”. Because logical deduction is mono-

tonic and because rational inference is not, attempts were made to extend
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classical logic to allow nonmonotonic reasoning [McCarthy80, Reiter80,

McDermott80].

Israel has critisised these formalisations of nonmonotonic reasoning

because, as he points out, they are based on a misconception.

“The researchers in question seem to believe that logic — deductive
logic, for there is no other kind — is centrally and crucially involved
in the fixation and revision of belief. Or to put it more poignantly,
they mistake so-called deductive rules of inference for real, honest-
to-goodness rules of inference. Real rules of inference are precisely
rules of belief fixation and revision; deductive rules of transformation
are precisely not.” [Israel80, p. 100]

While logical deduction is useful in determining what conclusions follow
from a set of axioms, it says nothing about how to rationally determine and

maintain a set of beliefs. Thus, Israel goes on to say:

“The crucial point here, though, is that adherence to a set of deduc-
tive rules of transformation is not a sufficient condition for rational
belief; it is sufficient (and necessary) only for producing derivations
in some formal system or other. Real rules of inference are rules
(better: policies) guiding belief fixation and revision. Indeed, if one
is sufficiently simple-minded, one can even substitute for the phrase
‘good rules of inference’, the phrase ‘(rules of) scientific procedure’
or even ‘scientific method.”” [Israel80, p. 100]

It seems that Israel believes that what’s necessary for the formalisation of
rational belief is not an extension of logic, but rather the specification of a set
of rational epistemic policies of belief fixation and revision. Furthermore,
these policies must necessarily be heuristic in nature and are akin to scientific

procedures.
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«... reflect on how odd it is to think that there could be a purely
proof-theoretic treatment of scientific reasoning. A heuristic treat-
ment, that is a treatment in terms of rational epistemic policies, is
not just the best we could hope for. It is the only thing that makes
sense.” [Israel80, p. 101]

Thus, the only reasonable approach to formalising rational belief seems
to be to use “scientific-like” theory formation. Such an approach has been
taken by Poole and his colleagues [Poole87b] in the Theorist project at the
University of Waterloo. Based on a philosophy inspired by Popper
[Popper58], Theorist views reasoning as scientific theory formation (rather
than as deduction). Science is concerned, not merely with collecting facts,
but with explaining them. Consequently, reasoning in the Theorist frame-

work involves building “scientific’” theories that explain a set of observations.

The scientific method has been very fruitful. Consider, for example, the
Russian chemist Dmitri Mendeleev. By 1869, sixty-three elements had been
discovered. Mendeleev arranged these elements in a table according to their
atomic weights and chemical properties. In doing this, he was able to show a
relationship between atomic weight and chemical properties. His periodic
table expressed the theory that chemical properties are the consequence of

atomic weight.

This theory led to the discovery of new elements and the prediction of
their properties. From the positions left blank in the table, he described the

chemical properties of three undiscovered elements. These were discovered
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during the next 15 years. By using his table, he found that the properties
predicted by the atomic weight of gold disagreed with the observed proper-
ties. This inconsistency between theory and observation led to the discovery
that the previously supposed atomic weight of gold was incorrect. The theory
expressed by the periodic table withstood testing, and was, therefore, corro-
borated by the evidence. The methodology of observation, hypothesis, pred-
iction, testing, and evaluation, which has proved so fruitful in science, should
also be useful when applied to prescientific, commonsense reasoning and

rational belief.

What are scientific theories? This question has been studied in great
detail by philosophers of science [Popper58, Hempel65, Rescher70]. To
them, theories are sets of sentences — usually general sentences or laws.
These laws express relations that hold between various properties. Nomic
necessity and hypothetical force distinguish laws from ordinary generalisa-
tions. To say that a generalisation has nomic necessity is to say that the rela-
tionship it expresses is somehow necessary. This element of necessity extends
to the unobserved, the unrealised, and the hypothetical counterfactual. For
example, from the law that objects denser than water sink, we can infer that

if an ice cube were denser than water (which it isn’t) then it would sink.
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Thus Rescher describes lawfulness in the following:

“It is built into our very concept of a law of nature that such a law
must, if it be of the universal type, correspond to a universal gen-
eralization that is claimed to posses nomic necessity and is denied to
be of a possible merely accidental status. If the generalizations were
claimed to hold in fact for all places and times, even this would not
of itself suffice for lawfulness: it would still not be a law if its opera-
tive effectiveness were not also extended into the hypothetical
sphere. The conception of a universal law operative in our concept of
causal explanation is thus very complex and demanding. A lawful
generalization goes beyond claims of a merely factual generalization
as such; it involves claims not only about the realm of observed fact,
but about that of hypothetical counterfact as well. And just these
far-reaching claims are indispensable to the acceptance of a generali-
zation as lawful and is a formative constituent of our standard con-
cept of a universal law of nature.” [Rescher70, p. 102]

A question that has troubled philosophers since early times is: ‘Where do
laws come from? Given that universal laws govern the unobserved, it is clear
that they cannot be arrived at deductively from our experience; similarly,
given that universal laws govern the unobservable, the hypothetical, and the
counterfactual, it is clear that they cannot be arrived at inductively either.
The question remains, therefore, how do we come to know laws — necessary
and universal truths — given that our experience is limited to the actual and
the particular? To this question, we might add: ‘How do laws acquire nomic

necessity and hypothetical force?” Rescher answers these questions as follows:

“The basic fact of the matter — and it is a fact whose importance
cannot be overemphasized — is that the elements of nomic necessity
and hypothetical force are not to be extracted from the evidence.
They are not discovered on some basis of observed fact at all; they
are supplied. The realm of hypothetical counterfact is inaccessible to
observational or experimental explanation. Lawfulness is not found
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in or extracted from the evidence, it is superadded to it. Lawfulness
is a matter of imputation. When an empirical generalization is desig-
nated as a law, this epistemological status is imputed to it. Lawful-
ness is something which a generalization could not in principle earn
entirely on the basis of warrant by the empirical facts. Men impute
lawfulness to certain generalizations by according them a particular
role in the epistemological scheme of things, being prepared to use
them in special ways in inferential contexts (particularly hypothetical
contexts), and the like.

When one looks at the explicit formulation of the overt content of a
law all one finds is a certain generalization. Its lawfulness is not a
part of what the law asserts at all; it is nowhere to be seen in its
overtly expressed content as a generalization. Lawfulness is not a
matter of what the generalization says, but a matter of how it is to be
used. By being prepared to put it to certain kinds of uses in modal
and hypothetical contexts, it is we, the users, who accord to a gen-
eralization its lawful status thus endowing it with nomological neces-
sity and hypothetical force. Lawfulness is thus not a matter of the
assertive content of a generalization, but of its epistemic status, as
determined by the ways in which it is deployed in its applications.”
[Rescher70, p. 107]

The key point to draw from this is eloquently summarised in the last sen-
tence of the above quote: “Lawfulness is thus not a matter of the assertive
content of a generalization, but of its epistemic status, as determined by the
ways in which it is deployed in its applications.” As we shall see, the power
of the Theorist system derives from the special epistemic status it gives to
possible hypotheses. The nonmonotonic nature of Theorist results from the
way in which possible hypotheses are used. Before considering this further,

let us examine the issue of scientific explanation.
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What is it to give an explanation? The deductive-nomological model of
explanation [Hempel48] defines an explanation as a valid deductive argu-
ment. The premisses of the argument include nomological general state-
ments (laws) and other singular statements (called initial conditions). These
statements deductively entail the conclusion. In this sense, the conclusion is
explained by the premisses, that is, to explain a state of affairs is to deduce
its description from a law. Thus, scientific explanation involves a subsump-

tion argument under laws.

A distinction can be made between potential explanations and actual
explanations. A potential explanation is a valid deductive argument whose
premisses entail the conclusion. For an explanation to be an actual explana-
tion, its singular premisses must be true and its general premisses must be

well-confirmed, lawful generalisations.

When the element of time is crucially involved in an explanation, we call
it a temporal explanation. Two important kinds of temporal explanation are:
prediction and retrodiction. Note that the term prediction (and retrodiction),
as used here, refers to the explanation itself rather than the conclusion. Just
as an explanation can be actual or potential, predictions and retrodictions can

also be actual or potential.

A potential prediction has the structure of a potential explanation where a

time dependent conclusion follows from premisses consisting of general state-
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ments and time dependent initial conditions. As well, the time parameters of
the premisses must predate the time parameter of the conclusion. For exam-

ple, the following is a potential prediction of Q(t):

Ci(ty)s «oes Cpty) (Initial Conditions)

1, XYY n
—————————

Q)

(universal generalisations)

(conclusion)

provided each t; <t. In addition to the requirements of a potential predic-
tion, an actual prediction must have fact-asserting singular premisses, and
well-confirmed, law-asserting general premisses. Furthermore, the time

parameters in the predictive argument are constrained as follows: if the

present time is t,q, then each t; <ty < t.1

A second form of temporal explanation is retrodiction. A potential ret-
rodiction has the structure of a potential explanation where a time dependent
conclusion follows from premisses consisting of general statements and time
dependent initial conditions. As well, the time parameters of the premisses
must postdate the time parameter of the conclusion. For example, the fol-

lowing is a potential retrodiction of Q(t):

1 See [Rescher70, pp. 33ff.] for a discussion of the need to constrain the chronological direc-
tion of predictive arguments.



49

Ci(tD)s «oes Crt) (Initial Conditions)

l’ XXX n

Q®

(universal generalisations)
(conclusion)

provided each t; >t. In addition to the requirements of a potential retrodic-
tion, an actual retrodiction must have fact-asserting singular premisses, and
well-confirmed, law-asserting general premisses. Furthermore, the time
parameters in the retrodictive argument are constrained as follows: if the

present time is t,q, then tyo, > t.

The definitions above correspond to the deductive nomological model of
explanation. In this model, explanation takes the form of a deductive argu-
ment. If the explanatory premisses are true, a deductive argument provides
conclusive evidence for the conclusion. When our premisses are not so cer-
tain as to allow such conclusive explanations, we have at least two alterna-
tives: we can turn to probabilistic explanations (cf. [Rescher70, Hempel65,
Carnap50]), or we can tentatively assume the premisses are true and treat the

explanation as potentially refutable.

The latter mode of explanation above is described by Popper [Popper58].
In this approach, the premisses of a deductive argument can be of two types:
those that we accept as true, and those we treat as assumptions. These two
types of premisses taken together form a potential explanation of the deduc-

tively entailed conclusions. In the spirit of the scientific method, a potential
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explanation can be subjected to crucial experiments, and having survived the

tests, the potential explanation becomes well-confirmed. Thus Popper writes:

“A scientist, whether theorist or experimenter, puts forward state-
ments, and tests them step by step. In the field of the empirical sci-
ences, more particularly, he constructs hypotheses, or systems of
theories, and tests them against experience by observation and exper-
iment.” [Popper58, p. 27]

“From a new idea, put up tentatively, and not yet justified in any
way — an anticipation, a hypothesis, a theoretical system, or what
you will — conclusions are drawn by means of logical deduction.
These conclusions are the compared with one another and with other
relevant statements, so as to find what logical relations (equivalence,
derivability, compatibility, incompatibility) exist between them.”
[Popper58, p. 32]

This is the philosophy underlying the Theorist framework [Poole87b).
Instead of viewing ;easoning as deduction from our knowledge, reasoning
may be better modelled by scientific theory formation. Consequently, rea-
soning in the Theorist framework involves building “scientific”” theories that
explain a set of observations. While the intuition underlying Theorist stems
from the deductive nomological model of explanation described above, there
is a notable difference. The Theorist framework does not require explana-
tions to contain lawful general statements. Thus, explanations in Theorist are
usually only potential explanations. Because of this, it may be more
appropriate to think of Theorist’s explanations as ‘“‘prescientific”’ (or common-

sense) theories.
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Figure 2.1 illustrates the Theorist framework.

Find T;, a set of ground instances of elements of A, such that:
Fu Tl = G, and
F u T; is consistent
where A is a set of possible hypotheses (or defaults)
T, is a set of ground instances of possible hypotheses
F is a set of facts (statements to which we are committed)
G is a set of observations (or desired conclusions).

Figure 2.1. The Theorist Framework

The current implementation of Theorist? uses full first-order clausal logic as
its representation language. Statements are divided into two types: facts and
possible hypotheses (ot defaults). Facts are statements that we accept as true

and thus constitute ordinary assertions in a logical theory. Possible

2 All examples in this dissertation were run on Theorist version 0.21 which compiles state-
ments to Waterloo Unix Prolog (WUP) [Cheng84].
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hypotheses, however, are given a different epistemological status than -facts.
They are used as a kind of schema for axioms — possible hypotheses can be
viewed as the specification for the generation of logical theories which are
extensions of the facts. Instances drawn from the set of possible hypotheses
can be used to construct consistent explanations for a set of observations (or

desired conclusions).

Let F be the set of facts, A the set of possible hypotheses, A={d;,d,,...}
the set of instances of elements of A, and G the set of observations. Theorist
reasons by first trying to deduce G from F. Failing that, it next tries to find
elements of A which conjoined to F allow G to be deduced. Thus, Theorist
constructs explanations of the form F u T; where T; is a subset of the ele-

ments of A (i.e., a set of instances of possible hypotheses).

It is important to note here that F u T; is an ordinary logical theory and
therefore has well-defined semantics. In contrast, Fu A is not a logical
theory since it contains defaults. In essence, defaults can be viewed as a
form of axiom schemas together with the meta-inference rule: “‘use an

instance of the axiom schema if it is consistent to do so.”

Returning to the process of explanation construction, we note that in
addition to the requirement that F u T; constitute an explanation of G, that
is, Fu T; = G, there is also the requirement that the explanation be con-

sistent. In other words, we require that F u T; be consistent. This con-
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sistency check can be viewed as submitting a potential explanation to “‘scien-
tific”’ testing.

That determining the consistency of a set of first order axioms is, in gen-
eral, undecidable should not be seen as blemish on the methodology underly-
ing Theorist. Rather, we should be surprised if theory formation were decid-
able. In practice, we could submit our explanations to a partial consistency
check. Passing the partial consistency test can be viewed as confirming evi-
dence for the potentially refutable explanation. This view of reasoning has a

basis in the philosophy of science (cf. [Popper58, Rescher70, Hempel65]).

2.6. Theory Preference

It is well known in deductive logic that there can be many arguments for
the same conclusion. The same is true in theory formation — there can be
many potential explanations of the same observation. Faced with a multipli-
city of explanations and a desire to draw useful conclusions, we are often
forced to chose between the competing theories. For example, if upon
returning home you find your door open, it could be explained at least two
ways. One possibility is that you merely forgot to close it when you left.
Another possibility is that a robber is lurking inside. Each explanation indi-
cates a different course of action. Therefore, a choice between these poten-
tial explanations is necessary. In this case, acting on the basis of the second

possibility seems to be the most prudent course of action.
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In general, there can be many factors that influence the choice between
competing explanations. In science, there are several criteria for theory
preference. The relative simplicity of a theory, its explanatory strength and
power, its degree of confirmation, its coherence with the overall system of
scientific explanations, its predictive power — all these play a role in deter-
mining which theory to prefer from among competing alternatives. For
example, the Copernican view of the solar system was preferred over the
Ptolemaic view because its relative simplicity. Of the criteria above, two
need to be defined: explanatory strength and explanatory power. The degree
to which one explanation renders a conclusion more likely than an alternative
explanation is its explanatory strength. The explanatory power of an expla-
nation is the degree to which an explanation renders a conclusion more likely
than any alternative conclusion. The criteria above are not the only criteria
for theory preference. Indeed, it seems that the criteria for theory preference

are, at least in part, domain dependent.

The issue of theory preference has been considered for several domains
[Poole87b, Poole85a, Jones8S, Poole86, Jackson87]. In domains with inheri-
tance hierarchies, the explanation that uses the most specific knowledge is
preferred; while in learning domains, the most general explanation is desired;
in diagnosis, the most probable, the most serious, or the most specific expla-

nation may be sought; and in analogical reasoning, the simplest and most
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relevant explanation is preferred. Preference criteria for vision [Gagné86]

and for user modelling [vanArragon86] are also being investigated.

The scientific method suggests a general methodology for knowledge
representation and reasoning in AI. We can represent our domain
knowledge as facts, and then provide possible hypotheses to supplement our
incomplete domain knowledge. From these possible hypotheses, theories can
be constructed to explain our observations. When there are multiple conflict-
ing potential explanations, then theory preference can be used to choose
between them. Thus, in addition to the facts and possible hypotheses, theory
preference heuristics (heuristics because theories are potentially refutable)

must be defined.



Chapter 3
Planning in a Theory Formation Framework

3.1. Introduction

In reasoning about actions, one generally assumes that most things are
unaffected by a given action. McCarthy calls this the “common sense law of
inertia.” From this assumption, we expect that relations not explicitly
changed by an action are unchanged after performing the action; that is, we
expect the truth-value of most relations to persist when performing actions.
In this chapter, we will develop a representation that incorporates this
assumption about persistence. This notion of persistence will be fundamental

to our planning representation.

3.2. Representing Planning Problems in Theorist

The first step in the process of representing planning problems is to for-
malise the notion of a planning problem. As we have seen, the situation-
space model is one way to do this. Armed with this formalisation, the next
step in the representation process is to develop or choose a suitable knowledge

representation scheme in which to express the problem.

56



57

For a knowledge representation scheme to be considered suitable for
planning, it must address the frame problem. Representation schemes which
support consistency-based reasoning seem the most suitable, as consistency-
based methods offer promise in solving the frame problem. One such
knowledge representation scheme, Theorist [Poole87b], in addition to support-
ing the use of consistency-based methods, has a clean well-defined semantics,
making it an ideal candidate in which to cast planning problems. How then,

can planning problems be represented within this framework?

Having chosen the situation-space model as a paradigm for the concept
of problem and having chosen Theorist as a knowledge representation scheme
for planning problems, it must next be determined how to integrate these
choices. The question that must be answered is: ‘How are the entities of the
situation-space model (situations and actions) to be expressed in the represen-
tation language of Theorist?” This, of course, depends on what the represen-

tation language is.

The Theorist knowledge representation scheme does not restrict the
choice of representation language — almost any language that allows con-
tradictions will do [Goebel85] — we make the assumption here that the
representation language is full first-order (clausal) logic. Given this assump-
tion, the question posed above becomes: ‘How are the entities of the
situation-space model to be expressed in first-order logic? This has already

been accomplished in situation calculus.



58

Recall, three variants of situation calculus are: Green’s formulation I,
Green’s formulation II, and Kowalski’s meta-language approach. The first of
these, as was seen previously, is not as robust as the second or third, so it will
not be considered any further. Both the second and third variants of situa-
tion calculus form suitable foundations on which to build representations for

planning problems in Theorist.

How can the above representational building blocks be used by Theorist
to represent the situation-space model? To begin to answer this, it will be
helpful to consider how first-order logic is used by each of these two variants

of situation calculus.

3.2.1. Review of Situation Calculus

The first-order logic characterisation of the situation-space model begins
by classifying its entities (situations, actions, objects, properties, etc.). Enti-
ties are classified as either individuals or relations. One possible classification’
admits situations, actions, and objects as individuals in the ontology of the
representation language (we shall call this ontology-G — which corresponds to
that of Green’s formulation II). Another possible ontological commitment
(choice of individuals) is to treat statements, situations, actions, and objects
as individuals (we shall call this ontology-K — which corresponds to

Kowalski’s representation).

3 Note that the frame problem must be solved with respect to a particular choice of ontology.
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In both ontologies, situations are named by functions that map situations
and actions to situations. Terms consisting of constant symbols and function
symbols are used to represent individuals. In ontology-G, the initial situation
and the effects of actions are described by axioms involving relations on
situations, whereas in ontology-K the initial situation and the effects of
actions are described by axioms involving a single relation (represented by
the predicate holds) that relates statements to situations. As was mentioned
previously, special axioms called frame axioms are used in situation calculus
to describe properties that persist from one situation to another. All of these
axioms are represented by expressions made up of terms, predicates, and con-

nectives.

In using* this representation, the properties of the goal or desired situa-
tion are treated as conjectures (or theorems) to be proven. The solution to
the planning problem is a sequence of actions that leads to a situation satisfy-
ing the desired properties. This sequence of actions can be extracted from

the situation parameter in the proven conjectures.

An important property of these characterisations of the situation-space
model is that they have well-defined semantics. Since planning problems in
the situation calculus are formalised in first-order logic, standard Tarskian

semantics can be used to specify their meaning.

4 Note that goal-directedness is not part of the representation but part of its use.
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To illustrate situation calculus representations of planning problems, con-

sider the axiomatisation of the Yale shooting scenario (cf. [Hanks86]).

A={

— loaded(0),
alive(0),

loaded(do(load,S)),

- alive(do(shoot,S)) «— loaded(S),
— loaded(do(shoot,S)),

loaded(do(wait,S)) — loaded(S),
alive(do(load,S)) « alive(S),
alive(do(wait,S)) « alive(S),
alive(do(shoot,S)) « alive(S)

A —loaded(S)}

The set of axioms (A):

Initial Situation:

The gun is not loaded

John is alive

Action: load

The gun is loaded after the action load
Action: wait (no known changes)
Action: shoot

John dies when shot with a loaded gun
After shooting, the gun is not loaded
Frame Axioms:

Figure 3.1. Yale Shooting Scenario - Axiomatisation for Ontology-G

In this example, there are two relations: loaded and alive. The relation

loaded is true of a situation when there is a loaded gun aimed at John. Simi-

larly, the relation alive is true of a situation whenever John is alive in that

situation. Initially, the gun is loaded and aimed at John, who is alive.

There are three actions defined in this example: load, wait, and shoot. For

simplicity, these actions have no preconditions. The first action, load, has

the effect that, whenever it is performed, the gun is loaded in the resulting

situation. The second action, wait, has no known effects. The final action,
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A={ The set of axioms (A):
Initial Situation:

— holds(loaded,0), The gun is not loaded

holds(alive,0), John is alive
Action: load

holds(loaded,do(load,S)), The gun is loaded after the action load
Action: wait (no known changes)
Action: shoot

— holds(alive,do(shoot,S)) «— holds(loaded,S), John dies when shot with a loaded gun

— holds(loaded,do(shoot,S)), After shooting, the gun is not loaded
Frame Axioms:

holds(loaded,do(wait,S)) < holds(loaded,S),
holds(alive,do(load,S)) «— holds(alive,S),
holds(alive,do(wait,S)) <~ holds(alive,S),
holds(alive,do(shoot,S)) < holds(alive,S)

A = holds(loaded,S)}

Figure 3.2. Yale Shooting Scenario - Axiomatisation for Ontology-K

shoot, has the effect that, whenever it is performed in a situation in which a
loaded gun is aimed at John, he is not alive in the resulting situation. As

well, the gun is no longer loaded.

Figures 3.1 and 3.2 are axiomatisations for ontology-G and ontology-K
respectively. Note that the frame axioms of ontology-K can be replaced by

the single frame axiom
holds(R,do(A,S)) < holds(R,S) A preserves(A,R),

together with a suitable definition for preserves(A,R). Thus, the choice of

ontology can aid in solving the frame problem.
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3.2.2. Casting the Situation-Space Model in Theorist

Both ontology-G and ontology-K form suitable foundations on which to
build representations for planning problems in Theorist; but, the treatment of
axioms is different in Theorist than in situation calculus. Axioms in Theorist
are represented as either facts or defaults (possible hypotheses). To specify a
planning problem, we must describe the initial situation and the laws of
motion. For now, we will restrict our attention to worlds where the initial

situation can be described solely by facts.

The laws of motion are treated differently. The effects of an action par-
tition relations describing a world into two groups: relations that are known to
be changed by the performance of the action form one group, and all other
relations — those présumed to be unaffected by the performance of the action
— form the other group. Laws of motion describing the relations that are
known to change are expressed as facts, while the laws of motion for the
relations presumed invariant are expressed as defaults (as suggested by Reiter
[Reiter80, p. 85]). These defaults correspond to frame axioms [Green81].
Collections of ground instances of these frame defaults form theories from

which predictions can be made.

For some problems, it is desirable to treat some action effects and some
initial conditions as defaults. For example, the normal effect of an action can

be represented as a default. As well, the closed world assumption can be
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expressed with defaults. In this chapter, however, we restrict the set of possi-
ble hypotheses to frame defaults. This is done in order to concentrate on the
problem of defining a preference measure for planning without the need to
consider possible interactions between various types of defaults. While we
expect that our preference heuristic will have to be modified to allow general
hypotheses, it is hoped that the modifications will not be too severe. We will

leave this question open for further study.

Once a planning problem has been represented as described above, it is
solved by finding a situation that satisfies the goal description. This situation
is named by the sequence of actions from which it results, and is described by
the facts together with a supporting persistence theory (a collection of ground
instances of frame defaults). In this framework, a solution to a planning
problem has two components: a plan (extracted from the term that names the
goal situation) which achieves the goal, and a persistence theory which

predicts the goal description.

Since it is not known in advance whether the goal description or its nega-
tion will hold, they are treated as competing predictions. From the theories
predicting the goal or its negation, one seeks a preferred persistence theory
from which the expected truth of the goal description is determined. The
intuition is to select a preferred theory that is most likely, in some sense. For

instance, it would be reckless to prefer a theory merely because it predicts the
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goal will hold! Therefore, the derived plan (and hence its quality) depends
on the preferred persistence theory. In turn, the actions that are presumed
applicable and the presumed effects of those actions depend on the predic-

tions of the preferred theory.

This is quite different from the treatment of symptoms in diagnosis,
where symptoms are observations to be explained. There is, however, a close
relationship between observations and predictions; both are consequences of a
theory of the world. The difference between them is that observations (if
accurate) are true in the world whereas predictions may or may not be true
in the world. From this we see that the quality of a heuristic measure of
preference depends on its ability to select a theory that makes predictions
which are usually true in the world. From the above, we see that their is an
important difference between observation and prediction. The issue of theory
preference is considered more closely in section 3.4. Figure 3.3 depicts plan-

ning in the Theorist framework (cf. [Poole87b]).

3.2.3. The Impact of True Negation

The choice of representation language — full first-order logic in this case
— affects how and what facts are expressed. In typical planning systems
based on Horn clause logic; only statements in positive form are asserted
(e.g., dead instead of —alive). Negative information is deduced by employ-

ing the negation as failure rule [Clark78]. In contrast, the Theorist
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Find T,, a set of ground instances of elements of A, such that:

FuT = G, and
F u T, is consistent
where A is a set of frame defaults
T; is a set of ground instances of frame defaults
F is a set of facts describing the initial situation
and laws of motion
G is a goal description (or its negation).
Then choose Tp € {T1, ...}
such that ViTy >PT,
where > is a theory preference heuristic
Tp is a preferred theory
P is a procedure for choosing a preferred theory.

Figure 3.3. Planning in a Theory Formation/Theory Preference Framework
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framework, with full first-order logic, uses true negation to express negative

information.

The use of true negation affects the way in which the domain of interest
is axiomatised. Kowalski [Kowalski79] has noted that in answering queries
involving universal quantification and negation, the full iff form of definitions
is needed (whereas Horn clause planners provide only the if halves of defini-
tions). Thus, when describing relations in the domain, care must be taken to
provide both the if halves and the only-if halves of definitions. In Theorist,
this is especially important as failure to provide the only-if half of a definition
allows models that are inconsistent with the intended definition. Some
theories that are inconsistent with the intended model are not inconsistent

with the models of the underspecified logical theory.

In addition to its effect on the representation of facts, the explicit
representation of negative information also affects the form of the representa-
tion of defaults. In particular, it will soon become apparent (cf. section
3.2.4.1) that the direct representation of the usual frame axioms as defaults is
not sufficient to express the notion of persistence (negative information must
be taken into account). Therefore, because of the explicit representation of
negative information, extra care must be taken to ensure that the specifica-
tion of problems correspond to their intended meaning. Fortunately, this is

not difficult in view of the well-defined semantics of first-order logic.
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3.2.4. Representing Frame Axioms as Defaults

Any representation for planning problems must address the frame prob-
lem. It must somehow encode the assumption that most relations are unaf-
fected by a given action, that is, generally their truth-value persists after per-
forming the action. How can this notion of persistence be represented in
Theorist? Different answers to this question result from each of the two onto-

logies being considered. Each will be examined separately.

3.2.4.1. Representation in Ontology-G

Recall that ontology-G corresponds to Green’s formulation-II where
situations, actions, and objects (but not statements) are admitted as individu-
als into the ontology of the representation language. In Green’s
formulation-II, persistence is represented by frame axioms. These frame
axioms capture the notion of persistence but, as has been shown, suffer from
serious drawbacks. How can the expressive power of frame axioms be

exploited without incurring their shortcomings?

Reiter [Reiter80] suggests that defaults can be used to represent frame

axioms. The default rule schema for frame axioms in Rieter’s logic is:

R(X,s) : M R(x,f(x,s))
R(x,f(x,s))

3.1

This inference rule schema allows the conclusion that every action (or state
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transition) leaves the truth-value of every relation unchanged unless it can be
proven otherwise. In Theorist, however, we would use the related default

axiom schema:
3.2) [x,s] R(x,f(X,s)) «— R(X,s)

(The parameters in square brackets are to be instantiated). This default

schema means that instances of the statement
R(x,f(X,s)) < R(X,s)

can be used in an explanation of the goal as long as the explanation is con-
sistent with the facts. The translation from 3.1 to 3.2 is only approximate for
two reasons. First, Theorist is able to make deductions based on the contra-
positive of an implication, that is, implication in Theorist is true logical impli-
cation. For example, in addition to being able to derive R(X,f(X,s)) from
R(x,s) when it is consistent, it is also possible to derive —R(X,s) from

- R(x,f(X,s)) when it is consistent.

The second reason the translation is only approximate is that theories in
Theorist differ from extensions in Reiter’s logic. Extensions are the theorems
following from maximal (and consistent) sets of ground instances of defaults,
whereas theories are sets of instances of defaults (consistent with the facts)

that explain the observations; there is no implied maximality criterion.



69

The default schema (3.2) presented above is not sufficient to express the
notion of persistence. The inadequacy of the default schema arises in con-
nection with the choice of full first-order logic in Theorist. The explicit
representation of negative information, which the use of first-order logic
entails, makes it necessary to augment the usual frame axioms for positive
information with frame axioms for negative information. Thus, in addition
to the default schema (3.2) that expresses the perSistence of positive informa-

tion, the default schema:
3.3 [X,s] ~R(X,f(X,s)) «— —R(X,s)

is needed to capture the persistence of negative information. This default

schema means that instances of the statement
- R(x,f(X,s)) < —R(X,s)

can be used in an explanation of the goal as long as the explanation is con-
sistent with the facts. Default schema (3.2) and default schema (3.3) can be

combined into a single equivalence default schema:
3.9 [X,s] R(%,f(X,5)) <~ R(x,s)

This default schema (3.4) is used to represent persistence in ontology-G.

It means that instances of the.statement
R(x,f(X,s)) < R(X,s)

can be used in an explanation of the goal as long as the explanation is
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consistent with the facts. Intuitively, this means that we can assume a given
actions doesn’t change the truth-value of a given relation unless this assump-

tion is inconsistent with the facts (and other assumptions already made).

Figure 3.4 illustrates the Theorist axiomatisation for the Yale shooting
scenario using ontology-G. Two sets of statements are given. One set, F,
describes the relations that are accepted as true in the world. Within this set,
there are two kinds of axioms: those that describe the initial situation, and

those that describe the changes caused by the performance of actions.

A second set of statements, A, contains a frame default for each primi-
tive [Fikes71] relation occurring in F. Collections of instances (the variables
in the square brackets are to be instantiated) of these defaults form theories.
Whenever an instance of a frame default is included in a theory, the truth-
value of the corresponding relation is preserved when performing the particu-
lar action in the particular situation (e.g., alive(do(load0)) < alive(0) means
the truth-value of alive is unaffected when pefforming the action load in

situation 0).

3.2.4.2. Representation in Ontology-K

How can the notion of persistence be represented in Theorist if
ontology-K is chosen? Recall that ontology-K corresponds to Kowalski’s
representation where statements, situations, actions, and objects are admitted

as individuals into the ontology of the representation language. In
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F={ The set of facts (F):
Initial Situation:
—loaded(0), The gun is not loaded
alive(0), John is alive
Action: load
loaded(do(load,S)), The gun is loaded after the action load

Action: wait (no known changes)
Action: shoot
— alive(do(shoot,S)) «— loaded(S), John dies when shot with a loaded gun
— loaded(do(shoot,S))} After shooting, the gun is not loaded

A= { The set of Frame Defaults (A):

[A,S] loaded(do(A,S)) — loaded(S),
[A,S] alive(do(A,S)) « alive(S)}

Figure 3.4. Yale Shooting Scenario - Theorist Axiomatisation for Ontology-G

Kowalski’s representation [Kowalski79], a single frame axiom is used to

express persistence.

In Theorist, this frame axiom can be represented as a default. The

default corresponding to the frame axiom of Kowalski’s representation is:
@3.5) [R,A,S] holds(R,do(A,S)) < holds(R,S)

This default (3.5) is used to represent persistence in ontology-K. (Note that
this is a default, not a default schema. Compare the difference between how
default schema 3.4 and default 3.5 are used in Fig. 3.4 and Fig. 3.5 respec-
tively.) In ontology-K, the issues arising as a result of the explicit representa-

tion of negation appear both at the meta-level and at the object-level since we
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can introduce negation at the object-level, i.e., holds(not(R),S). Thus, the

above default is expressed as an equivalence similar to those of ontology-G.

Figure 3.5 gives the Theorist axiomatisation of the Yale shooting
scenario using ontology-K. Note that under ontology-K, a single frame
default replaces the frame defaults for each relation in ontology-G. Again
we must emphasize that the choice of ontology impacts the solution to the

frame problem.

F={ The set of facts (F):
Initial Situation:
— holds(loaded,0), The gun is not loaded
holds(alive,0), John is alive
Action: load
holds(loaded,do(load,S)), The gun is loaded after the action load
Action: wait (no known changes)
Action: shoot
— holds(alive,do(shoot,S)) « holds(loaded,S), John dies when shot with a loaded gun
- holds(loaded,do(shoot,S))} After shooting, the gun is not loaded

A={ The set of Frame Defaults (A):
[R,A,S] holds(R,do(A,S)) < holds(R,S)}

Figure 3.5. Yale Shooting Scenario - Theorist Axiomatisation for Ontology-K
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3.3. Using the Representation in Planning

Planning can be characterised as a process of deductive question answer-
ing [Green81] and search. For example, in a simple forward planner, a tree
of possible situations is searched to find one that satisfies the goal description.
Question answering is used to determine whether the goal description is satis-
fied in the current situation. When it is not satisfied, neighbour nodes of the
current situation in the search tree can be generated by using question
answering to determine which actions are possible, i.e., which actions have

their preconditions satisfied in the current situation.

This separation of planning into question answering and search allows
the representation of planning domain knowledge to be considered indepen-
dently of the planning search strategy. The Theorist-based representation
described earlier is intended to form the basis of the question answering com-

ponent of a planning system.

Once a planning problem has been expressed, how is the representation
used to find a plan? Recall that in a typical theorem proving planner
(e.g., [Green81]), the initial situation, the effects of actions, and the goal
situation are described by axioms in first-order logic, then an attempt is made
to prove the conjecture that there exits a situation satisfying the goal descrip-
tion. If a proof is found then a plan is produced as a side-effect. A planning

system of this type reasons by drawing conclusions from its knowledge.
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This view of reasoning has serious drawbacks arising from the monotonic
nature of logical deduction. Our proposed treatment of the goal stems from
the position espoused by Poole et al. [Poole87b]. Instead of viewing reason-
ing as deduction from knowledge, it is viewed as the formation of “scientific”
theories [Popper58]. Thus, we view the planning process as the building of a
theory of the way the world is. If the goal is achievable then its properties
will be a consequence of the facts and the theory of the world, that is, the

goal description is a prediction of the theory.

Given a theory of the world, verifying that the goal description is a pred-
iction of the theory amounts to the same thing as proving the conjecture that
a situation exists which satisfies the goal description. So one approach to
planning would be td first construct a theory of the world and then construct
a plan using Green’s approach, but the world is a complicated place. Con-
structing a complete theory of the world would be an arduous task. Instead,
we require a theory of the world that only includes information relevant to
determining if and how the goal is achievable, that is, we require goal-

directedness.

How can such a theory be constructed? To begin to answer this ques-
tion, let us first examine a very naive approach to planning which we call
reckless planning, since it sanctions any theory that predicts the goal descrip-

tion without regard to the theory’s reasonableness or likelihood. By consider-
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ing the shortcomings of this approach, a more reasonable and more cautious

approach, which we call conservative planning, can be developed.

3.3.1. Reckless Planning or Planning by Wishful Thinking

Recall that in the theory formation framework, a solution to a planning
problem is a sequence of actions that achieves the goal together with a per-
sistence theory that predicts the goal description. In general, there will be
multiple consistent persistence theories making different predictions. One
approach to planning would be to ask, for each sub-goal, whether there exists
a persistence theory which predicts the sub-goal. This approach is reckless

for several reasons.

First, no consideration is given to the reasonableness or likelihood of the
theories. For example, a persistence theory which predicts dice will continue
to roll seven supports a plan to get rich playing ‘“‘craps,” but the theory, while

possible, is unlikely.

Second, no consideration is given to the mutual consistency of the
theories. Each sub-goal may be predicted by a different theory and these
theories may be mutually incompatible, that is, there may be no consistent

theory which unifies the individual theories corresponding to each sub-goal.

For example,5 in Lesotho all northern roads are long and smooth or short

5 Steve Furino suggested this example.
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and rough. A driver in Mokhotlong wishes to go to Thaba Tseka. He is at
a fork in the road where one branch leads to the long smooth route and the
other leads to the short rough route. Two sub-goals are: not to run out of gas
and not to get a flat tire. There is a theory for each sub-goal, namely, if the
route selected is short then he has enough gas and if the route selected is

smooth then the tires will be fine.

Obviously, the two theories are incompatible. Forming a plan to achieve
the goal by achieving each sub-goal with the above actions and theories
would be reckless because it treats sub-goals independently. It does not take
interactions between the sub-goals into account — it does even consider that

different incompatible actions are required to achieve the sub-goals.

Third, this approach is reckless because alternatives are not considered.
Even if a single theory predicts all the sub-goals and is more likely than all
other theories predicting the sub-goals, planning based on this theory is reck-

less unless theories predicting the negation of the sub-goals are considered.

Fourth, the reckless approach to planning does not prohibit making need-
less assumptions. It looks for any theory which predicts the sub-goals, not
necessarily the least presumptive theory (i.e., the theory making the fewest

assumptions while still predicting the goal).
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Finally, when there is incomplete knowledge, a situation may arise when
there are several alternatives with no basis on which to choose. The reckless
approach would be to arbitrarily choose the most favourable alternative. The
reckless approach to planning can be characterised as a form of ‘wishful
thinking.” It asks: ‘What would the world have to be like in order to make

my objectives achievable?” and then it assumes the world is like that!

3.3.2. Conservative Planning

These deficiencies of reckless planning suggest a more reasonable
approach — conservative planning. By considering these deficiencies, we can
outline some properties that a conservative planning approach should have.
Conservative planning should attempt to view the world the way it is — or at
least, the way it is expected to be — and then make decisions accordingly,

without making unreasonable assumptions.

The issue of theory preference arises in connection with the first
shortcoming of reckless planning. When is one persistence theory more rea-
sonable or more likely than another? This question will be examined in
detail in section 3.4. For now, it suffices to note that some form of theory

preference is necessary in order to plan conservatively.

The second deficiency of reckless planning indicates the need for a single
unifying persistence theory for the set of sub-goals. This theory, if it exists,

might possibly be constructed by finding the most likely theory for the first
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sub-goal. Next each of the remaining sub-goals is checked to see whether it
is predicted by that theory. If there is some sub-goal not predicted by the
theory then an embellishment of the theory is sought (subject to the likeli-
hood constraint) which predicts the sub-goal. Whether or not this method of
constructing a unifying theory works in general, it is clear that a conservative

approach to planning should have a means of finding a unifying theory.

The third shortcoming of the reckless approach can be addressed by
ensuring that there is no theory for a negated sub-goal which is more likely

than the theory predicting all the sub-goals described above.

The fourth shortcoming can be addressed by choosing the least presump-
tive theory. Sometimes this form of conservatism is too cautious, for exam-
ple, in order to plan how to get to your car you can assume that your car is
where you left it and that the weather will remain the same during the walk
to your car. It would be less presumptive to exclude the assumption about

the weather, but this is overly cautious.

Finally, whenever there is a choice to be made and there is no informa-
tion on which to base the choice then the conservative approach to planning
should incorporate a conditional into the plan. Thus, conservative planning
should attempt to view the world the way it is and to make decisions accord-

ingly, without making unreasonable assumptions.
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3.4. Theory Preference Criteria for Planning

In order to plan conservatively, some means is necessary to distinguish
among the multiple competing persistence theories. When a scientist is faced
with a choice among competing theories, several factors influence the choice
— corroboration with the evidence, predictive power, simplicity, unifiability
with other knowledge, etc. In planning, when presented with competing
theories (each making different predictions), we desire a means to choose
among theories — a theory preference heuristic. This heuristic should prefer
the theory that corresponds to our intuition about persistence. The heuristic

should simultaneously satisfy three criteria:

1) accuracy — it should select only theories that makes predictions

corresponding to our common sense expectations;

2) sufficiency — if the goal description (or its negation) is expected, then it

should be predicted by the selected theory;

3) resource conservatism — it should select a theory with maximal obtain-
able accuracy for minimal computational effort, that is, we want to make
as many accurate predictions as possible while doing only enough compu-

tation as is necessary to determine whether the goal is expected.

To make the discussion of this heuristic more concrete, consider whether,
in the shooting scenario, John will be alive after the actions load, wait, and

shoot. For simplicity, ontology-G will be used throughout the rest of the
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chapter, although similar conclusions can be drawn using ontology-K. As

well, we will often abbreviate situation names as follows:

1 = do(load,0)
2 = do(wait,do(load,0))
3 = do(shoot,do(wait,do(load,0))).

There are 29 consistent theories that describe the invariance of relations over
the path from situation 0 to situation 3. These are formed from ground

instances of elements of A. Of these, two are particularly interesting:

T, = {loaded(do(wait,do(load,0))) « loaded(do(load,0)),
alive(do(load,0)) < alive(0),
alive(do(wait,do(load,0))) — alive(do(load,())),} and

T, = {alive(do(load,0)) < alive(0),
alive(do(wait,do(load,0))) < alive(do(load,0)),
alive(do(shoot,do(wait,do(load,0)))) — alive(do(wait,do(load,0))),
loaded(do(shoot,do(wait,do(load,0)))) — loaded(do(wait,do(load,0)))}.

The statements in the theories are instances of frame defaults that record
two different sets of assumptions about the action sequence load then wait

then shoot. Note that these two theories conflict since

F u T; E —alive(do(shoot,do(wait,do(load,0)))) while
F U T, = alive(do(shoot,do(wait,do(load,0)))).

Of the remaining 27 theories,
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1 predicts alive(do(shoot,do(wait,do(load,0)))),
12 predict —alive(do(shoot,do(wait,do(load,0)))), and
14 make no prediction regarding alive or —alive.

In our intended model (i.e., the one that corresponds to our intuitions), how-

ever, —alive(do(shoot,do(wait,do(load,0)))) is true (Figure 3.6).

Situations:
1 = do(load,0)
2 = do(wait,do(load,0))
3 = do(shoot,do(wait,do(load,0)))

Intended Model Features

0 1 213

loaded | F| T| T | F

alive T|T| T]|F

T; Model Features T, Model Features

0 11213 0 1 2 3
loaded | F| T| T| F loaded | F| T| F | F
alive T|T|T]|F alive T|T|T|T

Figure 3.6. Essential Features of Models for the Yale Shooting Scenario
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At this point, one might wonder if the existence of multiple consistent
yet conflicting theories indicates that our axiomatisation of the problem is
incorrect. In their work, Hanks and McDermott [Hanks85] show that such
multiple consistent conflicting solutions are inevitable and they conclude that
nonmonotonic reasoning systems are inherently incapable of adequately
representing even simple default reasoning problems. However, we claim,
the problem is not due to any deficiency of the reésoning system; it is merely

the result of a weak set of axioms.

One might ask whether it is possible to restrict the set of consistent
theories by strengthening the set of facts so that the new set of consistent
theories all predict —alive(do(shoot,do(wait,do(load,0)))) (e.g., adding as a
fact that loading pei'sist while waiting). The answer, of course, is yes —
frame axioms could be added to the set of facts — but we are trying to avoid
the inherent problems of frame axioms. Therefore, we initially allow theories
which disagree with our intended model and then use theory preference to

discriminate between them.

We wish to provide a theory preference heuristic based on our intuitions
about the persistence of relations. To do this, we must first formalise the
concept of persistence. The potion of persistence is intended to reflect what
McCarthy calls the “common sense law of inertia;” that is, when an action is
performed, most things remain unchanged. In order to formalise this intui-

tion, a semantic account of persistence is necessary.
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We will use standard Tarskian semantics; that is, the world is described
in terms of individuals and relations on individuals. The domain of discourse
contains three types of individuals: situations, actions, and ordinary objects
(i.e, ontology-G). For the purpose of discussion, the language in which logi-
cal theories are expressed will be full first-order clausal logic; however, any

language capable of expressing a contradiction is sufficient (cf. [Goebel85]).

Definition 3.1.
Let R be a relation in the domain with a vector of arguments X as well as
a situation argument s. We say that R(X) is a propositional fluent
[McCarthy69] because the truth-value of the corresponding relation,
R(X,s), varies with the situation. When we say R(X) is true in situation s,
we mean R(X,s) is true.

Definition 3.2.
Let do be a function that maps actions and situations to situations.
Thus, do(a,s) is the situation that results from doing action a in situation
s.

Definition 3.3.
Let s, = do(ay,do(a,_j,...,do(a,Sp))...) be a situation in the domain. The
situations sy to s, determine a parh which we write as <sg,s,>. The
length of a path <sy,s,> is defined to be n, the number of actions on the
path from sg to s,. A unit path is a path of length one.

Definition 3.4.
Given a consistent theory T:

a) A primitive propositional fluent R(X) is said to persist in T over the
unit path <s,do(a,s)> if

F U T E R(X,s) = R(x,do(a,s));

b) A persistence set, consisting of elements of the form
persist(R(X),do(a,s)), describes the propositional fluents that persist
over a given path. For a given theory T and a path <sg,s,>, we
define the following persistence sets:
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{ {persist(R(D),do(a;,s))} if FU T = R(X.s) — RE,do(aysy)
T,R(‘) otherwise

H—
l

UP
R(
UP

i

Here PT RE) indicates whether the propositional fluent R(X) persists over

unit path <8sSj+1>- PT indicates all the propositional fluents that persist
over unit path <s;s;,;>, and Py describes all the propositional fluents
that persist over the entire path (i.e., <sg,s,>).

In definition 3.4a persistence is defined in relation to primitive [Fikes71]
propositional fluents. This ensures that the truth-value of a defined (non-
primitive) propositional fluent is preserved only when its associated primitives

persist.

A domain-dependent partial ordering of persistence sets (denoted by >P)
can be defined to reflect the supposed relative likelihoods of each persistence
set. Thus if two persistence sets differ on a highly persistent propositional
fluent R(X), the persistence set which includes it would be higher ranked. We
leave open the question about how >P should be defined, but we will now

consider some possibilities.

As indicated, the partial ordering >P is a domain dependent ranking of
the likelihood of persistence sets. If all we know about the likelihood of a
propositional fluent persisting is that it is more likely to persist than not (i.e.,

the commonsense law of inertia), then we can define >P to be 2.
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When we know more about the persistence characteristics of various pro-
positional fluents, then this information can be included by providing an arbi-
trarily complex definition of >P. For example, if we know that all proposi-
tional fluents in the domain of interest are equally likely to persist, then we
can define >P to be a comparison of the cardinality of persistence sets (cf.
the example in chapter 5 figure 5.1). In this case, the partial ordering >P is

defined as the total ordering > on the cardinality of persistence sets.

When the domain knowledge about persistence probabilities is complex
(e.g., metal fatigue, device failure rates, etc.), Neufeld’s work on common-

sense probabilistic theory comparators may be useful [Neufeld87].

This semantic definition of persistence can be used to distinguish
theories. For instance, in the Yale shooting scenario, we can arbitrarily
assign weights to the propositional fluents loaded and alive. These weights
can be used to represent the relative probability of the propositional fluents
persisting. By taking >P to be a comparison of weighted measures of the sets
of persisting propositional fluents in competing theories, we can prefer the
theory with the greatest weight. Figure 3.7 illustrates how theory T, can be
preferred over T, in the Yale shooting scenario when arbitrarily assigning
alive a weight of 2 and loaded a weight of 1. This table is computed by
counting the unit paths over which each propositional fluent persists in the

indicated theory (cf. Fig. 3.6), e.g., in theory T, the truth-value of loaded is
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Path: <0,do(shoot,do(wait,do(load,0)))>

R (W[ |Pprl| | [Pprl | WX [Prr| | WX [Ppg]|
loaded | 1 1 1 1 1
alive 2 2 3 4 6

3 4 5 7

Figure 3.7. Weighted Persistence Comparison for Yale Shooting Scenario

invariant only over the unit path <2,3>, hence the entry ‘1’ at the intersec-
tion of row loaded and column |Pr g |. The table shows that the weight of
T, is greater than the weight of T;. While it may seem reasonable to weight
alive more than loaded, this naive approach is inadequate since T, is mistak-

enly preferred. A more sophisticated definition of >P is needed.

Before turning to the definition of our proposed theory preference heuris-
tic, we will first define the another possible preference heuristic based on the
global maximisation of persistence. After defining this, we will show be
means of a counterexample that global maximisation of persistence is an
inadequate heuristic for reasoning in temporal domains. The following two

definitions define the global maximisation heuristic.
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Definition 3.5.
A consistent theory Ty is said to be more persistent than consistent theory
T, over the path <sy,s,> if Py, >P P, where Py is the persistence set for
T over <s;,s,>. The partial ordering >P on persistence sets defines a
partial ordering > on consistent theories. Thus, Ty ># T, means T, is
more persistent than T,.

Definition 3.6.
A consistent theory Tgmp is said to be a globally maximally persistent

theory over a path if =3Ty, Ty > Tgyp over the path where each Ty is
a consistent theory.

We can use these definitions to examine Reiter’s [Reiter80, p. 85] for-
malisation of the STRIPS assumption. In Reiter’s terms, a default theory
A = (D,F) consists of defaults D and facts F. The extensions of a default

theory with

D = R(S): M R(do(A,S))
- R(do(A,S))

are the maximal consistent sets of consequences of F U D, that is, extensions
are generated from the facts together with maximally consistent subsets of the
elements of D. Therefore, when >P is taken to be D, extensions correspond
to the consequences of globally maximally persistent theories (as these are
formed from maximally consistent subsets of the elements of A). Thus, both
T; and T, (globally maximally persistent theories) of the Yale shooting
scenario have corresponding extensions in Reiter’s logic. Since only T;
corresponds to the intended model for the Yale shooting scenario, this shows

that the global maximisation of persistence is inadequate. Therefore, global
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maximal persistence is not an appropriate heuristic measure of preference for
planning.

Since actions are performed in sequence, it does not make sense to glo-
bally maximise persistence over a path. Instead, persistence should be max-
imised step by step (in chronological order* — cf. [Hanks85, Hanks86,

Shoham86a, Shoham86b]). To see the intuition behind this, consider the fol-

lowing example.

Suppose we have two switches connected to a nuclear device. Switch A
arms the device and switch B detonates the device. If we assume both
switches continue to function after throwing switch A, we expect great
changes in the world after throwing switch B. Alternatively, if we do not
make the above assumption, then we expect that nothing much will change
after throwing switch B. The two alternatives are globally maximally per-
sistent, but the first alternative is the expected one. From this we can see
that we should maximise persistence in first step of a path before we consider
the second step. We do this to reflect the idea that causality flows forward in
time. We do not want to assume the switches fail in order to avoid drastic

changes in the future.

4 This concept is due to Yoav Shoham.
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An important property the preference criterion should exhibit is composi-
tionality over sub-paths, that is, the predictions of the preferred theory for the
entire path to agree with the predictions of the preferred theory for a sub-
path. In the above example, if the global maximal persistence criterion was
applied to the first unit path, the (unique) preferred theory would predict that
the switches continued to function; while if applied to the whole path, two
conflicting theories arise. Therefore, the global maximal persistence criterion

lacks the compositionality property.

The notion of step by step maximisation is formalised in the following

definitions.

Definition 3.7.
A consistent theory T; is said to be chronologically more persistent than
consistent theory T, over the path <s;,s,> if either

a) Vi<n, P{‘ >P P-}z, or

b) 3j<n, P{ >PP{ and
Vi<j, Pp, PPy,
where P-li- is the persistence set for T over <s;,s;,1>>. The partial ordering
>P on persistence sets defines a partial ordering >® on consistent

theories. Thus, T; > T, means T, is chronologically more persistent
than T,.

Definition 3.8.
A consistent theory Tepp is said to be chronologically maximally persistent
(CMP) over a path if =3Ty, Ty > Tcpmp over the path where each Ty is
a consistent theory.

It should be mentioned that, in general, there is no guarantee of a

unique CMP theory. When there are multiple CMP theories, our intuition
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about persistence offers no further assistance — the problem is simply under-
specified. In the absence of any additional domain knowledge, there is no
basis by which to determine a “best”” theory. We can, however, form a con-

ditional plan based on the disjunction of the CMP theories

DTcpmp = \k/ Tcmp,- Note that DTcpp is not a “scientific” theory since it is

not a set of instances of defaults; it is, however, a logical theory. Because at
least one of the CMP theories is expected to describe the world, the predic-
tions of F U DT p are expected to be true in the world. Therefore, even in

this case, we can still describe what we expect to be true in the world.

How can we use CMP to answer the query about whether John is
expected to be alive in the Yale shooting scenario (Fig. 3.4)? In this exam-
ple, all we know about the relative likelihood of a relation persisting is that,
by the common sense law of inertia, it is more likely to persist than not.
Therefore, it is appropriate to take >P to be D. In this case, Ty is the unique
chronologically maximally persistent theory over <0,3>. As we have seen
earlier, T; corresponds to the intended model; its predictions correspond to
our expectations about the domain. Therefore, the query about whether
whether John is expected to be alive is answered by determining what T,

predicts. Here Ty predicts —alive(3).



91

We conjecture that CMP theories correspond to our expectations in plan-
ning. One possible argument against this claim is given by Kautz [Kautz86,

pp- 404-405]. He describes a scenario where a car is left in a parking lot and

at some later time it is observed to be missing.> Under chronological maximi-
sation of persistence, the car is expected to be in the parking lot until the
shortest possible time before it is observed inissing. This is unreasonable
since the car could have been stolen or towed away any time between when it

was parked and when it was observed missing.

This argument fails to distinguish the task of predicting the future out-
come of a series of events, and the rask of explaining how a particular state of
affairs could have come about. In the above example, it seems reasonable to
expect that your car will remain where it is parked until you return unless
you have reason to believe an event will occur which affects your car’s loca-
tion. When trying to explain why your car is not where it was expected to
be, it seems reasonable to hypothesize that some unknown event must have
occurred which changed the car’s location. Since the task of predicting is
relevant to planning, but the task of explaining is not, Kautz’s argument is
irrelevant to planning. So we are still justified in making the claim that chro-

nological maximisation of persistence is an appropriate heuristic for planning.

5 This example is better represented in an ontology of time intervals and events. For discus-
sion, we assume our heuristic can be recast in such an ontology.



92

Additionally, the CMP heuristic satisfies two of the three criteria we
gave earlier: accuracy and sufficiency. The third criterion we set out
(resource conservatism) does not involve the specification of what is expected
to hold in the domain, but rather, it involves computational issues — what
subset of what is expected can be reasonably computed. While CMP seems
to capture our expectations about persistence, CMP theories are usually not
the most economical choice. In a CMP theory, many of the propositional
fluents that persist are simply irrelevant to the problem at hand. Including
frame defaults for these irrelevant fluents is computationally costly (because
of the required consistency checking). Therefore, a better theory would
exclude irrelevant instances of frame defaults. The need to simplify theories
by eliminating irrelevant details motivates the following definitions (cf.

[Poole86]).

Definition 3.9.
A partial ordering on simplicity of consistent theories predicting G is
defined as follows. Let T; and T, be distinct consistent theories predict-
ing G. T, is simpler (>®) than T, (w.r.t. G) iff FU T, = Tj.
Syntactically, Theorems(F U T;) C Theorems(F u T,).

Definition 3.10.
A consistent theory is simplest w.r.t. G if it is a maximal element of the
partial ordering >* on the set of consistent theories predicting G.

Simplest theories contain the minimal amount of information necessary
to make a given prediction. Because simplest theories can be generated in a
goal directed manner (cf. [Poole87b]), and because they involve less con-

sistency checking, they are computationally less costly than CMP theories.
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Let us see why simplicity cannot be used to determine the expected out-
come of a sequence of actions. In the example above, there is a single sim-

plest theory predicting —alive(do(shoot,do(wait,do(load,0)))), namely:
T3 = {loaded(do(wait,do(load,0))) — loaded(do(load,0))}.

There is also a simplest theory predicting alive(do(shoot,do(wait,do(load,0)))).

It is:

T4 = {alive(do(load,0)) — alive(0),
alive(do(wait,do(load,0))) < alive(do(load,0))}.
alive(do(shoot,do(wait,do(load,0)))) <~ alive(do(wait,do(load,0)))}.

It should be clear that simplicity alone is not an appropriate heuristic for
theory preference in planning, since it does not satisfy the accuracy criterion
(e.g., T4 is a simplest theory but its prediction does not agree with the
intended model). In other words, simplicity does give us the computationally
least expensive way to predict a goal, but it does not tell us whether to expect

the goal to be true in the world.

Our proposed preference heuristic combines simplicity and chronological
persistence. The trade-off between resource conservatism and accuracy is
reflected in a trade-off between simplicity and chronological persistence —
increasing simplicity and decreasing chronological persistence decreases compu-
tational cost and accuracy, while decreasing simplicity and increasing chronolog-

ical persistence increases computational cost and accuracy. To arrive at our
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proposed preference heuristic, we must choose a point on the trade-off that
satisfies the three criteria: accuracy, sufficiency, and resource conservatism.
We want our preference heuristic to involve only as much computation as is
necessary to determine whether our goal is expected, and then, with little
further computation, it should select a theory (or disjunction of theories) that
maximises accuracy (i.e., maximises the subset of what is expected that gets
predicted). Thus, we are willing to approximate CMP theories to decrease

computational cost.

We do this as follows. From the partial ordering of theories defined by

the chronological persistence, we take the disjunction of a particular set of

theories DT = \I{ Tyx. Each Ty is simpler than a (or the) CMP theory.

Therefore, DT, (the disjunction of theories that approximates CMP theories)
has the property that for all P, F u DT, = P implies F U DTcpp F P, that
is, every prediction of DT, is a prediction of DT¢pp, but not every prediction
of DTcmp is necessarily a prediction of DT,. Consequently, DT, may be
uninformed about some features of the world (i.e., the intended model

corresponding to DTcpp), but it is not misinformed.

DT, can be thought of as representing a point on the trade-off between
resource conservatism and accuracy. This point is determined by the Ty
above. The sufficiency criterion adds another constraint for determining DT,.

We must ensure that DT, predicts the goal if it is expected (or predicts its
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negation if the negation is expected). To do this we make use of the follow-

ing theorem and definitions:

Definition 3.11.
A maximal theory that predicts G is a maximal element of the partial
ordering determined by the dual of >*. (Intuitively, it is a least simple
(most complex) theory predicting G. Note that the partial ordering is
over consistent theories.)

Definition 3.12.
The partial ordering >P is sensibly defined if PJ 2 P{ implies
P'l“, >P P-}z. (Intuitively, the partial ordering is sensibly defined if it is
consistent with the common sense law of inertia, i.e, relations are more
likely to persist than not).

Note that >P, when sensibly defined, is a refinement of D and that > is
a refinement of >*. Thus, Ty >* T, implies T, >® T;. This important obser-
vation is fundamental to the definition of DT, and it allows us to give the

following theorem.

Theorem 3.1
If, for each maximal theory My that doesn’t predict G, there exists a
consistent theory Ty that predicts G, such that Ty is chronologically more
persistent than M, then all CMP theories predict G provided >P is sensi-
bly defined.

Proof
Suppose there is a CMP theory Tcyp that doesn’t predict G. There is a
maximal theory M that doesn’t predict G for which Tcpp is simpler than
M (w.r.t. =G or w.r.t. Gv =G depending on what Tcyp predicts).
Since Tcypp is simpler than M and since >P is sensibly defined, the per-
sistence set for Tomp is contained in the persistence set for M for each
unit path. Therefore, M is chronologically more persistent than Tcwmp-
The only theory chronologically more persistent than a CMP theory is
itself. Therefore, Tcpp =M. Hence, Teyp is @ maximal theory that
doesn’t predict G. By hypothesis, there exists a consistent theory Ty that
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is chronologically more persistent than Tcyp. Again, the only theory
chronologically more persistent than a CMP theory is itself; therefore,
Tcemp = Tx. But Ty predicts G. So Tgywp predicts G.  This contradicts
the supposition. Therefore, no such CMP theory exists.

Recall that we wish to ensure that DT, predicts the goal if it is expected
(or predicts its negation if the negation is expected). We do this by ensuring
that each maximal theory not predicting the goal (assuming the goal is
expected) is below at least one of the Ty in the partial ordering of chronologi-
cal persistence. Now by theorem 3.1, all CMP theories predict the goal.
Consequently, the goal is expected and DT, predicts it. Thus, DT, is
defined as the disjunction of least chronologically persistent theories which

cover the maximal theories not predicting the goal.

This specifies our preference heuristic. DT, satisfies the sufficiency cri-
terion by construction. It satisfies the resource conservatism criterion since
we need to compute the T; to determine if the goal is expected. It also satis-
fies the accuracy criterion since each T; is simpler than a CMP theory and

therefore their predictions are a subset of the expected properties.

As a simplification, from now on, we will only consider problems where
either the goal or its negation is expected (as is often the case). With this
assumption, we can restrict our attention to theories for the goal and theories

for the negation of the goal.
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Let us illustrate the above definition with a few examples. In the Yale
Shooting Scenario, the unique maximal theory predicting alive(3) is T,, and
T, is the only theory predicting —alive(3) that is chronologically more per-
sistent that T,. So in this case, DT, = Ty = Tcpmp- Thus, in this example,
we were unable to realise any savings. Examples can be constructed where

this is not the case.

For instance, consider the sky-diving scenario (Fig. 3.8).

F={ The set of facts:
Initial Situation:
defective(0), The parachute is defective
alive(0), John is alive
= happy(0), He is not happy
Action: guzzle
happy(do(guzzle,S)), Guzzling beer makes John happy
Action: jump
- alive(do(jump,S)) « defective(S)} Sky diving with the defective
parachute is fatal
A={ The set of Frame Defaults:

[A,S] defective(do(A,S)) — defective(S),
[A,S] alive(do(A,S)) « alive(S),
[A,S] happy(do(A,S)) « happy(S)}

Figure 3.8. Sky-diving Scenario
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Here, John is initially alive and happy and he has a defective parachute. He
guzzles some beer and then goes sky-diving. The action guzzle results in
John being happy and the action jump results in John being dead if the para-
chute is defective. We want to know what is expected after the action

sequence guzzle and then jump. The CMP theory is

Temp = {defective(do(guzzle,0)) — defective(0),
defective(do(jump,do(guzzle,0))) — defective(do(guzzle,0)),
alive(do(guzzle,0)) — alive(0),
happy(do(jump,do(guzzle,0))) — happy(do(guzzle,0))}.

In this example,

Ty = {defective(do(jump,do(guzzle,()))) « defective(do(guzzle,0)),
alive(do(guzzle,0)) — alive(0),
alive(do(jump,do(guzzle,0))) « alive(do(guzzle,0)),
happy(de(jump,do(guzzle,0))) — happy(do(guzzle,0))}

is the unique maximal theory predicting alive(do(jump,do(guzzle,0))). Here,

the theory

T, = {defective(do(guzzle,O)) «— defective(0),
alive(do(guzzle,0)) « alive(0)}

is the simplest theory predicting —alive(do(jump,do(guzzle,0))) that is chrono-
logically more persistent than Ty. Therefore, in this example, DT, =T,.

Thus, we are able to eliminate the frame default instances
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defective(do(jump,do(guzzle,0))) — defective(do(guzzle,0))
happy(do(jump,do(guzzle,0))) «— happy(do(guzzle,0))

from Tcpmp- While we expect some computational savings for this, we do lose

some accuracy. Here, we expect

defective(do(jump,do(guzzle,0))) and
happy(do(jump,do(guzzle,0))).

Tcmp makes these predictions, but DT, does not. Thus, we see a case where
DT, approximates Tcyp. Note that if we were interested in whether defec-
tive and happy are expected in the final situation then they would be part of
the goal. Making them part of the goal would result in selecting a different
DT, which would make the above predictions. Consequently, in cases where
DT, only approximates DTcyp, the information loss is unimportant while the

computational savings are beneficial.

Now let us turn to an example where there are multiple CMP theories
and where DT, is a disjunction of theories. Figure 3.9 depicts a partial ord-
ering of theories according to their chronological persistence. Theories that
predict an unspecified goal are represented by circles; ellipses represent
theories that predict the negation of the goal; theories that are independent of
the goal (and its negation) are represented by boxes. In this example, Ty
and T;, are CMP theories. Thus, DTcyp = Tyy v Typ. This theory predicts
the goal since both Ty and Ty, predict the goal. Note that Tg, which predicts

the goal, is chronologically more persistent than Tg and T, each of which
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Tn T2
Tg Ty Tyo
Ts T T,
T, T; T,
A
T,

Figure 3.9. Partial Ordering >

predict the goal’s negation. As well, T;, which predicts the goal, is chrono-
logically more persistent than Ts, which predicts the negation of the goal.
Both T; and Tg are chronologically more persistent than Ty, the only theory
in this example which is independent of the goal. Thus, all theories that
don’t predict the goal lie below Tg or T, in the partial ordering. So

DTA = T7 \Y) Ts.

In the next chapter, we will describe a procedure for computing DT,.



Chapter 4
Implementation Issues

4.1. Introduction

The goal of this chapter is to specify a search procedure® for constructing
DT, in the previous chapter. We begin the task of specifying the procedure
by first specifying the search space. The search space is the poset determined
by the set of consistent theories and the partial ordering (=>%). Given the
search space, we must next choose a search strategy. Many search strategies
are possible; the one we use is based on Berliner’s B* algorithm [Berliner79].
We then describe one implementation of this procedure; we provide an exam-
ple of its operation and finally, we briefly discuss some other implementation

issues.

4.2. The Search Space

The problem of constructing the DT, can be viewed as the search of a
graph whose nodes represent consistent theories. More specifically, the

search space is the poset determined by the set of consistent theories A, (ie.,

§ We do mean procedure, not algorithm, because of the theorem proving and consistency
checking involved (these are semi-decidable, in general).

101
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the set of sets of ground instances of elements of A that are consistent with
F) and the partial ordering (>%). Recall that >% is determined by >P. If
>P js taken to be D then the nodes adjoining a given node in the poset (for
>) are such that their corresponding theories differ frém the given node’s
theory by a single instance of a frame default. Finally, the nodes of the
search space can be partitioned into 3 classes according to the relation
between the theory represented by the node and the goal, that is, whether the
theory predicts the goal, predicts the goal’s negation, predicts neither (note

that inconsistent theories are pruned from the search space).

As an example, consider the search space for the Yale shooting scenario
withh >P  defined to be 2 and with the  goal
—alive(do(shoot,do(wait,do(load,0)))). The minimal element in the search

space corresponds to the empty theory, while the maximal element

corresponds to the theory:

Thax = {loaded(do(wait,do(load,0)))4—»loaded(do(load,0)),
alive(do(load,0))«— alive(0),
alive(do(wait,do(load,0))) —alive(do(load,0))}.

The persistence set corresponding to the above theory is:

Pr_ = {persist(loaded,do(wait,do(load,0))),
persist(alive,do(load,0)),
persist(alive,do(wait,do(load,O)))}.
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If two theories, say T; and T,, are such that Ty >® T, then the node
representing Ty is a descendant of the node representing T,. The adjoining
nodes in the search space are determined by the definition of > which in
turn depends on the definition of >P. Consequently, the components of the
specification of the search space are the set of consistent theories (determined
by the set of primitive propositional fluents, the path to the goal, and the

facts) and the partial order >P.

4.3. The Search Procedure

There are many possible strategies that could be used to search the
search space described in the previous section. Of these, one that seems well
suited for this particular search space is Berliner’s B* search algorithm [Ber-
liner79]. In this algorithm, each node is given two evaluations: a pessimistic

one and an optimistic one.

The intuition behind the two evaluations is that the true evaluation of the
node likely lies somewhere between the bounds. Thus, the two evaluations
are intended to delimit the range of uncertainty in the true value of the node,
i.e., they provide a range of values between which the values found in the
node’s sub-tree likely lie. Hopefully, the bounds are accurate, in which case,
the values in a given sub-tree will be between the range given at the root of

the sub-tree.
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During the search, as new nodes are expanded and their corresponding
evaluations are backed-up, the range at the root is narrowed. In this way,

the search dynamically refines the initial (static) evaluation of the root node.

The search is terminated when the pessimistic value of an arc? at the root is
no worse than the optimistic value of any other arc at the root. Intuitively,
this means that a node has been identified that is at least as good as the best

descendant of the node’s siblings.

When at the root, there are two strategies that can be employed: PRO-
VEBEST and DISPROVEREST. The PROVEBEST strategy attempts to
raise the pessimistic bound of the most optimistic node so that it is no worse
than the optimistic bound of any of its sibling nodes. In contrast, the
DISPROVEREST strategy tries to lower, below the pessimistic bound of the
most optimistic node, the optimistic bounds of all its sibling nodes. When the

B* search terminates it will have identified the best first step toward the goal.

To adapt the B* algorithm for searching our theory poset, we must
specify an static evaluation function that returns optimistic and pessimistic
bounds on a leaf node; as well, we must specify the root node and how to
generate successor nodes. Additionally, we must specify how to compare

evaluations (i.e., we must specify >P). As we will soon see, we must also

2 By value of an arc, we mean value of the arc’s corresponding node.
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specify the termination condition, since the usual one for the B* search is too

strong for our purposes (we will explain what we mean by this later).

We define the pessimistic value of a leaf node to be the persistence set
corresponding to theory represented by the node; we define the optimistic
value of a leaf node to be the persistence set corresponding to the most
presumptive extension of the node’s theory which is not currently known to
be inconsistent. The root node of the search treé is the empty theory. Its
static evaluation would return a pessimistic value equal to the empty (per-
sistence) set and an optimistic value equal to the persistence set indicating all
propositional fluents persist on each unit path. So for the example in the pre-
vious section, the theory corresponding to the root node is Tyoet = Tin = {},
the pessimistic evaluation is PESS = P, = {}, and the optimistic evaluation
is

OPT = {persist(loaded,do(load,0)),

persist(alive,do(load,0)),
persist(loaded,do(wait,do(load,0))),
persist(alive,do(wait,do(load,0))),

persist(loaded,do(shoot,do(wait,do(load,0)))),
persist(alive,do(shoot,do(wait,do(load,0)))) }.

The children of a node are formed by extending the node’s theory with
an additional instance of a frame default. This implies that a node is always
simpler than its children. As new nodes are generated, inconsistent nodes

are pruned — instances of frame defaults found to be inconsistent with the
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current node’s theory (and the facts) are removed from the possible exten-
sions to the theory. Finding inconsistent extensions results in lowering the
optimistic bound on the current theory, while finding consistent extensions has the

effect of raising the pessimistic bound of the current theory.

An optimisation is possible in the generation process. Since the chrono-
logical persistence criterion prefers theories extended by chronologically ear-
lier frame defaults, there is no need to generate children formed from later
defaults (as they cannot affect the backed-up scores). As a further optimisa-
tion, the children of the root can be treated as a special case. Because the
goal (and its negation) may be logically independent of the theories
represented by certain nodes in the search space and because we are only
interested in deciding between the goal and its negation, we can skip these
nodes by defining the children of the root node to be the nodes representing
the simplest theories predicting the goal and the simplest theories predicting
its negation. This optimisation relies on the simplifying assumption we made in
chapter 3, namely, that either the goal or its negation is expected. Under this
assumption, we do not need to consider theories that are independent of the
goal. The procedure could be made more general by removing this optimisa-
tion. Finally, it often happens that the descendant of one node is a duplicate
of the descendant of another node. The procedure given here does not

attempt to merge these nodes, but clearly this would be desirable.
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The next part of the search procedure to specifying is how to compare
evaluations. This involves specifying the partial ordering >P. Recall that
this partial ordering is domain dependent. When the domain is chosen, >P is
defined by indicating under what conditions Pr}l >P P’li‘; (i.e., specify the ord-

ering on persistence sets).

Finally, we must define the termination condition. This condition fol-
lows from Theorem 3.1 in the previous chapter. Essentially, if we ensure
that there is at least one theory predicting the goal that is chronologically more
persistent than each maximal theory not predicting the goal, then all CMP
theories predict the goal. Consequently, we can terminate the search when
the optimistic value of each theory not predicting the goal is “less than’ the
pessimistic value of at least one of the theories predicting the goal. Of
course, the meaning of “less than” depends on >P. Note that the termina-
tion check is done for the nodes attached to the root every time new scores

are backed up to that level.

Upon termination, the procedure identifies the subset of nodes attached
to the root which predict the expected goal. DT, can be extracted by taking
the disjunction of the theories corresponding to the leaf nodes that are des-

cendants of the identified subset of nodes.
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4.4. An Implementation of the Search Procedure

One implementation of the search procedure outlined in the previous sec-
tion is provided in appendix A. The implementation was written in Waterloo
Unix Prolog (WUP) [Cheng84]. It only identifies the subset of nodes
attached to the root whose theories predict the expected goal, but we have

described in the previous section how DT, can be extracted.

In order to find the maximal element of A, and to find the simplest
theories predicting the goal and those predicting its negation, and to check
the consistency of the newly generated theories, the search procedure is inter-
faced to Theorist version 0.21 (appendix B). This version of Theorist modi-
fies David Poole’s version 0.2 to include checks for looping caused by the
equivalences used in frame defaults (dealing with equivalence with be further

discussed in section 4.6).

The major data structures of the program are the node and the search
tree. A node consists of a name (implemented as a sequentially generated
positive integer), a theory (implemented as a list of instances of frame
defaults), the candidates (implemented as a list of instances of frame defaults
that can be used to extend the theory), an arc (implemented as a list of
instances of frame defaults that were used to extend the parent theory), and
a score (implemented as a list representing the persistence sets corresponding
to the optimistic and pessimistic evaluations). The search tree is represented

as a list of terms; each term describes an arc in the tree.
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Before the search begins, the initial list of candidates (i.e., all the
instances of frame defaults in the maximal element of A) must be con-
structed. This is done by scanning the axiomatisation for defaults. Ground
instances of these defaults are generated for each action and situation in the
goal path. Note that the set of ground instances formed for these actions and
situations is finite. Since in planning the goal path is not known in advance,
the current implementation can only check plans. This approach only works
when all defaults are frame defaults and when the only parameters of the

frame defaults are the action and situation parameter.

When the initial list of candidates has been constructed, the search
begins from the root node (whose theory is the empty theory). New nodes
are generated by augmenting the current node’s theory with an instance of a
frame default drawn from the list of candidates (as an optimisation the selec-
tion is limited to the earliest instances, i.e., those corresponding to the earli-
est unit path which has candidates). This process could be improved by mak-
ing it goal-directed. As described earlier, the children of the root are treated
as a special case — all simplest theories predicting the goal or its negation
are children of the root. When inconsistent nodes are discovered, they are
pruned and the list of candidates for the is updated accordingly. The static
evaluation assigns the persistence set corresponding to the node’s theory as
the pessimistic bound and it assigns the pessimistic bound augmented by the

current list of candidates as the optimistic bound. As was mentioned earlier,
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there are two strategies that could be followed at the root of the search tree:
PROVEBEST and DISPROVEREST. Of these, only PROVEBEST is

currently implemented.

Recall that the termination condition (given in the previous section)
depends on the definition of >P. In order to define >P the user must provide
the definition of the predicate: p_ge(P1,P2). This predicate is true when the
persistence set represented by list P1 is >P the persistence set represented by

list P2. For example, if >P is taken to be D then p_ge(P1,P2) is defined as:
p_ge(P1,P2) «— subset(P2,P1);

Or if >P is a comparison of the cardinality of persistence sets then

p_ge(P1,P2) is defined as:
p_ge(P1,P2) «— length(P1,LP1) length(P2,LP2) ge(LP1,LP2);

Note that the predicate length determines the cardinality of a set. Any arbi-
trarily complex definition of >P is possible, but it must be sensibly defined
(cf. definition 3.12) for Theorem 3.1 to be valid. With some modification,
the comparison could take into account the persistences of propositional
fluents over earlier unit paths or even the past sequence of actions. This
would be useful in domains where current persistence depends on past (e.g.,
metal fatigue). Many other improvements to the program in appendix A are

possible.
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4.5. Test Results

The axiomatisations for two test problems are included in appendix C.
These axiomatisations are expressed in the syntax of Theorist version 0.21.

The major types of statements are:

fact p(X); which means {p(X)} C F,

fact n(p(X)); which means {-~p(X)} C F,

fact p(X) <- q(X);  which means {p(X) «—q(X)} C F,
default p(X); which means {[X] p(X)} C A.

Note that asserting an implication as a fact means that both the implication
and its contrapositive can be used for inferencing. Because the representation
language of Theorist version 0.21 does not include equivalence, frame

defaults were represented as follows:

fact r(do(A,S)) <- r(S) frame_r(A,S);
fact n(r(do(A,S))) <- n(r(S)) frame_r(A,S);
default frame_r(A,S);

Still awaiting implementation is a method for generating ground instances of
frame defaults which have parameters other than the action and situation
(i.e., of the form frame_r(X,A,S)). For now we use a more verbose axioma-
tisation, e.g., in the second test problem we use frame_ok_s(A,S),

frame_ok_a(A,S), and frame_ok_b(A,S) instead of frame_ok(X,A,S)

The first test problem is the Yale shooting scenario. For this test, >P
was defined as D, since all we know about persistence in this domain is the

common sense law of inertia. The goal for the test was
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alive(do(shoot,do(wait,do(load,0)))).

The results of this test are in appendix D. The program was able to correctly
identify the subset of nodes (attached to the root) whose corresponding theory

predicts the expected
n(alive(do(shoot,do(wait,do(load,0))))).

Here the only node attached to the root that predicts the expected result of
the actions is node 2. To extract DT,, we must take the disjunction of the
leaf node descendant of node 2. A formated listing of the final search tree is
included in appendix D. From this we see that the only leaf node descendant

of node 2 is node 4. Thus,

DT, = {frame_alive(load,0),
frame_alive(wait,do(load,0)),
frame_loaded(wait,do(load,0))}.

As was noted in chapter 3, DT, for the Yale Shooting Scenario is equivalent

to DTcwmp, that is, no savings could be realised for this problem.

For the second test problem (the light circuit problem of chapter 5), >P
was defined as a comparison of the cardinality of persistence sets. This was
done because of the given failure rate information. Since the failure rates of
the devices are the same, we give the same weight to the persistences of the

propositional fluents that indicate whether the devices are operational.
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The goal for this problem was ok_s(do(flip,0)). The results of this test
are in appendix D. Again the program correctly identified the subset of
nodes that predict the expected result. For this problem, there are two nodes
attached to the root that predict n(ok_s(do(flip,0))), namely, node 2 and node
3 (see the formatted search tree listing in appendix D). Taking the disjunc-
tion of the leaf node descendant of nodes 2 and 3 (i.e., the disjunction of

nodes 4 and 5) gives

DT, = {frame_ok_a(flip,0),
frame_ok_b(flip,0)}.

Notice that nodes 4 and 5 represent the same theory — ideally, the pro-
cedure should merge these nodes. In this problem, as in the previous one,

DT, = DTcMmp. Therefore, no savings are possible for this problem.

The third test (the sky-diving scenario — figure 3.8) illustrates a problem
for which DT, is different from DTc\p. Here we are interested in whether
John will be alive after the actions guzzle and jump. The program correctly
selects node 2 (see appendix D) as the subset of nodes predicting the

expected result (i.e., n(alive(do(jump,do(guzzle,0))))). For this problem,

DT, = {frame_alive(guzzle,0),
frame_defective(guzzle,0)}.

As was noted in chapter 3, the unique CMP theory is
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Tcmp = {frame_alive(guzzle,0),
frame_defective(guzzle,0),
frame_defective(jump,do(guzzle,0)),
frame_happy(jump,do(guzzle,0))}.

By comparing, we note that DT, eliminates two of the frame default

instances. Thus, a savings is realised.

4.6. Other Implementation Issues

Here we briefly discuss three implementation issues: dealing with
equivalence, undecidability and the reverse skolemisation problem. The
problem with equivalence arises because frame defaults are equivalence
assumptions. When deriving the consequences of a logical theory that
includes equivalences, resolution proofs may contain infinite branches. For

example, given the axioms:

pX) «— q(X),
q(X) « p(X),
q(a)

and the query:

p(X)

then the left most branch of the proof tree has the form
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The presence of this infinite branch in the proof tree will prevent finding the

solution X=a when a depth first left to right search is used.

The above example could be solved by reordering the the axioms.
Another way to solve this problem is to include a loop check in the theorem
prover. Covington [Covington85] suggests that infinite branches can be
avoided by ‘blocking’ the current branch of the proof tree whenever the new
subgoal ‘matches’ a subgoal higher in the tree. Poole and Goebel [Poole85]
show “that this works only in limited cases,” and they argue that “these
cases can be better avoided by slight modifications of the program, rather
than by increasing the complexity of all programs with a rule that has very

limited applicability.” They also note that ““it does work for biconditionals,
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but in this case one would probably prefer to choose a canonical element of
the equivalence class, and convert all other equivalent cases to that ele-

ment.”

While it may be preferable to eliminate infinite branches through the use
of canonical elements, we have adopted the simpler loop checking approach.
Whenever a new subgoal is “syntactically identical”’ (cf. is_same predicate in
appendix B) to a subgoal that occurred earlier in the current branch of the
search tree then the branch can be blocked. Since this loop checking
approach uses a linear search of the ancestor subgoals, the theorem prover’s
efficiency diminishes as the length of the proof branch increases. Perhaps the
canonical element approach will not suffer from this performance degrada-
tion.

Another implementation issue is that of dealing with undecidability. In
the Theorist framework, a theory is said to explain a set of observations if the

theory together with the facts is consistent and entail the observations, i.e.,

FuTEG,and
F u T is consistent.

This can be implemented by using derivability in place of validity. As Poole
et al. explain [Poole87c], the construction of consistent explanations can be
done in two steps. First, try to prove G from the facts and instances of ele-

ments of A, i.e.,
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FuTkG
Second, verify that each hypothesis used in the explanation is consistent, i.e.,
FuTk-t, VteT

Note that each step uses a first-order theorem prover, and since first-order
satisfiability is only semidecidable, the two steps taken together are com-
pletely undecidable. Thus, when Theorist is asked to explain an arbitrary set
of observations, it might never return an answer, even if a solution exists. In

critical applications, this would be unacceptable.

One way to deal with this problem is to limit the expressiveness of the
underlying language so that satisfiability is decidable. As Levesque and
Brachman have pointed out, there is a trade-off between expressive power
and computational tractability [Levesque85]. An example of a restricted
language which is decidable yet more expressive than propositional logic is
that proposed by Patel-Schneider [Patel-Schneider86]. Instead of limiting the
expressiveness of the underlying language, another approach is to tentatively
accept explanations whose consistency is only partially tested. As was men-
tioned in chapter 2, such potentially refutable explanations are not as well-
confirmed as explanations which are known to be consistent with the (known)
facts. This approach seems to have a solid basis in the philosophy of science

(cf. [Popper58, Rescher70, Hempel65]).
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Finally, there is the problem of reverse skolemisation. Poole [Poole87b]
has explained how this problem arises when hypotheses have variables.
Essentially, the problem is that variables in hypotheses need to have their
quantification reversed for consistency checking. In the examples given in
this dissertation, all hypotheses were ground so that the reverse skolemisation
problem is avoided; however, it is possible to envision situations where it is
desirable to have variables in hypotheses. For instance, in that Yale shooting
scenario, the relation alive could have an argument representing the person

who is alive (e.g., alive(john,0)). Rather than have an instance of the frame

default
[X,A,S] alive(X,do(A,S)) «+ alive(X,S)
for each person, €.g.,

T = {alive(john,do(load,0)) < alive(john,0),
alive(fred,do(load,0)) < alive(fred,0),
etc.},

it may be desirable to assume the equivalence is true for all persons:
T = {alive(X,do(load,0)) «— alive(X,0)}.

If this is done, then consistency checking is subject to the reverse skolemisa-
tion problem. A solution to this problem has been proposed by Poole

[Poole87b).



Chapter 5
Conclusions

5.1. Related Work

Hanks and McDermott [Hanks85, Hanks86] show that using default (or
other nonmonotonic) reasoning to deal with the frame problem inevitably
results in the need to choose between multiple models. Because the popular
forms of nonmonotonic reasoning don’t seem to provide a mechanism for
choosing between models, they come to the discouraging conclusion that logic
is inadequate as an AI representation language. They turn to a direct pro-
cedural characterisation to describe default reasoning processes and give an
algorithm that generates their intended model for a set of axioms. In our
terms, this model is a model of FuU Tcyp. We have demonstrated how this
theory can be arrived at in a simple, intuitive theory formation framework
through a semantically well-defined theory preference heuristic. Hopefully,
this disspells the perception of inadequacy of logic stemming from Hanks’

and McDermott’s work.

Another related idea is that of Lifschitz [Lifschitz85, Lifschitz86a,
Lifschitz86b]. He makes the observation that the usual forms of circumscrip-

tion [McCarthy80] are inadequate for dealing with axiomatisations of

119
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planning problems (cf. [McCarthy86]). To overcome this inadequady, he
introduces pointwise circumscription. Our notion of chronological maximisa-
tion of persistence is analogous to a form of prioritised pointwise circumscrip-
tion which prefers “minimisation at earlier moments of time”. More
recently, Lifschitz has devised a formalism which uses ordinary circumscrip-
tion to minimises ‘“causes” and ‘“preconditions.” [Lifschitz87] The claim is
that minimising causes allows minimisation of uncaused changes which cap-
tures the intuition behind the commonsense law of inertia. Minimising
preconditions minimises the qualifications for the performance of action.
Thus, Lifschitz’ recent work addresses both the frame and qualification prob-
lem. Lifschitz is able to avoid the multiple model problem because the causes
relation has no situation parameter. This is similar to Kowalski’s preserves
relation [Kowalski79, pp. 136-137] which is minimised through negation-as-
failure. While not having a situation parameter in causes (or preserves) does
avoid the multiple model problem, it seems to do this by sacrificing expres-
siveness. For instance, the changes induced by flipping a toggle switch
depend on the previous situation; so it seems in this case, the causes relation
for the action flip needs a situation parameter. We see once again that the
choice of ontology an important consideration in dealing with the frame prob-

lem.
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The work of Shoham [Shoham86a, Shoham86b] is also related to the

work presented here. Work on the initiation problem! led him to the idea of
chronological maximisation of ignorance. While the initiation problem is dif-
ferent from the frame problem, solutions to each problem reflect the need to

maximise (or minimise) step by step (i.e., chronologically).

Recent work by Kowalski and Sergot [Kowalski86a, Kowalski86b] also
addresses the frame problem. More specifically, Kowalski [Kowalski86b]
proposes a first order persistence axiom that specifies how one can deduce
whether a relation holds at a given time in a particular temporal database.
A database is formalised as the ground terms of a logical theory specified in
event calculus; the first order ground atomic formula holds(r,t) is true when r
is an instance of a relation, and t is a time interval over which the relation is
true. Database update constraints are specified in terms of terminate and ini-
tiate conditions on relations, events and actions. The epistemological aspect
of the frame problem is claimed to be solved by axiomatising the database in
terms of a single relation holds (cf. [Kowalski79]), and relying on the per-
sistence axiom’s use of negation-as-failure to assume that nothing affects the
truth of a relation unless explicitly declared. The heuristic aspect of the

frame problem is viewed as efficiently using the persistence axiom to answer

1 This is the qualification problem in a temporal setting.
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the general question of whether an instance of a relation r holds at time t.
This problem is solved by describing an efficient method for implementing

the use of the persistence axiom.

This notion of persistence, rendered as a first order axiom that specifies
what “holds” in terms of how explicit initiate and terminate conditions affect
the truth of relations, is only weakly related to the notion of persistence
described here. Kowalski’s formulation has no explicit concept of the update
constraints being contingent or assumable if consistent, consequently there is
no possibility of multiple conflicting answers to the question “does r hold at
time t?” The persistence axiom relies on negation-as-failure while isolating
those constraints that affect the truth of a relation so that different answers to
the same question can be had due to intervening updates. However, there is
no possibility of uncertain or multiple possible responses to questions of a

relation’s future persistence.

It seems that Kowalski assumes that frame axioms as defaults are
unnecessary, as the concept of non-monotonicity can be handled more gen-
erally by using negation-as-failure within the persistence axiom. However,
the burden to explicitly assert the affect of actions on relations remains; a
default-like statement of the form “normally relation R persists™ is not possi-
ble. Kowalski’s alternative definition might be rephrased as “relation R per-

sists, until I tell you otherwise.”
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Finally, Kautz [Kautz86] proposes a solution to the frame problem using
a generalisation of circumscription. He defines the following partial ordering

of models:

M1 < M2 if and only if
vt f . (t,f) € M1[Clip] D ((t,f) € M2[Clip]) v
3t2,2 . t2<t & ((t2,£2) € M2[Clip]) & ((t2,f2) ¢ M1[Clip])
and
M1 < M2 if M1 < M2 and not M2 < M1

The predicate Clip(t,f) is true when the persistence of a fact f ceases at time
t. From this definition, a model M1 is strictly better than M2 (i.e.,
M1 < M2) when they are identical (in terms of Clip) up to some time t at
which some fact f changes in M2 but not in M1 (i.e., (t,f) € M2[Clip] but
(t,f) ¢ M1[Clip]).

Kautz’s model ordering corresponds to the chronological maximisation of

persistence when >P is taken to be 2. To illustrate this, consider the example

in Figure 5.1 and two of the possible models corresponding to it (Fig. 5.2).

Here we have two lights (A and B) connected in parallel through a
switch (S) to a power source (P). For the period of interest, the switch and
the two lights have an equivalent failure rate. The power source and the wir-

ing are completely reliable.

Under Kautz’s model ordering, M; and M, are incomparable (both are
minimal). When >P is taken to be D (i.e., the common sense law of inertia)

then a theory T; corresponding to M; has the same chronological persistence
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I S
P T (B)
F={
- on(s,0), = hold(0,0n(s))
—on(a,0), - hold(0,0n(a))
= on(b,0), - hold(0,0n(b))
ok(s,0), hold(0,0k(s))
ok(a,0), hold(0,0k(a))
ok(b,0), hold(0,0k(b))
on(s,1), hold(1,0n(s))
-on(a,l), - hold(1,0n(a))
= Oll(b,l), = hOld(l,Ol‘l(b))
on(a,T) — hold(T,on(a)) «—
on(s,T) A ok(s,T) A ok(a,T), hold(T,on(s)) A hold(T,0k(s)) A hold(T,ok(a))
n(on(a,T)) «— n(on(s,T)), - hold(T,on(a)) + — hold(T,on(s))
n(on(a,T)) «— n(ok(s,T)), - hold(T,on(a)) «— — hold(T,o0k(s))
n(on(a,T)) — n(ok(a,T)), = hold(T,on(a)) +— — hold(T,ok(a))
on(b,T) — hold(T,on(b)) +—
on(s,T) A ok(s,T) A ok(b,T), hold(T,on(s)) A hold(T,0k(s)) A held(T,ok(b))
n(on(b,T)) + n(on(s,T)), - hold(T,on(b)) «~ — hold(T,on(s))
n(on(b,T)) + n(ok(s,T)), = hold(T,on(b)) + — hold(T,0k(s))
n(on(b,T)) «— n(ok(b,T))} = hold(T,on(b)) « — hold(T,0k(b))
A={
[X,T] ok(X,T+1) «— ok(X,T)} hold(T+1,F) @ clip(T+1,F) « hold(T,F)

Figure 5.1. Comparison with Kautz’s Model Ordering
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Model M, Model M,

01 01
ok(s) | T| T ok(s) | T| F
ok(a) | T | F ok(@) | T | T
ok(b) | T | F ok(b) | T| T
on(s) | F| T on(s) | F| T
on(a) | F | F on(a) | F | F
on(b) | F | F onlb) | F| F

Figure 5.2. Two of the Models for Figure 5.1

as Ty (corresponding to M;) over a path corresponding to the action between

time 0 and time 1. Instead, if >P is taken to be a comparison of the cardi-

nality of the persistence sets (i.e., common sense law of inertia plus failure

rate information) corresponding to the above theories then T, has more chro-

nological persistence than T;. Thus, incorporating the assumption that all

persistences are equally likely by defining >P to be a comparison of cardinali-

ties enables us to distinguish the two models.

The preference heuristic

reflects our expectation that the switch failing alone is a better theory than

both lights failing.
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5.2. Future Work

There are numerous ways that our simple representation scheme can be
extended. In the examples given earlier, to axiomatise the initial situation, it
was necessary to provide assertions for both the positive and the negative
information. Often, the negative assertions greatly outnumber the positive
assertions. If this is generally the case, we would like to invoke the closed
world assumption [Reiter78, Reiter85], that is, we would like to have to
specify only positive information about the initial situation and have all nega-
tive information inferred by default. The closed world assumption can be
applied to all relations in the domain, or just to some, but its use implies per-
fect knowledge of the relations it is applied to. If we have incomplete infor-
mation about some relation then the closed world assumption should not be
applied to that relation (unless we want the system to behave as if it had per-
fect information). The closed world assumption can be represented in Theor-
ist as a possible hypothesis. In ontology-G, for each primitive relation r in

the domain of interest we could include a closed world default of the form:
[X] —r(X,0);
or in ontology-K, we could include a single closed world default:

[X] —holds(r(X),0).
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As an example, consider the Yale shooting scenario.

F={ The set of facts (F):
Initial Situation:
alive(0), John is alive
Action: load
loaded(do(load,S)), The gun is loaded after the action load
Action: wait (no known changes)
Action: shoot
— alive(do(shoot,S)) «— loaded(S), John dies when shot with a loaded gun
- loaded(do(shoot,S))} After shooting, the gun is not loaded
A={ The set of defaults (A):
The Closed World Defaults:
[ —loaded(0),
[1 - alive(0),
The Frame Defaults:
[A,S] loaded(do(A,S)) « loaded(S),
[A,S] alive(do(A,S)) « alive(S)}

Figure 5.3. Yale Shooting Scenario - Theorist Axiomatisation for Ontology-G

Compare the axiomatisation using closed world defaults (Fig. 5.3) with the
axiomatisation which explicitly gives negative information about the initial
situation (Fig. 3.4). One possible problem with the use of closed world
defaults is their possible interaction with frame defaults. For instance, it is
possible to explain —loaded(0) using the closed world default —loaded(0); at
the same time, it is possible to explain loaded(0) using the frame default
loaded(do(load,0)) — loaded(0) and the fact loaded(do(load,0)). It seems that
this problem can be avoided by preferring theories with maximal closure.

Maximal closure can probably be defined in a similar fashion to maximal



128

persistence, i.e., a theory which includes the closed world defaults of another
theory is at least as good in terms of closure. It also seems that preferring
maximal closure should be given priority over preferring (chronological) per-

sistence.

Another area where the representation could be extended is in expressing
incomplete knowledge. There are several areas where knowledge can be
incomplete: initial conditions, action preconditions, action effects, and con-
straints. For example, if we have incomplete knowledge about a blocks
world, then we might like to assume that, initially, the blocks are not too
heavy and they are on the table [Lifschitz85, p.2]. For the action
move(X,Y) to succeed, we might assume that clear(X) is a precondition. This
assumption is refuted when the only objects on X are trivial (e.g., a speck of
dust [McCarthy86, p. 101]). Again, we might like to assume that the effect
of moving X to Y is that X is on Y, but this may not be true if the resulting
tower of blocks is unstable. Another assumption we might make is that a
block can only be on one other block (or on the table). One can easily ima-
gine a situation where this weak constraint is violated (e.g., the top block is
very large and hence overlaps blocks adjacent to the bottom block). Figure
5.4 gives a partial axiomatisation of the above blocks world. The interesting
question that remains unanswered about such axiomatisations is what kinds

of interactions occur between the various defaults and what forms of theory
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F={ The set of facts (F):
clear(a,0),

poss(do(move(X,Y),S)) + on(Z,X,S)  trivial(Z),

“m(xY’d«mve(ny)ys)) — on(Y,Z,S) A on(Z,V,S) A on(V,W,S),

on(X,Y,S) +— on(X,Z,S) A adjacent(Y,Z,S) A very_large(X)}

A={ The set of defaults (A):
X] - too_heavy(X,0),

[X] - on(X,table,O),

[X,Y,S] on(X,Y,do(move(X,Y),S)),

[X,Y,S] poss(do(move(X,Y),S)) +— clear(X,S) A clear(Y,S),

X,Y,S] ~on(X,Y,S) + on(X,Z,S) A diff(Y,Z)}

Figure 5.4. Blocks World - Theorist Axiomatisation for Ontology-G

preference are appropriate.
Other issues that require work in the future are:

1) conditionals vs. theory preference - instead of using theory preference to
select a preferred theory, the disjunction of possible explanations could
be used as a basis for conditional planning. The decision to use condi-
tionals instead of using theory preference is tied to an effort versus cer-
tainty tradeoff, that is, using theory preference increases the knowledge
about a situation but at the cost of increased computation. Sometimes
the extra knowledge is not need. For instance, you can decide you don’t
need bus fare equally well knowing your car will start or knowing either
your car will start or your neighbour will drive you to work. In this case,
using extra computation (theory preference) to determine your car will

start would be foolish.
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3)
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error recovery - inevitably, even the best made plans may fail. When a
plan is executed and the real world is found to differ from the predictions
of our preferred theory, how can this theory (and, subsequently, our
plan) be revised? When forming the plan initially, should competing
theories be saved for use in error recovery? When an assumption has
been violated, what conclusions must be retracted? Much work related
to this question has been done (cf. [Fikes75, Hayes75, Stallman77, Lon-
don78, Doyle79, Doyle80, deKleer79]).

relationship to other forms of nonmonotonic reasoning - comparison of
axiomatisations based on theory formation/theory preference with those
based on circumscription and with those based on negation as failure
seem to suggest the existence of a continuum defined in terms of how
assumptions are expressed and interpreted. The continuum ranges from
axiomatisations where assumptions are selected by explicit preference
heuristics, to axiomatisations where preference for assumptions is implicit
(or ‘compiled in’). For example, in negation-as-failure, preference infor-
mation derived from syntactic structure is “compiled into” the proof pro-
cedure; while in circumscription, preference is expressed as priorities.
Some evidence for this continuum has been presented [Goebel87]. Its is
conjectured that program transformation techniques [Seki86] may prove

useful for ‘compiling’ from one point on the continuum to another.
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Another interesting direction future research might take is to see what
insight can be gained from the philosophy of science. Earlier, we discussed
the distinction between predictive and retrodictive explanations. One idea to
pursue is suggested in [Goodwin87a]. There we make an important distinc-
tion between the task of predicting some future situation and the task of
(retrodictively) explaining some past situation. It was suggested that pre-
ferred temporal theories for prediction tasks are ones that use predictive argu-
ments. Likewise preferred temporal theories for explaining tasks are ones
that use retrodictive arguments. Using the temporal structure of theories as a

basis for theory preference is in accord with the philosophy of science.

Gagné and I are beginning to explore this area [Goodwin87b]. We have
written a very simple Prolog program for prediction tasks. This program
attempts to construct a purely predictive proof for the desired goal — poten-
tial proofs that involve retrodiction are failed. Like Theorist, the program
incorporates the concept of fact and default. The nonmonotonic nature of
defaults is simulated using negation as failure. Our preliminary results are
promising. The program (Fig. 5.5) seems adequate for predicting tasks. It is
interesting to note that the program seems to encode Gagné’s and Poole’s
notion of theory formation constraint [Gagné87, Poole87]. Constraints are a
form of theory preference. It will be interesting to see whether our proposed

theory preference criterion can be expressed as constraints.
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predict(G) <- predict(G [] [I);

% G is predicted by contradiction

predict(G Anc) <- neg(G NG) member(NG Anc) cut;

%  Loop deletion

predict(G Anc) <- member(A Anc) is_same(G A) cut fail;
%  Prediction from facts

predict(G Anc) <- fact(G []);

predict(G Anc) <- fact(G Body)
all_prior(Body G) % Temporal constraint
predict_all(Body [G|Anc]);

%  Prediction from defaults
%  Negation as failure simulates defaults

predict(G Anc) <- default(G [])
neg(G NG)
not(predict(NG []));% Fail to predict NG

predict(G Anc) <- default(G Body)
variable_free(Body)
all_prior(Body G) % Temporal constraint
predict_all(Body [G|Anc])
neg(G NG)
not(predict(NG [])); % Fail to predict NG

predict_all([] Anc);
predict_all([HR] Anc) <- predict(H Anc)
predict_all(R Anc);

%  Ensure each sub-goal’s situation is no later than the goal’s

all_prior([] G);
all_prior((HRR] G) <-
prior(H G)
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all_prior(R G);

prior(H G) <-
situation(H HS)
situation(G GS)
before(HS GS);

before(S S);
before(S1 do(A S2)) <- before(S1 S2);

situation(n(G) S) <- functor(G [H S]);
situation(G S) <- ne(G n(X)) functor(G [H S]);

neg(n(G) G);
neg(G n(G)) <- ne(G n(H));

Figure 5.5. Predictive Explanation Program

5.3. Conclusion

The frame problem is a fundamental aspect of planning — indeed, it is a
fundamental problem in knowledge representation and reasoning. Many
approaches to solving the frame problem have been proposed. Each has con-
tributed something to our understanding of the problem. Many researchers
have come to believe that the only reasonable approach to formalising
rational reasoning and belief seems to be to use “‘scientific”’ theory formation.
This position has a solid basis in the philosophy of science. In developing a
representation scheme in a theory formation framework to deal with the
frame problem, the problem of multiple theories arises. A method for select-

ing among competing theories based on a measure of persistence has been
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presented. The validity of this idea is supported by an implementation. We
have compared and contrasted our theory formation/theory preference
approach with other recent proposals. Finally, we have speculated on possi-
ble directions for future research. The most interesting speculation is
presented in the form of a hypothesis. We conjecture that the various forms
of nonmonotonic reasoning can be usefully compared along a continuum
represented the varying degrees of explicitness in the expression of theory
preference. Because theory formation/theory preference is so useful, so sim-
ple, and so intuitively appealing, we suspect that it will turn out to be a fun-
damental paradigm in Artificial Intelligence. This dissertation is offered as

evidence to support this conjecture.
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Appendix A
An Implementation

%

%  The search procedure described in chapter 4 is used

% to select the children of the root node whose descendant
% leaf nodes form DT,.

%  This search procedure is based on Berliner’s B* search.
%  Best is the set of selected nodes.

%  Final_search_tree is list representing the final state of
%  the search tree.

%

bstar(Best Final_search_tree) <-
init_search_tree(Initial_node Initial_search_tree)
bstar_top(Initial_node Best Initial_search_tree Final_search_tree);

%

%  Process the children of the root. An optimisation is employed
%  here. The children of the root are the simplest theories

%  predicting the goal or its negation.

%

bstar_top(Initial_node Best Initial_search_tree Final_search_tree) <-
node.name(Initial_node Initial_name)
first_expand(Initial_name Initial_search_tree New_search_tree)
terminate(Initial_name New_search_tree Best Final_search_tree);

%

% Generate and evaluate the children of the root.
% Join them to the search tree.

%

first_expand(Cur_name Search_tree New_search_tree) <-
get_node(Cur_name Search_tree Cur_node)
node.object(Cur_node Object)
generate(Object Child_objects)
node.candidates(Cur_node Cand)
init_candidates(Child_objects Cand Init_objects)
evaluate(Init_objects Scored_nodes)
join_nodes(Scored_nodes Cur_name Search_tree New_search_tree);

%
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%  Generate and evaluate children of a (non-root) node.

%  Prune inconsistent nodes and update candidates list accordingly.
%  Join consistent nodes to search tree.

%

expand(Cur_name Search_tree Search_tree) <-
child(Cur_name Search_tree Child) % Test if already expanded
cut;

expand(Cur_name Search_tree New_search_tree) <-
get_node(Cur_name Search_tree Cur_node)
node.object(Cur_node Object)
generate(Object Child_objects)
consistency_check(Child_objects Con_objects Incon_arcs)
node.candidates(Cur_node Cand1)
remove_arcs(Incon_arcs Candl Cand2) :
update_node.candidates(Cur_node Search_tree Cand2 Search_tree2)
init_candidates(Con_objects Cand2 Init_objects)
rank(Init_objects Cur_name Search_tree2 New_search_tree);

rank([] _ Tree Tree) <-

nl;

rank([Object|Objects] Cur_name Search_tree2 New_search_tree) <-
evaluate([Object|Objects] Scored_nodes)
join_nodes(Scored_nodes Cur_name Search_tree2 New_search_tree);

consistency_check([] [] [1);
consistency_check([Object|Rest] Con_objects Incon_arcs2) <-
object.arc(Object Arc)
object.theory(Object Theory)
inconsistent(Theory Arc)
cut
consistency_check(Rest Con_objects Incon_arcs1)
union(Arc Incon_arcsl Incon_arcs2);
consistency_check([Object|Rest] [Object|Con_objects] Incon_arcs) <-
consistency_check(Rest Con_objects Incon_arcs);

init_candidates([] _ []);

init_candidates([Object1|Con_objects] Cand1 [Object2|Unscored_objects]) <-

object.arc(Objectl Arc)

remove_arcs(Arc Candl Cand2)
update_object.candidates(Objectl Cand2 Object2)
init_candidates(Con_objects Cand1 Unscored_objects);

update_object.candidates(Objectl Cand2 Object2)
object.theory(Objectl Theory)
object.theory(Object2 Theory)
object.candidates(Object2 Cand2)
object.goal(Objectl Goal)
object.goal(Object2 Goal)
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object.arc(Objectl Arc)
object.arc(Object2 Arc);

update_node.candidates(Nodel Search_treel Cand2 Search_tree2) <-
node.name(Nodel Name)
node.name(Node2 Name)
node.object(Nodel Objectl)
node.object(Node2 Object2)
object.theory(Objectl Theory)
maximum(Theory Cand2 Max)
node.score(Nodel [_ Min])
node.score(Node2 [Max Min])
update_object.candidates(Objectl Cand2 Obiject2)
parent(Name Search_treel Parentl)
node.name(Parentl Parent_namel)
replace(Name Node2 Parent_namel Search_treel Search_tree2);

remove_arcs(_ [] []);

remove_arcs(Arcs [CHlICTl] [CH2|CT2)) <-
del_all(Arcs CH1 CH2)
remove_arcs(Arcs CT1 CT2),

covers_all(CG [] CG);
covers_all(CG [CNGH|CNGT] CG) <-
member(N CG)
covers(N CNGH)
covers_all(CG CNGT CG);
covers_all([] CNG CNG);
covers_all([CGH|CGT] CNG CNG) <-
member(N CNG)
covers(N CGH)
covers_all(CGT CNG CNG);

covers(N1 N2) <-
node.score(N1 [_ Min])
node.score(N2 [Max _])
cp_gt(Min Max);

split([] [1 [1);

split([CH|CT] CG CNG) <-
split_one(CH CG1 CNG1)
split(CT CG2 CNG2)
append(CG1 CG2 CG)
append(CNG1 CNG2 CNG);

split_one(C [] [C])
node.goal(C n(G))
cut;

split_one(C [C] []);
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%

% Check for termination conditions.

%  If necessary, determine search strategy and search lower tree.
%

terminate(Cur_name Final_search_tree Best Final_search_tree) <-
children(Cur_name Final_search_tree Children)
split(Children CG CNG)
covers_all(CG CNG Best)
cut;

terminate(Cur_name Search_tree Best Final_search_tree) <-
children(Cur_name Search_tree Children)
select_strategy(Children Strategy)
select_next_node(Strategy Children Next_node)
node.name(Next_node Next_name)
bstar_lower(Next_name Search_tree New_search_tree)
terminate(Cur_name New_search_tree Best Final_search_tree);

%

% Control search of lower tree. Generate and evaluate children
%  as necessary.

%

bstar_lower(Cur_name Search_tree New_search_tree) <-
expand(Cur_name Search_tree Search_tree2)
children(Cur_name Search_tree2 Children)
search_lower(Cur_name Children Search_tree2 New_search_tree);

search_lower(_ [] Tree Tree);

search_lower(Cur_name Children Search_tree2 New_search_tree) <-
calc(Children Score)
explore(Cur_name Search_tree2 Score Search_tree3 New_score)
update_node.score(Cur_name Search_tree3 New_score New_search_tree);

%
% Search lower tree.
%

explore(Cur_name Search_tree Score Search_tree Score) <-
get_node(Cur_name Search_tree Cur_node)
node.score(Cur_node Cur_score)
ne(Score Cur_score)
cut;

explore(Cur_name Search_tree Score New_search_tree New_score) <-
children(Cur_name Search_tree Children)
select_next_node2(Children Next_node)
node.name(Next_node Next_name)
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bstar_lower(Next_name Search_tree Search_tree2)

children(Cur_name Search_tree2 New_children)

search_deeper(Cur_name New_children Search_tree2
New_search_tree Score New_score);

search_deeper(_ [] Tree Tree Score Score);
search_deeper(Cur_name New_children Search_tree2
New_search_tree Score New_score) <-
calc(New_children Score2)
explore(Cur_name Search_tree2 Score2 New_search_tree New_score);

%  Used to get node data give node name

get_node(Node_name Tree Node) <-
node.name(Node Node_name)
member(link(Parent_name Node) Tree);

%

%  Node data structure.

%

%  Node := [ Node_name Obiject Score ]

% Node_name := nil |[0|1]2]...

%  Object := [ Theory Candidates Arc Goal]

%  Theory := [P1P2... Pn]

%  Pi:= list of persistence assumptions for unit path i

%  Candidates := [C1C2 ... Cn]

%  Ci := list of potential persistence assumptions for unit path i

%  Arc := list of persistence assumptions added to parent to create child
%  Goal := indicates whether node’s theory predicts goal or its negation
%  Score := [ Max Min ]

%  Max := optimistic score

%  Min := pessimistic score

%

node.name([Node_name | _] Node_name);
node.object([Name Object | _] Object);

node.theory(Node Theory) <-
node.object(Node Object)
object.theory(Object Theory);

node.candidates(Node Candidates) <-
node.object(Node Object)
object.candidates(Object Candidates);

node.arc(Node Arc) <-
node.object(Node Obiject)
object.arc(Object Arc);
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node.goal(Node Goal) <-
node.object(Node Object)
object.goal(Object Goal);

node.score([Name Object Score] Score);
object.theory([Theory _ _ _] Theory);
object.candidates([_ Candidates _ _] Candidates);
object.arc([_ _ Arc _] Arc);

object.goal([_ _ _ Goal] Goal);

%

%  Used to retrieve parent node given child name.
%

parent(Child_name Tree Parent) <-
node.name(Child Child_name)
node.name(Parent Parent_name)
child(Parent_name Tree Child);

%
%  Used to retrieve a child node given parent name.
%

child(Parent_name Tree Child) <-
member(link(Parent_name Child) Tree);

%
%  Used to retrieve all children nodes given a parent name.
%

children(Parent_name Tree Children) <-
all_of(Children Child child(Parent_name Tree Child));

%
% Generate children nodes.
%

generate(Parent_object Child_objects) <-
all_of(Child_objects Child_object arc(Parent_object Child_object));

%
%  Evaluate a list of node objects and return scored nodes.
%

evaluate(Objects Nodes) <-
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all_of(Nodes Node eval_one(Objects Node));

%
%  Select and evaluate one node object and return scored node.
%

eval_one(Objects Node) <-
member(Object Objects)
val(Object Node);

%
% Initialise search tree.

% Generate initial list of candidates.
%

init_search_tree(Initial_node Initial_search_tree) <-
delta(Delta)
node.name(Initial_node 0)
node.object(Initial_node Object)
object.theory(Obiject nil)
object.candidates(Object Delta)
object.arc(Object nil)
object.goal(Object nil)
node.score(Initial_node nil)
record_next_name(nil 1)
join(Initial_node nil nil Initial_search_tree);

%
%  Join a node to its parent in the tree.
%

join(Node Parent_name Tree New_tree) <-
append([link(Parent_name Node)] Tree New_tree);

%
%  Join a list of children to their parent in the tree.
%

join_nodes([] _ Search_tree Search_tree);

join_nodes([Node[Node_tail] Cur_name Search_tree New_search_tree) <-
join(Node Cur_name Search_tree Search_tree2)
join_nodes(Node_tail Cur_name Search_tree2 New_search_tree);

%

%  Select a search strategy. Presently only PROVEBEST is
%  implemented.

%

select_strategy(Children Strategy) <-
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eq(Strategy prove_best);

%
%  Select next node to search using chosen search strategy.
%

select_next_node(Strategy Children Next_node) <-
eq(Strategy prove_best)
find_max_opt(Children Next_node _);

%
%  Find greatest optimistic and pessimistic score.
%

calc(Children [Max_opt Max_pess]) <-
find_max_opt(Children Nodel [Max_opt _])
find_max_pess(Children Node2 [_ Max_pess]);

%
%  Find the node with the highest optimistic score.
%

find_max_opt(Children Node [Max_opt Pess]) <-
del(Node Children Rest)
node.score(Node [Max_opt Pess])
not(find_higher_opt(Rest Max_opt));

% .
%  Try to find a node with a higher optimistic score than Max_opt.
%

find_higher_opt(Children Max_opt) <-
member(Node Children)
node.score(Node [Opt _])
cp_gt(Opt Max_opt);

%
%  Try to find a node with a higher pessimistic score than Max_pess.
%

find_higher_pess(Children Max_pess) <-
member(Node Children)
node.score(Node [_ Pess])
cp_gt(Pess Max_pess);

%
%  Find the node with the highest pessimistic score.
%



find_max_pess(Children Node [Opt Max_pess]) <-
del(Node Children Rest)
node.score(Node [Opt Max_pess])
not(find_higher_pess(Rest Max_pess));

%
%  Update the score of a node in the search tree.
%

update_node.score(Cur_name Search_tree New_score New_search_tree) <-
get_node(Cur_name Search_tree Cur_node)
node.object(Cur_node Cur_object)
parent(Cur_name Search_tree Parent_node)
node.name(Parent_node Parent_name)
node.name(New_node Cur_name)
node.object(New_node Cur_object)
node.score(New_node New_score)
replace(Cur_name New_node Parent_name Search_tree New_search_tree);

%
%  Replace a node with an updated node.
%

replace(Node_name New_node Parent_name Search_tree New_search_tree) <-
node.name(Node Node_name)
del(link(Parent_name Node) Search_tree T)
append([link(Parent_name New_node)] T New_search_tree);

%
%  Select next node to search (using PROVEBEST)
%

select_next_node2(Children Next_node) <-
select_next_node(prove_best Children Next_node);

%
%  Used to keep track of last node name generated.
%

record_next_name(nil N) <-!
assert(mod next_name(N) []);

record_next_name(Old New) <-
retract(mod next_name(Old))
assert(mod next_name(New) []);

% .

%  Comparisons of chronological persistence
%  This corresponds to > in chapter 3.

%
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cp_gt([] [1) <-

p_gt ;
cp_gt([PH1|PT1] [PH2[PT2]) <-
p_gt(PH1 PH2);
cp_gt([PH1|PT1] [PH2[PT2]) <-
p_eq(PH1 PH2)
cp_gt(PT1 PT2);

cp_ge([1 []) <-
p_ge([] [1);
cp_ge([PH1|PT1] [PH2|PT2]) <-
p_gt(PH1 PH2);
cp_ge([PH1|PT1] [PH2|PT2]) <-
p-eq(PH1 PH2)
cp_ge(PT1 PT2);

%

% Comparisons of persistence

%  This corresponds to >P in chapter 3.
%

p_gt(P1 P2) <-
p-ge(P1 P2)
not(p_ge(P2 P1));
p_eq(P1 P2) <-
p_ge(P1 P2)
p-ge(P2 P1);
%
%  User defined partial odering >P.
%
%

%  This defines the partial ordering on persistence
%  sets in terms of subsets
%

p_ge(P1 P2) <-
subset(P2 P1);

subset([] Y);

subset([H|T] Y) <-
delete(H Y Y1)
subset(T Y1);

%
%  This defines the partial ordering on persistence
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%  sets in terms of cardinality
%

%p_ge(P1 P2) <-
%  cardinality(P1 C1)
%  cardinality(P2 C2)
% ge(Cl1 C2);

cardinality(List Length) <-

length(List Length);
%
%  Generate children of the root (simplest theories predicting
%  the goal).
%

arc(Parent Child) <-
object.theory(Parent nil)
prove(mod goal(G))
explain([G] T)
functor(G [_ S])
group(T S Theory)
object.theory(Child Theory)
object.goal(Child G)
object.arc(Child T);

%

%  Generate children of the root (simplest theories predicting
%  the goal’s negation).

%

arc(Parent Child) <-
object.theory(Parent nil)
prove(mod goal(G))
neg(G GN)
explain([GN] T)
functor(G [_ S])
group(T S Theory)
object.theory(Child Theory)
object.goal(Child GN)

object.arc(Child T);
%
%  Generate (non-root) children.
%

arc(Parent Child) <-
object.theory(Parent Theory1)
ne(Theory1 nil)
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object.candidates(Parent Candidates)
first_nonempty(Candidates 1 CI I)
member(C CI)

join_to(Theoryl 1 C I Theory2)
object.theory(Child Theory2)
object.arc(Child [C])
object.goal(Parent Goal)
object.goal(Child Goal);

%
%  Group persistence assumptions by unit path.
%

group(T do(A S) Theory) <-!
all_of(DS1 D group_sit(T do(A S) D))
group(T S DS2)
append(DS2 [DS1] Theory);

group(T S []);

group_sit([TH|TT] do(A S) TH) <-
functor(TH [R A S]);

group_sit([TH|TT] S D) <-
group_sit(TT S D);

%
%  Find the first nonempty element of a list of lists.
%

first_nonempty([HIT] IH I) <-
ne( ;

first_nonempty([[]IT] THI) <-
sum(J 1 JP1)
first_nonempty(T JP1 H I);

%

%  Join an element to the proper list-element of a list of lists.

%

join_to([TH1{TT] I CIH I [TH2[TT]) <-
append([CIH] TH1 TH2);
join_to([TH|TT1] J CIH I [THTT2]) <-
gt(1]))
sum(J 1 JP1)
join_to(TT1 JP1 CIH I TT2);

%
% Delete a list of elements from a list.
%
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del_all([JL L);

del_all([H|T] L1 L2) <-
del(H L1 L3)
del_all(T L3 L2);

del(X [X[Y] Y);

del(X [Y|Z1] [Y|Z22]) <-
del(X Z1 Z2);

del(X [] [Ds

%

%  Evaluate a node object and return a node.
%

val(Object Node) <-
object.theory(Object Theory)
object.candidates(Object Candidates)
object.arc(Object Arc)
minimum(Theory Min)
maximum(Theory Candidates Max)
next_name(Next_name)
sum(Next_name 1 New_next_name)
record_next_name(Next_name New_next_name)
node.name(Node Next_name)
node.object(Node Object)
node.score(Node [Max Min]);

%
% Minimum score.
%

minimum(Theory Theory);
%

% Maximum score.
%

maximum({[] [] []);
max1mum([TH|TI‘] [CHI():T] [MHMT)) <-

union(TH C
maximum(TT CT MT);
%
%  Check for inconsistency.
%
inconsistent(T [IncDef]) <- % T implies IncDef, check if T implies NegIncDef
flatten(T Theory)
cut % flatten produces garbage on backtracking

neg(IncDef NegIncDef)



makeBody(Theory Theory Theory [] [NegIncDef] EB PB [])
prove(mod PB);

flatten([H|T] FL) <-
flatten(H FH)
flatten(T FT)
append(FH FT FL);

flatten([] []);
flatten(X [X]);

%
%  Generate initial candidates list.
% See chapter 4 for restriction on use with

%  defaults with non-situation, non-action parameters.
%

delta(Delta) <-
prove(mod problem(Problem))
reread(Problem)
find(D)
prove(mod goal(Goal))
functor(Goal GL)
append(Front [S] GL)
ground(D S Delta)
close(Problem);
find(Delta) <-
read_things(L) .
cut
match(L D)
find(DR)
append(D DR Delta);
find([]);
match([default D] [D]) <-
cut;
match(L []);

ground(D do(A S) Delta) <-!
all_of(GDS1 GD ground_sit(D do(A S) GD))
ground(D S GDS2)
append(GDS2 [GDS1] Delta);

ground(D S []);

ground_sit([DH|DT] do(A Sit) DH) <-
functor(DH DHL)
append(First [A Sit] DHL);
ground_sit([DH|DT] S GD) <-
ground_sit(DT S GD);

%

161



162

% "union" will perform the union of the first two lists and put this
% union in the third list.

%

% i.e., union( [a] [b] X ) returns X = [a b]

%

%

union( [X[L1] L2 L3) <-
member( X L2 )
cut
union( L1 L2 L3 );
union( [X[L1] L2 L3) <-
union( L1 [X|L2] L3 );
union( [J L1 L1);



Appendix B
Theorist version (.21

%
%  Note: This is a modified version of Theorist 0.2 which was
% written by David Poole.
%
% INTERFACE
%
start <-
more(/u/sdgoodwin/theo/.initmsg)
restart;
restart <-
loop;
restart <- .
write("restarting\n")
restart;
loop <-
mark(Stack)
prompt
read_things(L)
incommline(L)
release(Stack)
loop;

incommline([exit]) <- abort;

incommline(L) <-
interpretcommand(L);

%interpretcommand is how to add new commands
% EXTENDED COMMANDS (Could possibly redefine other commands)

interpretcommand(X) <-
extendedcommand(X);

% SYSTEM COMMANDS
interpretcommand([help]) <-!
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more(/u/sdgoodwin/theo/.help);

interpretcommand([quit])!
quit;

interpretcommand([clear])!
clear_aux(mod)
init_mod;

interpretcommand([consult File]) <-!
reread(File);

interpretcommand([end]) <-
cur_in(File)
close(File);

% DECLARATIONS

interpretcommand([fact H "<-" | Body]) <-!
neg(H HN)
indexfact((HN|Body] [1);

interpretcommand([fact H]) <-!
neg(H HN)
indexfact([HN] []);

interpretcommand([default D]) <-!
default(D);

interpretcommand([default D H "<-" | B]) <-!
default(D)
append([D] B NB)
neg(H HN)
indexfact((HN[NB] []);

interpretcommand([askable A]) <-!
askable(A);

interpretcommand([prolog A]) <-!
prolog(A);

% QUERIES

interpretcommand([explain |G]) <-
explain(G T)
write("yes\nanswer:")
write(G)
write("\ntheory:")
space_output([T])
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nl;

interpretcommand([explain | G]) <-!
write("no\n");

interpretcommand([retry]) <-
cut
fail;

% UNKNOWN COMMAND

interpretcommand(X) <-
write("Unknown command: ")

space_output(X)

nl.

prompt <-
cur_in(stdin)
cut
write("\n: ");

prompt <-
not(cur_in(stdin));

neg(n(X) X);
neg(X n(X)) <- ne(X n(Y));

indexfact([] _);
indexfact([G[S] []) <-!
neg(G GN)
fact(1 GN S) % priority of positive clause (High=1 Low=2)
indexfact(S [G]);
indexfact([G|S] E) <-
neg(G GN)
append(S E B)
fact(1 GN B) % priority of contra-positive clauses (High=1 Low=2)
indexfact(S [G|E]);
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%
%  COMPILER
%

% fact(Priority Head Body) means that "Head <- Body" is a fact;
%  Priority is used to give some control over the order prolog

% searches for rules;

%  Head is an atomic symbol and Body is a list of atomic symbols
%  Ancestors keeps track of the subgoals in the proof tree

%  Loop detection feature added here

fact(P H B) <-
makeBody(T1 T1 T2 H B Exbody Prbody Ancestors)
assert(mod exI(P H Ancestors T1 T2) [noloop(B Ancestors) [Exbody])
assert(mod prl(P H Ancestors T1) [noloop(B Ancestors) [Prbody]);

% makeBody(T0 T1 T2 L EB PB Ancestors), where TO is the initial theory,
% T1 the current theory, T2 the final theory, and L the initial

%  body means EB is the body for explaining, PB is the body for

%  proving, and A is the list of ancestor subgoals

makeBody(TOT TH [1[1[]1 J):;

makeBody(T0 T1 T2 H [G|R] [exr(G [H|A] T1 T3) | EB] [prr(G [H|A] TO)|PB] A) <-
makeBody(TO T3 T2 H R EB PB A);

% default(Name ) means Name is a default which can be used if consistent

default(D) <-
neg(D ND)
assert(mod prl(1 D _ T) [member(D T)])
assert(mod exl(1 D _ T T) [member(D T)])
assert(mod exl(1 D _ T1 [D|T1]) [not(member(D T1)) not(prr(ND [] T1))]);

% askable(P) means anything matching P can be asked of the user

askable(P) <-
assert(mod exr(P [] T T) [ask_user(P)])
assert(mod prr(P [] T) [ask_user(P)])
assert(mod exr(n(P) [] T T) [ask_user(n(P))])
assert(mod prr(n(P) [] T) [ask_user(n(P))]);

% explain(P T) means Pcan be explained with theory T

explain(G T) <-
makeBody([] [] T[] G NL PB[])
prove(mod NL)

?
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% prolog(P) means anything matching P can be proven in prolog

prolog(P) <-
assert(mod pri(1 P[] T) [P])
assert(mod exI(1 P [] T T) [P]);



%
% EXTENDED_COMMANDS
%

%

% Clear command modified to do reinitialisation

%

extendedcommand([clear]) <-!
clear_aux(mod)
init_mod
init_ext;

extendedcommand([problem Problem]) <-!

prove(mod problem(Cur_Problem))

update_problem(Problem Cur_Problem)

extend,edcommand([problem]) <-!
prove(mod problem(Cur_Problem))

update_problem(Cur_Problem Cur_Problem)

?

extendedcommand([goal Goal]) <-!
prove(mod goal(Cur_Goal))
update_goal(Goal Cur_Goal)

extend’edcommand([goal]) <-!
prove(mod goal(Cur_Goal))
update_goal(Cur_Goal Cur_Goal)

1

%

%  Find all simplest theories.

%

extendedcommand([theories Goal]) <-!
interpretcommand([goal Goal])
find_theories(Goal)

extend,edcommand([theories]) <-!
prove(mod goal(Goal))
find_theories(Goal)

?

%

%  Find a preferred theory.
%

extendedcommand([bstar]) <-!

init_lib

bstar(Best_node Final_search_tree)
write("\nBest node: ")
write(Best_node)
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write("\n\nFinal Search Tree: ")
write(Final_search_tree)

2

find_theories(Goal) <-
all_theories(Goal Theories)
output_all_theories(Goal Theories)
neg(Goal NegGoal)
all_theories(NegGoal NegTheories)
output_all_theories(NegGoal NegTheories)

b4

all_theories(Goal Theories) <-
all_of(Theories Theory explain([Goal] Theory))

2

output_all_theories(Goal []) <-!
write("\n\nThere are no theories explaining: ")
write(Goal)
nl

output’_all_theories(Goal Theories) <-
write("\n\nAll simplest theories explaining: ")
write(Goal)

output_all(Theories 0 N)
nl

output_all([] N N);
output_all([H|T] IN) <-
sum(I 1 IP1)

write("\nTheory ")
write(IP1)

write(": ")
output_theory(H)
output_all(T IP1 N)

b

output_theory([]) <-!
nl
tab

write([])

output’_theory(T) <-
output_names(T)

2

output_names([]);



output_names([N|Ns]) <-
output_name(N)
output_names(Ns)

output_name(N) <-
nl
tab
write(N)

?

update_problem(Problem Cur_Problem) <-
ne(Problem Cur_Problem)
interpretcommand([clear])
retract(mod problem(Cur_Problem))
assert(mod problem(Problem) [])
write("\nNew Problem: ")
write(Problem)
interpretcommand([consult Problem])
nl

update_problem(Problem Cur_Problem) <-
eq(Problem Cur_Problem)
write("\nCurrent Problem: ")
write(Cur_Problem)
nl

update_goal(Goal Cur_Goal) <-
ne(Goal Cur_Goal)
retract(mod goal(Cur_Goal))
assert(mod goal(Goal) [])
write("\nNew Goal: ")
write(Goal)
nl

update_goal(Goal Cur_Goal) <-
eq(Goal Cur_Goal)
write("\nCurrent Goal: ")
write(Cur_Goal)
nl

b

init_lib <-
module(test _)
cut;

init_lib <-
import(test .);
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%
% LOOP_CHECK
%

noloop([] A);

noloop([B|R] A) <-
not(loop(B A))
noloop(R A);

loop(G A) <-
member(M A)
is_same(G M);

is_same(G M) <-
is_var(G)
is_var(M)
cut
same_var(G M);
is_same(G M) <-
atomic(G)
atomic(M)
cut
eq(G M);
is_same([] [1);
is_same(G M) <-
is_list(G)
is_list(M)
cut
eq(G [GH|GT])
eq(M [MHMT))
is_same(GH MH)
is_same(GT MT);
is_same(G M) <-
is_functor(G)
is_functor(M)
cut
functor(G GL)
functor(M ML)
is_same(GL ML);

%
% GROUND
%

ground(Term) <-
not(is_var(Term))

eq(Term [HIT])
cut

ground(H)
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ground(T);

ground(T) <-
is_functor(T)
cut
functor(T L)
ground(L);

ground(T) <-
not(is_var(T));
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%
%  ASK_USER
%

% "ask_user" is a predicate that will ask interactively whether or not the
% given question is true. If the question has variables, an instance is asked
% for, and backtracking is allowed until a reply of "none" is given.

% Q is assumed to be a functor

ask_user(Q) <-
get_vars(Q [FR]) % has at least one variable
ask_user_instance(Q [F|R])

ask_user(n(Q)) <-
cut
not(asked(Q))
get_vars(Q []) % no variables
printf("is % true\n" [Q])
read_term(A)
replied(Q A)
negative_answer(A)
cut

ask_user(Q) <-
not(asked(Q))
get_vars(Q []) % no variables
printf("is % trueT\n" [Q])
read_term(A)
replied(Q A)
affirmative_answer(A)
cut

’

ask_user_instance(n(Q) Vars) <-
cut
not(already_asked(Q Vars))
printf("for which % is % false™\n" [Vars Q])
read_terms(T)
interpret_neg_ans(T Q Vars)

’

ask_user_instance(Q Vars) <-
not(already_asked(Q Vars))
printf("for which % is % true™\n" [Vars Q])
read_terms(T)
interpret_pos_ans(T Q Vars)

b

interpret_pos_ans([none] Q V) <-



cut

assert(mod asked(Q) [])
default(n(Q))

cut fail;

interpret_pos_ans([unknown] Q V) <-
cut
assert(mod asked(Q) [])
cut fail;

interpret_pos_ans(T Q Vars) <-
eq(T Vars)
assert(mod asked(Q) [])
fact(Q [])

interpr’et_pos_ans(T Q Vars) <-
ask_user_instance(Q Vars)

’

interpret_neg_ans([none] Q V) <-
cut
assert(mod asked(Q) [])
default(Q)
cut fail;

interpret_neg_ans([unknown] Q V) <-
cut
assert(mod asked(Q) [])
cut fail;

interpret_neg_ans(T Q Vars) <-
eq(T Vars)
assert(mod asked(Q) [])
fact(n(Q) [])

interpr’et_neg_ans(T Q Vars) <-
ask_user_instance(n(Q) Vars)

?

% this pred analyzes a term and returns a list of its variables

get_vars(Q []) <-
atomic(Q);
get_vars(Q [Q]) <-
is_var(Q);
get_vars(QL) <-
is_functor(Q)
functor(Q [FR])
get_vars(R L);
get_vars(Q []) <-

174



is_list(Q)
eq(Q [D;

get_vars(Q L) <-
is_list(Q)
eq(Q [FR])
get_vars(F L1)
get_vars(R L2)
app_no_dup(L1 L2 L);

% append two lists of variables without duplications
app_no_dup([] L L);
app_no_dup([FR] L Z) <-

in_var_list(F L)

app_no_dup(R L Z)

app_nc,)_dup([FIR] L [F|Z]) <-
not(in_var_list(F L))
app_no_dup(R L Z)

b

% this succeeds if the variable is in the list
in_var_list(V [FR]) <-

same_var(V F)

eq(V’' F’)

in_var_list(V [FR]) <-
in_var_list(V R)

?

affirmative_answer(yes);
affirmative_answer(y);

negative_answer(no);
negative_answer(n);

replied(Q A) <-
save_reply(Q A)
assert(mod asked(Q)[]);

save_reply(Q A) <-
affirmative_answer(A)

fact(Q [D!;
save_reply(Q A) <-
negative_answer(A)

fact(n(Q)[1)!;
save_reply(Q A) ;
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already_asked(Q V) <-
not(not(already_asked_and_bind(Q V)));

already_asked_and_bind(Q V) <-
skolemize(V)
asked(Q);

skolemize([]);

skolemize([H[T]) <-
gensym(H)
skolemize(T);

gensym(V) <-
retract(mod seed(S))
plus(1 S S1)
assert(mod seed(S1) [])
itoa(S1 Al)
strcat("gen" Al V);
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%

% INIT (WUP initialisation file)

%

?import(iolib /u/prolog/library/iolib);

%init_mod;

7init_ext;

9Istart;

%

%  INIT (other initialisations)

%

init_mod <-
assert(mod exr(G A T1 T2) [ground(G) cut ex(G A T1 T2) cut])
assert(mod exr(G A T1 T2) [ex(G A T1 T2)])
assert(mod ex(G A T T) [neg(G GN) member(GN A)])
assert(mod ex(G A T1 T2) [exl(1 G A T1 T2)])

%  assert(mod ex(G A T1 T2) [ex](2 G A T1 T2)])
assert(mod prr(G A T) [ground(G) cut pr(G A T) cut])
assert(mod prr(G A T) [pr(G A T)))
assert(mod pr(G A T) [neg(G GN) member(GN A)])
assert(mod pr(G A T) [prl(1 G A T)])

%  assert(mod pr(G A T) [prl(2 G A T)])
assert(mod asked(this_question_should_never_be_asked) [])
assert(mod seed(0) [])

init_ext <-

assert(mod problem([]) [])
assert(mod goal([]) [])

?
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%
%  START UP MESSAGE
%

Welcome to Theorist 0.21

For help type "help;"

All complaints to David Poole (dlpoole@watdragon)
or Scott Goodwin (sdgoodwin@watdragon)

Have Fun

%

% HELP FILE
%

Commands are:

help; prints this message

quit; exits from the system

exit; exits to wup

clear; clear the database

consult "File"; read input from File

end; end of input from file

fact Clause; makes the clause a fact

default Name; makes the Name a default

default Name Clause; makes the clause a default

prolog Atom; Atom should be proven as in Prolog
askable Atom; the user should be asked whether Atom
explain Goal; find a theory to explain the goal
retry; find another answer

To questions asked of the user reply
"yes;" "no;" or "unknown;" to "is" questions

"npone;" "unknown;" "list of values...;" to "for which" questions

Extended Commands are:

problem "File"; reads input from File (unless already read)
problem; displays the name of the current problem file

goal Goal; sets the current goal to Goal;

goal; displays the current goal;

theories Goal; find all theories explaining Goal and its negation
theories; find all theories for current Goal and its negation

bstar; find the preferred theory



Appendix C
Axiomatisations

%
%  Yale Shooting Scenario
%

fact alive(0);
fact n(loaded(0));

fact loaded(do(load,S));

fact n(alive(do(shoot,S))) <- loaded(S);
fact n(loaded(do(shoot,S)));

fact alive(do(A S)) <- alive(S) frame_alive(A S);
fact n(alive(do(A S))) <- n(alive(S)) frame_alive(A S);

fact loaded(do(A S)) <- loaded(S) frame_loaded(A S);
fact n(loaded(do(A S))) <- n(loaded(S)) frame_loaded(A S);

default frame_alive(A S);
default frame_loaded(A S);

end;
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%
%  Light Circuit Example
%

fact n(on(s,0));
fact n(on(a,0));
fact n(on(b,0));

fact ok(s,0);
fact ok(a,0);
fact ok(b,0);

fact on(s,do(flip,0));
fact n(on(a,do(flip,0)));
fact n(on(b,do(flip,0)));

fact on(a,S) <- on(s,S) ok(s,S) ok(a,S);
fact n(on(a,S)) <- n(on(s,S));
fact n(on(a,S)) <- n(ok(s,S));
fact n(on(a,S)) <- n(ok(a,S));

fact on(b,S) <- on(s,S) ok(s,S) ok(b,S);
fact n(on(b,S)) <- n(on(s,S));
fact n(on(b,S)) <- n(ok(s,S));
fact n(on(b,S)) <- n(ok(b,S));

fact ok_s(do(A,S)) <- ok_s(S) frame_ok_s(A,S);
fact n(ok_s(do(A,S))) <- n(ok_s(S)) frame_ok_s(A,S);

fact ok_a(do(A,S)) <- ok_a(S) frame_ok_a(A,S);
fact n(ok_a(do(A,S))) <- n(ok_a(S)) frame_ok_a(A,S);

fact ok_b(do(A,S)) <- ok_b(S) frame_ok_b(A,S);
fact n(ok_b(do(A,S))) <- n(ok_b(S)) frame_ok_b(A,S);

default frame_ok_s(A,S);
default frame_ok_a(A,S);
default frame_ok_b(A,S);

end;
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%
%  Sky-diving Scenario
%

fact defective(0);
fact alive(0);
fact n(happy(0));

fact happy(do(guzzle,S));
fact n(alive(do(jump,S))) <- defective(S);

fact defective(do(A,S)) <- defective(S) frame_defective(A,S);
fact n(defective(do(A,S))) <- n(defective(S)) frame_defective(A,S);

fact alive(do(A,S)) <- alive(S) frame_alive(A,S);
fact n(alive(do(A,S))) <- n(alive(S)) frame_alive(A,S);

fact happy(do(A,S)) <- happy(S) frame_happy(A,S);
fact n(happy(do(A,S))) <- n(happy(S)) frame_happy(A,S);

default frame_alive(A,S);
default frame_happy(A,S);
default frame_defective(A,S);

end;



Appendix D
Test Results - Final Search Trees

%

%  Yale Shooting Scenario

%

Best = {2}

Root Node = 0

Children:
Node = 2
Theory =

frame_loaded(wait,do(load,0))

Max Score =

frame_alive(load,0)
frame_loaded(wait,do(load,0))
frame_alive(wait,do(load,0))
frame_alive(shoot,do(wait,do(load,0)))
frame_loaded(shoot,do(wait,do(load,0)))
Min Score =
frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_loaded(wait,do(load,0))

Children:

Node = 3

Theory =
frame_alive(load,0)
frame_loaded(wait,do(load,0))

Max Score =
frame_alive(load,0)
frame_loaded(wait,do(load,0))
frame_alive(wait,do(load,0))
frame_alive(shoot,do(wait,do(load,0)))
frame_loaded(shoot,do(wait,do(load,0)))

Min Score =
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frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_loaded(wait,do(load,0))

Children:

Node = 4

Theory =
frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_loaded(wait,do(load,0))

Max Score =
frame_alive(load,0)
frame_loaded(wait,do(load,0))
frame_alive(wait,do(load,0))
frame_alive(shoot,do(wait,do(load,0)))
frame_loaded(shoot,do(wait,do(load,0)))

Min Score =
frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_loaded(wait,do(load,0))

Node = 1
Theory =

frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_alive(shoot,do(wait,do(load,0)))

Max Score =

frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_alive(shoot,do(wait,do(load,0)))
frame_loaded(shoot,do(wait,do(load,0)))

Min Score =

frame_alive(load,0)
frame_alive(wait,do(load,0))
frame_alive(shoot,do(wait,do(load,0)))
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%
%  Light Circuit Example
%

Best = {2,3}

Root Node = 0
Children:
Node = 1
Theory =
frame_ok_s(flip,0)
Max Score = [1]
Min Score = [1]

Node = 2

Theory =
frame_ok_a(flip,0)

Max Score = [2]

Min Score = [2]
Children:
Node = 5
Theory =

frame_ok_b(flip,0)
frame_ok_a(flip,0)
Max Score = [2]
Min Score = [2]

Node = 3
Theory =
frame_ok_b(flip,0)
Max Score = [2]
Min Score = [2]
Children:
Node = 4
Theory =
frame_ok_a(flip,0)
frame_ok_b(flip,0)
Max Score = [2]
Min Score = [2]
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%
%  Sky-diving Scenario
%
Best = {2}
Root Node = 0
Children:

Node = 1

Theory =

frame_alive(guzzle,0)

frame_alive(jump,do(guzzle,0))
Max Score =

frame_alive(guzzle,0)

frame_alive(jump,do(guzzle,0))

frame_defective(jump,do(guzzle,0))

frame_happy(jump,do(guzzle,0))
Min Score =

frame_alive(guzzle,0)

frame_alive(jump,do(guzzle,0))

Node = 2

Theory =
frame_defective(guzzle,0)

Max Score =
frame_defective(guzzle,0)
frame_alive(guzzle,0)
frame_alive(jump,do(guzzle,0))
frame_defective(jump,do(guzzle,0))
frame_happy(jump,do(guzzle,0))

Min Score =
frame_alive(guzzle,0)
frame_defective(guzzle,0)

Children:

Node = 3

Theory =
frame_alive(guzzle,0)
frame_defective(guzzle,0)

Max Score =
frame_defective(guzzle,0)
frame_alive(guzzle,0)
frame_alive(jump,do(guzzle,0))
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frame_defective(jump,do(guzzle,0))

frame_happy(jump,do(guzzle,0))
Min Score =

frame_alive(guzzle,0)

frame_defective(guzzle,0)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

