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Abstract

The limit sets of cellular automata, defined by Wolfram, play an
important role in applications of cellular automata to complex sys-
tems. We prove a number of results on limit sets, considering both
finite and infinite configurations of cellular automata. We are mainly
concerned with testing membership and (essential) emptiness of limit
sets for linear and two-dimensional cellular automata. In our proofs
we use results on finite recognizability of sets of biinfinite words and

topological properties of product spaces.
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1 Introduction

Cellular automata (CA) are used to model complex natural systems con-
taining large numbers of simple identical components with local interactions
[12,13,14]. An important role in these models is played by the limit sets of
CA. The limit set of a CA consists of those configurations that might occur

after arbitrarily many computation steps of the automaton.

Mathematical investigation of CA limit sets has been initiated in [6]. In
the present paper we prove the undecidability of tﬁe problem whether the
limit set of a given kD CA is a singleton for £k > 2. We improve the proof
of the main result from [6], namely that the CA limit language is generally
nonrecursive, and prove a number of additional results. The methodology of
this work is of interest. Besides automata theoretical techniques we also con-
sider, as Hurd did [6], the product topology on the space of configurations;

we use the fact that this topological space is compact.

In Section 2 we define cellular automata and their limit sets. In Section
3 we endow the set of states of a CA cell with the discrete topology and
observe that the space of all the configurations of a CA with the product
topology is compact by Tychonoff’s theorem. We then use compactness to
prove several properties of the limit sets, including nonemptiness. We also

use Baire’s category theorem to derive a classification of cellular automata.

In the following section we combine topological techniques and the prop-
erties of regular sets of biinfinite words (see appendix) to prove more results

on the limit sets of linear automata.

In Section 5 we use the undecidability of the tiling problem to prove that

for k > 2 it is undecidable whether the limit set of a given k-dimensional
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cellular automaton is a singleton.

A configuration of a CA is called finite if all but finite (non zero) num-
ber of cells are quiescent. In Section 6 we study the limit sets of finite
configurations, i.e. the intersection of the limit set with the set of finite
configurations. Our main result here is that it is undecidable whether the
limit set of finite configurations is empty even for linear CA. The set of all
finite subwords of the configurations in a limit set is called a limit language.
We show that the membership problem for CA limit languages, i.e. whether
a given string is in the limit language of a given linear CA, is undecidable.
Using the existence of a universal CA [1], we prove that there exists a CA
whose limit language is not recursive. Similar results were proved by Hurd

[6]. In section 6 it is explained how our results relate to those in [6].

There are simple regular languages that are not CA limit languages. On
the other hand, since the complement of any CA limit language is recur-
sively enumerable, a limit language is recursive if and only if it is recursively
enumerable. Thus the result mentioned above implies that not all limit
languages are recursively enumerable [6]. Moreover, there is no obvious ef-
fective translation between the description of a recursive limit set by its CA

and the description by a Turing machine.

In the appendix we study biinfinite words, ww-finite automata and ww-
regular sets; our definitions are slightly different from but equivalent to those

in [9]. We prove that ww-regular sets are closed under ww-finite transduction.
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2 Cellular automata, basic definitions

Let Z be the set of integers, and Z* the set of k-tuples of integers. A cellular
automaton, abbreviated CA (or, more specifically, a k-dimensional cellular
automaton, kD CA) is an infinite array, indexed by Z*, of cells. Each cell
is identified by its location I € Z*.

At any time, each cell has a state, which belongs to a finite set S. The
dynamic behavior of the CA is determined by a rule that describes the state
of each cell at time t+ 1 as a function of the states of some neighboring cells
at time ¢. The rule is invariant with respect to translations (shifts) of Z*.

Formally, a cellular automaton is a quadruple A = (k, S, N, f), where
k > 1 is the dimension, S is the finite set of states, N is the neighborhood,
and f is the local function of A. The dimension k is an integer, k > 1. The
(relative) neighborhood N is a sequence (Iy, Iz, ..., I) of relative locations
I; € Z¥,1 < j < h. The local function is a total function f : Sk 8.

A configuration ¢ of the CA is a function ¢ : Z¥ — S, which assigns a
state in S to each cell of the CA. The set of configurations is denoted SZ* .
The local function f is extended to the global function

Gy:8% - s
of the set of configurations into itself. By definition, for c1,c2 € szt ,
Gy(e1) =cq
if and only if
c2(I) = f(ea(I + L), ei(I + I3), ..., ea(I + 1))

for all I € Z*.
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The function Gy describes the dynamic behavior of the CA: The CA
moves from the configuration ¢ at time ¢ to the configuration G¢(c) at time
t+ 1. The state of the cell I at time ¢ + 1 depends only on the states of the
cells in the neighborhood (I + It, I+ Iy,...,I + I1) at time t. Notice that
besides being locally defined, the global function Gy is total and translation-

invariant.

Example 1 Let A = (1,5, N, f) be a linear CA, where S = {0,1}, N =
(-2,-1, 0, 1, 2), and
1 fzxy+ze+z3+24+ 25 =4

f(Z]_,Ig, z3, T4, Zs) = .
0 otherwise.

If c is a configuration consisting of all 1’s and ¢' is a configuration consisting

of all 0’s, then Gy(c) = ¢'. m]

For ¢ € SZ*, the sequence (c,Gy(c),G*(c),G;3(c),..) is called the
orbit of c.

Frequently, a state § with the property

3,49 =47

is distinguished and called the quiescent state. In a CA, there may be
more than one state with the above property, but at most one of them
is distinguished as the quiescent state. The configuration with all cells in
the quiescent state is called the quiescent configuration, denoted by Q.

Let A= (k,S, N, f) be a CA. Define

) = gz* and
af) =g;(Qt-1) fori>1.
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Then
a=a®
"o

is called the limit set of A.
Define
®={ceS% |Gslc)=c}

(this is the set of “fixed points” of Gf). Obviously ® C .

3 The product topology on configurations

The configuration space S%is a product of infinitely many finite sets S.
When S is endowed with the discrete topology, the product topology on
S2* is compact by Tychonoff’s theorem ([7], Theorem 5.13). A subbasis of

open sets for the product topology consists of all sets of the form
{ces? |c(i)=a}, (1)

where i € Z* and a € S. A subset of SZ" is open if and only if it is a union
of finite intersections of sets of the form (1). It is easy to show that the
global function G defined in the previous section is continuous from S *to
XA (Thus the pair (Szk ,Gj) is a classical dynamical system, in the sense

of [3].)
Theorem 1 The limit set §1 is non-empty.

Proof Since Gy is continuous, each Q) { > 0, is a continuous image of
the compact space S Z*  Hence Q) are non-empty compact subsets of sz* ,
and Q) 2 0@ > Q) D .. .. Therefore the intersection 0 = 2, Q) is

non-empty. O
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The theorem has also an easy non-topological proof:

An alternative proof Let ¢ : Z¥ — S be a constant function (i.e.
there is a € S such that ¢(I) = a for all I € Z*). In the orbit (c,cy,cz,...)
of ¢, each ¢; is a constant function. Since the set S is finite, there are only
finitely many constant functions from Z to S, and thus there exists m such
that ¢,, = c¢; for infinitely many j. Hence ¢, € 00) for all ¢ > 0, and
cm € (1. a

For some CA, the limit set {2 contains only one configuration. In partic-
ular, for a CA with a special quiescent state g, it is possible that the limit set
contains only the quiescent configuration Q. It is an open question whether
the problem 0 = {3} is decidable for k = 1.

Now we are going to use Baire’s category theorem to classify cellular
automata by the limit behavior of their orbits. A subset of a topological
space is called a G; set if it is the intersection of a countable family of open

sets.

Theorem 2 Let C be a closed translation-invariant subset of SZ k. Ezactly

one of these two conditions is true:
(i) There exists an integer i > 0 such that G4*(S Z*ycc.

(ii) There ezists a dense G5 set D C S2* such that

cnlJaGsf(D)=0o.
1=0

Proof For:=0,1,2,..., let
Fi={ce 8% |G/i(c)eC}.
The sets F; are closed and translation-invariant. Let

oo
D=5s% - |JF .

t=0
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Thus D is a G set in $Z* and
0o
cnlJGs(D)=0.
1=0
If D is dense in SZ* then condition (ii) holds.

If D is not dense then U2, F; contains a nonempty open subset E of
SZ* . The set E is locally compact; therefore, by Baire’s theorem ([7],
Theorem 6.34), there exists ¢ such that F; contains a nonempty open subset
of E, which is an open subset of S Z*  Since F; is translation-invariant,
it follows that F; contains a nonempty open translation-invariant subset of
s However, every nonempty open translation-invariant subset of SZtis
dense in SZ* . Since F; is closed, it follows that F; = SZ* | and therefore (i)
holds. O

In the notation of section 2, Q) = G/*(SZ *). The set {Q} (the singleton
set containing only the quiescent configuration) and the limit set 2 are closed

and translation-invariant. Thus we obtain two corollaries:

Corollary 1 IfQ # {Q} then there exists a configuration whose orbit does

not contain Q.

Proof If there exists i such that Q) C {Q} then Q = {Q}. Therefore,
by Theorem 2, if @ # {Q} then condition (ii) holds with C = {Q}. f c€ D
then the orbit of ¢ does not meet {Q}. m|

Corollary 2 For each CA, ezactly one of these two conditions is true:

(i) There exists an integer 1 > 0 such that 06 = q.
(ii) There exists a dense G5 set D C 52" such that

Qn Gcf"(p) = 0.

=0
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O

It is easy to find CA satisfying condition (i) in Corollary 2. For instance,
(i) holds whenever G is surjective (because in that case Q = Q) = 52"
for every ¢). On the other hand, the CA in the following example does not
satisfy (i) (and therefore it satisfies (ii)).

Example 2 Let A = (1,S, N, f) be a linear CA such that S = {0,1},
N = (~1,0,1), and
1 ifa;=ay=a1=1;

f(a-lx ao, al) = .
0 otherwise.

In this example,
Q={“1v}u{vo"”|n=0,1,2,...}.
However,
Gfi(w012i+1012i+10w) — w0102i+110w
and therefore Q(¥) # Q for every ¢, which means that condition (i) in Corol-

lary 2 does not hold. O

Now we prove that condition (ii) in Corollary 2 never holds when Q =
{Q}.
Theorem 3 Q = {Q} if and only if there ezists an integer i > O such that

00 = {Q}.

Proof The if part is trivially true. To prove the only if part, assume

that 2 = {Q}. Choose one cell I € Z*, and define

C={ces? |c(l)#§}-
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Then C is a closed set and

ﬁ (ﬂ(")no) ={0}nCc=6.

=0

By compactness, Q20 NC = @ for some ¢. Since Q) is translation-invariant,
QN {ces? |c(I)#£§} =0

for every I € Z*. Hence Q0) = {Q}. O
Theorem 3 yields a semi-procedure for demonstrating that {2 contains
only the quiescent configuration. To define the semi-procedure, we extend
the global function G to operate on partial configurations: If W C Z*,
define
NYW)={IezZt|I+L;eW for 1<j<h}

and for a function ¢y : W — S define
Gy(e1) = cq
where ¢z : N™}(W) — S is such that
co(I)= flei(I+ h),ei(I + L), . ..,e1(I + 1))

for all I € N~1(W).
For r > 0, define the k-dimensional interval W, to be the product of

one-dimensional intervals [—r, r]; that is,
W, = { (i1,12,...,5) €Z*| —r<i; <r for j=1,2,...,k}
Denote by Iy the origin in Z¥, i.e. the k-tuple of zeros.

Corollary 3 Let r > 0 be such that N C W,. Then Q = {Q} if and only
if there exists an integer 1 > 0 such that for every function c : Wi, — S the

function G4*(c) maps I to §.
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Proof The corollary follows from the theorem and from this observation,
which can be proved by induction in ¢: If ¢ : W;, — S and ¢’ : Z¥ — S agree
on W;,, then G4*(c) and Gi(c') agree at Io. ]

The following semi-procedure determines that Q = {Q~} Let A =
(k,S, N, f) be the given CA. Find r such that N C W,. For: = 1,2,...,
generate all functions ¢ : W, — S, and for each such ¢ compute the value
of G*(c) at Ip. Stop when, for some 1, all the values are §. This is only a
semi-procedure because it never halts when Q # {Q}.

We conjecture that the problem 2 < {Q} is decidable for linear CA. In
section 5 we show that the problem is undecidable for 2D CA, and therefore
also for kD CA when k& > 2. In the remainder of this section we show that
the same problem for @ (the set of fixed points of G, defined at the end of
section 2) is decidable for linear CA, although (as will be proved in Theorem
9) it is undecidable for dimensions k > 2.

A configuration ¢ : Z — S is called periodic if there is m > 0 (called a

period of ¢ ) such that c(5 + m) = ¢(j) for every j € Z.

Lemma 1 For a 1-dimensional CA (1,S, N, f), let r > 0 be such that N C
[=r,7], and let n be the cardinality of S. If ® # {Q} then there exists a

periodic configuration c € P, ¢ # é, with period at most n?+1,

Proof There are n?"*! different partial configurations d : [-r,r] — S.

Choose any ¢' € ® — {Q}. Among the restrictions of ¢’ to the intervals
[4,7+2r],7=0,...,n% 1 at least two must be identical (modulo a shift).
Suppose that the two are the restrictions of ¢’ to the intervals [j;, /1 +2r] and
[72, 72 + 27], 0 < J1 < j2 < n?*1. Define ¢ to be the (unique) configuration

that is equal to ¢’ on the interval [51, 72+ 2r] and is periodical with the period

J2 — - O
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Theorem 4 The problem ® z {Q} is decidable for k= 1.

Proof In view of Lemma 1, the following algorithm decides whether
® = {Q}: Generate all partial configurations ¢ : [-r,n?*14+] = S, and for
each such ¢ check whether there exists an integer m, 0 < m < n?"+1 such
that G¢(c)(5) = ¢(5) for 0 < j < n?*1, ¢(5) = c(j+ m) for —r < j < r,
and c(0) # §. If there is at least one ¢ for which the test is positive then
® # {Q}. Otherwise ® = {Q}. O

4 The limit sets of linear cellular automata

In this section we assume that A = (1,5, N, f); that is, A is a linear CA.
We treat a configuration of A as a biinfinite word over the alphabet S.
With every set of configurations we associate a set of finite words (strings)

over S, as follows: For a biinfinite word ¢ € SZ, define (as in [6])
Llc] = { w € S* | w is a finite subword of ¢},

and, for C C SZ, define
Lic)= | L)

ceC
L[C] is called the language of C. If 1 is the limit set of the CA A, then we

call L[] the limit language of A.
The next theorem gives an alternative definition of the limit language

L[Q].
Theorem 5 L[] = NXe L[O)].

Proof Since @ C Q) for every 1, it icllows that L[Q] C (; L[2()]. To prove
the opposite inclusion, choose any w € [; L[Q(")]. Let 7 be the length of w.
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Define
C={ce8%|c(1)c(2)...c(f)=w}.

Then C is a closed set and C N Q) # @ for every ¢, by the choice of w and

the translation-invariance of Q1(). By compactness,

Qnc = ﬁ (a9 nc) #0,

+=0

which means that w is a subword of some ¢ € 1, hence w € L[Q1]. O

Wolfram [13] shows that the set L[(2(*)] is regular for each ¢ > 0. This
result can be proved using the fact that regular sets are closed under GSM
mappings [5]. Indeed for each local function f it is easy to construct the GSM
T; that maps each word w in L[Q()] with |w| > r, where r is the span of the
neighborhood, into the successor string of length |w| — r in L[Q(+1)]. The
set L[Q(0)] = S* is regular, therefore for each ¢ > 0, L[Q0+1)] = T (L[Q()])
is regular as well. We omit the details of this proof. However, we obtain the
same result again in Corollary 4, using a more general approach.

A natural extension of finite automata (FA), called ww-FA, is described
in the appendix. The set of biinfinite words recognized by an ww-FA M is
denoted B(M); every set of this form is called an ww-regular set. Every ww-
regular set is translation-invariant. The family of ww-regular sets is closed
under ww-finite transductions, union, and intersection. Details are given in

the appendix.

Example 3 Let X be the set of all the biinfinite words over {a, b} that
have a prime number of a’s. Let Y be the set of all biinfinite words over

{a, b}. Then L[X] = L[Y] = {a, b}*. O
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In the above example, X and Y have the same set of finite subwords
although X # Y. Clearly, Y can be recognized by an ww-FA, but X cannot.
The example shows that the finite subwords of biinfinite words do not always
capture the characteristics of the biinfinite words themselves. This suggests
that it is useful to study directly the properties of biinfinite words as well
as their relations with finite subwords.

It can be verified that the global function Gy of a CA is a ww-finite
transduction on biinfinite words. From Theorem A.1 of the appendix, which
states that ww-regular sets are closed under ww-finite transductions, we
obtain the following theorem which formalizes comments made in Section 2

of [13].
Theorem 6 For any integer ¢ > 0, 00 is ww-regular. O

In view of Theorem A.2 in the appendix, the following is a direct conse-

quence of Theorem 6.
Corollary 4 For any integer i > 0, L[Q(")] is regular. O

Although the sets L[Q()] are regular, Hurd [6] shows that L[] can be
non-regular. As a corollary of the next theorem, we shall show that the set

1 is ww-regular if and only if the set L[] is regular.

Theorem 7 IfC C SZ is translation-invariant then the set { c € SZ | L|c] C

L[C] } is the closure of C in the product topology.

Proof Let D = {c€ S% | L[c] C L|C] }. The complement of D in SZ is
open. Indeed, if ¢! & D then ¢'(z)...c'(j) € L[C] for some 1,5 € Z,i < 5. In

that case the set

{ce8Z|c(@)...c(f)=c()...c(5) },
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which is a neighborhood of ¢’ in the product topology, does not intersect D.

Since D is closed and C C D, it follows that the closure C of C is a
subset of D. To prove that D C C, choose any d € D. Then for every 7 > 0
the word d(—j) ...d(s) is a subword of some ¢; € C. Since C is translation
invariant, we can choose c; so that d(—j)...d(5) = ¢;(-7)...cj(j). But
then d is the limit of the sequence (¢;|7 =0,1,...) in the product topology,
which proves that d € C. m]

Corollary 5 Let C C SZ be a translation-invariant closed set. Then C is

ww-regular if and only if L|C) is regular.
Proof Apply Theorems 7, A.2 and A.3. a -

Corollary 6 A configuration ¢ € SZ belongs to the limit set Q if and only
if Lic] C L[Q].

Proof By Theorem 7,02 ={ce€SZ|L[c]C L[] }. a

5 The limit sets of 2D cellular automata

In contrast to the conjecture we made for linear CA in Section 3, we are now .
going to show that it is undecidable whether or not the limit set of a given
2D CA consists of the quiescent configuration only. Consequently, the same
problem for kD CA limit sets is undecidable for any k& > 2. The proof is
based on a well-known deep result, the undecidability of the tiling problem.
In the following, we first give a brief description of the tiling problem and
then prove our results. Readers who are interested in the details of the tiling

problem are referred to [10].
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We are given a set of tiles with colored edges. The tiles are squares of
equal size. In the set, there are finitely many different types of squares and
there are infinitely many squares for each type. The tiles are to be used to
tile the entire plane, without rotating any tiles. In a valid tiling, each pair of
abutting edges have the same color. The tiling problem is to decide whether
or not a given set of squares can tile the entire plane.

The tiling problem was raised by Wang [11], and proved to be undecid-
able five years later by Berger [2]. Robinson gave a very readable proof in

[10].

Theorem 8 It is recursively undecidable whether or not the limit set Q0 of

a given 2D CA consists of Q~ only.

Idea of the proof [Each type of tiles in the tiling problem corre-
sponds to a state in a 2D CA. The state set of the CA consists of the states
representing all types of squares, and a quiescent state. The neighborhood
of a cell contains the cell itself and its four neighboring cells. At each com-
putation step, every cell checks if it has correct neighbors in the sense of
tiling. If it does, it remains in the same state. If it doesn’t, it changes to
the quiescent state. Moreover, the quiescent state spreads to its neighbors.
The given tiles admit a valid tiling of the plane if and only if the limit set of
the CA does not consist of the quiescent configuration only. Therefore, the
undecidability of our problem is implied by the undecidability of the tiling

problem.

Proof of Theorem 8 We show that the tiling problem can be trans-

formed into our problem. We are given a set of tiles,

T= { (li)ri)ui)di) I 1 Sis n}’
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where [;, r;, u;, and d; denote the colors of the left, right, upper, and lower
edges, respectively. In the following, we use I(t), r(t), u(t), and d(t) to denote
the colors of the four edges of a tile t; that is, t = (I(¢), r(¢), u(t),d(t)). We
construct a CA A = (2,Q, N, f) where

Q=Tu{Q}

N =((0,0),(-1,0),(1,0),(0,1), (0, -1));

and

t, ifl(t,) = r(ti),r(t,) = 1(¢,),
f(tm t, iy, tu, td) = u(ta) = d(tu), and d(to) = u.(td);

§ otherwise.

Now we show that there is a valid tiling of the plane if and only if the
limit set of A is not {Q}, where Q denotes the quiescent configuration. If
the plane can be tiled with the given tiles, then all the valid tilings are
configurations in the limit set of A. If the plane cannot be tiled with the
given tiles, then there is an integer ¢ > 1 such that the square of size ¢
cannot be tiled (this follows from Konig’s infinity lemma — cf. pp. 381-383
in [8]). By the definition of f, G4*(c) = @ for all c € SZ°. This implies that
Q) = {@}, and the limit set € is equal to {Q}.

Since the tiling problem is undecidable, the problem < {Q~} for 2D
CA is also undecidable. O

Corollary 7 It is recursively undecidable whether or not the limit set of a

given kD CA consists of the quiescent configuration only, for any k > 2.

Proof Define the local function such that only two dimensions are actually
effective. A cell remains in the same non-quiescent state if its four neighbors

in two specific dimensions satisfy the rule of tiling. a
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The same technique does not work for linear CA because the tiling prob-
lem in one dimension is trivially decidable.

Observe that, for the given set of tiles and the cellular automaton con-
structed in the proof of Theorem 8, there is a valid tiling of the plane if
and only if the set ® C SZ* (defined at the end of section 3) contains some
configuration different from the quiescent configuration Q. Thus the proof

of Theorem 8 also proves the following result.

Theorem 9 For k > 2 it is recursively undecidable whether ® = {Q}.

O

6 Limit sets of finite configurations

A configuration is finite if the number of nonquiescent cells is finite but not
zero. Let ¥ denote the set of all finite configurations of a CA A. We define

the limit set of finite configurations of A as
Qr=QnN7.

In this section, we show that, given an arbitrary CA, it is undecidable
whether QO is empty. The difficulty in transforming the Turing machine
halting problem into this problem is that CA do not distinguish input sym-
bols from working symbols. Note also that the limit set of finite configura-
tions may be nonempty even if every finite configuration eventually becomes

quiescent.

Example 4 Let A = (1,5, N, f) be the linear CA defined in Example 2.
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That is, S = {0,1}, N = (-1,0,1), and

1 ifa_1=ao=a1=1'
f(a-1,a0,a1) = , ’
0 otherwise.

In this example, either “0” or “1” can be distinguished as the quiescent state.
If “0” is the quiescent state, then the limit set of finite configurations is the
set of all configurations that have exactly one substring of the form “011..10”.
If “1” is the quiescent state, then the limit set of finite configurations is

empty. O
Theorem 10 Given a CA, it is undecidable whether QF = 0.

Proof In this proof we consider linear CA. The result can be easily
extended to multidimensional CA.

We prove the undecidability of the problem by reduction from the halt-
ing problem for Turing machines on the blank tape. For any Turing machine
M we construct a CA A such that the limit set of A contains a finite con-
figuration if and only if M (starting with the blank tape) never halts.

Given a Turing machine M operating on a one-way infinite tape, we
construct a CA A = (1,5, N, f) with N = (-1,0,1) as follows. Besides
the quiescent state §, S consists of blue states, a yellozv state, and auziliary
states. Each blue state has two components. The first component contains
a tape symbol of M. The second component contains a marker which shows
whether the cell is to the left or to the right of the head of M, or directly
under the head; in the last case the marker encodes also the state of M.
Any instantaneous description of M is encoded as a sequence of blue states
(in fact, any instantaneous description of M is encoded by infinitely many

sequences of blue states — they differ from each other in the number of
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trailing blanks). The set of auxiliary states consists of the left boundary
state [, the right boundary states ro and r;, the left shift state s;, the right
shift state s,, and the destroyer state d.

We will simulate computations of M by evolutions of A on so called valid
segments. A segment is a finite nonempty sequence of nonquiescent states,

and a segment is valid if it is of the form
lbyby...bpysy"™r
where m >0, n > 0, and

(1) by1,b2, ..., by is a sequence of blue states which is a prefix of an encoding

of an instantaneous description of M;
(ii) y is the yellow state;
(iii) s € {s1,8r}.
(iv) r € {ro,71}.

The validity of a segment can be checked locally in one step: One can
define wvalid neighborhoods so that a segment is valid if and only if each

neighborhood intersecting the segment is valid.

The function f in A = (1,5, N, f) is defined in accordance with the

following principles:

(a) The destroyer state d spreads at the full speed (one cell at a time) in

both directions.

(b) Each invalid neighborhood generates the destroyer state d.
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Figure 1: A computation of CA A

(c) As long as a valid segment
a=1bbs...0pnsyy..yr

does not encounter spreading destroyers, it evolves as follows (see Fig-

ure 1, where time increases from top to bottom):

e If the blue states of a encode a non-halting instantaneous de-
scription of M then the blue states of its successor 8 encode the
next instantaneous description in the computation of M. If M

halts, then a destroyer d is produced.
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e In 3, the left boundary [ is at the same location as in a. If the
right boundary r = rg, then it changes to r; and stays at the same
location; if r = r;, then it changes to rp and moves one cell to the

left. In the second case, the rightmost yellow state disappears.

e If s = 5; (s = s,) then s moves one cell to the left (right) provided
its left (right) neighbor is not I (r). If s; (s,) meets ! (r), then 5
(sr) changes to s, (s;) and starts to move to the right (left). The
s1/ s, state continues crossing between the two boundaries / and r
until it finally vanishes when [ and r meet, as shown in Figure 1.
Depending on the value of s (s = s; or s = s,), the state by, (if

s = §;) or the leftmost yellow state y (if s = s,) disappears.

e Whenever s, leaves [ and a blue state appears between them, this
blue state encodes the initial instantaneous description of M with

the blank tape.

e When ! and r meet (as at the bottom of Figure 1), both are

replaced by 4.

We are going to prove that the limit set of A contains a finite configuration
if and only if M starting on the blank tape never halts.

Observe that if M never halts when started on the blank tape, then for
every instantaneous description of M that occurs in some computation of
M (starting on the blank tape) there exists a configuration ¢ € Qp such
that ¢ contains exactly one valid segment and the blue states of the segment
encode the instantaneous description. In particular, if M does not halt then
Qr # 0.

Thus it remains to be proved that if M halts then Qp = @. First we
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prove several claims.

Claim 1 If M halts, then no finite configuration that contains a valid

segment is in the limit set.

Proof: Forn >0, let o, =15, y" rg be a valid segment. By the rules
for f, a valid segment can only evolve from a valid segment, and if a valid
segment B is contained in a configuration in Qr then there are infinitely
many values of n for which «, evolves into 8. If M, when started on the
blank tape, halts in ¢t steps and n > 3(t + 1)/2, then in ¢t + 1 steps o,
evolves into the valid segment { by bs ... byyq s, y?~(E+1)=1#/2] ¢ whose blue
states encode the halting instantaneous description. Hence in t 4+ 2 steps
ay, evolves into a segment which contains at least one d. Therefore for each
valid segment 8 there are only finitely many n for which a,, evolves into S.

It follows that no configuration that contains a valid segment is in Q.

Claim 2 If a finite configuration ¢ contains an invalid neighborhood and

does not contain any destroyer state d, then there is no ¢’ such that ¢ =
Gy(c").

Proof : If ¢ = Gf(c') and ¢’ contains no invalid neighborhood and no
encoding of halting instantaneous description then ¢ contains no invalid

neighborhood; but if ¢’ contains an invalid neighborhood or an encoding of

halting instantaneous description then c contains d.

Claim 3 If a finite configuration ¢ contains an invalid neighborhood, then
c&Qp.

Proof : Since the result of Claim 2, it suffices to consider the case when

¢ has destroys (d’s). By the rules for f, if ¢ = G(c') then the number of
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d’s in ¢’ is smaller than the number of d’s in ¢. Therefore there exists an
integer n > 0 such that every configuration in G}™ (c) contains an invalid
neighborhood and no d. By Claim 2, &; ") (c) = 0.

By Claims 1 and 3, if M halts then Qr = 0. O

The following theorem was proved by Hurd (Theorem 4 in [6]).

Theorem 11 Given a CA A = (1, S, N, f) and a string w € S*, it s

undecidable whether w is tn the limit language of A.

Proof: For the cellular automaton A constructed in the proof of Theorem

10, the string Ir is in the limit language if and only if QF # 0. O

Our next result (Corollary 8) has been stated in [6] as a direct conse-
quence of a theorem equivalent to our Theorem 11. However, we feel that
Corollary 8 does not :mmediately follow from Theorem 11. In order to find
a nonrecursive limit language, one must show that for one particular CA A

it is undecidable whether a given string is in the limit language of A.

Corollary 8 There exists a linear cellular automaton such that its limit

language is not recursive.

Proof The collolary follows from Theorem 11 with the help of a universal
CA. A universal CA is given in [1], where any CA is simulated by encoding
its local function in the states of the universal CA. Given a CA A and a
string w of A, there is a string w' of the universal CA such that w' encodes
both A and w. Now, the problem of whether w is in the limit language of A
is transformed to the problem of whether w' (the encoding of A and w) is
in the limit language of the universal CA. Since the former is undecidable,

the latter is undecidable, too. ]
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Appendix

A Biinfinite Words and ww-Regular Sets

Biinfinite words and their regularity (finite recognizability) have been stud-
ied by Nivat and Perrin [9]. Here we use slightly different but equivalent

definitions which are more convenient for our purpose.

A biinfinite word ¢ is a mapping Z — S, where Z is the set of all integers
and S is a finite alphabet. The symbol ¢(7), j € Z, denotes the j-th letter

of c.

An ww-finite automaton (ww-FA) M is a quintuple (Q, S,6,QL,Qr),

where
Q@ is the finite set of state;
S is the input alphabet;
6 is the transition function;
Q1 C Q is the set of left (accepting) states; and
Qr C Q is the set of right (accepting) states.

A biinfinite word c is said to be recognized by M if there is a mapping

Z — @, i.e. a biinfinite sequence of states

«-4-2,9-1,90,91,92, ---

such that, for all j € Z,

(1) 8(g5,¢(5)) = gj+1; and
(2) there exist m,n € Z, m < j < n, such that ¢, € QL and ¢, € Qr.
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In other words, c is said to be recognized by M if there is a biinfinite com-
putation of M on input ¢ such that there is a left state appearing arbitrarily
early, and there is a right state appearing arbitrarily late in the computation.
Such a computation will be called an accepting computation.

The set of biinfinite words recognized by M is denoted B(M). The sets
of the form B(M) for some ww-FA M are called ww-regular.

If a biinfinite word c is recognized by an ww-FA, then all the translations
of ¢ are recognized by the same ww-FA. Therefore every ww-regular set is

translation-invariant.

Example A.1 Let M = (Q,S,6,QL,Qr) be an ww-FA, where Q =
{0,1}, S = {a,b}, QL = {0}, Qr = {1}, and § is given in Figure 2.

B—8

Figure 2:

The set of biinfinite words recognized by M is the set of all words
which have infinitely many a’s followed by infinitely many b’s, i.e. {“a b*}.

O

A finite automaton operating on finite or one-way infinite words is a
special case of an ww-FA, in the following sense. With a special blank
symbol, a one-way infinite word is represented as a biinfinite word with

infinitely many blanks on the left end. A finite word is represented as a
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biinfinite word with infinitely many blanks added at both ends. Then for
every finite automaton there is an ww-FA that recognizes the same set of
finite and one-way infinite words.

In an ww-FA, a left (right) state that is not in a cycle can be changed
into a non-left (non-right) state without affecting the set of biinfinite words
recognized by the ww-FA. A state which cannot be reached from any left
state or from which no right state can be reached is useless — it does not
contribute to the recognition of any biinfinite word. We say that an ww-FA

is reduced if it satisfies the following conditions:
(i) every left state is in a cycle;
(it) every right state is in a cycle;
(iii) every state can be reached from some left state;
(iv) from every state some right state can be reached;

For any given ww-FA we can construct a reduced one that recognizes the
same set of biinfinite words.

An ww-finite transducer is a 6-tuple (P, S, S, p, P, Pr)

where
P is the finite set of state;
S is the input alphabet;
S' is the output alphabet;
p is the transition function;
Py, C P is the set of left (accepting) states; and

Pg C P is the set of right (accepting) states.
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TO BE DEFINED: A biinfinite word d is an output on input ¢ under

the ww-finite transduction.

Theorem A.1 The family of ww-regular sets is closed under ww-finite trans-

duction.

Proof Let C = B(M) for some ww-FA M = (Q,S,5,QL,Qr). Let
T = (P,S,S', p, Pr, Pr) be a ww-finite transducer. We shall construct an
ww-FA M’ such that T(C) = B(M').

Define 7z, : {0,1,2} x Q@ x P — {0,1,2} by

7L(2,¢,p) = O

7.(0,¢,p) = 0ifq€ QL
= 1lifqge@L

7i(l,q,p) = 1lifpg Py

= 2ifpe P
Similarly, 7g : {0,1,2} x Q x P — {0,1,2} is defined by

7r(2,¢,p) = O

7r(0,¢,p) = O0ifq&Qr
= 1lifqgeQr

7r(1l,¢,p) = 1lifp¢ Pr

= 2ifpe Pp

The ww-FA M' simulates simultaneous execution of M and T'; the states
of M' have also two additional components whose purpose is to remem-

ber the passage through left and right states of M and T. Define M' =
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(Q" S') 5'7 Q'L, Q’R)’ Where
Q = {0,1,2}x{0,1,2} xQ x P
QL {2} x {0,1,2} x Q x P
Q) {0,1,2} x {2} xQ x P

o
I

and
6'((‘.1“7.1) qlapl)’ z’) = (‘.2aj23q2’p2)

if z' € S™ and there exists a € S U {A} such that

a(ql)a’) =q2
p(pl’a) = (pz,.'t')
nr(d1,q1,p1) =12

7r(%1,q1,01) = 52

Obviously, we could add finitely many additional states to Q' and replace
the definition of §’(¢', z') by one written in terms of §'(¢’, a'), o' € S'.
Accepting executions of M’ are in one-to-one correspondence with simul-
taneous accepting executions of M and T. Thus it is easy to check that

T(C) = B(M'). O

Using the same technique, we can prove that ww-regular sets are closed
under intersection. (A similar result for deterministic w-regular sets is
proved in [4].)

We conclude with two results about the connection between the ww-
regularity of a set C of biinfinite words and the regularity of the set L[C].

Recall from section 4 that, for a biinfinite word ¢ € S,

Lic]={ w € S* | w is a finite subword of c},
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and, for C C SZ,

Lic) = | L.

ceC
Theorem A.2 Let C be a set of biinfinite words. If C is ww-regular, then

L[C] is a regular language.

Proof Let M = (Q,S,6,QL,Qr) be a reduced ww-FA such that
C = B(M). We modify M to produce a FA M' accepting L[C], as follows.
We add a new start state that has a A-transition to every state of M, and
make every state of M a final state. Since M is reduced, every word accepted
by M' can be extended to a biinfinite word in C. By the construction of
M', every subword of a biinfinite word recognized by M is accepted by
M'. Therefore, L|C| is the language accepted by M', and thus is regular.

a

Theorem A.3 If R C S* is a reqular set then the set { c€ SZ | L[c] C R}

s ww-regular.

Proof Let C = {ce€ S% | L[c)] C R }. We can assume, without loss of
generality, that every subword of every word in R is in R. Thus there is a
finite automaton M that accepts R and such that every state in M is final.
Let M = (Q, S, 6, g0, F), where qo is the start state and F = Q is the set
of final states. Assume that every state in @ can be reached from the start
state. Define an ww-FA M, by M, = (@, S,6,QL,Qr) where QL = Qr = Q.
We are going to show that C = B(M,).

To show that B(M,) C C, choose any ¢ € B(M,) and any finite subword
w of c. Then there exist states q1, g2 € Q such that gyw 5 g¢2. Since every

state in @ can be reached from go, we have goz 5 ¢; for some z € S*. It
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follows that zw € R, and therefore also w € R, because R contains every
subword of every word in R. We conclude that L[c] C R,and c € C.

To show that C C B(M), choose any ¢ € C. We use the infinity lemma
(p. 383 in [8]) to prove that there is a biinfinite path in M, labeled by c.
We form an oriented tree in which all the finite paths in M, labeled by the
words ¢(—7) ...c(7), 7 = 0, are vertices. A path « (of length 25 + 3) labeled
by ¢(—7—1)...c¢(5+ 1) is a son of a path «' (of length 25 + 1) labeled by
¢(—7)...c(7) if 7 is a concatenation of one transition in M, followed by '
followed by one transition in M. All paths (of length 1) labeled by c(0)
are sons of a special root element. The oriented tree is infinite, and every
vertex has finite degree. By the infinity lemma there is an infinite path from
the root in the tree. Thus there is an infinite sequence of finite paths in
M, labeled by finite subwords of ¢; each path in the sequence extends its
predecessor at both ends. Therefore there is an infinite path in M, labeled

by c. Since Q = QL = Qg, it follows that ¢ € B(M,). ]
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