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Abstract

Approximate cost models that are traditionally needed to evaluate query execution
strategies are sometimes unavailable or too unreliable for particular environments.
Our new approach for strategy selection is based on feeding back the actual costs
of query execution under different strategies, rather than on assumptions-loaded
estimates of these costs. We propose three different methods for using these feedback
costs, under a common general framework for adaptive systems.

In optimal selection we define the problem of designing an optimal decision
policy for a single query class, where the policy specifies which strategy to execute
for each query. This problem is mapped to some versions of the bandit problem in
statistics, which can be solved using bayesian statistics and dynamic programming.
We present and analyze a program that derives the optimal policy.

In approzimate selection we use a learning automaton to select strategies. The
learning algorithm by Thathachar and Sastry is modified to handle the dynamic en-
vironments of databases. This adaptive algorithm is tested using existing databases
and query loads, showing how this approach determines the best execution strategies
over time, and changes which strategies are selected as the environment changes.

Finally, the method of query class partitioning considers the problem of evolving
optimal query partitionings, in which each partition includes all queries that have
a common optimal strategy. We present a novel adaptive classification scheme that
uses several learning automata.
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Chapter 1

The need for adaptivity in query
processing

One of the primary tasks of a query processor is the selection of efficient ezecution
strategies for queries. This involves choosing access paths to the required data and
selecting algorithms to be used to answer the query.

Typically, the selection algorithm incorporates a cost model that enables it to
predict the approximate cost of each strategy. This model is usually based on
numerous assumption: about the physical data structures, the nature of the data
and the characteristics of the query load. When the assumptions do not hold, the
model becomes unreliable in predicting costs, and the selection of strategies may
not be adequate. Further, there are situations in which no suitable cost model is
available at all.

We propose a new approach where the selection of strategies is based on the
actual past performance, rather than on the predicted performance of strategies.
This brings in the benefit of adaptation: as the performance varies due to changes
in the environment, the selection of strategies adapts to these changes. Further, as
we will see, this adaptive approach is based on very weak assumptions, providing
great generality and simplicity.

1.1 The traditional approach to query processing

The process of answering queries from a database can be naturally divided into two
parts: strategy selection and query execution (see figure 1.1). The strategy selector
will typically parse and transform the query in various ways, and eventually decide
on an execution strategy for the query; the query executor will then follow this
strategy to fetch the answer.

Often, there is more than one way to answer a query; the selector must then
decide which strategy to use based on estimated costs of each strategy. These costs
are often computed using a mathematical model of the storage structures of the
database; see for instance Selinger [80] and Dayal and Goodman [31] for typical
cost models.
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Strategy .
Query Selector Execution Query | Answer
....................... N Exec“‘or
(Cost Model) Strategy

Figure 1.1: Traditional query processing

Models usually assume that some data measures are available, including data
statistics (sizes, distributions), data placement (clustered or non-clustered) and
access structures (availability and type of indexes and links). This is represented
as a dotted line in figure 1.1. Models vary widely in the amount and kind of data
measures that they assume available.

For tractability, numerous simplifying assumptions are usually made about se-
lectivities, distribution of records in blocks, query load characteristics and so on.
The model will then produce a cost figure that will be exact only when these as-
sumptions are precisely met; more often, the cost model will produce a pessimistic
value [26].

In the next two sections, we will present two general situations where the tradi-
tional approach is inadequate or cannot be used. Section 1.2 describes in general the
kind of errors that can be made when typical assumptions are partially or totally
invalid. Section 1.3 considers cases where there is no suitable cost model available.

1.2 Unreliability of cost model

Christodoulakis [25,26] has observed that the simplifying assumptions used in cost
models often do not hold; the models may then produce grossly inaccurate cost esti-
mates and potentially wrong choices of strategies. The models are usually designed
for an “average” environment, but a particular database environment may be far
from average, far from the assumptions made by the cost model.

As a simple example of how things can go wrong, consider the set of single-
relation queries of the form “print records where X=a and Y=b", where the at-
tribute names X and Y are the same for all the queries but the desired values a and
b can vary between queries. Suppose that both attributes X and Y are indexed,

and the query processor must decide which index to use; so the execution strategies
are:

1. Use index on X to retrieve all records with X=a. On each of these records,
check whether Y=b; if so, print the record.
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2. Use index on Y to retrieve all records with Y=b. On each of these records,
check whether X=a; if so, print the record.

Let the cost be measured by the number of disk blocks that have to be accessed.

We will use the data measures and assumptions employed by System R [80].
The only measures available are the total number of records and blocks occupied
by the relation and the number of distinct values in indexes. Suppose there are 100
records in 10 blocks, 10 distinct values of X (from 1 to 10) and 20 of Y. Assuming
uniform and independent distributions of the attribute values tn the stored data,
we can ezpect 10 of the 100 records to have X=a, and 5 to have Y=b. The second
assumption is that the records are uniformly distributed in the blocks; that is, each
qualifying record has equal probability to land in any of the 100 available spots.
With this assumption, we get an ezpected cost of 6.66 for strategy 1 and 5 for
strategy 2 !, assuming the cost of using the index is negligible. Since strategy 2 is
cheaper, it will be selected for all queries of this type.

Suppose now that the first assumption is violated for attribute X: the first half
of the X values (from 1 to 5) only have one record occurrence each, and the other
half have 19 occurrences each. By bad luck, if all the queries happen to ask for X
values between 1 and 5, then the real costs for each of these queries will be 1 for
the first strategy, and 5 for the second. Clearly then, the cost model will make the
wrong strategy choice all the time.

Modelers therefore often make yet a fourth assumption that is not usually made
explicit: attribute values are uniformly distributed in the query load. If satisfied,
the right strategy choice will be made half of the time —with good luck, perhaps
more often. For more complicated examples involving complex selection conditions
and access to several relations, even more assumptions have to be made.

Several attempts have been made to improve on this situation. One obvious
improvement is to have more data measures available. For the particular example
considered, the indexes might keep exact selectivity values; this incurs time and
space overheads. Piatetsky-Shapiro and Connel[70], and Kamel and King [55] give
methods to compute approximate selectivities of individual values. Christodoulakis
[25,24] suggests the fitting of multivariate probability distributions to the data, in
order to improve record and block selectivity measures. These papers are limited to
single-relation queries. Demolombe [36] gives a precise cost model that requires nu-
merous detailed measures, including selectivities and correlations within and across
relations. It is not clear that the additional work required to obtain and update
data measures pays off in better selection of strategies.

Database management systems are general packages; one hopes that, over the
life of the system in thousands of databases, the right choice of execution strategies
will be made more often than the wrong choices, but there is no guarantee that this
will hold for any particular environment. What is really needed is the ability of the
selection mechanism to adapt to its environment.

1This is based on the formula of Bernstein et al. [13] that approximates Yao’s
exact formula [90].
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1.3 Unavailability of suitable cost models

There are situations where the traditional approach cannot be used because suitable
analytic cost models are not available.

As an example, consider a high-level database management system independent
query language that must run on top of a large number of database management
systems of diverse characteristics. Queries expressed in this language would be
translated to the query language or data manipulation language of the underlying
system. The different translations possible for a given query correspond to our
execution strategies. How can the system choose the best translation?

It is not feasible to have an analytic cost model for each possible circumstance.
The target systems may be commercial packages whose internal structures are not
fully known —all we know is their interface languages. Also, the systems may be
running on a wide variety of hardware, or even remotely, making the cost-model
approach impractical.

1.4 A new approach

The situations considered in the previous sections have in common an uncertain or:
unpredictable environment, which is where adaptive approaches best fit. We can
realistically assume that the exact cost of executing a query is available after the
query has been executed. Our approach explores ways of making use of these real
costs to improve the selection of strategies. What we propose is to form a feedback
loop between the strategy selector and the query execution engine, as shown in
figure 1.2.

Database
Query Strategy Execution Query Answer |
Selector Strategy Executor
L Execution
Signals

Figure 1.2: Adaptive query processing

The selector then receives some signals from the execution of the query; these
signals enable it to learn about its environment over time and improve the choice
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of strategies. In particular, we will consider extensively the case where the only
such signal is the cost of query execution. For the trivial example of section 1.2,
the adaptive approach will quickly notice that, for the query load that the system is
ezperiencing, strategy 1 is better than strategy 2 and begin choosing the first one
almost exclusively. The algorithms we propose will be able to adapt to changes in
the query load or other aspects of the environment.

Saridis [78], writing about adaptive control systems, observed that adaptive con-
trollers have been successfully applied to practical systems only in a few cases where
the uncertainty of the environment has prevented the use of standard controllers.
The reason for this is obvious: no system that has to infer part of its environment
over time will improve upon a system that knows it beforehand. Therefore, we
do not expect the adaptive approach to beat the traditional approach when the
latter is based on a carefully tailored cost model that makes meaningful assump-
tions in environments that satisfy the assumptions. Rather, we address our work
to the situations where suitable cost models are not available, environments change
frequently, or assumptions cannot be met.

1.5 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 establishes a general
framework for adaptive systems and includes a review of adaptivity in several fields,
including databases and query processing. The formal framework is used to describe
the components of a particular kind of adaptive query processing: adaptive strategy
selection. This is further particularized in chapters 3 to 6, where we consider cost
based adaptive strategy selection. Chapter 3 addresses the problem of determining
optimal adaptive strategy selection policies; this turns out to be computationally
impractical. Chapter 4 considers approximate policies. Simulation results using
real query loads are presented in chapter 5. Chapters 3 to 5 assume that queries
have been classified according to equivalence of strategies; in chapter 6 we consider
a further sub-classification scheme that partitions queries adaptively according to
patterns of attribute values and the associated costs of strategies. The last chapter
presents conclusions and suggestions for further research.




Chapter 2

Strategy selection as an adaptive
system

The term “adaptive” has been used with various meanings. Whether a system is
considered adaptive depends on one’s definition of adaptivity; further, the bound-
aries of the system have to be carefully stated, since something can be adaptive on
one level and not on another level.

In this chapter we will develop a formal framework for adaptive systems based on
the work of Holland [53]. This framework is grounded in General Systems Theory;
its purpose is to identify characteristics of adaptivity that are common to all kinds
of adaptive systems, natural or man-made. It specifies the components of these
systems; it also suggests useful measures of effectiveness of adaptive systems and
defines the adaptive systems design problem. The framework is then particularized
to adaptive strategy selection in query processing. We then review applications of
adaptive systems in various disciplines, including computer science and in particular
database systems.

2.1 Adaptive systems: definition and framework

An adaptive system is first of all a system. The first order of business is then to
distinguish the system from its environment, a distinction that depends on the point
of view.

The system may not be able to observe all of its environment at once; we speak
of a set of signals through which the system observes the environment.

Adaptivity implies change: modification of some part of the system. Likely, not
all of the system changes, so we must identify which parts of the system undergo
changes relevant for adaptation. In computer systems this may include algorithms
and data structures.

The purpose of change is to improve performance. The next requirement is then
to identify some measure of performance that improves over time as the system
adapts to its environment.
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Finally, there must be some agent of change, a component internal to the system
that observes its performance and modifies its structures accordingly.

This all leads to the following definition:

An adaptive system is a system that is able to modify part of its
structure in response to signals from its environment, so as to improve
some measure of performance over timé. The rules for structural modi-
fication are called an adaptive plan.

Formally, an adaptive system is a quintuple < £, 4, 1,7, >, where:

o & is the set of possible environments. At any particular time the system in-
habits one of these environments, e € £. It may happen that the environment
changes over time; if this is the case, the rules of this change have to be spec-
ified as well. The changes in the environment may be caused by the adaptive
system, or they may be independent of the actions of the adaptive system.

o A is the set of possible forms that the structures undergoing modification may
take. At any time these adapting structures have one particular form, a € 4.
Usually the structures retain some memory of past interactions of the system
with the environment.

e I is the set of values of signals that the system may receive from the environ-
ment.

e 7 is the adaptive plan. It is responsible for generating new structures that are
better adapted, based on the signals received. Thus, it can be interpreted as
a mapping: 7: Ax I — A.

e u is a set of measures of performance. Little can be said in general about
these measures, but we may be interested in the following:

— For a fixed environment e € £, the performance of the current structure
on the environment, p.(a). As a evolves to make the system better
adapted to e, u.(a) changes also. Sometimes this performance measure
may approach an asymptotic value.

— For environments that change over time, we may be interested in average
measures, given a specification of the kind of changes, and in the speed
of adaptation of the system to the changes in its environment. This
applies to cases where the structures a converge to a fixed structure over
time for each possible environment. When the environment changes, the
transient behavior of the a’s produced by the adaptive plan and the time
of adaptation to the next fixed structure may be of interest.
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The conflict between exploiting and exploring

There is an interesting conflict inherent in the operation of adaptive plans [53,44].
At any point in time, the plan 7 may know what is the best structure a so far, and
use it over and over —we call this alternative “exploitation”, to exploit the best
known structure. However, new, untried structures may explore unknown parts of
the environment, or might simply be better than the structures known so far —but
we might not know unless we give them a chance. We might call this “exploration”.

Clearly, both must go on to some degree. We cite examples of this conflict and
possible resolution techniques later.

Adaptive systems design

A particular adaptive system is specified by the quintuple < £, A4, I,7,u > outlined
in the previous section. An adaptive system design problem consists of discovering
what is the best system for a particular application. Hence we need criteria to
enable the comparison of different systems; this set of criteria is denoted as X.

The measures of performance mentioned above then become functions of parts of
the system itself; for instance, there might be adaptive plans that exhibit excellent
average performance but poor speed of adaptability to changes in the environment,
or the other way around. X weighs each factor to enable comparison of systems.

2.2 Adaptive strategy selection

In this section, we apply the framework to describe our adaptive strategy selectors.
See Holland[53] for other examples of application to very diverse disciplines.

2.2.1 A general adaptive query processor

Figure 2.1 shows a diagram of a general adaptive query processor as a data flow
diagram [35], where each bubble represents a process and each arrow is a data flow.

There are two processes: an ezecution strategy selector and a query ezecutor. The
selector chooses an ezecution strategy s) for the input query g; using this strategy,
the executor obtains the answer to the query from the database.

Let Q be the set of all queries, and S = {s1,$2,- .. Sk} be the set of all strategies.

We notice two feedback arrows in the diagram. The lower arrow carries a set of
signals I, from the executor to the selector. When the selector tries an execution
strategy, it receives feedback from the execution of the query with that strategy:
this feedback is named I,. The selector may also obtain other signals directly from
the database, independently of the execution of any query. These other signals are
depicted in the upper feedback arrow as Iy and may include things like cardinalities
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I
Database
i $, € {Sa. . -Su} Answer
9¢ Q %):reactlelg;n 5 5 “~{ Executor
Query Selector Strategy

I

X

Execution Signals

Figure 2.1: Adaptive query processor

of relations, selectivities, etc. The objective of the system is to execute queries as
cheaply as possible.

Note that the query processor does not affect the database. Updates are assumed
to take place somewhere else, outside of the system; of course, updates will affect
the signals I, and I; that the selector receives. It is also possible that the query
portion of an update, if any, is routed through the adaptive selector.

An even more general version of an adaptive query processor would include
adaptive storage structure modification; another arrow would then go from the
selector to the database. This possibility will not be further elaborated.

2.2.2 Formal model

Following the framework of section 2.1,

o The system is the box labeled “Execution strategy selector”.

o The environment e of the system is given by the triple <database schema,
database state, query load>. The database state is an instance of the data
in the database that satisfies the schema plus associated constraints. The
query load may be characterized in several ways; for instance, as a probability
distribution over Q, the set of all queries.

The adaptive system will be able to adapt to a certain environment e within a
set of possible environments £. It may also be able to adapt to changes from
one environment to another within £. The most frequent environment change
is probably the query load. The database state also evolves as updates are
made to the datahase.

e The system views its environment through the signals < I, I; >.
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e The structures undergoing adaptation may include a strategy selection policy P

and an environment model M. The model M may contain whatever the system
currently knows about the three components of the environment. It may also
include part of the history of interactions of the system with its environment.
M is obviously limited by the amount and type of signals received; information
not available may have to be filled in with assumptions. Let M be the set of
all possible states of M.

The policy P is what dictates strategy selection. The strategy selected de-
pends on the current model of the environment and the query; P can then be
depicted as a mapping, P : @ x M — S. This mapping can be stochastic, that
is: P:@x M — mg, where 7 is a probability distribution over S. The actual
strategy tried is then determined by a random trial on this distribution. Let
P be the set of all possible policies.

The adaptive plan 7 is responsible for updating the model M and possibly the
policy P in response to the signals I: 7: P x M x I — P x M. This updating
is intended to improve some measure of performance.

The performance measure u evaluates how well the current policy P is doing
with respect to the objective of answering queries cheaply. A typical measure
is the average query execution time; we may also be interested in the speed of
adaptation of M and P to different kinds of changes in the environment; and
others. A more precise definition of these measures depends on the particular
kind of adaptive selector considered; thus this definition will be postponed to
chapters 3 and 4.

Figure 2.2 depicts the operation of 7 and the query selection.
Selector

: [ Apply C L Se .
; Policy '

Figure 2.2: 7, in response to I, updates M and P
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2.2.3 Traditional and adaptive approaches revisited

Using this formal model, we can visualize the difference between traditional query
processors and the adaptive processors to be considered in this work. In a traditional
query processor, the lower feedback arrow is usually missing: no measures are
usually taken during the execution of the query nor tmmediately after the query is
executed. The model M determines the expected cost of query execution, based on
numerous assumptions about the database and query load. This model is updated
with some data measures I; as the database is updated. The policy P selects the
best strategy based on the approximate cost predictions from M; the policy itself

is never updated.

In this thesis, we will mostly consider query processors in which the upper
feedback arrow is missing and the lower feedback arrow carries a single measure,
the cost of query ezecution. This single important measure takes into account all the
factors that can affect query execution cost, such as record blocking, selectivities,
contention or whatever. It is also sensitive to variations in the query load.

2.2.4 Division of queries into classes.

In general, it is too much to expect that individual queries be optimized adaptively,
as there are too many queries, each of which is reposed at infrequent intervals.
All the possible queries will be divided into a number of classes, and the adaptive
optimization will apply to all the queries within each class.

The process named “execution strategy selector” of figure 2.1 is now subdivided
into several subprocesses, as shown in figure 2.3. There is now a classifier module,

Classifier

Selector \
n

N

Figure 2.3: Query classification

which determines the query class from the query text, and several selector modules,
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one for each class. Each selector carries an environment model M and a decision
policy P for the queries in its class. The adaptive plan 7 can be different for each
selector, although in the systems that we will consider the same plan will be used for
each. The kind of strategies selected are also tailored for the class: all the queries
tn a class should be executable using any member of a common set of strategies for
that class.

Each class has a performance measure u. that could be the average execution
time for all queries within the class; and there is an overall performance measure
u for all the queries. As the individual 7’s strive to improve the u.’s, the overall u
improves also.

How the queries are subdivided into classes is of no concern to the individual
strategy selectors; all that matters is that the executor be able to execute the query
given the query text, class number and strategy number. We consider below two
extreme classifications of queries and other more reasonable classifications. Without
loss of generality, we illustrate the options in terms of querying a relational database.

o All queries belong to the same class. Consider two strategies: “use sort/merge
to carry out any joins”, and “use nested loops”. There have been various stud-
ies that compare these two and other join methods under several assumptions
[91]. Instead of making assumptions, the adaptive approach would determine
over time the best overall strategy for the particular environment (database
state and query load) that the system happens to be inhabiting, and would
change the strategy selected should changes in the environment make this
profitable.

e Query class corresponds to query type: all syntactically equivalent queries
where attribute values have been replaced by variables. Strategies are tailored
for each query type.

o All queries that refer to the same subset of relations belong to the same class.
Different strategies may then correspond to different orders of performing
joins.

o Classes partition queries by the set of indexed attributes that appear in the
selection clause of the query. Thus two queries belong to different classes if
they select on different indexed attributes. If a class has n indexed attributes
ai,0s,...a,, strategy number ¢ for the class can be “use the #;, index to
retrieve all records that match the condition on a;. On each of those records,
verify the rest of the condition”

We stress that the fundamental query classification criterion is equivalence of
strategies: we cannot have a class where some subset of queries can be executed with
some of the strategies and another subset with other strategies. What is a good
classification scheme and what strategies to use depends on the particular problem
addressed; the judgement of the database designer and database administrator must
be used here. In chapter 6 we will consider an approach whereby queries in a class
are further partitioned adaptively into several subclasses, taking into account the
execution signals fed back from the database.
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2.3 Review of adaptive systems

This section is a brief survey of some applications of adaptive systems to several
areas.

First of all, we would like to mention that our definition of adaptive system is
by no means universally accepted; in fact, dozens of definitions of the terms adap-
tive and related terms such as self-organizing, self-improving, auto-modifying, and
so on, are known. Several authors emphasize a feature common to most adaptive
approaches, which is reduction of uncertainities over time. That is, performance is
improved by using information acquired on-line about uncertain parts of the envi-
ronment. It is possible that whatever we call adaptive according to our definition
will not be so called by other people and the other way around.

Adaptive controllers are reviewed comprehensively in the books by Saridis [78]
and by Harris and Billings [50]. Most of these approaches consider plants describable
by sets of partial differential equations, whose nature may be partially unknown.
The controller then infers values for the unknowns over time. One particular class
of controller, based on variable-structure automata [60], does not assume any par-
ticular form of the plant equations.

In statistics, adaptive sampling techniques have been used under the name se-
quential sampling. The idea here is to use the actual data values that have been
sampled in deciding on the fly whether the sampling should continue or can stop.
See [81] for a review of this work. Other relevant work in statistics will be reviewed
in chapter 3.

Within computer science, John H. Holland and his associates at the University
of Michigan have been most active in research related with genetic algorithms[53] for
the solution of a wide variety of problems, including adaptive control [32], learning
classifiers [46] and function optimization [15]. These computer algorithms are based
on analogies with biological adaptation. A coded representation of the evolving
structures a is chosen. New a’s are then generated and modified using genetic
laws similar to the ones perfected by Nature. Thus the a’s are married with each
other, their substructures crossed-over and mutated, and reproduced according to
their success in the environment. Surprisingly, this results in a rather efficient
exploration of uncertain environments that rapidly converges to the best structures.
As an example, Grafenstette et al., [47], use as a an encoding of a traveling salesman
tour, such that the genetic operations mentioned above result in valid tours. The
performance measure is simply the tour length, and the system eventually evolves
short tours. The proceedings of a recent conference describe applications in several
areas of Computer Science[1].

In numerical integration, there are algorithms that automatically adapt the inte-
gration step size so as to improve accuracy on functions that have diverse and chang-
ing slopes [72]. Adaptive algorithms have also been used for routing of messages
in networks [59]; in this case, the best routes are assigned based on performance
measures of the existing routes. Adaptive data structures such as move-to-front
lists [73] have proved very useful.
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Most of the learning systems considered in artificial intelligence are adaptive
according to our definition. The checkers player program by Samuel [77] is an early
example. See [37] for a recent survey.

In databases, the most common application of adaptive techniques is the adap-
tive modification of physical data structures so as to improve performance. An
early paper by Stocker and Dearnley [83] described the general approach. Ham-
mer and Chan [49] considers the adaptive creation and destruction of indexes. Yu
and Chen [92,95] discuss adaptive clustering ‘methods that put together database
records that tend to be accessed as a group. This is put in the form of a general
adaptive framework that modifies an internal data structure one query at a time.

In query processing, some attempts have been made to alter the execution strate-
gies dynamically, as the execution proceeds. Clausen [27] uses an adaptive method
to process relational joins in which the join selection condition is modified on the fly
as records are accessed. Rowe and Stonebraker [76] and Yu et al. [93] do not prese-
lect the order of all joins before the query is executed, as implied by our traditional
model, but can partially determine the join order at run time as the cardinalities
of internal results are generated. In these examples, the adaptation takes place
during the execution of a particular query, rather than over the execution of many
queries. Yu et al. [94] suggests a simple modification of some of the cost formulae,
based on the difference between the estimated cost and the last actual cost obtained
with each formula. He does not present analytic or simulation results of using this
approach, however.

None of the approaches considered so far in adaptive query processing utilizes
the actual cost history of query execution to guide the adaptation, which is our
main contribution.



Chapter 3

Optimal strategy selection policies

In this chapter we analyze the optimal design of one of the selectors shown in figure
2.3. Thus, all the queries to be considered belong to one class. At first we assume
that the environment of the system remains constant; this restriction will be relaxed
in the next chapter. The signal I, is the cost of execution.

The computational requirements for optimality are too high for practical pur-
poses. Nevertheless, the study of optimal policies is interesting for the following
reasons: :

e It establishes the need for heuristic, approximate policies with reduced com-
putational requirements.

e It provides a measure to determine the worth of approximate algorithms for
strategy selection.

e The behavior of optimal policies lends insight into the design of approximate
ones.

o The problem is mathematically interesting in itself.

In the next section, we will formally state the optimal policy design problem.
Section 3.2 presents the solution for a very general case and a program that derives
the optimal policy. Section 3.3 briefly discusses other less general cases with more
reduced computational requirements.

The problem turns out to be related to a wide class of problems that turn up
in different guises in several disciplines, including bandit problems in statistics[14]
and multi-stage decision problems in decision theory[71]. These related problems
are reviewed in section 3.4.

3.1 An optimal sampling selector

Let S = {s1,52...5k} be the set of strategies, Q be the set of queries that belong
to the class, and A be a sequence of queries, the query load, A =< gV, ¢ ... >
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where ¢*) € Q represents the query posed at time t. A is unknown in advance to
the adaptive system. We recall that the same K strategies are available for any of
the queries.

The actual cost of executing a query is a function of the query, the execution
strategy, and the database state. Assume for the moment that the database state
is fixed. We can imagine a function C, unknown to the strategy selector, that gives
the cost of each strategy for each possible query:

C:Q@QxS—-R

Now consider C;, the restriction of this function to strategy si. Under the query
load A, C; gives rise to a sequence of costs for strategy si, pr =< zﬁl),zf), cee >y
where for all ¢, zg) =C (q(‘),sk). In this chapter, we will assume that each cost in
the sequence is an independent random observation from an unknown probability
distribution X that does not change with time; this assumption will be relaxed in
the next two chapters. Thus X is the p.d.f. of the cost of s;.

A simple example with three queries and two strategies follows:

Q={¢®:q}; K=2; S ={s1,82}

.
]

< 4ay9ay96:93+9c39c>9e>s Qb - - - >
p1 < 10,10,20,10,10,10,10,20... >
p2 = <20,20,10,20,25,25,25,10... >

When the adaptive selector chooses strategy si, the actual cost of execution
of the query on this strategy is fed back; thus after each query, the selector has
available an extra sample cost that comes from the unknown distribution X;. Figure
3.1 shows the operation of the selector. At each time ¢, the selector decides on a
strategy sg) € S. The query executor can be idealized as a black box that contains
K unknown probability distributions Xj, ... Xx. The executor responds to sg) with
a sample observation z(*) = zg) from distribution Xj. The selector maintains an
internal model M of these distributions; the model gets enriched after each sample
point is received. The selector incorporates a decision policy P that specifies which
strategy to choose for every state of the model, P : M — S, where M is the set of
all model states.

The goal is to drive the selector to choose the cheapest strategies for the query
class; or more precisely, to devise a decision policy that minimizes the ezpected value
of the total query ezecution cost:

h
minimize u(P) = E (Z z(‘))
t=1

h is a known quantity called the time horizon. Note that u is a function of the
policy P.
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Figure 3.1: Optimal sampling selector

A finite time horizon is reasonable for this problem, because in database systems
the constancy of the environment cannot usually be guaranteed for very long; h
would then be the expected amount of time before the environment (and therefore
the distributions X,) change. These changes and therefore the proper value of 4 can
be determined adaptively by means of change point detectors, as discussed in the
next chapter; in this chapter we will consider that h is a given constant quantity.

If the distributions X were totally known, the task would be trivial: the opti-
mal policy would be to choose the strategy whose distribution has the least mean.
Unfortunately, the distributions are presumed to be unknown.

A simple idea would be to use as model M a set of K averages Z,, Z;,... where
Z; is the running average of the values observed from X,. The policy then may be to
sample from the distribution that has the minimum current average. This is called
a myopic or greedy policy, and it is not optimal in general; in many occasions, it is
better to observe a strategy that is not the current best, in order to gain information
that can be used in the future to make better decisions. This is an example of the
familiar conflict between exploitation and exploration mentioned in chapter 2.

We will now pose the problem more formally using a bayesian approach [79,33].
This approach provides an excellent framework for expressing uncertainty and ac-
counting for learning as time passes. The uncertainty about each distribution X
is represented by a distribution family F, and a prior distribution 7r,(:°). The distri-
bution family is a finite or infinite set of either continuous or discrete distributions,
but we will only consider discrete distributions. The actual distribution X} is one
of the members of F;; the uncertainty about which member is expressed by 1r,(‘°).
The prior distribution is a distribution over the family members; it specifies the
decision maker’s assessment of the initial probabilities that the actual X} is equal
to each family member, before any sampling has taken place:

rO(f) = Pr(f = X)) for all f € Fy

If the prior distribution is uniform, it is called a flat prior.
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Learning is realized by obtaining a posterior distribution as a function of the
prior distribution and sampling evidence. The posterior distribution is obtained by
means of Bayes’ theorem as will be illustrated later. In the posterior distribution,
family members that appear more likely after considering the sample observations
get assigned higher probabilities.

As an example, consider a finite family of two discrete distributions with a non-
flat prior !:

Fy = {3/56, + 1/56 + 1/563,1/38; + 1/38; + 1/36s}
{0 (3/56, + 1/58, + 1/563) = 2/3,
i) (1/36, + 1/36, + 1/365) = 1/3

The formal statement of the optimal policy design problem —actually, a class of
problems— is then as follows: :

¢ Given:

1. K —the number of strategies

2. Fy...Fx —K distribution families

3. 7r§°) .es rﬁ?) —XK prior distributions over the families.
4. h —the time horizon

e Find:

1. A model M that will evolve through states M©), M) |
2. The initial state of the model, M)

3. 7 —A rule for obtaining M+ from M) after a cost value has been
obtained from the execution of a strategy. Let X be the set of possible
costs, and recall that M is the set of all model states:

T:MXSXxX->M
4. P: M — S —the decision Policy

e Such that: If M® is the state of the model at time ¢, and z(*) is a value sampled
from the distribution corresponding to strategy P(M®)) (the strategy dictated
by the policy), then the policy performance measure p(P), defined as

h
wP)=E (Z z“’) :
' t=0
is minimum among all possible policies,

up = min u(p)

The expectation above is taken over realizations of the process and over the
initial prior distributions.

1The notation p16,; +p26u, + . . . represents a probability distribution where value
v, is obtained with probability p;, value v; with probability p; and so on.
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A few words are in order about the relationship of this formal statement of the
problem and the formal framework for adaptive selectors of section 2.2.2. There, we
said that the environment e of the system included the schema, database state and
query load. Here we have abstracted the database and query load as a set of cost
distributions, and thus e = X;...Xk. The set of environments £ that the system
can inhabit is now characterized by the distribution families, Fj ... Fg; thus £ =
Fy x F; ... Fx and a particular environment e € £ consists of one cost distribution
from each family, corresponding to the possible costs of a particular strategy. The
adaptive plan 7 modifies only the model M; the policy P remains fixed. Note
that the performance measure pp is an average over all possible environments £;
on a particular environment e € £ the system may achieve a cost sum smaller or
greater than up. Finally X, the criterion to compare different adaptive systems, is
optimality: M, and P are to be chosen in such a way that up is minimal.

In the following section, we consider a subclass of problems for optimal policy
design wherein all strategies are associated with arbitrary families of discrete cost
distributions. Other distributional assumptions will be briefly considered in sec-
tion 3.3. The solution is obtained by dynamic programming within the bayesian
framework. We will also present an algorithm for the solution and analyze its com-
putational requirements. This case and its analysis has not been described before
in the literature.

3.2 Finite families of discrete distributions

3.2.1 Problem statement

Here we assume that the cost values are integers, for instance number of disk blocks
accessed or number of cents charged to answer the query. We also assume that the
lower and upper cost values are bounded and known for each strategy. Let these
be Il and u,; for strategy si, and let Ny = u; — I + 1. Thus each cost distribution
X is an unknown probability distribution over the integers between !, and u;, and
each corresponding distribution family F} is a known finite set of distributions over
the same set of integers.
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The solution that we will obtain is general, but for clarity we will develop the
solution in parallel with an example of a problem instance. The example has K = 2
strategies, the cost limits for the first strategy are !; = 1,u; = 3, and for the
second strategy are l; = 2,u; = 4. The distribution families can be conveniently
represented as matrixes and the prior distributions as column vectors, for instance:

F1 FZ
x® 1. 2 3 o) 2 3 4
0.5 0.50 0.25 0.25 1/36 0.8 0.1 0.1
0.5 1/3 1/3 1/3 1/36 | (0.7 02 0.1

1/36 0.1 08 0.1
1/36 06 0.2 0.2
1/36 0.5 03 0.2
1/36| |01 07 02
1/36 04 03 0.3

1/36| |01 01 08

Here F; consists of two distributions; the first assigns probabilities of 0.50, 0.25,
0.25 to the values 1,2,3 respectively, and the second assigns equal probabilities of
1/3 to each value. F; consists of 36 distributions; as can be seen, probabilities
are multiples of 0.1, in all possible combinations that add up to 1.0. Both prior
distributions are flat in this example.

Let |Fi| be the number of strategies in the family F;. F} can then be visualized
as a matrix of |F}| rows and N; columns, where each row represents one of the
distributions in the family. Thus Fi[t, z] is the probability of the value z in the ith
member of the family. 2 The prior probabiliiy 7r,(,°) is a vector of | F}| elements, where
the sth element is equal to the initial prior probability that the ith distribution of
the family is the actual cost distribution X.

3.2.2 Solution

This completes the specification of the “given...” part of the problem class of section
3.1. We must now find a model M, a way of updating it 7, and the optimal decision
policy P. Briefly, M is a set of counters that keep track of the number of times that
each value has been observed on each strategy; 7 increments the proper counter;
and P will be obtained by a dynamic programming approach, where the stages
correspond to time ¢t = 1,¢ = 2, ...t = h and the states correspond to all possible
states of M.

2S§quare brackets will be used to represent subindexes; row index ¢ € {1... Ni};
column index z € {lg...ux}



3.2. FINITE FAMILIES OF DISCRETE DISTRIBUTIONS 21

M and 7

For the example above, suppose that at time ¢t = 14 the first strategy s; has been
executed five times, and s; nine times. On s; the cost value 1 has been obtained
twice, 2 has been observed once and 3 twice. On s; each value has been observed 3
times. Then M) would be:

Thus M is a set of K vectors, M = M;, M,,... Mk, where for each k, M; has N,
elements. The value of M at time ¢ is denoted as M® = M{" ... MP. MY[z]
counts the number of times that the value z has been observed on strategy si, up
to time t. The initial state of the model, M), is all zeros.

The function 7(m, k, ) where m is some state of the mod=l, k identifies a strategy
8i, and z is a cost value, l; < z < u;, returns a new model by incrementing the
counter m;[z] in the given model and leaving all other counters untouched.

Posterior distributions

Bayes’ theorem provides a way of combining the prior distribution of a family 1r,(,°)
with the sampling evidence M,E'), in order to derive a posterior distribution ﬂ',(:).
In the posterior distribution, family members that seem more likely after some
sampling will get assigned higher probabilities. For the case that we are considering,
the theorem can be stated algebraically as follows:

For all f € F:

posterior(f) = =)(f) = Pr(f = X |prior(f),observed M)
= Pr(f =X | 7O(f), M?)
7O(f) x Pr(M® | f = X3)
Srer. ) (f) x Pr(M{ | f = Xu)

To derive Pr(M,Et) | f = X)) = probability of observing M,Et) given that f = X,
consider our example above: let f = 0.506; + 0.256; + 0.2583 (the first distribution
of Fy), and let MM = (2,1,2). The probability that two 1’s and one 2 and two 3’s
have been observed if X = f, is (2’5'2)0.502 x 0.25! x 0.252. Using the matrix and
vector notation, this is equal to

u 14
H( " )FIII,M e
1

z=ly 11,...11'

Generalizing, substituting in Bayes theorem, and expressing the computations in
procedural form leads to the following algorithm to compute the posterior distribu-
tion:
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1. Compute likelihood I(3) for s = 1...|F|:

. . . . @
6] =24 I R,z ™ (3.1)
z=lk;M£‘)[z]¢0

2. Compute posterior distribution:

ﬂ.g)[i] = -—l:.g.:_]l[;]., fori=1...|F| (3-2)

The posterior distribution allows us to determine what is the expected probability
of obtaining any value z between l; and u; when executing strategy s:

1Fgl
Pr(z | using s, at time t) = Pr(z|z{") = S 7] x Rili, 7] (3.3)

=1
The optimal policy by dynamic programming

Now define V.(')(M (*)), the value of the optimal decision policy at time ¢, as the
expected value of the sum of all future observations when the state of the model is
M®) and optimal decisions are taken at every stage. We would like to find

h
b =30 = VOM®),
t=1

and to identify all the optimal decisions. Note that, for ¢ > 0, ) is a function of
the state M(*) (that is, a function of what z-values have been observed so far). v
however is unique, since at time 0 there is just one state value: all zeros.

Consider the last decision at time h denoted as s(®, s®) € S. Let M be
one of the possible states at time h. We can depict each possible decision and each
consequence of each decision as a graph, as shown in figure 3.2. Suppose strategy s;
is selected. We can use equation 3.3 to compute the probability that the outcome
is g, Iz + 1 and so on. The expected value of this last decision is then:

U
E(deciding si at time h when state is M®) = V(’(;.)mk)(M(")) =Y zXx Pr(a:]7r£”)
z=l;
(3.4)

and the value of the best decision is:
VO (M®) = minV, o, (M®) (5.5)

The optimal decision at time h is the value of s that minimizes the last equation.

Now consider the previous stage, at t = h—1. Assume that the values of optimal
decisions at all possible states on the last stage, V" (M), are known. Let M1 be
one of the possible states at time h — 1, and recall the definition of the function 7
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outcome = |

o . )
decision "= s
outcome = | kt+!

outcome = Uk

. . (n)
decision $" = s

decision s"' = s
K

Figure 3.2: Decision tree at last stage

(page 21). Let us now compute the expected value of executing s, at time h—1; this
value now depends not only on the expected probabilities from equation 3.3, but
also depends on the values of future optimal decisions at time k already computed:

et
Vih-no,,, (M) = 32 Pr(z|n{*™) x [z + VW (r(M*D, k, z))] (3.6)
zzlk

and the value of the optimal policy at time h — 1 is

V(M) = minV -y, (MEY) (3.7)

Finally consider an arbitrary stage t. Assume that the values of optimal policies at
all possible states on stage ¢ + 1, V.“H)(M ), are known. The formulas are now:

u
V(a(‘)=.,,)(M(‘)) =3 Pr(z]| W’(‘t)) x [z + V.(‘*‘l)(r(M(",k,:z:))] (3.8)
z=lk

and the value of the optimal policy at time t is

V.(‘) (M(‘)) = I‘Iélg‘l V(.(‘)=‘) (M(')) (3.9)

The preceding equations can be solved backwards, obtaining first vir (M) from
equations 3.5 and 3.4, then V.(h_l)(M), .(h_z)(M) ... and so on from equations 3.9
and 3.8, and so on until obtaining the value of the optimal decision at time O,
VO (M), For each state, the decision that leads to the minimum expected value
is remembered.
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3.2.3 Algorithm and analysis

We now proceed to analyze the computational requirements of the dynamic pro-
gramming approach. Pseudocode of an iterative algorithm could be as follows:

fort="h...1
for each distinct state M(*) possible at time ¢
for each of the K possible decisions at state M(*)
compute 7r,(:) with equations 3.1, 3.2
for each of the N possible outcomes
compute Pr of each outcome with equation 3.3
compute expected value of decision with equations 3.4 or 3.8
compute value of best decision with 3.5 or 3.9
store the best decision and its value.

We will first compute S;, the number of states of M possible at time ¢. Recall
that M is a set of counters; let N be the number of counters, N = Eﬁl N;.
At time t, t queries have been answered, and each query answer increments one
counter (corresponding to the cost observed for a single strategy), therefore all
these counters must add up to t. Thus the number of possible states of M; is the
number of different ways that N counters can add up to ¢t. This can be obtained via
a related formula for the number of ordered partitions of an integer t into ¢ parts,
which is (:::) (69, pp. 67]. For example there are 3 partitions of the number 4
into 2 parts: 1 3, 2 2, and 3 1. Each of these can be assigned to the sequence of
N counters in (’:’ ) different ways; thus we get (’:’ ) (:::) ways of having ¢ non-zero
counters and N — ¢ zero counters add up to t. Then

s=3 () ()

This can be simplified. First the second combination is changed to ((t_g‘):tz_l)).
This leaves the resulting summation formula in a known form [56, sec 1.2.6 eq. 21]

that simplifies to:
(N +t-— 1)
Sg = ¢

The total number of states from ¢ = 0 until ¢ = h — 1 is then

-l /N4+t—1\ (N+h-1
Z( ; )_( A1 )[56,1.2.6eq.10]

t=0

We will now compute the number of operations required per state. Computing
the posterior distribution with equations 3.1 and 3.2 for a given state M® and
decision s; takes O(Ni|Fy|) operations. O(Ni|Fy|) operations are needed for the
computation of the probability of all the outcomes plus the expected values with
equations 3.3, 3.4 and 3.5. Assuming that all the distribution families are of size
bounded by |F|, the number of operations per state is O(N|F]).
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Therefore the algorithm takes

(N+h—1

A ) x O(N|F|)

For N large and h >> N, this is O[(h/N)N N|F|].

This is an exhaustive enumeration of all the states of M, all the decisions at
each state and all the outcomes of each decision. However, this is still faster than
an exhaustive enumeration of all the policies, for this will also require computing
the posterior distribution at all possible states plus h additional operations to
evaluate each policy. The number of possible policies can be as big as the number
of mappings of the form M — S; therefore an exhaustive enumeration of policies
would be of the same order as the dynamic programming approach, but with a
larger constant associated with the order term.

3.2.4 Computer program and sample run

A recursive version of the preceding algorithm was implemented in the language
Maple [21,22]; the code is in appendix A. Input for this program includes the
number of strategies K, time horizon h, minimum and maximum cost values per
strategy, the distribution families F;...F; and the prior distributions 7r§°) eee n,?)
(by default, these are assumed flat). The program prints the expected value of the
optimal policy V.(o), and a table that indicates the optimal decision(s) for any state
that can be reached when following optimal policies. There can be more than one
optimal policy; in this case, there will be some state(s) in which more than one
decision is optimal —all of them are then listed.

The computational requirements are very high, as shown by the preceding anal-
ysis; therefore, we only present results for small values of the time horizon and
the total number of possible cost values N. The results are however sufficient for
observation of the behavior of optimal policies in general.

Input./ K = 2 strategies, h = 8. Each distribution family consists of two
distributions, as follows:

F 1 F 2
¥ 1 2 3 Mean {9 2 3 4 Mean
051 [01 01 08] 2.7 651 [08 01 01] 2.3
05| |01 05 04| 2.3 05| |04 03 03] 29
2.5 2.6

The values were chosen in such a way that, considering the four possible ways
of taking one distribution from each family, in two cases the first strategy is better
than the second one, in one case the second is better than the first, and in the
remaining case the two are equally good. Both prior distributions are flat, so each
of the four cases is equally likely.
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Since the first strategy looks on average better than the second one, a simple
approach would choose the first always, achieving an expected cost sum of 2.5 x 8 =
20.0

A random policy that chooses strategies at random, would get 2.55 x 8 = 20.40.

An impossible approach that would start by knowing at time O which of the four
cases apply, would obtain 2.3 x 8 in three of the four cases, and 2.7 X 8 on the fourth,
giving an expected cost sum of: 19.20.

Figure 3.3 shows the beginning of the raw output of the Maple program. We

input
K := 2
h := 11

xmin := [1, 2]

xmax := [3, 4]

N := [3, 3]

, .1, .8], ., .5, .4]1]

F[1] := [[.1 [.1
(c.s, .1, .11, [.4, .3, .31]

F[2] :=
so := [[0, 0, 0], [0, O, O]]

output
expected value of any optimal strategy:, 19.77563520

optimal choices following optimal policies:

1 [0, 0, 0], [0,0,0]] 1
2 [[o, 0, 1], [0,0,0]] 2 =
2 [[o, 1, 0], [0,0,0]] 1
2 [[1,0,0], [0,0,0]] 1
3 [[o, 0, 1], [0, 0, 1]1] 1
3 [[0o,0,1], [0,1,0]] 1
3 [[o, 0, 1], [1,0,0]] 2
3 [[o, 1, 1], [0,0,0]] 1
3 [[o, 2,0], [0,0,0]] 1
3 [[1,1,0], [0,0,0]] 1
3 [[1, 0, 1], [0, 0,0]] 2 =x
3 [[1, 1,0], [0,0,0]] 1
3 [[2, 0,01, [0,0,60]] 1
4 [[0, 0, 2], [0,0,1]] 1
4 [0, 1, 1], [0, 0, 1]] 1

Figure 3.3: Value of optimal policy and first part of optimal policy table

can see that the value of the optimal policy obtained by dynamic programming
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is 19.77563520. There is only one optimal policy in this example. Table 3.1 was
produced from part of the program’s output; it gives the optimal decision for each
state that can be reached while following the policy, from ¢ = 1 to the first states
at ¢t = 5. The table shows the current time step, the state vector of counters, and

the number of the strategy to select.
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Table 3.1: Optimal decisions table

We notice that the optimal decision at ¢t = 1 is to execute strategy 1. Then, if a
3 is obtained, the second row indicates executing strategy 2; otherwise sampling sl
again is optimal. At ¢ = 3 the table indicates that s1 should be chosen in all but

two of the 9 possible states that can be reached, and so on.

An asterisk is placed besides the states in which the decision is not myopic: A
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myopic decision would only look at the current expected values for each strategy,
2::," z X Pr(z | 1r£')), and choose the strategy with the least expected value. Such
a decision does not weigh the possible futures resulting from it, as the optimal
decision does.

Table 3.1 was then input to a C program that uses the table to take optimal de-
cisions in several experiments. The program receives as another input two numbers
that indicate which of the two distributions is to be used from each family. The
program initializes M(®) to zeros, and then repeatedly selects a strategy using the
table, draws a random sample from its distribution, updates the run-time model
M, and repeats the cycle h times.

Let z(*) be the cost obtained at time t. The ezpected reward at time t, R, is
defined as the value of z(*) averaged over several experiments. Below we list the
value of R(), averaged over 10000 experiments, for each of the four possible choices
of distributions from each family. Time runs horizontally from 1 to 8.

sl: 0.1 0.1 0.8; s2: 0.8 0.1 0.1
R(t): 2.700 2.378 2.411 2.463 2.431 2.425 2.442 2.438

sl: 0.1 0.1 0.8; s2: 0.4 0.3 0.3
R(t): 2.700 2.861 2.781 2.735 2.762 2.746 2.726 2.729

s1l: 0.1 0.5 0.4; s2: 0.8 0.1 0.1
R(t): 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300

sl: 0.1 0.5 0.4; s2: 0.4 0.3 0.3
R(t): 2.300 2.541 2.419 2.348 2.362 2.346 2.327 2.325

Consider the first case. In this case strategy 1 has a mean cost of 2.7, and
strategy 2, of 2.3. The cost starts at 2.7 as expected, since the optimal policy
indicates strategy 1 as the choice at ¢ = 1. A 3 is obtained with probability 0.8;
since the optimal decision is s2 when 3 is obtained at ¢ = 1, at ¢ = 2 we can expect
to sample s2 80% of the time. Thus the cost goes down to 2.378, then up again
and so on. We notice that the optimal policy never settles down to sample the
real optimal strategy, s2, exclusively; this is because the optimal policy is all the
time an average over all possible futures, and even at the last decision there is still
uncertainity: the last part of the optimal decisions table (not shown) indicates that
in 75 states out of the possible 37 states that can be reached at t=8, the optimal
decision is s;. Similar comments can be made about the other three cases.

This is the average of the four cases at each value of time:
2.500 2.5205 2.47809 2.46153 2.464 2.45427 2.44897 2.44776

These numbers add up to 19.77482, in close agreement with the expected value of the
optimal policy computed by the Maple program. Here we can see how the optimal
policy averages over all four possible environments; on any of the four particular
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environments the expected cost sum might be smaller than the expected value for
the optimal policy. The optimal policy is the overall best when the likelihood of
each particular environment obeys the prior distributions.

This example will be used again in the next chapter to compare optimal with
approximate policies.

3.3 Other distributional assumptions

Although we illustrated the dynamic programming approach for a particular sub-
class of problems, using finite families of discrete distributions, the approach can
be employed with other distributional assumptions with minor modifications. As
an example, we could consider binomial distributions. The cost values considered
are still integers in a known range l; ... u; for each strategy s;. Each distribution
X is assumed to be Binomial(N, — 1,p:), and the corresponding family F} is an
infinite family of binomial distributions. Different members of the family are ob-
tained by varying the parameter p, in the interval [0,1]. The prior distribution is
then a distribution over p;; a convenient choice (see for instance DeGroot [34]) is a

Beta(aﬁo), ,(‘0)) distribution. A flat prior in this case would be a uniform distribu-
tion over p;, which is obtained by setting a£°) =0 and ﬂ,(,o) = 0 on the Beta. After
a single value z is obtained from strategy s, Bayes’ theorem obtains a posterior

distribution
Beta(aﬁo) +z-— lg,ﬂio) +Ni—1—(z—-1))

The state M no longer needs to keep track of counters for each of the values l;,l; + 1
...u; the sum of the values obtained so far and the number of observations is
sufficient state information. After obtaining a sum M,E‘) in n;, observations, the
posterior distribution is

Beta(al® + M) — ng x 1, B0 — MY + np(Ne — 1+ I)).

Note that the number of different state values that can occur is much smaller now:
For strategy s; at time t, it is the number of different sums that can be obtained by
adding up t times any of the integers ;... u, that is ¢ X Ni; for all strategies, the
number of possible states at time ¢ is just ¢ x N. The computational requirements
of a program that derives the optimal strategy based on the binomial distributional
assumption would then be more reasonable; nevertheless, the exponential nature of
the dynamic programming approach eventually limits the time horizon values that
can be practically considered.

It is difficult to justify any simple distributional assumption about costs re-
ceived from arbitrary queries on assorted database systems. Multi-parameter dis-
tributions can be considered —computational complexity then creeps in again. As
often happens in any modeling effort, there are complex trade-offs between realism,
mathematical tractability and computational complexity.
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3.4 Related work

Bandit problems

The optimal policy design problem is very similar to some versions of the multi-
armed bandit problem in statistics [14]. The name originated from the bandit ma-
chines of gambling casinos; these machines either take your coin returning nothing
or return a given amount of money with fixed-but unknown probability. How should
h coins be allocated to K machines so as to maximize expected gain? Allocation
decisions can be influenced by results obtained along the way. Numerous variations
of this problem have been described in the literature; they all involve Bernoulli
distributions, with a few exceptions dedicated to Normal distributions. Berry and
Firstedt [14] have written a recent book dedicated to the study of bandit problems.
The book includes a comprehensive annotated bibliography that proved invaluable
in this research.

Thompson [86] posed the first bandit problem, the gambling version for two
machines. He proposed a heuristic in which an arm is sampled with a frequency
proportional to the posterior probability that the arm is better than the other one.
There are numerous variations of the bandit setting. Arms can be independent, or
dependent [40]; they can be all unknown, or some of them known [9,16]; time can
be discrete, or continuous [23]; and so on. '

A dynamic programming solution for bandits originated with Bellman [12,11],
who set up the optimality equations for the case of two arms, one arm known, and
discounted costs. Horowitz [54] shows the dynamic programming approach for the
more general case of two unknown Bernoulli arms. Berry and Firstedt [14] in their
book explain the general approach and justify the equations on the basis of measure
theory.

One version of the bandit problem has attracted considerable attention. In this
version, the time horizon is infinite, and future costs are assumed to be discounted.
The objective is then to find a policy that minimizes the discounted total cost; see
for instance Gittins and Jones [43]:

pp=E (Z ﬂ‘z(')) :
t=1

where 8 (0 < B < 1) is the discount factor.

Several authors have proposed heuristic sampling strategies. Most of the strate-
gies apply only to the Bernoulli setting; for instance, Robins [74] first proposed
a “play the winner, switch from a loser” strategy that was later widely studied.
Bather [8] suggested a variation of the myopic strategy, in which the running aver-
ages are corrupted with noise factors that decrease exponentially with time. This
provides for explore/exploit balance. Colton [28] was the first researcher to suggest
a two stage approach for two normal distributions, in which both arms are equally
observed in the first stage, and the best of them exclusively observed in the second
stage. He proved that the optimal length of the first stage should be about the
square root of the length of both. This spawned a great deal of related research.
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A different way to handle bandits was illustrated by Vogel [89] who used a mini-
maz approach. The objective here is to design policies that minimize the maximum
(worst) possible value that can be obtained.

As we mentioned before, most of the bandits literature deals with the Bernoulli
setting; the only exceptions that we found treat Normal distributions as exemplified
in the paper by Day [30] which considers two normal distribution families with
known variance and a normal prior over the mean, and the multi-stage approach
advocated by Colton [28] and followers. Since the papers come from researchers in
statistics, computational analysis and complexity is rarely addressed.

Related statistical problems

Various other areas of statistics also develop plans for sampling from several distri-
butions. Medical trial problems, for instance, deal with choosing between alterna-
tive medical treatments based on applications of the treatments to sample patients.
Most of this work deals with Bernoulls distributions, that is, a treatment is consid-
ered “successful” or “not successful”, and the usual objective is to select the best
treatment with a given low probability of committing a mistake in the selection.
Medical trials conducted in practice allocate a fixed number of patients to each
treatment, but several authors have proposed sequential procedures, in which the
result of the samplings so far influence future allocations. This usually involves
stopping rules that specify when to stop sampling all or some of the distributions.
See Hoel, Sobel and Weiss [52] for a survey and Armitage [3] for a discussion.

Ranking and selection theory is concerned again with selecting the best distri-
bution and sometimes with ranking distributions in order of goodness. This work
usually considers normal populations under a variety of assumptions. Multistage
selection divides the sampling job into a number of stages; a sampling rule is spec-
ified for each (usually, equal allocation of observations to distributions). At the
end of each stage, a decision is taken whether to continue with further stages or to
stop sampling and select the best so far. In the former case the distributions to be
considered for the next stage may be a subset of the original ones. The references
in Finney [41] summarize this work up to 1985.

These three areas of statistics are closely interrelated and papers are difficult
to assign to a certain category. As an example, Colton [28] in a medical trial
paper, addresses the problem of maximizing the number of successful applications
of treatments (a bandit concern) using a variation of multi-stage selection. We may
note however, that a sampling plan that selects the best distribution with a given
confidence does not necessarily maximize the sum of the observations; these are
different problems.

Decision theory

The area known as multi-stage decision problems is also related with bandits and
the dynamic programming solution. These problems also involve decision trees
where each decision can have several outcomes and lead to other decisions. The
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end states are assigned a utility and the problem is to design a decision policy that
maximizes expected utility. The policy must specify what is the best decision for
every possible state that the tree might reach when the policy is actually applied.
These problems do not usually involve cost sums, and the assumptions involve only
probability estimates of the various outcomes. See the book by French [42] for an
introductory presentation and the one by Raiffa [71] for a more mathematical one.

3.5 Summary

In this chapter we have mapped the optimal policy design problem for strategy
selection to other similar problems in statistics and decision theory. Our contribu-
tions are first, a clear formal statement of the problem viewed in the framework for
adaptive systems introduced in the previous chapter; second, a solution for a very
general distributional assumption that has not been considered before; and third,
a general computer program that obtains the optimal policy and an analysis of its
computational requirements.



Chapter 4

Approximate strategy selection

As we saw in the preceding chapter, the computational requirements needed to
design optimal strategy selection policies are excessive for practical purposes. Ap-
proximate algorithms that evolve good, sub-optimal policies over time then become
a practical necessity. We also saw that the optimal design problem requires the
specification of distribution families and prior distributions; these may be difficult
to obtain for database systems. Further, the algorithms in chapter 3 are limited to
fixed environments.

This chapter presents approximate algorithms for fixed or changing environ-
ments. As in chapter 3, we are again concerned with a single selector receiving
queries from a single query class. Our algorithms are based on learning automata.
These automata are reviewed in the next two sections, using the framework for
adaptive strategy selectors developed in chapter 2.

We next review various learning algorithms that have been proposed for learning
automata; we choose a recent algorithm developed by Thathachar and Sastry [85]
as a basis for our procedures. In order to apply this algorithm to the fixed environ-
ment database case, we need to understand its behavior in several situations. This
behavior cannot be inferred from the analytical results and simulations presented in
Thathachar and Sastry’s paper; we therefore present further simulations to clarify
these aspects. We also present an original comparison of a strategy selector based
on learning automata with a selector based on the optimal policies of chapter 3.
Our simulations consider strategy costs derived from simple uniform distributions,
and discrete distributions over a small range of values. Simulations with realistic
data-base costs will be presented in chapter 5. In section 4.4 we present an original
extension to the learning algorithm to handle changing environments. Finally in
the last sections we briefly consider alternative learning automata algorithms and
other approximate algorithms based on principles other than automata.

4.1 Learning automata

Learning automata belong to the class of stochastic automata, in which transitions
between states are probabilistic. When the transition probabilities can vary over
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time, the automata are called variable structure stochastic automata, or learning
automata for short.

These automata were first introduced by Varshavskii and Vorontosova [87] to
model the learning behavior of biological organisms. In this context, an automaton
models an organism, repeatedly choosing one out of several actions in a stochastic
environment. The environment provides a binary reward (0) or penalty (1) response
which is fed back to the automaton. The probability of obtaining a reward is
initially unknown and may be different for each action. The automaton must learn
over time what are the best actions (i.e. the ones that produce many rewards and
few penalties).

In the most common formulation, the automaton has a state corresponding
to each action, and the transitions between states are governed by a vector of
probabilities; the #’th element of the vector is the probability that the automaton
makes a transition from the current state to state number 1 (or alternatively, the
probability that the next action chosen is action ¢). Probabilities of actions that
turn out to be “good” are reinforced (incremented), whereas probabilities of “bad”
actions may be penalized (decremented). The objective is to drive the automaton
towards choosing the best of the actions exclusively.

This simple model was later taken up by cyberneticians and control theorists,
among others, who proceeded to construct systems based on several variations of
the basic model and to apply it to several areas. Narendra and his associates
[61,62,63] have written three comprehensive survey papers which cover the main
theoretical developments and applications. Briefly, the main variations include var-
ious learning schemes to update the probability vector [18,20,68], the consideration
of several kinds of more general environments [4,64), and several ways of intercon-
necting automata [7,57]. Some of this work will be reviewed in other parts of this
chapter.

4.2 Formal model

In this section we will specify the components of an adaptive strategy selector based
on a learning automaton, using the framework of chapter 2. We will specify the
environment model M, the policy P, the environment e, the adaptive plan 7 and
several performance measures. S = {s1,52,...8k} is the set of available strategies,
which correspond to the actions of the automaton.

Model, policy and environment

The environment model M includes as principal component a probability vector p
where p; indicates the probability of executing strategy sk, k = 1... K. p varies
over time, p = p®; the initial value of p is set to pfco = 1/K for all k whenever
there is no a-priori information about the goodness of some strategies over others.
M may also include other components according to the specific kind of automaton
considered.
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The policy P chooses a strategy by drawing a random observation from the
discrete probability distribution denoted by p;8; + p262 + . . . pxbi. If the outcome of
the observation is k, 1 < k < K, strategy s; is chosen.

After the automaton selects a strategy, the query is executed using this strategy,
and the database management system then feeds back a cost of query execution.
For convenience, this cost is normalized by the range of cost values observed so far,
obtaining a cost z € [0,1] (note that this is a generalization of the simple reward-
penalty models of early automata). This response is stochastic: the environment
e is characterized by a set of K unknown distributions X, ... Xk, where X is the
conditional distribution of z given that the strategy chosen was s;. Let u; be
the mean of X}, and let s; be the strategy that corresponds to the minimal mean
distribution: the optimal strategy. For notational simplicity we will assume that
there is only one optimal strategy; the algorithms remain unchanged if there are
several. For now we assume that the distributions do not change over time; this
restriction will be lifted in section 4.4

The adaptive plan

The adaptive plan 7 is in charge of updating the probability vector and other com-
ponents of M according to the responses of the environment in such a way that
performance improves. Thus 7: M x S x [0,1] — M.

As an example, consider the linear reinforcement inaction (Lg-y) scheme, origi-
nally proposed by Bush and Mosteller [18] for simple reward-penalty environments
(z € {0,1}). In this scheme, the only component of M is the probability vector p.
The probabilities are updated as follows, where s; is the strategy executed last and
z is the corresponding response from the environment:

TLp-s (M, k, 35) where M =< p >

A = o™ —(1—2)pAr for all j #k,
p&‘) = pf:'l) + E(l — I)pg-‘-l)/\}z
£k
Ar (0 < Ag < 1) is a learning parameter
Note that under a penalty response (x=1), the probabilities are left unchanged; un-
der a reward response (x=0), the probability of the selected strategy is incremented,

and all others linearly decremented in such a way that all the probabilities still add
up to 1. The learning parameter Ag is fixed beforehand.

Figure 4.1 shows the pseudocode of strategy selection based on a learning au-
tomaton.

Performance criteria

The performance criteria are related to the asymptotic behavior of the probability
vector p. Given a particular updating scheme, will the automaton eventually con-
verge to the optimal strategy? (That is, will p,(') — 1l ast — o0?) How quickly?
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initialize(M) (including probability vector p)
repeat forever:

Get next query ¢

k := P{M) —apply policy P (probabilities) to choose a strategy si
z := execute(q, k}—execute query with strategy s;. Get feedback cost z
M :=7(M,k,z) —update state of the automaton

Figure 4.1: Strategy selection with a learning automaton

How reliably? For the Lg_; scheme, Norman [67] proved that the automaton al-
ways converges to a single strategy, not necessarily the optimal one; however, if Ag
is small enough, it will always converge to the optimal strategy, at the expense of an
increased convergence time. Viswanathan and Narendra [88] then showed that the
Lp_r scheme also works well for the case where z € [0, 1], and that the convergence
result still holds. There are no reported analytical results regarding convergence

time.

We will use several performance measures in order to evaluate adaptive plans

and parameter values. Typically, an experiment is repeated several times with a
particular set of distributions X ... Xk; the following is then computed:

e The expected number of steps until convergence of p; to a given value. This

is computed as the average over all experiments of the number of steps until
convergence. The range and standard deviation of the number of steps are
also of interest.

The accuracy, an estimate of the probability of convergence to the optimal
strategy. This is computed as the quotient of the number of times that the
automaton converged to the op:imal strategy, over the number of experiments.

The value of the average ezpected reward over time. The ezpected reward at
time t is defined as R() = 3, pg) X pi ; clearly the minimum possible value of
the expected reward is c;, and is achieved at the same time that the automaton
converges to the optimal strategy. The average expected reward at time t is
the average of R(®) over all the experiments. In general, the evolution of
R may be more representative of an automaton’s worth than the evolution
of the probabilities. To see this, consider the following 3-strategy example,
where the X} are uniform distributions with a small range (say, 0.1), and we
have: ¢; = 0.2,¢; = 0.201,cs = 0.8. A typical learning algorithm will quickly
eliminate s3 from consideration (that is, p,(,t) will reach a value of almost 0
for a small value of t), but it may take a very long time to decide the better
between s; and s;, because their means are so close. Convergence time to
the optimal strategy may then be very long. However, the value of R® will
very quickly reach a value close to its minimum 0.2, since ¢; and c; are widely
separated from cs.
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4.3 Learning algorithms for fixed environments

Several learning algorithms have been proposed for these automata. The Lgp_y
algorithm is actually a special case of the Lg_p (linear reward-penalty) algorithm; in
the more general algorithm, a second parameter \p is introduced. The probabilities
are now updated both in the case of reward and in the case of penalty response.
Nonlinear schemes have also been proposed by Chandrashekaran and Shen(20], and
others; these converge faster under certain circumstances, usually at the expense of
accuracy.

The emphasis of the literature on automata is on proofs of convergence. For the
Lg_r scheme, bounds on the probability of convergence to the optimal action have
been obtained by Norman [66].

Although the schemes were designed for simple reward-penalty environments for
the most part, Viswanathan and Narendra [88] showed that the proofs of conver-
gence also apply for the more general case where the response z is in the interval
[0,1]. As we mentioned, if the observations from the distributions do not lie in the
interval [0, 1], the observations are normalized by dividing (z—!) by (v —1{), where u
and [ are the upper and lower bound on the values of observations. If these bounds
are not known a priori, they can be estimated concurrently with the operation of
the automaton with good results[88]; this is the approach that we follow in chapter
5 to handle cost values from existing databases.

Thathachar and Sastry’s algorithm

Recently, Thathachar and Sastry [85] have introduced a learning algorithm that is
claimed to converge six to ten times faster than previous algorithms. Quick con-
vergence is specially important for our purposes: for fixed environments, the faster
the selector begins choosing the best strategy, the lower will be the accumulated
cost for large values of time; and for the changing-environment extension that we
will propose in section 4.4, quick convergence allows better tracking of the changing
environment.

In this algorithm, the model M includes the vector p , and also for each strategy
k, the running sum of the observations o, the number of the observations n;, and
the running average Z;. After receiving a feedback cost z from the execution of
strategy si, M is updated as follows:

Algorithm I

71(M,k,z) where M =< p,o,n,Z >

ng = np+ 1,0 =0+ ;T = 0k /i

_ o - pe(1 = pj) ke
p; = pj— AZ; — Zx) X |if Zj > Zj then p; else “®-1 for all j # k;
= 1.0-3 p;

ik
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First note that if the probabilities add up to 1 before updating, they will also
add up to 1 after updating. Probabilities of strategies that look currently worse
than s, (higher current average) are decremented; those strategies that look better
than s, (lower current average) have their probabilities incremented. The factors
that appear inside the if-expression ensure that no probability is ever decremented
below O or incremented beyond 1.

To start up the process, a number of training observations are made on each
strategy, in order to compute initial values for the averages; or, in other words, if n
denotes the number of training observations, the first n X K queries will be executed
using each of the K strategies n times.

Thathachar and Sastry prove in their paper that, regardless of the environment,
there exists a value of A that will make p,(') — 1 in probability ast — co. If A exceeds
this critical value, the automaton might converge to a sub-optimal action. They
also show the results of one simulation of Algorithm I running against ten uniform
distributions. The means of the distributions are randomly spaced; the widths are
such that one extreme of the distribution touches either 0.0 or 1.0. Using a value
of A = 1, the automaton converges to the best strategy with a probability of 0.99
in 98 steps on average, versus 784 steps employed by the Lr_; scheme.

There are several important aspects that are not answered in the paper. It is
not clear what is the effect of the following items on the performance measures
mentioned in section 4.2:

o the value of A: The authors use the maximum value of A for the simulation
reported in the paper. It is not clear under which circumstances the value
should be different.

o the number of strategies: How does convergence speed vary as a function of
the number of strategies?

o the proximity of the means of adjacent cost distributions.

o the overlap between cost ranges of adjacent distributions.

In order to answer these questions, we performed a new series of simulations which
we are reporting in the following section.

4.3.1 Simulation results
Simulation 1

Objective. The purpose of this simulation is to determine convergence speed under
favorable conditions, and to observe the variation of convergence speed as a function
of the number of strategies.

Input. The most favorable conditions are clearly non-overlapping cost distribu-
tions; in this case, a single observation on each distribution would suffice to deter-
mine the best one. We would like to see how much worse than that the automaton
performs.
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There are K uniform distributions with means evenly spaced in the interval
[0,1]; their ranges are such that each distribution just touches its neighbors. For
example, for K = 2 we would have one distribution centered at 0.25, the other at
0.75, and both ranges equal to 0.5. The parameter values are n = 1 and A = 1.
Table 4.1 lists the time to convergence to a probability p; = 0.98 for several values
of K. We list the minimum, maximum, average and standard deviation of the time
over 1000 experiments.

K Time
Min | Max | Avg. | Std. dev.
2| 4 17| 8.418 2.351
3 7 28 | 13.739 3.507
4 9 35 | 19.207 4.805
5 12 44 | 24.662 6.277
6 13 57 | 30.208 8.284
7 16 66 | 34.749 9.863

Table 4.1: Convergence time for K evenly spaced uniform distributions

Results. We observe that the average time to convergence increases linearly with
K. The variance of the time to convergence also increases with K.

Simulation 2

Objective. To observe accuracy and convergence speed as a function of the proximity
between the two smallest means

Input. There are K = 3 uniform distributions. Distribution 1 ranges from 0 to
0.5, distribution 2 from 0.5 to 1, and the third distribution overlaps the other 2.
Each row of Table 4.2 corresponds to a different position of distribution 3, starting
when g3 is centered at 0.5 and then moving to the left. All three distributions have
a range of 0.5.

Results. As the two smallest means get closer, the average time to convergence
increases; the standard deviation of the time to convergence also increases. There
is a point when accuracy drops below 100%. The last row shows that lowering the
value of X restores accuracy back to 100%.

Figures 4.2 and 4.3 show the evolution of the three probabilities and the average
expected reward for two rows of the table.

The data used to produce the figures are averages over 1000 experiments. Fig-
ure 4.2 corresponds to the first row, with ug = 0.5; figure 4.3 corresponds to row
5, the first row where accuracy drops below 100%. In this second case the average
expected reward tends towards 0.26 rather than its minimum 0.25, which is still
quite acceptable. When distributions are extremely overlapped, small values of A
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Us A Time Accuracy
Min | Max { Avg. | Std. dev.

0510 11 53 | 21.608 6.3739 100%

045 (1.0 11 78 | 26.833 10.2013 100%

0.40 | 1.0 12| 140 | 34.553 16.7630 99.8%
0.35 | 1.0 13| 238 | 52.372| 33.5763 99.1%
0.30 | 1.0 15| 574 | 95.355 77.7107 92%
0.30 | 0.3 44 | 1402 | 300.962 | 185.8660 99.6%

Table 4.2: Convergence time and accuracy as two smallest means get closer

may be required for accuracy. A test was made with K = 2, A = 1, the first distri-
bution from 0.0 to 1.0, and the second from 0.2 to 1.0. This leaves the two means
at the same distance as in row 5 of the previous table; however, this time accuracy
drops to 88%, and A = 0.2 is required for 100% accuracy (1000 experiments). For
database purposes, however, a convergence to the best between two extremely close
distributions may not be essential; a value of A = 1 should be suitable in most
circumstances.

4.3.2 Comparison with optimal policy

Here we use the approximate selector with the same example used at the end of
chapter 3 to illustrate optimal policies. The time horizon is rather small (h = 8), and
therefore the adaptive selector has hardly begun to converge to the best strategy
when time is up. Nevertheless, its performance is acceptable compared with the
optimal. The figures reported below are averages of 10,000 experiments.

We recall that the example involves two families of two discrete distributions
each, as follows:

R _ F,
x{® 1 2 3 Mean ¥ 2 3 4 Mean
05] [01 01 08| 27 05] [08 01 01] 2.3
05| |01 05 04| 23 05| |04 03 03] 2.9
2.5 26

There are four possible ways of selecting one distribution from each family. For
each of these, we list the average expected reward of the approximate selector on
top of the one for the optimal policy.
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1 2 3 4 5 6 7 8

s1: 0.1 0.1 0.8 | app | 2.500 2.499 2.500 2.479 2.464 2.450 2.439 2.430
§2: 0.8 0.1 0.1 | opt [ 2.700 2.378 2.411 2.463 2.431 2.425 2.442 2.438
s1: 0.1 0.1 0.8 | app | 2.800 2.802 2.800 2.795 2.791 2.789 2.786 2.784
§2: 0.4 0.3 0.3 opt | 2.700 2.861 2.781 2.735 2.762 2.746 2.726 2.729
s1: 0.1 0.504 | app | 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300
s2: 0.8 0.1 0.1 | opt | 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300
s1: 0.1 0.5 0.4 | app | 2.600 2.591 2.600 2.553 2.523 2.500 2.483 2.468
s2: 0.40.30.3 | opt | 2.300 2.541 2.419 2.348 2.362 2.346 2.327 2.325

Consider the first case. This involves a distribution with mean 2.7 for strategy 1,
and 2.3 for strategy 2. The first average reward for Algorithm I is 2.5, the average of
the two means, since at ¢ = 1 there is a training observation that uses each strategy
with equal probabilities. For ¢t = 2,3,... we can see that the approximate algorithm
begins to converge towards strategy 2, but does not reach convergence when time
is up. The optimal policy starts sampling strategy 1 always; we saw in chapter 3
that this is the optimal first choice considering all possible future outcomes of this
decision. The average rewards go up and down always according to optimal policy
choices.

Since the prior distributions for both families are flat, all four cases are equally
likely. Thus the expected value at each time step, averaging over all possible envi-
ronments is:

2.55 2.54827 2.55 2.53185 2.51945 2.50994 2.50215 2.49566

These numbers add up to 20.20732. As we saw, the expected value for the opti-
mal policy is 19.77563520. We can see that, on average, the learning automaton
approach does better than random choice and but not so well as optimal. Unfor-
tunately, the small value of the time horizon that we were able to process with the
optimal policy design program, prevents us from making any accurate estimates
about the difference in performance of the two approaches in general.

4.4 Changing environments

We say that the environment changes when the cost distributions X do not remain
static while the automaton is in operation. The changes may involve shiftings of
the value of the mean or other more major changes; and they can be gradual or
sudden, and periodic or random.

There has been some work concerning changing environments for particular
situations. Barto, Anadan and Anderson [6,7] have considered the case where the
environment can be in one of a finite number of states, known to the automaton.
An environment state vector is fed to the automaton, which then chooses an action
and receives a reward-penalty response. They give an algorithm that .nables the
automaton to learn the best action for each state. Narendra and Viswanathan [65]
have considered the case of periodic environments. The period is subdivided into
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equal intervals, and a separate automaton handles each interval. Thathachar and
Sastry [85] consider a Markovian switching environment, in which all distributions
can switch between two states.

For database systems we need a more general approach, since it is very difficult
to predict in advance the kind of changes that will occur. Since the automaton
tends to “lock” to the best strategy, the change of most interest is a variation in
the location of the distributions that causes the best strategy to lose first place.
Other changes should ideally be ignored. We will utilize the following measures of
performance:

e the speed of adaptation to a change: Assuming that the automaton has
reached steady state and there is a sudden change, the automaton should
adapt quickly to the new environment and pick the new best strategy.

o the tracking ability: This refers to smoothly evolving environments, where
there is as gradual movement of distribution positions that eventually causes
a change in the identity of the best. The automaton should track the best
strategy accurately.

We introduce two modifications to Algorithm 1 that together have given satis-
factory results. First, the averages %, are now computed with a simple exponential
smoothing scheme [17], as follows:

new average = (1 — a)X old average +ax new observation

This has the effect of weighting the last observation by a factor a, and weighting
previous observations at times ¢ — 1, — 2...0 by factors a(l1 — @), a(1 — a)? and
so on. Thus a high value of a places more weight on recent observations making
the average more sensitive to change, although also more “jumpy”. For very small
values of a, the exponentially smoothed average tends towards the value of the
conventional (equally weighted) average.

The second modification is to limit the minimum value that a probability may
reach. In Algorithm I, this minimum value is zero. For changing environments
however, it is not possible to detect changes which affect a strategy that is not
being sampled at all; therefore the limiting value, pmin. Likewise, the maximum
probability value cannot exceed pmaz = 1 — (K — 1)pmin. Putting these two
modifications together gives Algorithm II:

Algorithm I1
7 Z(l — o) + za .
Pj p;i — A(Zj — Zx) X (¢f Z; > Zx  then (p; — pmin)

(P — pmin)(pmaz — p;) e
(K —1)(pmaz — pminJ) all 37k

8,
a
]

else
pe = 1-)_p;
i#k
The maximum allowed value of pmin is clearly 1/(K —1). The initial values of the
Z, are again computed taking a fixed number 7 of observations on each strategy
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and computing a standard average with them. This initial value is also used as the
old value for the firct computation of the exponentially smoothed average. The first
part of the if ezpression ensures that, even when A = 1 and z; — z; = 1, p; will not
be decremented to a value smaller than pmitn; the second part ensures that, even
if all the p,’s are incremented, none of them will go beyond pmaz, and p; > pmin.
Thus all probabilities remain within the specified bounds.

4.4.1 Simulation results

Objeetive. To observe tracking ability of Algorithm II.

Input. In this simulation, there are two uniform distributions of range 0.1,
initially located at 0.05 and 0.5 respectively. From the start of the experiment,
the distribution of strategy 1 begins to oscillate back and forth between its initial
location at 0.05 and location 0.95, far to the right of distribution 2. The distribution
moves at a constant speed v, measured in distance per time step. The second
distribution remains static. We used A = 1, @ = 0.9, and a minimum sampling
probability pmin of 0.1. Again, the figures show averages of 1000 experiments.

Results. Figure 4.4 shows the results for a speed of 0.025. The figure shows
0.8 4

0.6 -

0.2 -

0.0 T . T : T T T
0 10 20 30 40 50 60 70 80

adaptive e average
————— optimal

Figure 4.4: Oscillating distribution, speed 0.025

three curves: One curve, the optimal case, shows the value of the minimum of the
two means; another the value of the average of the two; the third the value of the
expected reward of the adaptive selector. Consider first the optimal curve. Att =0
the optimal is 0.05. Then the curve goes up in a straight line as the distribution
of strategy 1 moves right. At ¢t = 20 the two distributions overlap; from that point
onwards the optimal remains at 0.5. At ¢ = 40 strategy 1 hits 0.95 and bounces
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back to the left. At ¢t = 60 there is another overlap, and the minimum curve begins
to go down accompanying strategy 1 until ¢ = 78 when a full cycle is completed.
The average curve goes up and down in a sawtooth fashion.

If the adaptive selector were to track the minimum strategy perfectly, its curve
would overlap the minimum curve. Instead, we can see that between ¢t = 0 and
t = 20 it lags the minimum a little and then it overshoots. The reason for the
overshoot is that at ¢t = 20 when the distributions cross, sl is being sampled at a
high rate, whereas the now-minimum s2 is only sampled 10% of the time. Sampling
of s2 begins to increase little by little, detectably often at ¢ = 30. On the way
back there is a similar overshoot. The two hashed areas mark two small intervals
of time where the adaptive selector does worse than a selector that would choose
the strategies at random. At all other times it outperforms random selection.

Consider now choosing a fixed strategy all the time. Selecting strategy 1 would
produce an horizontal line at y=0.5. We can see that this would improve upon
adaptive selection by a small amount from t = 22 to t = 58 ; the rest of the
cycle, adaptive selection beats fixed strategy 1 selection by a larger amount, thus
on average adaptive selection will be bether than fixed strategy 1 selection. Similar
comments can be made about fixed strategy 2 selection.

Figure 4.5 repeats the experiment at double speed, v = 0.05. Two cycles are
shown. The hashed areas are now bigger.

0.8

0.6

R 0.4 1

0.2 1

0.0 T T T T T ; T T

adaptive e average
----- optimal
Figure 4.5: Oscillating distribution, speed 0.05

One might think that the performance of Algorithm 2 tn fized environments
would deteriorate as the sensibility to change « is increased. This turns out to be
the case only when the cost distributions are highly overlapped, and even here the
deterioration is small.
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To show this, we now consider three distributions with high overlaps: 0-0.7, 0.2-
1.0, and 0.25-1.75. Algorithm I converges to probability 0.98 with 94% accuracy in

53 steps on average.

Algorithm II was run with weights equal to 1, 0.5 and 0.1. Note that a weight
of 1 effectively ignores all previous observations; the “average” is equal to the last
observation. Figure 4.6 shows the average expected reward curve for each case, and
also the curve for Algorithm I. We see that Algorithm I beats Algorithm II by a

0.48 - .

0.46 -~
0.44
0.42 -
0.40

0.38 -

0.36

T T f T T T
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a=1 eeseseseens a=0.1
----- a=05 o o std. avg.
Figure 4.6: Smoothed average on constant environment. High overlaps.

small amount; for a = 0.5 the two curves almost overlap. a = 0.1 is the loser due
to the high inertia of the exponentially smoothed average at very low values of a.

We can see that Algorithm II with a relatively high weight should provide good
sensitivity and adaptability to change, without degrading performance for the fixed-
environment case.

4.5 Other automata algorithms

Several attempts were made to improve the performance of Algorithm I by using
measures of the reliability of the sample means Z; as estimates of the true means u,.
The results were inconclusive. In one approach, designed for normal distributions
with known variance, the term (Z; — Z:) was replaced by 2(Pr(u; — ux) — 0.5)X
where Pr(u; — pi) is the likelihood that y; is indeed less than uy given the sample
evidence (Algorithm III). This likelihood can be computed as the area under the
standard normal curve to the right of
I; — Tk
STy
AET I O
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Algorithm III did turn out to converge faster than Algorithm I for cases where
Algorithm I had 100% accuracy. For cases where Algorithm I had a lower accuracy
however, the accuracy of Algorithm III was even lower, unless the value of A was
drastically reduced, in which case there was no appreciable difference between the
two algorithms.

4.6 Other algorithms not based on automata

All the adaptive plans mentioned in this chapter are based on learning automata.
We do not claim that these are the best possible plans; some other possibilities that
we have not fully explored are the following:

e A plan could be designed based on the optimal policy design problem of
chapter 3. This would require assumptions about the distribution families
that can occur and initial prior distributions over these families. The time
horizon can be set to the estimated time until the next environment change.
Optimal policies for several values of the time horizon could be computed
off-line and stored on disk. The on-line algorithm would consist of estimating
the next time of change, loading the appropriate policy, and executing it.
Environment changes could be detected by a separate change-point module
that watches sample observations and continuously makes tests for a shift of
mean on the distributions. A variety of statistical tests exist for the change-
point problem; two good candidates for our purposes are the Man-Whitney
non-parametric test [5], and a Hinkley detector [51]. The estimated time for
the next change can be based on the average of previous change intervals.

o Rather than handling changes by exponential smoothing as we have suggested,
it is also possible to use a change-point detector to control the amount of
exploration done by Algorithm I. In this scheme, the probability vector would
be reset to equal probabilities when a change is detected, causing the algorithm
to explore all strategies equally and probably start converging to another one.
The averages can also be “forgotten” when a change is detected.

e Plans can be devised based on approximate policies for bandit problems
[74,8,28]. Several of these were reviewed in chapter 3. All of the ones known
to us need distributional assumptions, usually Normal or Bernoulli; further,
few of them appear to be sensitive to environment changes. Results to date
are all reported for fixed environments.

e Finally, there are several schemes used by statisticians to find the best of K
distributions [52,41]; some of these were also reviewed in chapter 3. They have
the advantage of providing a measure of the reliability of a selection; however,
none of them seems easily adaptable for the dynamic problem of continuously
finding the current best of the distributions.



4.7. SUMMARY 49

4.7 Summary

In conclusion, the policies that we have presented based on learning automata pro-
vide very satisfactory performance on fixed environments plus the ability to adapt
to changing environments, which may be very important for database systems. No
distributional assumptions are needed, and computational requirements are mini-
mal. In chapter 5 we will present simulation results of these algorithms running
against real database query loads.



Chapter 5

Simulations on existing databases

In the previous chapter we illustrated the application of the heuristic adaptive
selectors using uniformly distributed query costs. The main purpose of this chapter
is to show the use of these techniques with costs computed from real query loads.

First, we will consider a group of commands issued to an actual UNIXTM system
as queries to an imaginary database in which the code for each command has to be
found. A simplified model of this database then provides to the adaptive algorithms
the cost of searching this code using several strategies. It will be shown that the
adaptive selectors are indeed able to choose the best strategy quickly.

Next, we run the adaptive selectors with query loads issued to an existing System
20007M database [29] . Magalhaes[58], as part of his doctoral dissertation, obtained
a copy of this database and the query loads with measurements.

System 2000 applies a fixed strategy to answer queries; several other plausible
strategies will be defined and evaluated with the help of a detailed model of System
2000. Again, we will show that the adaptive selectors do converge to the correct
strategy under these real-life conditions, and that the selectors are able to adapt to
changes in the data or the query load that cause a change in the identification of
the best strategy.

5.1 The UNIX commands database

The UNIX operating system has to search for the code that implements a command;
this code is then loaded to execute the command. We will assume (unrealistically)
that the code for all commands is contained in a simple “database” that consists
of three disk blocks. At system generation time, code for each command is stored
in one of the blocks. When a command is later issued, these blocks have to be
searched one by one until the command code is found; however, the order in which
the blocks are searched can be varied. What is the best order to search the blocks?
In our terminology, each one of the 6 possible orders corresponds to an execution
strategy . The cost of execution of a strategy can be equal to 1, 2 or 3, indicating
the number of blocks that need be searched to find the command code.
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An analytic solution to this problem is possible only by making assumptions
about the distribution of the commands in blocks and “queries”. The typical uni-
formity assumptions would clearly lead to the conclusion that any strategy is equally
good. Another possibility is to gather statistics in order to find probabilities of sub-
mission of each command and then derive the best overall strategy. But there is no
guarantee that these probabilities would hold at all times. The adaptive approach
derives the best current strategy “on the fly” without the need of analytic models
nor explicit statistics gathering by query.

5.1.1 The database and the query load

A set of 400 commands was gathered one arbitrary day and time during one hour of
execution, by using the lastcomm system utility. The commands were issued by all
users that happened to be logged on at that time. This set of commands constitute
our “query load”; the first few are listed in table 5.1. It turned out that there
were 82 distinct commands in the query load. A hash function was then applied to
determine the assignment of each command to one of the three disk blocks. Table
5.2 shows the resulting assignments. 28 commands landed in the first disk block,
33 in the second block and 21 in the third.

5.1.2 Strategies and costs

Now consider the six strategies in table 5.3(a). The cost of searching a command
using each strategy depends on the block assigned to the command. For instance,
searching a command in block 3 with strategy 2 (“search 1 then 3 then 2”) would
have a cost of 2. The costs for each of the three possible block assignments are
shown in Table 5.3(b).

Table 5.4 shows the first part of the 400 commands in the query load, together
with their block assignments, and the cost of searching each command using each
strategy.
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ddumb
vi

man
more

Is

Ipd
sendmail
local

csh

rm

lpr

sh
sendmail
sendmail
dcan.prefi
dcan

sh

cat

mv
sendmail
local
sendmail
sendmail
sendmail
mv

mv

Ipd

(cont.)
expr
pwd
lpr
typeset
rm
itesh
troff
eqn
mv
pic
edit
gts
csh

sh
awk
™

csh
chmod
sh
atrun
cron
daps
sh
apsd
sh

rsh
rsh

(cont.)
soelim
ddumb
rn
whoami
tset
searchpath
whoami
hostname
sendmail
ps

Ipq

w

cat

grep

wmi
typeset
rm
hostname
sed
typeset
sendmail
sendmail
typeset
Mail

rm

csh

more

(cont.)
Is

Ipq

Ipq

sh

csh
sendbatch
sh
disperse,
rm
square
square
awk
sed
expr
tee
dmesg
tee

cat
cron
cron
Ipq

Ipq
typeset
rm
itcsh
troff
eqn

(cont.)
tbl

Mail
more
more
man
more
typeset
rm

itesh
troff

eqn

tbl

cat

grep
wmi
typeset
rm
sendmail
local
sendmail
sendmail
sendmail
date
hostname
sed
tvpeset
typeset

Table 5.1: Query load: commands in order of submission
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Command | Block Command | Block Command | Block
Mail 3 expr 2 ps 1
square 2 getquote 1 pwd 3
aps5 2 grep 1 readnews 1
apsview 2 gts 1 rlogin 1
archshell 1 hgotf 2 rlogind 1
atrun 3 hostname 2 rm 2
awk 1 hw 1 ™m 3
backup 3 hw_lpf 1 rsh 1
basename 1 hwprefilte 2 rshd 1
biff 2 inews 2 run 2
cat 2 isss 1 rwho 1
chmod 2 itcsh 1 searchpath 2
clear 1 lastcomm 2 sed 3
comsat 3 local 1 sendbatch 2
cron 3 Ipc 1 sendmail 2
csh 2 Ipd 2 sh 2
daps 2 Ipf 1 sleep 1
date 2 Ipq 3 soelim 2
dcan 2 lpr 1 tbl 1
dcan.prefi 2 Is 2 tee 3
ddumb 3 man 1 troff 3
diff 3 match 3 tset 2
disperse_s 2 mkdir 3 typeset 2
dmesg 2 more 3 unbatch 3
echo 3 mv 1 vi 3
edit 2 nerds 2 w 3
eqn 3 pic 1 whoami 1
wmi 2

Table 5.2: The database: distinct commands and block assignments

53
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Number

Strategy

(<2 I I U U

Search block 1, then 2, then 3
Search block 1, then 3, then 2
Search block 2, then 1, then 3
Search block 2, then 3, then 1
Search block 3, then 1, then 2
Search block 3, then 2, then 1

Block Strategy
1 2 3 4 5 6
Numberofl1’s|{1 1 2 3 2 3
2’s 2 311 3 2
3’s 3 23 2 11

(a) Strategies

(b) Costs per strategy

Table 5.3: Strategies and costs
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(continuation)

Command Strategy Command Strategy

1 2 3 4 5 6 1 2 3 4 5 6
ddumb 313 2 3 2 1 1 (typeset 2|12 3113 2
vi 313 23 2 11 ™m 2|12 311 3 2
man 111 1 2 3 2 3 itesh 1{1 1 2 3 2 3
more 3/!3 2 3 2 1 1 troff 313 23 211
Is 2|12 3 1 1 3 2 eqn 313 2 3 2 11
Ipd 212 311 3 2 mv 1{1 1 2 3 2 3
sendmail 22 3 1 1 3 2 pic 1{1 1 2 3 2 3
local 111 1 2 3 2 3 edit 2|12 3 11 3 2
csh 2(2 3 11 3 2 gts 111 2 3 2 3
rm 212 3 11 3 2 csh 212 3113 2
Ipr 111 1 2 3 2 3 sh 212 311 3 2
sh 2|12 3 1 1 3 2 awk 1(1 1 2 3 2 3
sendmail 2{2 3 1 1 3 2 313 2 3 2 11
sendmail 2|2 3 1 1 3 2 «csh 212 3113 2
dcanprefi 2|2 3 1 1 3 2 chmod 212 3113 2
dcan’ 22 3 11 3 2 sh 212 311 3 2
sh 2(2 3 1 1 3 2 atrun 3(3 2 3 211
cat 212 3 1 1 3 2 cron 3({3 2 3 2 11
mv 1/]1 1 2 3 2 3 daps 212 3 11 3 2
sendmail 2(2 3 1 1 3 2 sh 2|12 311 3 2
local 1{1 1 2 3 2 3 apss 2(2 3 113 2
sendmail 2{2 3 1 1 3 2 sh 2|2 3 11 3 2
sendmail 2|2 3 1 1 3 2 rsh 1j{1 1 2 3 2 3
sendmail 2|2 3 1 1 3 2 rsh 1111 2 3 2 3
mv 1|1 1 2 3 2 3 soelim 2|12 3113 2
mv 1{1 1 2 3 2 3 ddumb 313 2 3 2 11
Ipd 2|12 3113 2 m 313 2 3 2 11
expr 2|12 3 1 1 3 2 whoami 1{1 1 2 3 2 3
pwd 3|13 2 3 2 1 1 tset 212 3 11 3 2
lpr 1{1 1 2 3 2 3 searchpath 2({2 3 1 1 3 2

Table 5.4: Query costs per strategy for UNIX commands database

Table 5.5 shows the distribution of block assignments and strategy costs for the
400 commands, summarizing the number of 1’s, 2’s and 3’s found in each column of
the complete Table 5.4. Figure 5.1 shows histograms of the cost distributions per
strategy. We can see that strategies 3 and 4 are the best, having almost the same
mean. The distributions remain approximately constant over time.



56 CHAPTER 5. SIMULATIONS ON EXISTING DATABASES

Block Strategy

1 2 3 4 5 6
98 98 98 205 205 97 97
205 | 205 97 98 97 98 205
3 97 97 205 97 98 205 98

N =

Table 5.5: Distributions of blocks and costs

1.0 - 1.0 - 1.0 q
S1 S2 S3
0.5 - 0.5 0.5
0.0 0.0 0.0
1 2 3 1 2 3 1 2 3
t Cost Cost
meanc——<25 1.9975 mean = 2.2675 mean = 1.73
1.0 1.0 - 1.0 4
S4 S5 S6
0.5 0.5 4 0.5 4
0.0 0.0 0.0
1 2 3 1 2 3 1 2 3
. Cost Cost
meanc——?s{'.7325 .mean = 2.27 mean = 2.0025

Figure 5.1: Cost distributions per strategy
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5.1.3 The experiments

Adaptive selection

Table 5.4 can be conceptually put inside a black box that represents the executor
module of chapter 2 (see figures 2.1 and 5.2). An adaptive selector feeds the black

: vi 1 1 3 3 2 2
...mail rsh edit l k=5 fedit J1 3 1 3 2 2]
command strea Selector A rsh 1 31 3 2 2

mail

Executor (““black box'")

cost =2 |

Figure 5.2: Adaptive selector on UNIX command costs

box a strategy number; the black box then accesses the corresponding column on
the next row of the table, and sends the resulting cost to the selector. The selector
cannot see the table; it only sees the cost fed back by the black box.

We applied Algorithm I of chapter 4 with A = 1.0. Figures 5.3 and 5.4 show
plots of the probability of executing strategies one to four as a function of time, for
the first 200 of the 400 commands; after the 200th command, there is no appreciable
change in the probabilities. The curves for strategies 5 and 6 are similar to those
for 2 and 1 respectively. The first figure shows one arbitrary run of the selector
against the black box; the second figure shows the average of 100 such runs. We
notice that the most expensive strategies are quickly dismissed. On each run, the
selector always ends up converging to strategy 3 or 4; which one is chosen depends
on random factors.

Comparison with simpler apprbaches

We now plot in figure 5.5 the value of the average query processing cost over time
for adaptive selection and several other approaches. Let z() be the cost obtained
at time 7. The value plotted is z(*) = (£f_, () /¢t for t = 0...200. The first curve
in figure 5.5 is for the adaptive approach. Each value plotted is itself the average
of 1000 experiments. The remaining three curves are for approaches that select a
fixed strategy from the beginning and stick to it until the end; we show the curves
for the first three strategies.
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Figure 5.5: Average query processing cost over time

Consider now a random approach that throws a die to select a strategy at each
time step. Since the average strategy cost for every command is 2, this would pro-
duce a straight horizontal line at avg.cost = 2. Similarly, an unachievable optimal
approach that always selects a strategy of minimum cost would also be plotted as an
horizontal line at avg.cost = 1. Note that an approach that selects a fixed strategy
at random and then sticks with it, would perform on average just as the random
approach above.

Comments

We showed that the adaptive approach does select one of the best strategies rather
quickly: by approximately ¢ = 50 one of the two best strategies has been selected.
The overhead of the initial exploratory phase of the adaptive approach is reasonable;
by t = 100 the average query processing cost has almost caught up with the fixed-
strategy 3 approach. We note, however, that in general it is not possible to guess
in advance what is the best fixed strategy to follow, since we are assuming that no
cost model is available.

5.2 The System 2000 database

In 1980, Magalhaes [58] collected the transaction loads submitted during a four-day
period to six operational System 2000 databases at Ontario Hydro. He also took
a tape dump of the database’s contents before the observation period. Then, in a
test environment, he reloaded the data from the dump and re-ran the transactions
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in order to take a series of measurements in controlled conditions. The databases
were reorganized before the observation period in order to facilitate performance
predictions.

A tape of transaction loads and measurements was kindly provided to us by
Magalhaes’ supervisor, Dr. C.C. Gotlieb of the University of Toronto. The tape
also contained a full dump of one of the databases, “database B”. The rest of the
tape includes, for each transaction, the database identification, day, time, the text
of the transaction and several measurements, including I/O and central processor
costs per database management system module, and sequence of block accesses
to the files that comprise the database. A sample page of this data is shown in
Appendix B. The largest part of the resource consumption for all databases is
attributable to Module “303”, which handles record qualification. Some of the
transactions are written using commands from System 2000 “natural language”;
others are procedure calls to predefined sequences of individual commands written
in the same language.

One of Magalhaes’ findings is that for all databases, a few (six to ten) tran:action
types account for almost all resource consumption. This holds even for the databases
that receive a great proportion of apparently “ad hoc” queries. This corroborates
a similar finding by Rodriguez-Rosell [75] on a manufacturing enterprise.

We will be concerned with the transaction loa¢ to database B, which was the
most used of the 6 databases. Most of the activity on database B is consumed by
five predefined transactions; of these, the transaction labeled snsert1 is the one that
consumes most resources. This is the transaction that we have chosen for further
analysis and explanation in this chapter.

The rest of the section is organized as follows. In section 5.2.1 we provide a more
detailed description of database B and its transactions. In section 5.2.2 we will
provide a brief description of System 2000 data structures necessary to understand
the execution strategies possible on this database management system. In section
5.2.3 we will describe the System 20000 model that was used to compute the costs of
alternate strategies. Finally we will describe the experiments that were performed
with the data.

5.2.1 The database

Database B is a half megabyte database used for room booking, among other things.
Figure 5.6 shows the hierarchical structure of the database; indexed attributes are
underlined. Table 5.6 shows some statistics about records and indexed attributes.
Although the meaning of the record types and attributes was not provided to us,
it appears that records “rec00”, “rec20” and “rec60” represent a hierarchical sub-
division of rooms from several buildings, “rec70” records are reservation entries for
specific dates and times, and “rec80” records are used for special equipment that is
sometimes needed with a reservation.

As we mentioned earlier, most of the resource consumption is due to five prede-
fined transactions; Table 5.7 shows the average daily amount of database resources
consumed by them. Transactions are identified by a label.
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Record Length Number of Indexed length Distinct
Occurrences | Attr. Values

rec00 42 6 c01 6 6
reclO 5 51 c21 6 40
rec20 27 72 c61 6 15
rec30 56 247 c74 6 290
rec40 57 790 c75 5 29
rec50 16 729
rec60 10 82
rec70 106 2796
rec80 23 258

Table 5.6: Database statistics

Transaction || Frequency | Database i/o | Scratch i/o
avg sdv | avg sdv

insertl 152 95.6 14.2| 2.0 0.4
list1 52 43.0 6.3 79 0.9
updatel 26 33.6 6.3 | 8.5 1.9
list2 24 90.1 25.5| 9.0 0.5
insert2 20 46.4 251 2.0 0.0
list3 5. 112.5 22,5 | 5.0 0.0
list4 3 2786 419 7.0 0.0

Table 5.7: Resources consumed by transactions
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5.2.2 System 2000 data structures

In order to understand what transaction execution strategies are possible, it is first
necessary to give a brief description of the internal storage structures of System 2000
(see Figure 5.7). A System 2000 database is stored in six files, which are called
the Definitions Table (DEFIN), the Distinct Values Table (DVT), the Multiple
Occurrences Table (MOT), the Hierarchy Table (HT), the Data Table (DT), and
the Extended Values Table.

o The DEFIN file contains the schema definition: schema structure, attribute
names, lengths and types, and so on.

e The DVT file contains a B-tree for each of the indexed attributes. The root of
each B-tree is pointed to by entries in the DEFIN file. Each B-tree contains
all the distinct values of each attribute. The leaf data contains a value plus
a pointer. If the value occurs only once in the whole database, the pointer
addresses the corresponding place in the HT file; otherwise it points to an
inverted list in the MOT file.

e The MOT file contains inverted lists for each multiply-occurring value. A list
is stored as a chain of blocks, where each block contains a set of pointers to
the entries in the HT file corresponding to the records where the value occurs.

e The HT file stores the detailed structure of the database by means of a multi-
way tree of pointers; the record data itself is stored in the DT file. There is an
entry for each record of each record type. One pointer in the entry points to
the actual data in the DT file. Other pointers point to the parent, first child
and right sibling entry. The entry also contains an identification of the record.
Note that all children of an entry are stored together in a single sibling list,
even if they belong to different record types; this is why the record type id is
necessary in the entry.

e The DT file contains an entry for each record. The position of the records in
this file always corresponds to the position of the corresponding entry in the
HT file.

5.2.3 Strategies and costs

We constructed a half-analytic, half-simulation model of a part of System 2000 in
order to derive precise costs of execution of several strategies for the transactions of
database B. Here we will describe one of the transactions, the transaction insert1,
then explain the strategy followed by System 2000, mention a few other strategies
that could be followed, and finally describe the model.

The transaction insertl

insertl inserts a rec 70 record and then lists several other rec70 records. The trans-
action has the following form:
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Figure 5.7: System 2000 files
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INSERT rec70data... WHERE cO01=x and c21=y and c61=z
LIST rec70 WHERE c01=x and c21=y and c61=z and c74=w

The WHERE clause on the INSERT identifies the parent of the record to be in-
serted; the rec 70 records listed have the same parent, and in addition the same value
of ¢74 as the record inserted. There were an average of 152 insertl transactions per
day.

System 2000 strategy

System 2000 does not use a query optimizer, but rather it executes commands
following a fixed strategy. For insert1, this strategy is as follows: [58][sect. A.7.]

e The DVT file and the MOT are accessed to obtain three inverted lists of
pointers to the HT file. We will call these lists LcO1, Lc21 and Lc61. For
the example above, Lc61 contains pointers to the HT entries corresponding
to records with value “z” for the field c61; similarly for the other lists.

e LcO1 is used to obtain the HT entry for the record with c01=x.

e All the children of the preceding entry with record id equal to “20” are ob-
tained. Pointers to these entries are stored in another list that we will call
LchOl. This step is called downward normalization in System 2000 terminol-

ogy.

e LchO1 and Lc21 are sorted and intersected. This produces an HT pointer to
the record with c01=x and c21=y

e Similarly, the rec60 children of the preceding entry are obtained and inter-
sected with Lc61, getting a pointer to the rec60 parent of the record to be
inserted.

e The record is inserted and indexes updated. The HT entry for the new record
is located at the physical end of the HT file and the pointers adjusted accord-
ingly. The actual record goes to the end of the DT file.

e For the LIST command, the preceding steps are repeated from the beginning,
except that the new condition ¢74 = w causes additional retrievals from the
DVT and the MOT and another normalization step. Although System 2000
provides a facility for “remembering” the results of previous qualifications,
Magalhaes reports that this facility was not used for this particular transac-
tion; hence the repetition.

Other strategies

Our model computes the cost of this strategy and three other strategies that System
2000 could employ for this transaction. These new strategies enter the hierarchy
of records at different points, and use the actual data in the DT file to check for
values of attributes. Many other strategies can be imagined. The description of the
new strategies follows; see also figure 5.8.
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Figure 5.8: Pictorial répresentation of tnsert1 strategies
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o Strategy 2 uses the DVT to localize the rec00 record with ¢c01 = z. The
children of this entry are then scanned for rec20 entries that point to a DT
record with ¢21 = y. The scanning stops when the entry is found. In a similar
way, the children of the rec20 entry found are scanned looking for an entry
pointing to a DT record with ¢61 = 2. The new record is inserted and then
the process is repeated, going this time down to the level of rec70 records
looking for all rec70 records with ¢74 = w.

e Strategy 3 uses the DVT and the MOT to find all rec20 records with c21 = y.
The parent of each is checked in the DT for ¢c01 = z. Then the process
continues as in strategy 2.

o Similarly, strategy 4 enters the hierarchy at the rec60 level using the DVT
and the MOT for ¢61 = 2. Parents are checked for ¢21 = y and grandparents
for c01 = z. The rest as in strategy 2.

The model

In order to compute the precise costs of these other strategies, we use analytic and
simulation models. The B-tree and MOT costs are computed using an analytic
model of System 2000 developed by Casas-Raposo [19] as part of his doctoral dis-
sertation. This model utilizes average selectivities to compute costs; we modified
the model slightly so that it uses ezact selectivities measured from the actual data
in the database. Thus for instance, to compute the DVT and MOT costs to get
the inverted lists for ¢61 = 2z, the exact number of distinct values of ¢61 is used
for the B-tree cost, and the exact number of records with ¢61 = z is used for the
MOT cost. Since the length of the inverted lists of the attributes is small compared
with the length of a MOT block and we are considering a reorganized database, the
MOT cost turned out to be one in all cases. The B-tree cost model is described in
Appendix C.

The HT and DT costs were obtained with a simulation model implemented
in the form of an Icon[48] program (see Appendix D). The reason for using a
simulation model here, rather than the analytic models provided by Casas-Raposo,
is that precise costs for these files for each transaction are very difficult to predict
analytically; the resulting costs are heavily dependent on factors such as record
distribution in blocks, the number and distribution of “foreign” children (say, rec10
children when looking for rec20’s) and so on.

The database dump on Magalhaes’ tape is a preorder traversal of the hierarchy;
its first page is in Appendix E. Using this database dump, the program loads a
copy of the database to memory and forms the data structures corresponding to
files HT and DT, plus inverted lists for the indexed attributes. An extra field is
added to HT entries, indicating in which page of the disk the entry would reside
in the actual system. This is possible because it is known that when the database
is reorganized, entries that appear contiguous in the preorder traversal are also
assigned contiguous locations on the disk. Likewise, DT simulated records also
indicate a disk page number within the DT file. Only the relevant attributes are
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loaded into these records to save memory space; however, the actual record lengths
(see Table 5.6) are used when allocating simulated records to disk.

Next, the program reads the relevant fields from each snsertl transaction and
computes the cost of executing each strategy. The transactions are read by the pro-
gram in exactly the same order as they occur in the query load. The memory data
structures are traversed according to the strategy, and block accesses accumulated
each time a block reference differs from the previous one. This assumes a buffer
pool size of 1, which is precisely the one used by Magalhaes for his experiments.
The program also computes DVT and MOT accesses using the analytic models;
the selectivities are obtained from the inverted lists. For simplicity, the program
computes only the qualification cost; the cost of the insertion is the same for all the
strategies.

Results of applying the models

The above models were applied to the query load of the second observation day. All
insertl transactions were extracted from the query load in order of submission, and
fed to the icon program described before. We thus end up with a five-column table
that indicates the attribute values in the transaction and the costs for the strategy
followed by System 2000, plus costs for another 3 strategies. See Tables 5.8 and 5.9
for the first 60 transactions of day 2 and their costs per strategy. The rest of the
transaction load and the tables for the other three days of observation are similar.

A visual inspection of the table reveals that the identification of the best strategy
is a function of the attribute values in the transaction. Strategy 2 turns out to be
the best for 7 out of the 166 transactions (4.2% of the time), strategy3 is best 83.7%
of the time, and strategy 4 is best 12% of the time. Strategy 1 was never the best
one.

An explanation of the success of strategy 3 versus 1 and 2 can be offered by peek-
ing at the actual selectivities and record distributions. Records rec00 usually have
a high number of rec10 and rec20 children, and the preorder assignment together
with a high number of rec70’s causes each of the rec20’s to be stored in a different
disk block, both on the HT file and the DT file. Thus going down from rec00 to
rec20 is expensive. On the other hand, attribute c21 has a high selectivity; thus
fetching the parent recO0 from a few rec20 in strategy 3 is cheap. Checking both
parent and grandparent as in strategy 4 from several rec60’s is again expensive.

Curiously, all the transactions where strategy 3 is not the best involve a value for
c01 equal to “60M” (see table 5.10). This attribute identifies a particular building.
Peculiarities of the block distributions are again the cause: “60M” records happen
to have very few reservations (rec70’s), and thus all their rec20 children are usually
stored together, making going down cheaper than going up.

Figures 5.9 and 5.10 shows cost histograms for the four strategies. The dis-
tributions of costs were examined for several subgroups of the table; they remain
‘approximately constant all the time.
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Table 5.8: Transaction costs for each strategy —part I

c01 c21 c61 c74 ' | s1 s2 s3 s4
700U 15 C 800206 |63 75 26 98
60M 1 103 800204 |26 18 18 16
700U 05 D 800204 (63 36 26 38
700U 05 D 800206 |63 36 26 38
700U 04 C 800207 {63 31 25 31
700U 04 C 800208 63 31 25 31
700U 05 C 800205 (63 35 25 37
700U 06 D 80021163 41 25 45
700U 06 D 800212 |63 41 26 46
700U 06 D 800213 |63 42 26 46
700U 06 D 800214 {63 42 26 46
700U 06 D 800215 |63 42 26 46
700U 02 A 800204 {64 20 20 26
700U 13 A 80022763 70 26 78
700U 16 C 800205 (63 80 24 102
700U 02 D 800206 |63 23 23 21
700U 06 B 800219 {63 40 24 48
700U 17 C 800205 |61 83 21 109
700U 09 B 800204 |61 52 22 66
700U 05 C 800204 {63 36 26 38
700U 11 C 800206 |65 60 24 72
700U 05 C 800207 |63 36 26 38
700U 03 D 800204 (63 30 26 26
700U MEZZ A 800207 |65 17 17 19
700U 07 C 800204 [ 61 43 23 49
700U 18 B 800225 |61 87 21 115
700U 09 A 800208 {61 49 19 57
700U 19 B 800204 {61 92 22 122
700U 08 C 800204 |61 46 22 54
7000 07 D 800205|61 44 24 50

69
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(continuation
c01 c21 c61 c74 sl s2 s3 s4
700U 10 B 800208 | 67 62 30 78
700U 06 A 800212 | 64 39 23 46
700U 18 D 800204 | 61 88 22 110
700U 07 C 800206 | 61 44 24 50
700U MEZZ AUD 800205 |35 25 25 25
700U MEZZ AUD 800205 |34 25 25 25
700U 07 C 800206 | 61 44 24 50
700U 10 A 800211 | 66 54 22 62
700U 03 A 800204 | 64 24 20 30
700U 10 C 800212 |65 61 29 70
7000 10 C 800214 {65 62 30 70
700U 14 C 800208 | 63 72 24 90
70U 09 D 800204 4 1 4 28
700U 09 D 800204 | 61 52 22 62
60M 1 103 800206 |26 19 19 18
700U 15 D 800206 | 63 76 26 92
700U 04 B 800205 | 63 29 23 35
700U 08 B 800212 | 62 45 21 59
700U 08 B 800212 | 61 45 22 60
700U 09 B 800226 | 61 54 24 68
700U 16 B 800207 | 63 81 25 105
700U 09 B 800214 | 61 54 24 68
700U 09 B 800214 | 61 54 24 68
700U 17 C 800204 | 61 85 23 111
700U 10 C 800211 | 65 64 32 72
700U 07 B 800222 | 61 43 23 55
700U 06 A 800228 | 64 42 27 49
700U 09 A 800214 |61 51 21 59
700U 07 B 800212 | 61 44 24 56
700U 13 A 800212 |63 72 28 80

Tabie 5.9: Transaction costs for each strategy —part II
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c0l c21 c61 c74 sl s2 s3 s4
60M 1 103 800204 |26 18 18 16
60M 1 103 800206 |26 19 19 18
60M 1 103 800205 (26 21 21 19
60M 4 405 80020526 13 19 11
60M 5 505 800207 (23 16 24 18
60M 5 505 800205 |23 18 26 20
60M 1 103 800207 |26 23 23 21
60M 4 405 800218 |26 15 21 13
60M 4 405 800218 {27 15 21 13
60M 4 405 800211 |27 16 22 14
60M 4 405 800211 |27 16 22 14
60M 4 405 800211 |27 16 22 14
Table 5.10: Building 60M costs
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Figure 5.10: Cost histograms for strategies 3 and 4

5.2.4 The experiments

The cost table was conceptually enclosed in a black box, as in the experiment with
the Unix commands, and run against our adaptive selector of strategies. Figure
5.11 shows the resulting probabilities (1000 experiments); convergence to strategy
3 is extremely fast despite the high variances and overlaps in the cost distributions.
The occasions where strategy 3 is not best are few and spread widely apart; thus
the adaptive selector is not able to detect and adapt to these quick changes.
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Figure 5.11: Probabilities, static conditions

To illustrate adaptability to change, let us assume that somebody decides to give
a weekly seminar for the rest of the year in a room of the “60M” building. This is not
at all unreasonable; in fact, the query load for the third day contains an example of a
monthly reservation in another building. Thus, 48 consecutive tnsertl transactions
would be issued with ¢c01 = 60M. We spliced these imaginary transactions in the
middle of the query load for day 2, starting at transaction number 30, and we ran
the simulation/analytic models again to obtain costs. After that, Algorithm II for
the adaptive selector was run with parameter a (sensitivity to change) equal to
0.8 and parameter pmin (minimum allowed probability) equal to 0.05. The results
are shown on figure 5.12. We observe that the adaptive selector begins choosing
strategies 2 and 4 together more frequently than strategy 3, then adapts back to
strategy 3 when the 48 special transactions finish.

5.3 Summary

We have presented several experiments using two very different query loads. The
costs used in the experiments were artificially, but realistically assigned; the costs
themselves however, are irrelevant and we make no attempt to justify the cost
models used. In fact, that is the point of the thesis: the adaptive selector chooses
low-cost strategies regardless of the method by which the “cost” is determined.
These experiments show that, under realistic conditions, the adaptive selectors arec
able to converge to the best strategy and to adapt to possible changes that can
occur.
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Chapter 6

Query class partitioning

In chapter 2, we presented a general adaptive query processor consisting of a query
classifier and several strategy selectors, one for each class of queries (Figure 2.3).
The basis for classification is equivalence of the set of strategies applicable to each
class.

Once this initial classification of queries has been made, it is possible to refine
it by partitioning a class further into subclasses. This subdivision can take into
account the costs fed back from the database as a result of query execution, and it
can be modified adaptively.

The optimal partitioning for a given class would be the following: subclass
number ¢ consists of all the queries whose best strategy is s;. In this ideal case, an
adaptive strategy selector would not be needed for any subclass: determining the
subclass identifies the corresponding best strategy. Obviously, the optimal parti-
tioning cannot be known from the beginning, since initially we know nothing about
execution costs of individual queries. But for some important cases, we can ap-
proximate this optimal partitioning adaptively using several automata; this chapter
describes and analyzes the technique.

We stress that the algorithms that appear in this chapter are only an initial step
towards solving this problem. The next chapter sketches further research directions.

6.1 Strategy selector with partitioning

Figure 2.3 of Chapter 2 shows the operation of an adaptive strategy selection sys-
tem for several query classes, as a data flow diagram. The figure is repeated here
(figure 6.1) for convenience. Suppose that each of these selectors utilizes a learning
automaton of the type described in Chapter 4. Figure 6.2 shows the basic operation
cycle of the selector. The automaton repeatedly chooses a strategy according to the
probability vector p, sends the query for execution with this strategy, and updates
its state M based on the cost of execution. The state of the automaton includes
the vectors p, o, n and the current averages Z (Chapter 4, page 37).

Consider now a certain class. Suppose that a partitioning of the queries that
belong to the class has been determined. Let @ be the set of all queries that belong
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Figure 6.1: Query classification

initialize(M) (including probability vector p)
repeat forever:
Get next query ¢
k := P(M) —apply policy P to choose a strategy si
according to probability vector p
z := ezecute(q, k) —execute query with strategy sp. Get feedback cost z
M :=7(M,k,z) —update state of the automaton

Figure 6.2: Selector using learning automaton
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to the class, and let m be the number of partitions (or subclasses). We now propose
to have m automata, one for each subclass. Each automaton ! is guarded by a
boolean function f;, where f; : Q — {true,false}. These functions test whether
a query belongs to the corresponding subclass. Since the subclasses partition the
class, for any g € Q, exactly one of the functions is true. The operation of this set
of m automata is now as follows; see also figure 6.3:

initialize(M) for all the m automata;

repeat forever:
Get next query g;
if f1(q) — k := P(M(1)); z := ezecute(q, k); M(
g f2(q) — k := P(M(2)); z := execute(q,k); M

éi fmlq) = k= P(M(m)); z := ezecute(q, k); M(m) := r(M(m), k, z)

Executor

q
Class 1

Figure 6.3: Selector with two partitions

Thus the query dictates which one of the m automata determines the strategy
k to be executed.

A partitioning can be defined without explicitly listing all the queries in each
subclass. As an example, suppose that all the queries in the class include a test for
the value of an attribute «, and let g.a be the value being tested in query ¢g. A
partitioning of the queries into two subclasses could be specified as follows:

partitions = {{¢q | g.a < a},{qg|qa>a}} (6.1)

where a is some constant. The functions f; and f; would then be simple tests for the
value of g.a. Another simple way of defining the partitioning is via a hash function
H from the set of all queries Q to the set {1...m}. Then fi(q) = (H(q) == {).
Of course, the partitioning that consists of one subclass only is trivially specified:

fi(g) = true.
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An optimal partitioning for a set of queries Q C Q is a set of K subclasses and
the corresponding functions f;... fx such that, forall1 <! < K and all ¢ € Q,
fi(q) is true if and only if s; is the strategy of minimum cost for g. Note that some
subclasses may be empty, when the corresponding strategies are never the best for
any of the queries. In general, the optimal partitioning can change over time, as
the costs of query execution change.

We would like to find the optimal partitioning for the set of queries seen so far
and to update it incrementally as new queries come in. We are also concerned with
efficient ways of describing each partition —more on that later.

Once we have an optimal partitioning for the whole set Q, any query would
likely be executed using its best strategy, as we show next:

Theorem 1 Let f, ... fx be the classifying functions corresponding to the optimal
partitioning for Q C Q. Assume that each query q € Q 1s posed with a constant
frequency > O and assume that the learning parameter \; for each automaton is
sufficiently small. Further assume that the environment does not change (constant
database state). Then, as t — oo, each automaton l in the algorithm above that
corresponds to a non-empty subclass will have converged to strategy s;.!

Proof. Let Ql - Q be the set of queries belonging to subclass !. By construction,
fi(q') is true for all ¢' € Q; Since all these queries are posed with frequencies > 0,
automaton ! will tend to receive an infinite number of queries as t — oco. Now let
C: Q; X S — R be the underlying cost function that gives the cost of execution of
queries in @, and consider the restriction of C to strategy s;, Ci. Since C(¢',!) is the
smallest cost in each K-tuple < C(¢',1),C(¢",2),...C(¢', K) > for all ¢’ € Q;, then
the mean of the cost distribution defined by C; will be the smallest of the means
defined by the other restrictions C; for i # I. Therefore, given a small enough );,
automaton ! will converge to s;[85].

Corollary 1 If all queries posed belong to the set Q, then as t — oo, query pro-
cessing cost will asymptotically approach the minimum possible.

The converse of the theorem does not hold: If automaton / converges to s;, for
!l = 1...K the corresponding partitioning need not be optimal. As an example,
consider the following four queries assumed to be posed with equal frequencies and
their costs on two strategies:

query | Cost

S1 82
ql 10 20
q2 |15 10
a3 |20 10
g4 |10 15

1By this we mean that the probability associated with s; is 1 — € for some suitable
choice of €.
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If the queries are partitioned as { {q1,¢2}, {¢3, ¢4} }, the first partition will converge
to strategy 1 with an average cost of 12.5, and the second partition will converge
to strategy 2 with the same cost average. Since all queries are equally frequent, the
overall cost will be 12.5. The optimal partitioning, however, is { {q1, ¢4}, {g2,¢3} }
with an average cost of 10. Nevertheless, the first partitioning above is still better
than no partitioning at all, which would achieve an average cost of 13.7. We will
later prove that this is true in general: any partitioning in which at least one
partition converges to a strategy different from the converging strategy of the full
class, improves upon the class as a whole.

6.2 Gradual improvement of the partitioning

To determine and maintain the optimal partitioning adaptively is a very complex
problem: recall that when a query is executed, all we get back is the cost of execution
on the strategy tried; we don’t even know which would have been the best strategy
for that query. From a practical point of view, however, we might be satisfied with
a sub-optimal partitioning that works well for the kinds of queries that users are
asking, which is typically a small subset of all possible queries.

In this section, we present a general approach to derive good partitionings adap-
tively. We will also show under which conditions the approach obtains the optimal
partitioning for all queries.

We first describe the process informally and illustrate it with an example from
the System 2000 database of chapter 5. Then we will generalize and analyze the
procedure.

6.2.1 Description of the approach

The approach considers several candidate partitionings in parallel. One of them,
the ezecutive partitioning, includes several automata that are in charge of deciding
the strategy to be executed. The executive partitioning is the best one known so far.
The other partitionings are called trainees and also include several automata each.
They have no voice on taking decisions, but their automata are nevertheless updated
each time step. Whenever one of the trainees improves on the current executive, it
replaces the executive. The process starts with the simplest executive partitioning
(one subclass only) and no trainees. Trainees are then generated in such a way that
eventually, all possible partitionings are evaluated. A special module (the president)
is responsible for hiring new trainees, examining periodically the performance of all
involved and making the promotions. Thus, assuming a large enough memory and
long enough usage, the executive gradually improves until it becomes optimal. The
order in which the trainee partitionings are generated is critical for the efficiency of
this process; we will say more about this later.

A crucial requirement of this approach is that no strategy is ever starved, that
is, its probability of execution should not be reduced to 0. Therefore the executive
automata use Algorithm II of chapter 4 (page 44), in which a minimum allowed
probability value is specified.
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6.2.2 An example

We will illustrate the process with the transaction snsertl of the System 2000
database described in chapter 5. We use a particular procedure to generate the
trainees that happens to work well in this case; however we will later argue that
the principles involved do have some merit for common database situations. The
procedure assumes that queries are classified by the attribute names that appear in
the query. We further assume a constant environment. See Table 5.8 of chapter 5
for a typical transaction load.

Initially the executive consists of one subclass; therefore its only automaton is
guarded by the condition true:

procedure executive()
repeat forever
Get query ¢
if true — k := P(M(1)); z := ezecute(q, k); M(1) := 7(M(1),k, z)
fi
train(q, k, x)
end executive

The president initially hires three trainees. One discriminates queries on the
basis of the value of attribute c01, the other on ¢21, and the last one on c61.
Since all these attributes are character strings, a first approach discriminates on
the middle value, let us say “M”:

procedure train(q, k, x)
local M...

—first trainee:

if g.c01 < “M™ — M(1,1) := 7(M(1,1),k, z)
g ¢.¢01> “M” — M(1,2) :=7(M(1,2),k,z)
fi

—second trainee:

if g.c21 < “M” — M(2,1) := 1(M(2,1),k, z)
0 g.c21> “M” — M(2,2) := 7(M(2,2),k,z)
fi

—third trainee: :
if g.c61 < “M” — M(3,1) := 7(M(3,

3,1),k,z)
g g-¢61> “M” — M(3,2) :=7(M(3,2),k,z)
fi
updtActualLimits(q)
end train;

Note that the executive passes the execution cost to the three trainees simulta-
neously; each trainee’s only job is to update its state.



82 CHAPTER 6. QUERY CLASS PARTITIONING

After a while, the president stops everybody to evaluate convergences. They
will be as follows:

e The executive has converged to strategy 3, the best average strategy for the
class.

e Trainee (1,1) has also converged to 3: for all the queries posed, q.c01 < “M”
(see Table 5.8) and thus it has received all the queries. Trainee (1,2) has not
received any. .

o Likewise, (2,2) has converged to 3: Most of the values of ¢21 are numeric, and
therefore > “M™. (2,1) has only received a few queries and has not had time
to converge to any strategy. The situation with Trainee 3 is similar.

The president decides that these trainees are no good since they either have not
converged or have converged to the same strategies as the current erecutive.

Next, the president attempts a change of discriminator. The module updtAe-
tualLimits is in charge of maintaining the maximum and minimum values of at-
tributes requested so far in queries. For our example, let us assume that these
values are ¢.c01 € {“60M” ... “700U” }, g.c21 € {“01” ... “20” } and q.c61 € {“A”
...“MEZ2Z” } Middle points in these ranges are a reasonable next guess. The
result is:

procedure train(q, k, z)
local M ...

—first trainee:

if g.c01 < “65 » — M(1,1
g 9-¢c01 > “65 » — M(1,2
fi

—second trainee:

if g.c21 < “10 " — M(2,1) := 7(M(2,1),k, z)
g 9-€21> “10 " — M(2,2) :=r(M(2,2),k,z)
fi

—third trainee:

if g.c61 < “F” — M(3,1) := 7(M(3,1),k,z)

0 g.¢61> “F” — M(3,2) :=1(M(3,2),k,z)
updActual Limits(q)

fi

end train;

T(M(1,1),k, )

):
) :=r(M(1,2),k,z)

This time, by the discussion in section 5.2.3 of the previous chapter, (1,1) will
converge to strategy 2, and (1,2) to strategy 3. The current executive continues to
prefer strategy 3. We can see that traineel is better that the executive. If traineel
is promoted, all queries where ¢.c01 < “65 ” would execute strategy 2, which is
better for them than strategy 3. On the other hand trainees 2 and 3 provide no
improvement: both automata in each of trainee2 and trainee3 converge to strategy
3. Thus the president decides to fire the executive and promote traineel, because
traineel is able to converge to more different strategies than the current ezecutive:
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procedure executive() —new
repeat forever
Get query
if g.c01 < “65 ™ :k:
g 901> “65 " :k:
fi
train(q,k, z)
end executive

P(M(1)); z := ezecute(q, k); M(1) := 7(M(1), k, z)
P(M(2)); z := ezecute(q, k); M(2) := 7(M(2),k,z)

In this particular example, this partitioning happens to be very close to the
optimal one for the specific queries that occur.

6.2.3 Prescription for the president module

The high-level pseudo-code in Figure 6.4 specifies more precisely the behavior of the
president module. Basically, the president goes through a cycle of hiring trainees,
letting them work, evaluating their performance and making promotions. At all
times, the president arranges that each automata in the current executive converges
to a different strategy. If m is the number of partitions in the current executive,
a trainee can be promoted only if its automata converge to m or more different
strategies. Ties in the number of converging strategies with the executive or other
trainees are resolved by comparing the performances of the partitionings involved;
the performance measure of a partitioning is specified in the next section.

6.2.4 The performance of a partitioning

The performance measure is the expected query processing cost of the partitioning
if it were an executive.

Let N be the total number of queries received by the partitioning, L be the
number of subclasses in the partitioning?, Z;; be the average cost for automaton [
and strategy k, p; the corresponding probability, and n;; the number of queries
that have been received by ! and executed on strategy k, for all k = 1... K and all
l=1...L. The performance is then:

u= (Ez":n,,k X Pk X :T:I,k> /N

The summation over k of pix X Zii is the familiar expected reward of the I’th
automaton. These rewards are weighted by the proportion of queries received,
nyx/N. We are using the running averages Z;; as the best estimates that we have
of the real mean of the marginal distribution of costs for strategy k, partition I. If
the corresponding n;; is small, these estimates may not be very accurate, but the
weight n; /N attached to them will also be small.

We state without proof the following

2note that L < K if the partitioning being evaluated is the executive, but may
be greater than K if it is a trainee
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procedure president()
Initialize executive X with one automaton; f; = true
Repeat until a BREAK-LOOP is executed:

Call the recruster several times to generate T', the next set of trainees. Each
call to the recruiter produces a new trainee. The number of trainees generated
depends on the amount of memory available for this query class, and the size
of the current trainees generated.

If T = ¢ then BREAK-LOOP (current executive cannot be further improved)

Let system run for a time proportional to the largest number of partitions in
any trainee (This ensures that trainees are given a good chance of convergence)

Let c (for candidates) be the set of trainees that converge to m or more different
strategies.

Ifec#¢,

Compare performance (expected query processing cost) of the executive and
the candidates. Choose w (for winner), the partitioning of best performance.
In case of ties among the trainees, pick randomly. In case of ties with the
executive, pick the executive.
if w # X then —promote:
“Or together” the guards of automata within w that converge to the
same strategy and simplify the resulting expressions, thus obtaining a
new set of guards.
Replace executive by the winner trainee, having this new set of guards.
end loop
end president.

Figure 6.4: The president module
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Theorem 2 After a sufficient number of queries have been recesved, the perfor-
mance of the optimal partitioning for the set of all queries is the minimum among
the performances of all possible partitionings.

This follows from the fact that, by definition of optimal partitioning, every query
will be executed with its best strategy.

6.2.5 Correctness argument

Assuming that the recruiter module eventually generates all partitionings, and that
there is enough memory available, the optimal partitioning will eventually be gen-
erated. By theorem 2, its performance will be smaller than the one of the current
executive, and it will be promoted. Since no other partitioning generated later will
have smaller performance, the optimal executive will not get fired.

The president attempts to speed up the search of the optimal by using several
heuristics. First, the number of partitions on the executive increases monotonically,
since trainees become candidates for promotion only if they converge to the same
or a greater number of strategies than the executive. This will eventually produce
executives with K partitions. Second, the “Or together” step of the algorithm
ensures that each automaton in the promoted trainee converges to a different strat-
egy; in theorem 1 we proved that this is a characteristic of the optimal partitioning.
Third, the performance evaluation step ensures that x for the executive decreases
monotonically also.

Note that the correctness of the president is independent of the order of gener-
ation of trainees. The efficiency of the process is affected by this order, as we will
show next.

6.2.6 The recruiter module

Generating the trainees in the best possible way is an interesting problem for further
research. Here we will only list some desirable and often conflicting features of the
generating procedure and then suggest a candidate procedure that satisfies some of
these requirements:

o Trainees that have a high probability of improving on the current executive
should be tried out. Thus the recruiter might look at the current executive,
borrow some of its partitions and attempt to improve on others. However,
doing only this may prevent giving a chance to very different trainees: the
familiar explore-exploit conflict.

o Trainees should be generated in increasing order of complexity. This ensures
that if simple partitionings turn out to be good, they are tried as soon as
possible. There are two aspects of complexity: execution time and size. Ex-
ecution time of a trainee is affected by the time of evaluation of the guards.
The size of a trainee depends on the number of partitions as well as the size
of the guards.
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As usual, sometimes there is a tradeoff between the two aspects of complexity.
A partition that can be described by a simple boolean function (see equation
6.1) is both compact and quick to evaluate. A partition that can only be
described by an exhaustive listing of its queries occupies a lot of storage, but
may also be evaluated quickly, via hashing for instance.

Trainee size also affects the time required to find good executives. Trainees
are not tried one by one, but in batches that are updated in parallel. A large
number of small trainees can be evaluated at the same time.

Balancing out all these aspects, tncreasing size is probably the best criterion
for trainee generation.

The partitionings generated should be good for the kind of queries being
posed, not necessarily for the set of all possible queries. This implies keeping
track of some aspects of the queries, such as ranges of attribute values.

To guarantee absolute optimality given enough time and memory, the generat-
ing procedure must be able to produce all possible partitionings. Nevertheless,
in common situations with a relatively small amount of memory, it may not
be practical to continue the search until the optimum is found.

A good recruiter

We suspect that the simple generation procedure that was sketched for inserti
above is likely to work well for most databases. There are several cases where the
identification of the best strategy depends on the values of one or a few of the
attributes in the query. Here are some other of these cases:

1. Piatetsky-Shapiro and Connel [70] report an example of a query to the New

York stock exchange database. Each record contains, among other things, the
name of a company, the year and amount of sales. The query is:

LIST company WHERE sales > s AND year =y

There is an index for each attribute. The two strategies consist of choosing one
of the indexes to access all the records that satisfy one condition and checking
on those records for the other condition. Assuming that cost is proportional
to the number of records that have to be retrieved, the year index turns out
to be better for small values of s, and the sales index for large values of s.
Thus a discriminator based on the value of s forms a good partitioning for
selecting strategies.

. Consider searching on an ordered linear list, and let three strategies be: search

from the left, search from the right, or do a binary search. The first is better
for small key values, the second for large keys, the third for the rest. Note
that searches close to the extremes of lists might be fairly common.

Figure 6.5 shows the pseudocode of a recruiting procedure based on these ideas.

The recruiter is written as a coroutine of the president module. At each presidential
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coroutine Recruiter()
BEGIN:
For n = 2 to oo (number of subdivisions of executive partition)
For every partition p of the executive. Let g be its guard.
Let A be the set of attributes not being tested in ¢
If A = ¢ continue for loop above.
For every a € A

Let amin to amaz be the range of values of a that have been observed so far
-in queries received by partition p. Generate R, a set of n range tests on the
value of a, equally spaced between amin and amaz.
Generate trainee T". Partitions of T' are the same as those in the executive
except that partition g is replaced by n partitions p} ... p|,, where the guard
of p! is “g and R|[i]”
Coroutine return (T")
If executive has changed, go to BEGIN.

End 3 loops.

end coroutine

Figure 6.5: The recruiter module

cycle, the recruiter is called enough times to fill up the memory allocated to the class.
The recruiter attempts a systematic refinement of the current executive partitions.
The guards produced are boolean functions over ranges of attribute values. Trainees
with a small number of partitions and simple boolean functions are generated first.
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Explanation

Initially, the executive has only one partition with guard true; therefore g and RJi)
above yields R[s], and the recruiter starts producing trainees that discriminate on
two intervals of each attribute, then three intervals and so on. Suppose that the
automata of a trainee that tests for attribute a5 with the following guards, converges
to strategies 1, 3 and 1 respectively:

a5 < 5
5<a5 < 10
10 < ab5

We will prove below that this trainee must have a better performance than the
1-partition executive. Thus it is promoted by the president, with the following
guards:

(ab<50ra5 > 10)
5§<a5 < 10

At this moment the recruiter detects a change in the executive, and starts gener-
ating trainees that are refinements of the executive partitions. First the first guard
is combined with two intervals of the first attribute, yielding:

(a5 < 5 or a5 > 10) and a1l < 20(say)
(a5 < 5 0r a5>10) and al > 20
5<ad < 10

If this results in different strategies for the first two partitions, again this trainee will
be promoted. Else the first executive guard will be combined with two subdivisions
of other attributes, then the second executive guard will get combined and so on.
Trainees will continue to be generated until they are so big that not even one will fit
in memory; then the president will conclude that no further improvement is possible
—(with this recruiter). ‘

This process of executive refinement works because of the following theorem:

Theorem 3 Let P = p;...pm be the set of ezecutive partitions. By construction,
each corresponding automaton converges to a different strategy; let these strategies be
S1...5m. Let p; be any of the partitions, and consider the trainee T with partitions
identical to P ezcept that p; is replaced by pj1...p;, where the p;. are themselves
partitions of p;. Let s;1...5;; be the strategies to which each of these subdivisions
converge. Then, if at least one of the s;. is different from s;, the performance
measure of T will be smaller than the one of P

Proof. We only have to consider whether the performance of the subdivided p;
improves upon pj, since all the other partitions are the same. Suppose we group
the p;,’s that converge to the same strategy together, arriving at a new set of
partitions p! ...pl, and let z,, be the average cost of queries in p, on strategy s,
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and f, be the combined frequency of queries in p,. Further let r be any of the
partitions, converging say to s,, and ¢t be any other partition. We can show that
the sub-partitioning that consists of r and ¢ improves upon having both combined
together. Indeed, the performance of r and t would be f, X z,, + fi X ¢, where s,
is the strategy to which ¢ converges. “he performance of their combination would
be f, X z,, + ft X z;. But since s, is best for ¢, then z;u < z;., therefore the

partitioning of r and ¢t improve upon their combination. A similar argument can be
made considering r and each of the other partitions, not only ¢.

6.3 Review of related work

The area of pattern recognition analyzes problems with some similarities to the one
we have here, yet sufficiently different to justify a new approach such as the one we
have presented.

A crucial assumption of the work in pattern recognition is that all the snforma-
tion relevant for classtfication s available or can be obtained from either the object
to be classified, or a human operator. In contrast, in our problem, the relevant
information is clearly all K strategy costs; but only one of these costs is available
—the cost of execution in the strategy chosen by the selector.

In the statistical school of pattern recognition[38], objects are usually represented
by means of a measurement vector which may or may not be subject to measurement
error. The vector is then processed by a feature eztractor which reduces it to a
feature vector with the features relevant for processing by a classifier. In structural
pattern recognition[43], an object is represented as a collection of elements and their
relationships; the object may then be classified by grammars. In both approaches,
we can see that the object representation itself includes information relevant for
classification. In a related approach, a trainable classifier[82] is presented with a
series of patterns, and the class identification given by a human operator. The
classifier must then learn the features of the feature vector that are relevant for
classification.

Closer to our problem are clustering approaches, especially adaptive clustering
[92,39]. Here, objects are clustered according to some measure of distance; class
boundaries are evolved adaptively. Again, the object representation contains all the
information needed by the clustering procedure.

Any of these methods can probably be used for query partitioning given a com-
plete query-cost table such as Table 5.8. But for the on-line strategy selector that
has available only one of the K costs at a time, there appears to be no alternative
other than evolving good classifiers with a guided trial-and-error procedure as we
have suggested.

6.4 Summary

We have defined the query partitioning problem and presented and analyzed a gen-
eral procedure for administering the work (the president module), and a particular
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module to generate good partitionings.

More sophisticated approaches are possible in the search for the best classifier.
Our intent here has been to show that a simple procedure has good chances to work
well in practice. Best of all, while the search for good trainee partitionings takes
place, the executive automata take care of using the best average strategy for the
query class.



Chapter 7

Conclusions and further research

This chapter summarizes the thesis and points out future research directions. In
the following section, we present a list of the main contributions of this work. The
principles of adaptive selection that we have developed are extremely general, and
indeed their application need not be restricted to database systems. Section 7.2
mentions other potential areas of application. Finally in section 7.3 we discuss
future directions of this research.

7.1 Summary of contributions

1. This is a novel application of adaptive systems to the selection of query pro-
cessing strategies. Previously, adaptive approaches to databases have been
used mainly for the incremental modification of storage structures [83,49,92].
Dynamic modification of strategies while a query is executed has been tried
before with some success for particular cases [27,76]. Yu et. all [94] fed back
the last execution cost in order to adapt a cost formula. No system known
to us uses the actual cost history of query execution as a means of improving
future choices of strategies.

(a) We presented in chapter 2 a general framework for adaptive selectors,
based on previous work on general adaptive systems(53]. This framework
permits a clear visualization of the possible kinds of adaptive strategy
selectors and will be very useful for further work in this area.

(b) We identified two main situations where the traditional approach to strat-
egy selection based on analytic cost models is inadequate.

e The case where cost models are totally unavailable has not been
considered before; for this case, the adaptive approach is the only
solution presented so far. Several realistic situations in which no
cost models are available were presented in chapter 1.

e The case where analytic cost models are unreliable because of the
complexity of the environment has been addressed before and sev-
eral solutions have been proposed [25,24,36,55,70]. As we mentioned
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in chapter 1, all these solutions have limitations and still require
a number of assumptions about the database and query load envi-
ronment. These approaches may have better adaptability than our
approach to certain sudden changes in the database structure, for
instance, the creation of a new index, Other changes, however, may
go undetected, including cost changes caused by variations in the
query load characteristics, changes in database concurrent usage at
different hours during the day.and so on. Adaptive selection, on the
other hand, is almost assumptions—free and does adapt to all changes
in the environment.

(c) The adaptive approaches are extremely portable across database man-
agement systems, precisely because they do not need to make assump-
tions about database structures and query loads. In contrast, other meth-
ods of strategy selection are closely tied to particular environments.

2. In chapter 3, we mapped the optimal policy design problem to similar prob-

lems in statistics (Bandit problems) and decision theory, and presented ex-
amples of solutions to our problem based on dynamic programming. We also
presented a new analysis of the running time of the resulting algorithms.

. We identified a number of possibilities for the design of heuristic adaptive

plans of strategy selection, and chose one based on learning automata. This
is the first time that these automata have been used for query optimization.
We extended an effective automata algorithm [85] to handle arbitrarily evolv-
ing environments, and presented comprehensive simulations to illustrate and
explain its behavior. We showed that this new approach to strategy selec-
tion works well and adapts to change under real query loads of very diverse
natures.

. We formally stated the query class partitioning problem and proposed a gen-

eral algorithm for its solution. Part of this algorithm is a procedure to generate
candidate partitions; we proposed a simple form to do this and showed that
it works well in several cases.

7.2 The application of adaptive selection to other

areas

The adaptive approach that we have presented can be conveniently used for any
class of problems that has the following characteristics:

1. Problem instances have to be solved repeatedly varying the input.
2. The solution can be obtained using any of several strategies.

3. The cost of solving a problem instance using each strategy depends on (par-

tially) unknown environmental factors.
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For problem classes with these characteristics, the adaptive approach selects
over time the best average solution, and is able to adapt its selection to changes in
the environment. Consider the following examples:

e Several data structures can be searched in more than one way. Consider for
instance an ordered list of size N. Both worst case and average case analysis
show that binary search is better than linear search under a number of as-
sumptions. In particular, the average case analysis usually assumes that keys
searched are uniformly distributed. If, however, keys searched have some un-
predictable locality of reference, one of the following K strategies may prove
superior: Suppose that the list is circular, and start a linear search at position
(k—1) x N/K, for k = 1...K. An adaptive selector can choose over time
among all these strategies and the binary search strategy as well.

Locality of reference is extremely common. On almost any file ordered by
date, queries that refer to recent dates are likely to be more frequent. On a
file of student grades ordered by grade, a researcher may become interested
in students with very low grades and ask several queries about them. A few
days later another researcher decides to query the best students.

e Char et al. [21], report that in numerical algebra, there are many cases where
several algorithms are available to solve a given problem. One example is
the greatest common divisor of polynomials, where at least three algorithms
are available; the authors list several other cases that occur in the Maple[22]
symbolic algebra package. On many occasions, which algorithm is better for
a given problem instance is not clear-cut. The Maple system uses several
heuristics and then loads to memory the required algorithm. Some of the
heuristics depend on hardware characteristics of the machine, such as the
relative speed of certain instructions. An adaptive selector could be made
to choose over time the best algorithm, for the kinds of problems that users
are currently requesting; a measure of cost that combines memory usage and
execution time would likely be adequate in this case.

7.3 Further research

There are several directions in which this research can be extended. In the thesis,
we have analyzed the case where the only signal available from the environment
is the cost of query execution. We first list a number of issues remaining to be
solved in this case. Then we mention the possibility and implications of receiving
more signals. Finally we discuss potential interactions of this approach with the
traditional approach, with adaptive modification of data structures, and with the
data base administrator.

e The optimal policy design problem can be extended to include the possibility
of change of the underlying distributions while the policy is being applied.
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CHAPTER 7. CONCLUSIONS AND FURTHER RESEARCH

The algorithms that we have studied require a number of parameters that have
to be set up by the database designer. These include the learning parameter
A of Algorithm I (page 37), and the sensitivity to change a of Algorithm II
(page 44). In principle, these parameters could be set and changed adaptively
by the system itself; more research is needed however into this problem.

Analytic results are needed on convergence time of our algorithms under rea-
sonable assumptions.

We have considered heuristic policies based on a particular learning automata
algorithm. As we mentioned in chapter 4, other automata algorithms might
also be used [20], as well as algorithms not based on automata [74,8,28,52,41].

Some of these approaches, though, might require additional assumptions about
the environment and thus reduce portability. Further, they may be difficult
or impossible to modify for changing environments.

In chapter 6 we gave one simple way of generating the trainee partitions
that works well for several cases. More research is needed to investigate the
applicability of this generating procedure and to derive analytical measures of
its efficiency. A promising approach in the search of good candidate partitions
is genetic algorithms [1] which have been shown to be particularly effective in
searching multi-modal spaces. ‘

The costs of different strategies are not independent of each other. All strate-
gies are constrained by the fact that they must produce the same answer
from the database, accessing similar data to arrive at the answer. This cre-
ates complex dependencies between costs; for instance, consider two strategies
that roughly go “down the hierarchy” when answering a query in a hierar-
chical database. Typically, the cost of one of the strategies is high when the
cost of the other is also high, though the dependency might not be linear.
Nevertheless, a clever system might try to detect the form of the dependency,
and therefore predict the cost of one strategy when the other strategy is ex-
ecuted; this may decrease convergence time. This approach will likely need
further assumptions about the nature of the possible dependencies or the type
of strategies.

Depending on the definition of the query classes, the costs for one class may
be related to those of another class. As an example, consider that one class
comprises the queries that join relations A and B, and another the queries
that join relations A, B and C. Clearly the costs would be related, and it
might be possible to affect the probability vector for the second class when a
query of the first class is executed. To implement this, feedback signals from
intermediate steps of query executions would have to be fed back.

When the total number of possible classes is too large, it may be wasteful to
keep an automaton for every class (and many more if the partitioning approach
of chapter 6 is used); most of these automata would stay idle forever. What
we need is a scheme to create and del:te automata according to which are the
currently most smportant classes, the ones that are consuming most resources
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from the database. The number of the most important classes is typically
small [58,75]. Queries that do not belong to the most important classes would
be answered using arbitrary strategies.

The general framework of chapter 2 specifies a set of signals coming from the
environment when a query is executed. We have considered the case where the only
signal is a single measure of cost of execution; but clearly other signals are possible,
such as intermediate or final selectivities of-attributes, record counts and so on.
Making suitable assumptions, these other signals may help to predict the cost of
several strategies when only one of them was executed, decreasing convergence time.

It might be possible to combine the traditional approach to strategy selection
with the adaptive approach. The adaptive approaches become slow to adapt to
change when the number of strategies is large. A rough analytic model might help
to eliminate the strategies that are evidently very expensive, leaving to the adaptlve
selectors to decide over time among the remaining strategies.

Even more interesting is the possibility of allowing analytic models to consider
feedback signals as input to improve the models adaptively. How should an analytic
model change when the cost that it predicts turns out to be wrong? See Yu et al.
[94] for some initial steps in this direction.

There is a limit to the amount and kind of information that a given computer
system may learn by itself. Beyond this limit, it becomes practical for the system to
be able to accept advice from humans. The database administrator may sometimes
know which are the most important classes (using perhaps a measure of importance
that goes beyond mere cost), or which strategies are obviously very bad for certain
query classes and which should be ignored after a database reorganization and so
on. Practical learning systems, ours included, must therefore incorporate ways for
optionally accepting advise from people at appropriate points.

There are very interesting tradeoffs to study between adaptive selection of execu-
tion strategies and the adaptive self-modification of data structures, such as move to
front lists[73], self-modifying trees(84] and so on. Both approaches have as primary
objective the adaptive adjustment of something as a result of actual queries posed
by users. Adaptive selection is by its nature more general, since it is independent of
underlying data structures. But when adaptive selection is applied to, say, a move
to front list, it is not clear where it is most profitable to apply resources: to the
modification of the list, or to the adaptive selection of the best average strategies
that search the same list, or to the adaptive subdivision of queries into subclasses,
or a combination of everything. Perhaps new algorithms can be devised that can
optimally combine all the approaches.
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Program to find the optimal
policy

The following Maple program was described in section 3.2.4. The program is fully
commented and should be easy to follow. Here are a few notes about the language
Maple for readers unfamiliar with this powerful language. Interested readers should
refer to the manual [22] for more details.

1.

Maple is an untyped expression language. A double quote symbol (*) refers
to the value of the last expression:

5+3:

a:=a + ”: #adds 8 to variable a.

. p := proc(al,a2,a3) : statements ... end : assigns to p a procedure with

formal arguments al,a2,a3. The procedure can then be called as in p(5, 4, 3).
Procedures can return objects of any type. By default, a procedure returns
the value of the last expression computed.

. 1 :=[2,3,4] assigns to ! a list of three elements. Individual list elements can

be selected by indexing: 1{1] equals 2. Lists can be nested.

. All arrays are associative. Index types are arbitrary: d [ [a,b,c] |:=[5] assigns

a 1-element list as the value of the d-array element indexed by a three-element
list.

map(p,l) where p is a procedure and ! is a list, returns the list that results
when applying p to each element of / in turn.

. The option remember declaration within a procedure body establishes an in-

visible associative array inside the procedure that relates argument values
used in procedure calls with the value returned. If the procedure is called
again with the same argument values, the procedure accesses the table and
returns the value, rather than repeating the computation. This feature alone
makes possible a clear recursive expression of dynamic programming problems
that runs in the same amount of time as iterative versions.
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# FIND OPTIMAL POLICY
#note: time == "stage"
# Yat time t" == after t-1 decisions have already been taken, and we
# are considering the (t)st decision.
* "state": whatever is kept of the history of observations
# h : time horizon, or the number of decisions that will
# be taken
# K : number of strategies
#
#
# the basic optimality equation for all dynamic programming decision problems
# with a fixed number (K) of decisions at each stage t.
# S is the current state, just before taking the decision.
#
V:= proc(t,S) #value of optimal policy at time t, state S
#side effect: stores in dstar([t,S] the optimal decision.
local mmin, which, k;
options remember;
mmin:=99999; which:=1;
for k to K do
VA(k,t,S); #value of decision k
if " <= mmin then which:=k; mmin:="" fi od;
dstar[t,S] := which;
mmin
end:

# 1. Now assume values in strategy k are integers between xmin[k]land xmax[k]

VA:= proc(k.t.s) #value of deciding strategy k at time t, followed by
#optimal decisions thereafter.
local zum, x, p;

zum := O;
for x from xmin[k] to xmax[k] do
p := pr(x,k,8); #probability of x on k given S
nextS(x, k, 8); #S after getting an x from strat. k
if t=h then O else V(t+1,") fi; #"...optimaly thereafter..."
zum := zum + p*(x + ") od

end:
# 2. Assume probability is computed from Posterior Bayesian Distribution
pr:= proc(x,k,S) #probability of x on k given S

Bayes(prior[k],S[k],k); #posterior distr on arm k
p(x.k,")
end:

3. Assume the distribution family on arm k is given by a discrete set of

8izF[k] discrete distributions. Each distribution consists of l[k] values, where
value number 1 is the probability of obtaining xmin[k]+1-1, 1=1..N[k]. So the
distribution family is a list of sizF[k] N[k]-tuples, called F[k].

A prior or posterior on this distribution family is given by a vector of

s8izF [k] probabilities, where the Lth element represents the current subjective
probability that alternative number L is the real one.

£ B 3R IR K R 2
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p:=proc(x, k, d) #probability of x given distribution of alternatives d for arm k
local j, Fk, i, zum;

j:=x-xmin[k]+1; Fk:= F[k];
zum:=0; for i to sizF[k] do zum:=zum+d[i]*Fk[i]l[j] od;
end:

# 4. Assume that the state for arm k is kept as a list of N[k] counters,
# one each for each possible value on the arm

Bayes:=proc(prior,nobs,k) #posterior on arm k given its prior and number of
#observations nobs.
local i, j, post, wlklhd, Fk, Fki, scalefac, prod;
options remember;

Fk:=F[k];
scalefac:=0.0;
wlklhd:=array(1..sizF[k]); post:= array(1..sizF[k]);
for i to sizF[k] do;
prod:=prior[i];
Fki:=Fk[i];
for j to N[k] do;
if nobs[j] <> O then
Fkil[j]; ' .
if " = O then prod:=0;break else prod:=prod * (" “nobs[j]) fi
fi od;
wlklhd[i] :=prod;
scalefac:=scalefac+" od;
for i to sizF[k] do; post[i]:=wlklhd[i]/scalefac od;
RETURN (post)
end:

nextS:=proc(x,k,S) local j; j:=x-xmin[k]+1;

[sl1..k-11,
[sik1l1..j-1],
s[kl[jl+1,
S[kI[ j+1..N[Kk] 11,
s[k+1..K]]

end:

part:=proc(k,s,f) #list of partitions of s into k integers, repetitions
#allowed. Each partition is a list of k elements, were each
#element can only be equal to O, or f or 2*f or ... lxf=s.
local result, i, d, 1;
options remember;

l:=s/f;
if k=1 then RETURN( [ [s] 1) f£i;
result:=[];
for i from O to 1 do;
d:=i*f;

part(k-1,s-d,f);
map(proc(x,d1) [d1,op(x)] end, ",d);
result:=[op("), op(result)] od;
result
end:



# "input data"

print (‘input‘);

K:=2;

h:= 11;

xmin:=[1,2]; xmax:=[3,4]; N:=[3,3];

# 5. Assume that the list of alternatives is explicitly given.
# as follows:

F[1):= [ [0.1, 0.1, 0.8], [0.1, 0.5, 0.4] ];
F[2]:= [ [0.8, 0.1, 0.1], [0.4, 0.3, 0.3] ];
printlevel := O;

§0:=[[0,0,0],[0,0,0]]; #initial state

for k to K do

8izF[k] := nops(F[k]);

prior[k] :=array(1..sizF[k]);

for i to sizF[k] do prior[k][i]:=1/sizF[k] od

od;

print (‘output‘);
dummy:=1;
print (‘expected value of any optimal strategy:‘,V(1,50));
dummy:=1;

#list of possible states while following optimal policy, and the corfesponding
#optimal decision:

print(‘optimal choices following one of the optimal strategies‘);

possStates:=proc(t)
options remember;
if t=1 then [SO]
else
map ( proc(aState) local d,1,x;
1:=[];
d:=dstar[t-1,aState];
for x from xmin[d] to xmax[d] do l:=[nextS(x,d,aState),op(1)] od;
op(1)
end,
possStates(t-1) )
fi
end:
for t to h do possStates(t); map( proc(x) print(x,dstar[t,x]) end,") od;
print(‘time‘); time();
quit;

99



Appendix B

Magalhaes’ tape

The following pages contain a listing of the beginning of the transaction load for
database B on day 2. The first column in the listing denotes the database and the
day (B2). The second column is the start time of the transaction in hexadecimal.The
third column is the transaction number. Then there are up to four records per
transaction, as follows:

e Record “A” is a coded version of the transaction. Most of the transactions
are predefined; transactions resemble procedure calls,

transld(argl,arg2,...)
The transaction Id for snsertl is “C1771”. The formal arguments are:
C1771(c01,c21,c61,c74,c75,c76,...)

o Record “B” includes messages issued by the system during the execution of
the transaction.

e Record “C” shows i/o and CPU costs per database module. Modules are
coded by 3-digit integers. We are interested in the module that handles qual-
ifications(the “where”) clause; this is module 303. The 3 numbers after the
module id are the number of i/o block references in the database, the number
of block references in scratch files, and the cpu cost.

e Record “D” encodes the sequences of i/o operations to the database files,
showing file number, block number and kind of operation (read or write).
These records were omitted from the sample listing.



B2 00000000 1

B2 014C4956 2

B2 014C4956 2
2 05:55:562

B2 014C4956 2

B2 014C5054 3

B2 014C5054 3

4 27 107 O

B2 014C5054 3

76 93 77 93

B2 014CC7BE 4

B2 014CC7BE 4

4 3 18 0O

B2 014CC7BE 4

82 12

B2 014CDBAO 5

B2 014CDBAO 5

4 31174 O

B2 014CDBAO 5

76 93 77 93

B2 014D651C 6

B2 014D551C 6

4 3 18 0

B2 014D551C 6

82 12

B2 014D69F8 7

B2 014D69F8 7

4 30 117 O

B2 014D69SF8 7
76110 77110

B2 022EB9OE 8

B2 022EC23C 9
SRVS,8):

B2 022EC23C 9

B2 022EC23C 9

B2 022EC23C 9
8 2 24 1 301

B2 022EC23C 9

B2 022EC23C 9
76 1 77 1

B2 022F27D6 10

B2 022F27D6 10

4 1 4 O

B2 022F27D6 10

76 4 77 4

B2 022F5030 11
,4):

B2 022F5030 11

B2 022F5030 11

B2 022F5030 11
8 2 23 1 301

B2 022F5030 11

B2 022F5030 11

76 1 77 1

B2 022FDAOA 12
2):

B2 022FDAOA 12

Ed aQ » Haorr QoW > >

ma=aww

1
2
1

2
1

1
2
1

2
1

1

1
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TIMING ON: ECHO ON:
USER,SILL:DBN IS BUILDNG:

-556- OPENED..... BUILDNG 367 1 80/02/0

500 0 1 0300 0 O O

*C773(800205) :

301 1 4 030311 20 530413 92 0307 0 O 2 30
7993 8393 8493 7493 7193 78093 7593

*C783(800205) :

301 0 2 030316 60 5304 1 17 0307 0 0 0 30
79 9 83 9 84 9 74 9 75 9 76 9 8112

C775(800205) :

301 1 4 030311 29 5304 9 91 0307 0 O 2 30
7993 8393 8403 7493 7193 7893 75093

*C783(800205) :

301 0 2 030316 69 5304 1 17 0307 O O 0 30
79 9 8 9 8 9 74 9 75 9 76 9 8112

*C773(800204) :

301 1 4 0303 5 29 530416 101 0307 0 O 2 30
79110 83110 84110 74110 71110 78110 75110

CLEAR AUTO:

*C1771 (700U, 15, C,800206,09.00, 12.00, MCDONALD, SAME,, 6880, GEN

-342- 1 SELECTED RECORD(S) -

-258- UPDATE CYCLE= 2 -

301 1 4 0303 2 28 0306 0 3 1307 O 1 O30
4 0303 3 35 0
304 0 1 0307 0 O 0304 0 O O
79 1 83 1 8 1 74 1 T1L 1 78 1 75 1
*(972(800205,07)

301 1 2 030311 31 6304 0 5 0307 O O O 30
79 4 83 4 84 4 T4 4 T1L 4 T8 4 75 4
*C1771(60M, 1,103,800204,10.00,12.00,BRODIE, SAME, 3218, PRPTY

-342- 1 SELECTED RECORD(S) -
-268- UPDATE CYCLE= 3 -
301 1 3 0303 1 9 0306 0 4 1307 O 4 O 30
4 0303 2 17 O
304 0 2 0307 0 O 0304 0 4 O
79 1 83 1 84 1 74 1 T1L 1 78 1 75 1

*C1771(700U,05,D,800204,13.00,17.00,GUPTA, SHELLY, 4152, TUD,

-342- 1 SELECTED RECORD(S) -
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B2 022FDAOA 12 B 2 -258- UPDATE CYCLE= 4 -

B2 0O22FDAOCA 12 C 1301 1 1 0303 2 28 0306 0 3 1307 0 1 030
8 2 23 1301 2 4 0303 3 35 O

B2 022FDAOA 12 C 2304 0 3 0307-C O 0304 O 4 O

B2 O22FDAOA 12 E 1 79 2 83 2 84 2 74 2 71 2 78 2 75 2
7% 2 77 2

B2 022FE2C0 13 A 1 *C1771(700U,05,D,800206,13.00,17.00,GUPTA, SHELLY,4152, TUD,
2)

. etc.

. etc.



Appendix C

Analytic cost model of system
2000 DVT table

As explained in the text, we only utilize the B-tree and Multiple Occurrences Table
models developed by Casas-Raposo[19], modified to allow for exact rather than
average selectivities. Also, we only require the parts of the models that deal with
simple one-key searches in the storage structures. The following are the relevant
page numbers in Casas-Raposo’s thesis:6.5.3, 6.5.4, A.1, A.2 and C.2.

C.1 B-tree access model

This model is based on a similar one by Batory [10].

Assumptions

Distribution of keys in blocks is uniform. All blocks of the B-tree contain the same
number of keys on average

Input parameters

dvtN —Number of keys in tree

ddtRlength  —Length of the keys

dvtPad —Block padding [0-1]. Fraction of block reserved for additions
dvtBovh —Block overhead. [0-1]. Used by block pointers etc.

Intermadiate values and result

dvtR —record capacity
dvtH —expected number of records on a leaf block
dvtL —height of tree

Cost —Access cost in number of blocks
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_ | dvtBlock x (1 — dvtBovh)
dvtR = l dvtRlength J
dvtH = |dvtR X (1 —dvtPad) +0.5]

dvtL [loggyen dvtH
Cost = dvtL



Appendix D

Simulation model

This is the Icon[48] program that computes the cost of new strategies for transaction
“insert1”. The program should be easy to follow. We list here a few notes about
Icon for readers not familiar with this powerful language:

1.

Icon is a non-typed language; however, an option of the compiler forces all
variables to be declared either Global or Local. Global variables are known
in all procedures; Local variables only in the procedure in which they are
declared. All procedures are actually functions that can return values of
arbitrary data types.

The notation record node(page Num,firstChild) declares a new data type named
node with two fields. Later, p := node(5,,) creates memory space for a new
node and assigns a pointer to it to p. The second field is assigned &null.
c.pageNum references the first field.

if /p ... is an abbreviation of if p = &null. Likewise, if \p ... abbreviates
tfpnot = &null. ..

. t01 := table() creates an associative table. t01[“c”] := 5 assigns 5 to the

element indexed by “a”. Types of indexes are arbitrary. A reference to a

non-assigned index value returns &null. These tables are used to keep the
inverted lists of pointers to the HT file.

. 1 :=[5,3] assigns a list of two elements to /. New elements can be appended to

the right of the list with put(”e”,l) which would return the new list [5,3,”a”]

. every e := 1] do{statements.‘. .} is a loop expression that assigns to e each

element of the list ! in turn.
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#This is a simulation of accesses to files 5 and 6 of the system

#2000 database. Database records in preorder are read from stdin and
#loaded to memory-resident versions of files 6 and 6. As the files are
#formed, the physical page number of each file entry is computed. This

#is then used to compute the exact number of page accesses for queries using
#several traversal strategies. Only the record fields relevant to queries
#"insert1" and "insert2" are kept in memory; however, full record lengths
#are used to estimate page numbers in file 6.

#TYPE rectype = {"oo",*10","20",..."80"}
# recPoin = {@rec00,0reci0,...}
# indxedattr = {"cO1","c21","c61","c74","c75"}

record node( #file 5 entry
father, sibling, firstChild, #:node. pointers to family members

dataPoin, #:recPoin. Pointer to file 6 entry

recordld, #:rectype.

pageNum) #:int. Page number of this entry in file 5
record recOO( #entry for record 00 in file 6

c01, #:8tring. Value of field CO1.

pageNum)

record rec20(c21, pageNum)
record rec60(c61, pageNum)
record rec70(c74,c75,pageNum)
record recOther(pageNum)

#CONST
global L, #:table[rectype]l of int. Length of each record
fat, #:table[rectype] of rectype. Father of each record
brot, #:table[rectype] of rectype. Brother, if any.
klen, #:table[indxedatr] of integer. Lengths of indexed items
PageLen5, PagelLen6, #page lengths
NodeLen, #length of a file 5 node
dvtBlock, #block length of DVT file
dvtBovh, #block overhead

dvtPad #padding
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#VAR
global root, #:node Pointer to root node.
eof5, eofb, #number of bytes used in each file
c01, c21, c61, c74, c75 #:table[indxedatr] of (list of node).Inverted
#lists of file 5 node pointers for each
#distinct attribute value.

procedure main()

initial {
fat := table(); brot := table(); L := table(); klen := table()
cO1 := table(); c21:=table(); c61:=table();c74:=table();c75:=table()
fat["00"] := "root";
£at["10"] := £at["20"] := "00"; brot["20"] := "10" ;brot["10"]:="20";
£at["30"] := £at["60"] := "20"; brot["30"] := "60" ;brot["60"]:="30";
fat["40"] := "30"; £fat["50"] := "40";fat["70"] := "60";fat["80"] := “7O"
Pagelen5 := 2492; PagelLen6 := 2492;
NodeLen := 14;
dvtBlock := 2492; dvtBovh := 0.05; dvtPad := 0.25
L["o0o"] := 42; L["10"] := 5; L["20"] := 27; L["30"] := 56;L["40"] := 57
L["60"] := 16; L["60"] := 10;L["70"] := 106;L["80"] := 23;
klen["cO01"] := klen["c21"] := klen["c61"] := klen["c74"] := 6
klen["c75"] := &

}

builddb () #build database

#traverse (root)

queries() #read queries and compute costs
return

end

procedure builddb()

local 1,v,v2,
currPgh, #current page in file 5
recld, #:recType. Record id of current record
recPoin, #:recPoin. Pointer to record in file 6.
P, #:node. Pointer to file 5 entry of current record
papa, #:node. Pointer to father of current record
last, #:table[rectype] of node. Last record inserted for
# each rectype.
h; #:node. Pointer to older brother of current record
eof5 := 0; eof6 := 0
last := table()
last["root"] := root := node(,,,,"R",,)

while 1 := nextRecord() do {
recId := 1[1]; recPoin := 1[2]
currPg5 := eof5 / PageLen5
eof5 +:= NodeLen
papa := last[ fat[recId] ]
(\papa) | assert(1)
p := node(papa,,,recPoin,recId,currPg5);

if /papa.firstChild then
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papa.firstChild := p
else

if \(h := last[recId]) & h.father === papa & /h.sibling then
h.sibling := p

else {
(\(h := last[ brot[recId] 1) & h.father === papa &
/h.sibling) | assert(2)
h.sibling := p }

case recId of { .
"00": {v:=recPoin.cO01;if /cO1[v] then cO1[v] := [p] else put(cO1lv],p)}
"20%: {v:=recPoin.c21;if /c21[v] then c21[v] := [p] else put(c21[v],p)}
"60": {v:=recPoin.c61;if /c61[v] then c61[v] := [p] else put(c61lv],p)}
"70": {v:=recPoin.c74; v2:=recPoin.c75

if /c74[v] then c74[v] := [p] else put(c74[v],p)

if /c75[v2] then c75[v2] := [p] else put(c75[v2],p)}
}
last[recId] := p }



procedure nextRecord() #read next record and store it in file 6.

#
#

local recld, currPg6,
pP; #:

if (recId := read()) ~==

Returns [RecordId, PointerToFile6]
Fails on eod.

recPoin. Pointer to file 6 record.

"EOD" then {

currPg6 := eof6 / Pagelen6; eof6 +:= L[recId]
if (eof6 / PageLen6) > currPg6 then currPg6 +:= 1

case recld of {

llooll : p
"20": P
"60" . p
ll7°ll H P
default:

:= rec00(read(),currPg6)
:= rec20(read(),currPg6)
:= rec60(read(),currPg6)
:= rec70(read(),read(),currPg6)

p := recOther(currPgé) }

return ([recId, pl) }

global cost,cost2,cost4,cost5,cost6, #:int. Cost of new strategy

oldcost5,oldcost6,

lastP5, lastP6,

debug,

ve01, ve2l, vcé6i,
procedure queries()
#reads "inserti" queries

local s2kcost

debug := "1"
while vcO1 := read() do {

#on each 82k file
#:int. 0ld values of costs for debugging
#:int. Last page accessed in each file

ve74, vc76

and computes the cost of several strategies.

#:int. Cost of s2k strategy

#for each inserti query

#:8trings. Values of attributes in query
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vc2l:=read(); vc61l:=read(); vc74:=read(); vc756:=read(); s2kcost:=read();

write(vcO1," " vc
writes(" ")

strategy2(); writ
strategy3(); writ

strategy4(); writ
strategy5()
write() }
return
end
# --------------------
procedure strategy2() #us
#hi
local 1,
P

oldcostd := costb
lastP5 := -1; las

21," ",vc61," ", ,vc74," ",vcT75," ", 82kcost)

e(); writes(" "),
e(); writes(" "y,
e(); writes(" "),

e Btree for cO1 to access RecOO. Then walk down the
erarchy to access rec20, rec60 and rec70.

#:1ist of node. Inverted list for vcO1
#:node. Traveling pointer

:= oldcostb := cost6 :='0
tP6 := -1;
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cost2 := Btree(*cOl,klen["cO1"],dvtPad)
if (debug=="1") then writes("c2 ",cost2);
if \(1 := cO01[vcO01]) then {
(*1 = 1) |assert(13)
p := 1[1]
(type(p) == "node") | assert(10)
updtcost5(p) ;
if (debug=="1") then princosts()
p := findfirst(vc21, “20", p)
if \p then { :
if (debug=="1") then princosts()
p := findfirst(vc61, "60", p)
if \p then {
if (debug=="1") then princosts()
cost2 *:= 2; costS *:= 2; costb *:=2
if (debug=="1") then princosts()
insert70(vc74, vc75, p)
findall(ve74, "70", p)
if (debug=="1") then princosts() } } }
cost := cost2 + costS + cost6
writes ("s2 ",cost)

procedure strategy3() #access rec20 via Btree of c21 and perhaps MOT file.
) #tcheck its father, then walk down the hierarchy for
#rec60 and rec70.

local l, p, £

cost2 := Btree(*c21,klen["c21"],dvtPad); costd := 0
if (debug=="1") then writes("c2 ",cost2);

oldcosth := costb := oldcost6 := cost6 := 0

lastPb := -1; lastP6 := -1;

1 := c21[vc21]
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if \1 then {
if *#1 > 1 then costd := mot(*1)
if (debug=="1") then writes(" c4 ",cost4,"~");
if \(f:= findfather(l,vc01) ) then {
p := £[1]
updtcost5(p)
if (debug=="1") then princosts()
p := findfirst(ve61, "60", p)
if \p then {
if (debug=="1") then princosts()
cost2 *:= 2; costd *:= 2; costd *:= 2; cost6 *:=2
if (debug=="1") then princosts()
insert70(vc74, vc75, p)
findall(ve74, "70", p)
if (debug=="1") then princosts() } } }
writes("s3 ",cost2 + costd4 + cost5 + cost6)
return
end

procedure strategy4() #access rec60 via btree and perhaps mot. Check its father
#and grandpa, then access its children rec70
locall, p, f, g

cost2 := Btree(*c61, klen["c61"], dvtPad); costd := O
if (debug=="1") then writes("c2 ",cost2);
oldcost5 := costbh := oldcost6 := cost6 := 0
lastPb := -1; lastP6 := -1;
1 := c61[vc61]
if \1 then {
if *1 > 1 then cost4 := mot(*1)
if (debug=="1") then writes(" c4 ",costd,"~");
if \(f:= findfather(l,vc21) ) & \(g:= findfather([£[2]],vcO01) ) then{
p := £[1]
updtcost5(p)
if (debug=="1") then princosts()
cost2 *:= 2; costd *:= 2; costd *:= 2; cost6 *:=2
if (debug=="1") then princosts()
insert70(ve74, vc75, p)
findall(vc74, "70", p)
if (debug=="1") then princosts() } }
writes("s4 ",cost2 + cost4 + cost5s + cost6)
return
end
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procedure strategy5() #use strategy 3 for the insert, then btree and
#mot and up up up for the list
local l, p, f, g, 88

cost2 := Btree(*c21,klen["c21"],dvtPad); costd := O
if (debug=="1") then writes("c2 ",cost2);

oldcost5S := cost5 := oldcost6 := cost6é := O

lastP5 := -1; lastP6 := -1;

1 := c21[vc21]

if \1 then {
if *1 > 1 then costd := mot(*1)
if (debug=="1") then writes(" c4 ",cost4,"”");
if \(f:= findfather(1l,vc01) ) then {
p := £[1]
updtcost5(p)
if (debug=="1") then princosts()
p := findfirst(vc61, "60", p)
if \p then {
if (debug=="1") then princosts()
insert70(vc74, vec75, p)
cost2 +:= Btree(*c74,klen["c74"],dvtPad)
if (debug=="1") then writes("c2 ",cost2);
1 := c74[ve74]
(\1) | assert(56)
if *1 > 1 then costd +:=mot(*1)
if (debug=="1") then writes(" c4 ", cost4,""");
every p := !1 do {
if /(f:=checkfather(p,vc61)) then next
if /(g:=checkfather(f,vc21)) then next
if /(gg:=checkfather(g,vc01)) then next
updtcost5s(p) }
if (debug=="1") then princosts() } } }
writes("s5 ",cost2 + cost4d + cost5 + cost6)
return
end

procedure findfather(l,v) #find the father of one of the records in 1 that
#has value v. Return [record, father], or null
#if not found.

local £, 4, p

every p := !1 do {

updtcost5(p)

f := p.father

updtcost5(£f)

d := f.dataPoin

updtcost6(d)

if d[1] == v then return [p,f] }
return &null
end

procedure checkfather(p,v) #check if father of p has value v. If so return
#father. Else return &null
local f,d
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updtcost5(p)

f := p.father

updtcostb(£f)

d := f.dataPoin

updtcost6(d)

if d[1] == v then return f else return &null
end

procedure princosts() '
writes (right(cost5-oldcost5,3), right(cost6-oldcost6,3),"~")
oldcost5 := cost5; oldcost6 := cost6

procedure findfirst(v, id, p) #find first record of type "id" under p
#with first value == to v. Return node
#pointer or null. Updates globals lastP5,
#lastP6, and cost as it goes along.
local d #:recpoint. ".

p := p.firstChild;

repeat {

if /p then return p

updtcost5(p)

(p.recordIld == id |

(\brot[id] & p.recordId == brot[id]) ) | assert(11)

if p.recordld == id then {
d := p.dataPoin;
updtcost6(d) ;
if d[1] == v then return p
}

P := p.sibling }
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procedure findall(v, id, p) #find all records under "p", al the corresponding
#file 6 records, and update costs. Other arguments
#ignored.

local d #:recpoint. ".

p := p.firstChild;

while \p do {
updtcost5(p)
(p.recordId == id ) | assert(12)
d := p.dataPoin;
updtcost6(d);
p := p.sibling }
return
end

procedure insert70(v74, v75, p) #insert c70 record under p
local new5, new6, currPgb, currPg6

currPg6 := eof6 / Pagelen6; eof6 +:= L["70"]

if (eof6 / PagelLen6) > currPg6é then currPgé +:= 1

currPg5 := eof5 / PageLenS

eof5 +:= NodeLen

new6 := rec70(v74, v75, currPg6)

new5 := node(p,,,new6,"70", currPg5)

new5.sibling := p.firstChild; p.firstChild := new5

if /c74[v74] then c74[v74] := [new5] else put(c74[v74],new5)
if /c75[v75] then c765[v75] := [new5] else put(c75[v756],new5)

procedure updtcost5(p)

if p.pageNum “= lastP5 then { cost5 +:=1; lastP5 := p.pageNum}
return

end

procedure updtcost6(p)

if p.pageNum ~= lastP6 then { cost6 +:=1; lastP6 := p.pageNum}
return

end

procedure traverse(t)
if /t then return
if t.recordId ~== "R" then {
writes(t.recordId)
if type(t.dataPoin). “== "recOther" then writes (" ",t. dataPoin[1])
if t.recordId == "70" then writes(" ",t. dataPoln[Z])
write(" p5: ", t.pageNum, " p6: ", t.dataPoin.pageNum)}
traverse(t.firstChild)
traverse (t.sibling)
end

procednre assert(n)
write ("internal con#%fuzzion number ",n)
write ()



return;
end

procedure Btree (dvtN, dvtRlength, dvtPad) #access cost of a s2k Btree with N

#keys of length Rlength

local dvtR, #record capacity
dvtH, #expected number of records on a leaf block
dvtL #height of tree

dvtR := floor(dvtBlock * (1 - dvtBovh) / dvtRlength)
dvtH := floor(dvtR * (1 - dvtPad) + 0.5)

dvtL := ceilLog(dvtH, dvtN)

return (dvtL)

end

procedure floor(x); return(integer(x)); end

procedure ceil(x)

if x-floor(x) > 0.5 then return(floor(x)+1)
else return(floor(x))

end

procedure ceilLog(base,x) #ceil of log of x

local i

i:= 0;

repeat {
if real(base)"i > x then returm i
i+:=1

}

end

procedure mot(motKeyKVOccurrences); return(1); end
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Appendix E

Database B

The next page shows a few records of database B. The first two digits on each line
are the record Id. Then there is a list of (attribute id, value) pairs. The original
data on the tape was a continuous stream of characters, with an asterisk after
every record id and after every attribute value. A simple awk|[2] filter produced the
listing. Another filter preserved only the attributes used in the snsert1 transactions,
for input to the simulation model.



00
10
10
10
10
10
10
10
10
10
10
20
60
70
ou
70
ou
70
ou
70

1 700U 2 700 UNIVERSITY AVE 4 800201

11
11
11
11
11
11
11
11
11
11

P1 12 14.417
P2 12 9.500

P3 12 8.967

T1 12 10.000
T2 12 20.000
T3 12 50.000
T4 12 65.000
T6 12 15.000
T6 12 40.000
T7 12 20.000

21 LC 22 9114 23 2136 24 025 0 26 46 27 7041 28 14

61
71
83 LC
71
83 LC
71
83 LC
71

063 62 15 63 2

TROUPE 72 GLENNA 73 2732 74 800205 75 13.

84 053

TROUPE 72 GLENNA 73 2732 74 800207 75 08.

84 053

TROUPE 72 GLENNA 73 2732 74 800204 75 08.

84 053
NODWELL 72 CAROLANN 73 6452 74 800206 75

PLN 79 700U 83 LC 84 053

80
70

81
71

OVHD PROJ 82 1

FLETCHER 72 SAME 73 3631 74 801202 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 801104 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 801007 76 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800902 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800805 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800701 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800603 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800506 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800401 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800304 75 09.

9 700U 83 LC 84 053

70

71

FLETCHER 72 SAME 73 3631 74 800205 75 09.

9 700U 83 LC 84 053
31 SDPD 32 PRINTING SERVICES 33 J. IVY 34 HO

30
40
50
50
40
40
50
40
50
40
50
30
40

41
51
51

41

41
51

41
51

41
51

P1 42 733139 43 56933000000081248001 44
2233 52 790501 53 790930

2254 52 791001

P3 42 733139 43 56933000000081248001 44
T2 42 733139 43 56933000000081483801 44
6 52 790101

T3 42 733139 43 56933000000081483801 44
4 52 780301

T6 42 733139 43 56933000000081483801 44
20 52 790801
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00 76 16.30 77 2 78 BOF 79 70

30 76 16.30 77 2 78 BOF 79 70

30 76 16.30 77 2 78 BOF 79 70

09.00 76 16.00 77 12

00 76 12.00 77 10 78
00.76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78
00 76 12.00 77 10 78

E21

78 COMP

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

PRNTNG 7

33362.71 45 .00 46 33362.71

.00 45 .00 46 .00
120.00 46 120.00

200.00 46 200.00

800.00 46 800.00

31 FISD 32 FINANCIAL INFO SYSTEMS 33 S.A. FRASER 34 H3A1
41 P2 42 510131000000521002 43 56936000000081248001 44 304.00 45

.00 46



118

APPENDIX E. DATABASE B

304.00
50 51 32 52 760101
30 31 SPDO 32 SYSTEM PLANNING 33 MRS. E. BARNES 34 H8 F18
40 41 P2 42 7201306 43 56936000000081248001 44 126.00 46 .00
40 41 P2 42 72013060000072600940 43 56936000000081248001 44 133.00 46 133.0
0
50 51 14 52 790201
30 31 BSMO 32 ADMIN SYS & CONTROL-BRANCH SERVICES 33 J.W. MC MARTIN 34 H7J21
40 41 P2 42 58313200000021209800 43 56935000000081248001 44 342.00 46 342.0
o .
50 51 36 52 780201
30 31 HEPC 32 HEPCOE 33 0000 34 0000
40 41 00 42 56932000000081248001 43 56932000000081248001 44 480.00 46 480.00
60 51 1328 52 780101
30 31 DCAS 32 DESIGN&CONST-ADMIN SYS. 33 G. BOX 34 H14A4
40 41 P2 42 790138 43 56935000000081248001 44 674.00 45 .00 46 674.00
60 51 71 52 790607
30 31 BOF1 32 BLDG & OFF FAC 33 D.I. SILLARS 34 H2G3
40 41 P1 42 56913000000081210200 43 56932000000081248001 44 14330.00 45 .00
46 14330.00
60 51 994 52 780913
40 41 T2 42 56913000000081210300 43 56932000000081483801 44 40.00 46 40.00
60 51 2 52 771201
40 41 T3 42 56913000000081210300 43 56932000000081483801 44 600.00 46 600.0
(o]
60 b1 12 52 780901
40 41 T4 42 56913000000081210300 43 56932000000081483801 44 65.00 46 65.00
50 51 1 52 760601
40 41 P2 42 56913000000081210200 43 56932000000081248001 44 2156.00 45 .00
46 2156.00
50 51 227 52 790607790607
40 41 T6 42 56913000000081210300 43 56932000000081483801 44 400.00 46 400.0
0
60 51 10 52 790501
30 31 AMEU 32 AMEU 33 J.W. MC MARTIN 34 H7J21
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40 41 P2 42 57513100000026209800 43 56935000000081248001 44 85.00 45 .00 46
85.00

50 651 9 52 760801

30 31 DPDO 32 DATA PROCESSING 33 MRS.R.K. ESDON 34 M4D10

40 41 P2 42 54213010 43 56934000000081248001 44 893.00 45 .00 46 893.00

50 61 94 52 760101

30 31 STDS 32 STA T&D-SURVEY 33 G. BOX 34 H14A4

40 41 P1 42 78513090 43 56935000000081248001 44 .00 46 .00

50 51 48 52 780601 53 790930

40 41 T6 42 78513090 43 56935000000081483801 44 40.00 46 40.00

50 51 1 52 780601

30 31 CBLR 32 CABLE ROOM 33 F. RIMMER 34 CENTRAL REGION

40 41 P2 42 60303102310235608 43 56935000000081248001 44 180.00 45 .00 46

180.00

50 61 19 52 760101

30 31 TDOO 32 TREASURY DIV 33 D. PEPER 34 H2 AO1

40 41 P1 42 519131000000741001 43 56936000000081248001 44 .00 456 .00 46 .0

o

40 41 T2 42 519131000000741001 43 56936000000081483801 44 .00 46 .00

40 41 T3 42 519131000000741001 43 56936000000081483801 44 .00 46 .00

40 41 T6 42 519131000000741001 43 56936000000081483801 44 .00 46 .00

40 41 P1 42 51913100000054100100 43 56936000000081248001 44 20255.00 46 202

55.00

50 51 1405 52 790101

40 41 T2 42 51913100000064100100 43 56936000000081483801 44 20.00 46 20.00

50 51 1 52 790101

40 41 T3 42 51913100000054100100 43 56936000000081483801 44 950.00 46 950.0

0

50 51 19 52 790101

40 41 T6 42 51913100000054100100 43 56936000000081483801 44 120.00 46 120.00

60 b1 3 52 800101

30 31 FIRE 32 FIRE 33 D.I.I SILLARS 34 H2G3

40 41 T1 42 56913000000081210300 43 56932000000081483801 44 60.00 46 60.00

60 b1 6 52 770301

30 31 SLDO 32 SEC-EXECUTIVE 33 N. CATCHPOLE 34 H19E26

40 41 P1 42 5021311 43 56936000000081248001 44 1268.00 46 1268.00

50 51 88 52 780101

30 31 GPDE 32 GEN PROJ-DARLINGTON 33 G. BOX 34 H1i7B1

40 41 T6 42 78713 43 56935000000081483801 44 210.00 46 .00

40 41 T2 42 78713 43 56935000000081483801 44 45.00 46 .00

40 41 P1 42 78713 43 56935000000081248001 44 .00 45 .00 46 .00

50 51 67 52 781006 53 -1864.00

30 31 DDIS 32 DESIGN & DEVELOP-INST&CONTROL 33 G. BOX 34 H17Bi1

40 41 P2 42 77513 43 56935000000081248001 44 522.00 46 522.00

50 51 55 52 790101

30 31 VAGS 32 VISUAL & GRAPHIC SERVICES 33 D.I. SILLARS 34 H10A4

40 41 P1 42 56913000000081210204 43 56932000000081248001 44 2681.00 46 2681

.00

50 51 186 52 790101

40 41 T2 42 56913000000081210204 43 56932000000081483801 44 20.00 46 20.00

50 51 1 52 790101

40 41 T6 42 56913000000081210204 43 56932000000081483801 44 160.00 46 160.0

0

50 51 4 52 790101

30 31 PRDO 32 PUBLICRELATIONS 33 MISS. H. JANETAKES 34 H10D4

40 41 P2 42 52414000000013209005 43 56936000000081248001 44 .00 45 .00 46

.00
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50
40
o]

50
30
40
50
30
40
50
20
20
60
70

APPENDIX E. DATABASE B

61 42 62 790606 53 791231
41 P2 42 52413000000013209006 43 56936000000081248001 44 399.00 46 399.0

61 42 52 800101
31 DCDO 32 DISTRIBUTED COMPUTING DEPT. 33 MR. F. COGEN 34 M4D2

41 T6 42 52013040 43 56934000000081483801 44 40.00 46 40.00

51 1 52 791201

31 PTBO 32 PRODUCTION & TRANSMISSION BR. 33 MRS. S. RUDDERHAM 34 H4H18
41 P2 42 58843091 43 56935000000081248001 44 1235.00 46 1235.00
51 130 52 800101 :

21 GF

21 MEZZ 22 30256 23 643 24 5200 25 0 26 O 27 1411 28 O
61 AUD 62 143

71 HYD CLB 72 SUSIE 73 5662 74 800402 75 12.00 76 13.00 77 30 78 PRY&BIBL

E 79 700U 83 MEZZ 84 AUD
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