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ABSTRACT

This paper is concerned with the development, numerical implementation, and
testing of an algorithm for solving constrained nonlinear least squares problems. The
algorithm is an adaptation to the least squares case of an exact penalty method for solv-
ing nonlinearly constrained optimization problems due to Coleman and Conn. It also
draws upon the methods of Nocedal and Overton for handling quasi-Newton updates of
projected Hessians, upon the methods of Dennis, Gay, and Welsch for approaching the
structure of nonlinear least squares Hessians, and upon the work of Murray and Over-
ton for performing line searches. This method has been tested on a selection of prob-
lems listed in the collection of Schittkowski and Hock.
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1. Introduction

We survey thee exact penalty method due to Coleman and Conn [6-8] and consider its adaptation to
the task of solving finite dimensional, generally constrained, nonlinear, least squares problems. The adap-
tation also draws upon the work of Dennis, Gay, and Welsch [15] for looking at the structure of nonlinear
least squares Hessians, upon the work of Nocedal and Overton [30] for projected Hessian updating, and
upon the work of Murray and Overton [29] for performing line searches. The adaptation has been tested
on a selection of problems listed in the collection of Schittkowski and Hock [35]. This paper presents a
case study in the imnplementation of a special purpose, nonlinear programming algorithm drawing from
several sources in the current literature. We believe that it offers a number of contributions.

One contribution lies in the fact that attention has been given to details concerned with making the
Coleman-Conn method more “structured” from an algorithmic point of view. The presentation includes
inequality constraints, which were absent from the original papers because they were not essential to the
theory, but which must be included in a complete implementation. The structuring was done, moreover,
with consideration of the fact that some problems might be encountered for which the assumptions of the
theory would not hold. We have included some safeguards and heuristics to attempt to detect such situa-
tions, and we have introduced other modifications to the Coleman-Conn method following principles laid
out in [22] to account for computational issues arising from the use of finite precision arithmetic, all with
a view toward adding a measure of robustness to the resulting software.

A second contribution comes from the fact that, to our knowledge, no full, computer implementa-
tion of the Coleman-Conn method has yet been made and compared with implementations of other algo-
rithms for constrained optimization. The Coleman-Conn method is distinguished in a number of ways
from other current approaches to nonlinear optimization. Although it has a relation to methods based
upon the use of quadratic subproblems and an £, style of merit function; e.g. the well-known methods of
Han and Powell [25,32], it does not employ a quadratic programming substep to determine a descent
direction. In this paper we use our adaptation of Coleman-Conn to solve a collection of standard test
problems from [35], providing a comparison with, among others, a Han-Powell based program.

A third contribution concerns adapting the Coleman-Conn method to approaches due to Dennis,
Gay, and Welsch [15] for treating least squares problems and other approaches due to Nocedal and Over-
ton [30] for projecting quasi-Newton approximations to Hessian matrices. In particular to the Nocedal-
Overton approach, this paper provides, to our knowledge, the first numerical testing of the approach
within a major computational implementation. It also provides an extension of these projected Hessian
techniques to problems with least squares structure.

Section 2 gives a brief survey of some methods for solving unconstrained nonlinear least squares
problems, Section 3 surveys the exact penalty approach due to Coleman and Conn for solving nonlinear
programming problems. Section 4 concentrates on the details of a projected Hessian update designed for
the least squares form of the Hessian. Section 5 covers practical issues relating to the implementation of
Sections 3 and 4. Computational results in Section 6 suggest that the algorithm has the general behavior
reported for the methods [6-8,15].

2. Unconstrained Nonlinear Least Squares
Let
F((E) = [fl(w)) . )fl(x)]T )

where  has n components, £ > n, and the component functions f; are twice continuously differentiable.
The unconstrained nonlinear least squares problem is

minimize §(2) = $F(¢)7F(z) = ég [fs(@)? = 5 1F(=) I* . (2.1)

(] -] denotes the Euclidean norm of a vector.) Let G(z) be the matrix whose columns are the gradients
Vis(z)ford =1,...,¢
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G(z)= [VSiz), ...,V )] .
Then

Vé(z) = G(2)F(z) (2.2)
and

V%(z) = G(2)G(z)T + S(z) , (2:3)
where S(z) stands for the second order term:

£
S(z) = > fs(z)V?fs(z) .
&5=1
A second-order Taylor expansion of ¢ around z is

8(7) = #(a+) ~ TFE)F(z) + p"G@)F(z) + 1p7[G2)GE) + S(=)]p - (24)
For the unconstrained nonlinear least squares problem, Newton’s method, solves the equation

(G(2)G(z)" + S(2))py = —G(2)F(2)

for the step direction py in order to estimate a point that will minimize ¢.

If | F| tends to zero as x approaches a minimizer ac*, the second derivative term S(z) also tends to
zero. Neglecting the term S(z) altogether produces the Gauss-Newton method, in which the step direc-
tion py is approximated by pgy, the solution of the equations

(G(z)G(=x)")pen = —G(2)F(z) .
The step direction pgn can be interpreted as the solution of the linear least squares problem,

minimize |G(z)Tp + F(z)] .
3
The Gauss-Newton method works quite well if S(z ') is “sufficiently small” and G(z) has full rank; e.g.,
see Wedin [38-40], Boggs and Dennis [1], and Dennis [12]. Dennis’ condition in [12] for being able to
neglect S(z) is that for all « in some neighborhood of a " it is true that

I(G(z) — G DFE ) <ple -2

for a scalar p > O less than the smallest eigenvalue of G(z")G(z")7. A situation in which the above
would be true, for example, is the one in which the minimum eigenvalue of G(z)G(« )7 is greater than
IS(z) | for z in a neighborhood of @". A problem for which S(z) is negligible is a small residual prob-
lem.

When S(z) cannot be neglected, an alternative to the Gauss-Newton method is the Levenberg-
Marquardt method, [26,27], which computes T as x +pp,s, where pp,, is the solution of

(G(z)G(x)" + MD)pry = —G(z)F(z), (2.5)

with v a nonnegative scalar and D a nonnegative diagonal matrix (often taken to be the identity). This is
solved for trial values of 7 until ¢(z)<¢(z). Fletcher [19] gives heuristic rules for increasing or decreasing
~ in an implementation of the Levenberg-Marquardt method. Moré [28] expands Fletcher’s ideas, using a
diagonal matrix D whose diagonal entries are appropriately updated at each iteration to scale the vari-
ables. In Moré’s format (2.5) is solved as the least squares solution to the overdetermined linear system

G(z)T —F(z)

VAD P = 0 .
Moré’s work derives insights from viewing (2.5) as a formula for choosing prar=p(7) to minimize the
second-order expansion (2.4) under the trust-region restriction that
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1
ID*p(m) 1<A

for some bound A.

In [34] Salane explores a regularized version of (2.1),
1
minimize $(z,)) = 3 ( 1F(z)-XF() *+Xa |D?(z-b) |?) ,
where \ is a continuation parameter lying between 0 and 1, a is a positive weight, and D is a diagonal

scaling matrix.

Gill and Murray [21] account for the difference between pp, the Newton step direction, and pgy,
the Gauss-Newton step direction, by using the singular values decomposition of G(:c)T

G(z)T=TU|z VT
0

’

where U,V are orthogonal and ¥ is the diagonal matrix of the ordered singular values of G(m)T. This
decomposition is partitioned according to a separation between the singular values larger and smaller than
a selected tolerance

[vu,Us|[2, o][vr
0 X, \Z3
0o 0
The Gill-Murray method produces a step direction pgys that satisfies
por = —ViE['UTF(z)

and constitutes the component of the Gauss-Newton step direction, pgp, lying in the space spanned by
the columns of V,. (pga Wwill, in fact, be equal to pgy if all singular values of G(x)T are large, which
makes V, and ¥, vacuous.) If sufficient decrease of ¢ is not achieved using this step direction, pgys is
augmented to solve the system

(G(z)G(z)"+B)pey = —G(z)F(z) ,

where B is an approximation to S(z). Gill and Murray tested three possibilities for B. The first used
S(z) itself. The other two used (1) finite differences taken along the step directions defined by the
columns of V,, and (2) a quasi-Newton approximation.

Dennis, Gay, and Welsch [15] made further investigations of quasi-Newton updates to B =~ S(z). If
(2.4) is used to produce a step direction p, and if the actual step taken is

I=zx+ 8 ,
where

=I—=0wap

@

for a step length >0, then S will satisfy

S(7)s = éfa(f)vzfs(w")(f —2) 26)

¢
~ glfs(f)(gs(f?) — 95(z))
= GF - GF .

Let
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y=GF—GF = (G-G)F .
In order to approximate S(z), the standard quasi-Newton approach would start with a matrix B ~ S(=z)
and impose the relation

Bs=y (2.7)
to define an approximation B ~ S(Z).

The choice of y above is that given by Dennis, et. al. in [15]. There are other reasonable choices for
y summarized by Dennis in [14].

The most generally used quasi-Newton strategy employs the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) update, [2,18,24,36]. It starts with some symmetric matrix B ~ S(z) and produces B ~ S(z),
also symmetric, satisfying (2.7) above according to

Bs(Bs)” | wy”
sTBs yTs

Dennis and Moré¢ give a theoretical discussion of this updating formula in [13].

B=B -

In Dennis, et. al. [15] updating is carried out with a variant of the Davidon-Fletcher-Powell method,
[10,17], but BFGS generally has better properties in practice, at least when used for approximations to
the full Hessian; e.g., see Powell’s comparisons in [33].

Finally, in [11] Brown and Dennis suggested maintaining a quasi-Newton approximation B; to each
individual matrix V£ s(z) and representing S(z) by

S(z) ~ ‘Szl_]lf,s(:c)B

This approach has been exploited recently by Toint in [37] for solving sparse nonlinear least squares prob-
lems.

3. Constrained Nonlinear Least Squares

In this section we reformulate the exact penalty method for the nonlinear programming problem
due to Coleman and Conn [6-8] from a “structured” point of view. We include equality constraints,
which were omitted from these three cited works for the sake of clarity in presentation, as well as from
the paper by Pietrzykowski [31], that provided background for Coleman and Conn’s work.

.1. An Exact Penalty Function
The problem to be solved is

minimize ¢(z) (3.1.1)

such that ¢;(z) =0, i=1,...,
¢i(z) >0, J=k+1,...,k+m

x

The objective function ¢ is F(z)TF(z) as before, and the ¢’s are functions from R™ to R!, which are
assumed to be twice continuously differentiable.

As an approach to solving (3.1.1) for general ¢, Coleman and Conn considered the penalty function

K m
Wa,n) = né(z) + X3 lei(z)] — 3 min(0,ei(z)) , (3.1.2)
i=1 J=K+1

where the penalty parameter p is a positive number. Early mentions of this penalty function are to be
found in Zangwill [41], Fiacco and McCormack [16], and Pietrzykowski [31]. The penalty function is not
differentiable for any z at which one or more constraints are active. (Constramt ¢, is active at z if
c,.( )=0.) On the other hand the penalty function is ezact in the sense that, if z is an isolated minim-
izer for (3.1.1) and the gradients of the active constraints at z' are linearly independent, then there
exists a real number p *>0 such that z " is also an isolated local minimizer for Y(z,p) for each0 < p < u.

-5-
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(Other exact penalty approaches exist; e.g. see [20] for a broader discussion.)

Coleman and Conn propose an algorithm for minimizing ¥ for a fixed value of y. This minimization
algorithm for ¢ can be extended to an algorithm for solving (3.1.1) as follows:

{choose = and g >0};
feasible .= false;
optimal = true;
while ({z is large enough} and (not (feasible and optimal)) do
{reduce ££};
{minimize %(z,x) with respect to z};
if (optimal) then
{test feasibility}
endif
endwhile;
if ({¢ too small}) then
if (failure) then
{report failure}
elseif (not feasible) then
{report infeasible}
else
{report success}
endif;

It is expected that the “minimize” step of the above will set the optimal flag to true if it succeeds in
finding a minimizer and to false if it fails. The “test feasibility” step of the algorithm is expected to set
the logical variable feasible appropriately. The flag failure will be set true (and optimal will be set
false) when the “minimize” step detects one or more of a number of failure conditions.

Success consists of ending the while loop with p large enough, and both feasible and optimal equal
to true. Notice that the algorithm will not admit defeat unless the “minimize” step reports failure for a
sequence of values of # tending to zero.

The case in which problem (3.1.1) is infeasible is also assessed by detecting infeasibility for a
sequence of values of g tending to zero. On a computer, using finite precision arithmetic, an infinite
sequence is not required to arrive at a conclusion of infeasibility. It is enough to reduce g as indicated
and consider it as having “converged” to zero when the term p¢(z) becomes negligible in the computer’s
arithmetic relative to the summation terms in (3.1.2). Situations do exist in which this approach would
not correctly resolve infeasibility, even for exact arithmetic and for an infinite sequence of values of p.
They constitute difficult situations, in general, for nonlinear programming algorithms; see Coleman and
Conn [5].

Situations of unboundedness in the general nonlinear programming problem; that is, sequences of
feasible z for which ¢(z)——o0, can often be detected in practical terms by the same approach as just
described for infeasibility. However, Coleman and Conn rule out unbounded problems in their assump-
tions, and since we are restricting ourselves to a least squares objective function, unboundedness is not an
issue.

The minimization of ¢ is carried out with the aid of an e-approximation:
vdz,p) = po(z) + X sen(c(z)ealz) — 3 ciz) .
iEVE(z,€) JEVI(z,¢€)
The index sets AC(z,€), VE(z,¢), and VI(z,e) are defined in terms of an activity tolerance ¢>0 as fol-
lows:

(1)  the set of active constraint indices
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AC(z,€) = {rtle,(z)|<e and 1<r<k+m} ,
(2) the set of violated equality constraint indices
VE(z,) = {it|c;(z)[>€¢ and 1<i<k}
(3) the set of violated inequality constraint indices
VI(z,e) = {jicj(z)<e and k+1<i<k+m} .
Y(x,p) is clearly equal in value to 9(x,p) when ¢=0. However, since ¥(z,u) excludes active constraints
for any €0, it can be differentiated at any z, unlike ¢(z,u).
The minimization of ¥ is carried out using several alternative step directions derived from %,:
(i)  the global horizontal step direction;
(i) the dropping step direction;
(iii) the Newton step direction;
and the Newton step direction is composed of two components:
(iii") the asymptotic horizontal step direction;
(iii") the vertical step direction.

For suitably chosen €, and under certain conditions (most notably: two continuous derivatives exist as
assumed above, the points produced by the algorithm lie in a compact set, the gradients of all active con-
straints are linearly independent at each point x encountered, and line search conditions, conditions of
positive definiteness, and second order sufficiency conditions hold), the method of Coleman and Conn will
converge globally to an isolated minimizer of ¢, and the ultimate rate of convergence will be two-step
superlinear.

The following vectors and matrices, defined in terms of the index sets above, play a role in the algo-
rithm:

the active constraint matriz

A(x) — [ e VC,(:D) e ]rac(z,e) ,

the violated equality constraint matriz

Be)= [ Val®) | g

the violated inequality constraint matrix
)= [ Vo) |
the vector of signs
o(z)=[ - - sgnlei(2)) - LievE@ >
and the vector of 1’s
e=[1---1---1] .
The gradient of v, is
Vidz,p) = #Vé(z) + E(z)o(z) — L(z)e
= uG(z)F(z) + E(z)o(z) — I(z)e
and the Hessian of 9, is

Vi la,p) = BV(z) + Y sen(ei(@))Viei(z) — X Vieyx)
i€VE(z,¢€) JEVI(z,e)

jeVI(z,e)
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— W(GE)GE+5() + B sgalci(@)Vi(s) — ¥ Vey(a)
{€VE(z,€) iVI(z )

We will assume that the number of elements in AC(z,¢) lies strictly between O and n. The extreme
cases 0 and n require some separate attention in implementing the Coleman-Conn algorithm. The details
are important, but they complicate the presentation. The case of degeneracy; that is, linear dependence
among the gradients of the active constraints, is being ruled out of the presentation. For a discussion of
some techniques useful in handling this case, see Busovaca [3].

A necessary condition for ¢ to be an isolated local minimizer for ¢ under the assumptions made
above on ¢ and the c¢’s is that there exist multipliers, X, for reAC(z,e),

(a) such that

Vio(z,p) = GA%% O)X,Vcr(w) = A(z)\ (3.1.3)

(b)  and such that
—1<\, <1, reAC(z,0)N{1, ...,x} (3.1.4)
0< N\, <1, reAC(z,0)N{k+1, ...,k+m} . (3.1.5)

A point, , for which (a) above is satisfied is a stationary point of . A minimizer, then, is a stationary
point that satisfies (b). (Note that stationarity and optimality are determined using 1, which is ¥, with
€=0.)

3.2. The Multiplier Estimates

The estimates of the numbers A\, decide the steps that are to be used. One of the major premises of
the algorithm is that the multipliers are only worth determining in the neighborhoods of stationary points.
In such neighborhoods the numbers X\, are taken to be the least squares solution to

A(z)\ = Vilz,p) . (3.2.6)
In practice the QR decomposition of A(z) is used to solve the least squares problem:
A(z)=Q|R =[YZ] R
0 0

If ¢ is the number of columns in A(z), Z is an n X (n—t) matrix satisfying A(z)TZ = 0 and Z7Z is the
identity of order n —t.

Nearness to a stationary point is governed by a stationarity tolerance 7>0. The X\’s are computed
only if the projected gradient

ZZ"Vy{z,k)

is deemed “small enough” according to this tolerance.

3.3. The Global Horizontal Step Direction
The global horizontal step direction, hg, is the solution to the problem

minihmize Viz,u)Th + %hTV‘%C(CB, p)h ‘ (3.3.7)
such that Ve, (z)Th =0 for reAC(z,e) .

Using the QR decomposition of A(z), if we set hg=Zw for some weR", then w is to be found by solving
(ZT[VZ{/JC(:L',[J)]Z)U) = _Zvae(x;/“) . (3,3,8)

The step direction hg is a descent direction for ¢ at = provided that (ZT[V%{z,1)] Z) is positive defin-
ite and ZTVy (z,p) # 0.
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The columns of the matrix Z are a basis for the null space of A(z); consequently, h is also referred
to in the literature as a null space step direction. (The “horizontal” terminology, used by Coleman and
Conn, derives from the geometric view that the null space of A(z) parallels the plane tangent at the point
z to the active constraint manifold. Movement along the direction hg corresponds to movement along
the manifold.)

Exact second derivatives may be replaced by a quasi-Newton approximation
H~ Vi (z,u) ,

but in [6-8] it is stressed that it is better to use Hy = ZTHZ, a positive definite approximation to
ZT[V*)(z,u)]Z that is updated according to a quasi-Newton formula. Thus, equation (3.3.8) is actually
solved as

Hyw = —Z'V¢(z,pn) . (3.3.9)

This avoids some difficulties with the algorithm in the event that ZT[V%*p(z,u)]Z is positive definite in a
neighborhood of a stationary point whereas VZ)(z,u) is indefinite there. The alternative, updating H
alone as a quasi-Newton approximation to Vzwe(x, ) and then explicitly forming ZTHZ whenever needed,
is theoretically less robust. Various suggestions have been made regarding projected Hessian updates, see
[4,8,30]. We will be exploring the material in [30] here.

3.4. The Asymptotic Horizontal Step Direction

The asymptotic horizontal step direction hy is the component of the Newton step direction, k4 + v,
that lies in the null space of A(:v)T. Newton steps are only attempted in the neighborhood of stationary
points that are expected to be minimizers. The step direction h, is the solution to the problem

minimize Vi .u)Th + $hT[VH(z.n) = % X, Vi (z)]h (3.4.10)
h r€AC(z,€)
such that Ve, (2)Th =0 for reAC(z,e) .

The solution is computed as in the global case above, except that H; should now be a positive definite
approximation to

ZT(V%(z.p) — D N\ Vi, (2)]Z .
r €AC(z,€)

Since h,=Zw for some vector w, this step direction is also a null space direction.

3.5. The Vertical Step Direction

At z+h,, the constraints of AC(z,e) may no longer be within € of zero. Using the vertical step
direction, v, the constraints of AC(z,e) are brought more closely to a value of zero. The vertical step
derives from taking a single Newton step toward the value of v that solves the nonlinear equation system

cAC(a:,e)(x+hA+'U) =0,

where cac(s,q is the vector of constraint functions, ordered in accord with the columns of A(z). This
means that the vertical step direction, v, is the solution to the system

Ale)'v = —cactegfa+ha) -

The computation of v uses the QR decomposition of A(z) as follows:
solve RTu = —CAC(,g(z+ha) foru
set v=7Yu

The columns of the matrix Y are a basis for the range space of A(z); consequently, in the literature
v is also referred to as a range space step direction. (The “vertical” terminology used by Coleman and
Conn derives from the geometric view that, since the range space of A(z) is orthogonal to the plane
tangent at the point # to the active constraint manifold, movement along the direction v corresponds to
movement down to the manifold.)
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3.6. The Dropping Step Direction

The direction that forces the constraint away from zero, locally and to first order, whose gradient
appears as the r*® column in the matrix A(z) is the step direction d that satisfies the system of equations

A(w)Td =0,¢ , ’ (3611)
where e, is the r** unit vector, and
1 N >41

or = { A, <0 and corresponds to an inequality constraint
+1 if

A, <-1 and corresponds to an equality constraint .

3.7. Strategy for Choosing Step Directions
The steps described above are used, broadly speaking, as follows:
(1) When Z ZTV(z,p) is not “small enough” as indicated by the stationarity tolerance 7, then
Z +—1x + ahg ,
where a line search is used to determine o:>0.

(2) When ZZTVy(z,p) is “small enough” as indicated by the stationarity tolerance 7, the multi-
pliers X\, r€AC(z,¢), are approximated using the least squares solution to (3.2.6).

(a) If (3.1.4) and (3.1.5) are not satisfied, an index r eAC(z,e) is chosen for which one of
(3.1.4) or (3.1.5) is violated, and

T +—z+ad,
where a line search is used to determine ao>0.

(b) If (3.1.4) and (3.1.5) are satisfied, then
T+—zc+hy+v .

Under the standing assumptions on the f’s and ¢’s, the steps produced from the e-approximation to the
penalty function will produce descent for the penalty function itself, if ¢ and 7 are correctly set. Since
there is no a priori way of knowing how to set these tolerances, the algorithm must include some heuris-
tics for adjusting ¢ and 7 whenever a step produced from %, does not produce adequate descent for 4.

The failure of these heuristics must, in turn, be detected and lead to the orderly cessation of the algo-
rithm.

As a final point of terminology, we can call
Vi, u)
the “global Hessian” and

V2¢€(w,p) - E >‘r V2C,.($)
r EAC(z,¢)

the “local Hessian.” Note that the essence of the ‘“global” designation is that the \’s are trivially
estimated as zero. Thus, in summary, we wish to provide a quasi-Newton approximation H to

77 [4G(2)G(a) + uS(a) + % sen(ei(s)Viei(a)
i EVE(z,¢)

- Y V(=)

JEVI(z ¢)

- 2 >;r v2cr(x) Z ,
r €EAC(z ,¢)

which we will do by setting

- 10 -
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H; = pZ7G(2)G(2)TZ + By

and providing a quasi-Newton approximation

B, ~ ZTS(z \)Z

where

Sz ) = uS(z) + > sgn(ci(z))Vie(z)

i EVE(z,¢)

- Y V(=)

JEVI(z,€)

- E A Vzc,. (m)

reAC(z,¢)

and the values of the X\, will be taken to be zero in the “global’ case.

The above considerations lead to a minimization algorithm for ¥(z ,u) as follows:

{choose ¢>0 and 7 >0};

optimal ;=

false;

failure .= false;

first = true;

while ( not optimal and not failure) do
adequate = true;
global := true;
{determine AC(z ), VE(z ), and VI(z,e)};
{determine A(z), Q=[Y Z], and R correspondingly};
if first then

first .= false;
{choose initial Bz};

endif;
if ({ZZT Vi (x,p), tested against 7, is not small enough}) then

else

{determine hg};
{determine & from a line search on ¥(z ,u)};
if ({sufficient decrease is indicated}) then
z =2 + ahg;
{update B}
else
adequate .= false
endif

{determine the \’s};
{check whether X\, exists violating (3.1.4) or (3.1.5)};
if ({\, exists}) then
{determine d};
{determine & from line search on ¥(z,u)};
if ({sufficient decrease is indicated}) then
T =1z + ad;
{update B}
else
adequate .= false
endif
else
global .= false;
{determine h,};
{determine v to solve A(z)Tv=—c AC(z,g(T+ha)};

-11 -
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pi="hy +v;
{check sufficient decrease on ¥(z,u)};
if ({sufficient decrease is indicated}) then
T ==z + p;
{update Bg};
{test optimality}
else
adequate ;= false
endif
endif
endif;
if (not adequate) then
if (global) then
if (AC(z,¢) # AC(z,0)) then
{reduce € to change AC(z )}
endif
else
{reduce 7 so that ZZTVy(z,u) becomes large tested against 7}
endif;
if ( (global and AC(z,€) = AC(z,0))
or {e too small}
or {7 too small} ) then
failure := true
endif
endif
endwhile;

Of course, the “test optimality” step is expected to set the flag optimal to true when appropriate.

This differs from the flowchart in [6] in certain details, notably having to do with the tests on
whether € or 7 become too small and on whether sufficient decrease is attained using the step directions
hg and d. Such evidences of failure are detected and result in setting the failure flag to true so that the
algorithm “dies gracefully” when applied to a problem not meeting the assumptions made in [6,7].

The pseudo-code above is still not complete. A full implementation must take account of the special
cases for which AC(z,€) contains 0, or n, or more than n elements. The former two cases require a
number of if clauses that, for example, properly interpret ZZTque(a:, ) in the case that Z is vacuous, or
suppress the vertical step in case AC(z,¢) is empty, or suppress the horizontal step in case AC(z,) hasn
elements. The third case requires a degeneracy resolution process that we have provided in our computer
implementation by introducing perturbations when required and removing them after resolution is
obtained. These details greatly reduce the readability of the pseudo-code.

4. Accommodating the Projected Least Squares Structure

In [30] Nocedal and Overton have discussed an approach to the quasi-Newton updating of projected
Hessian approximations for general nonlinear programming. In this section we will adapt their approach
to a consideration of the matrix S(z,\;) where we interpret the multipliers \; to be zero or estimated
according to (3.2.6), whichever is appropriate at the k™ stage of the algorithm.

Consider the asymptotic case. We assume that the final active set has been identified, so that, for
all further k,

AC(z;,€) = AC(z,0), VE(zy,€) = VE(2,0), VI(zp,€) = VI(2,0) .
Suppose
By ~ ZiS(zi, ) Zg

and we wish to update Bz to Bz ;4 approximating
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T
Bzi+1 = Ziy1S(Tpq1,Meq1) L -

To derive a secant relationship for Bz, we resolve the difference in 2 along the subspaces defined by Z;
and Y; ;. We have '

Z—-z=Ypy+ Zpz ,

where, in order to simplify the notation, the presence of a bar above a quantity indicates that it is taken
at step k+1, and the absence of a bar indicates step k If the constraints are linear, then py = 0 for
k>0. In the nonlinear case, asymptotically, we expect Y py to become negligible. This follows the obser-
vations that the approach to an optimum is tangential to the manifold of active constraints, and that the
tangent to this manifold corresponding to z approaches the tangent to the manifold corresponding to = as
k becomes large; i.e., the manifold is suitably approximated by linear functions in the limit.

Let

V)

=Z"(z—2)=ps

so that
Then

=ZT8(z \)(T—z) — ZTS(z,\)Ypy .
If the second term is negligible, then we are left with
ZTS8(z,\)Zs ~ ZTS(z,\) (7T —x)
_ /4
=z [u Y [5(@)V2f6(Z)
§=1

+ ) sen(ci(®)) Ve (%)
i EVE(z,0)

— Y Vi)

JEVI(z,0)

- ) K,vzc,(a)](f_m)

r €VE(z,0)
~ZT [p(a-c)ﬁ + (E-E)7 — (I-1)e — (X—A)X]
Since ZT A = 0, this can be reformulated as
ZT8(z,\)Zs
=2Z7 [u(‘(i—c;,)ﬁwr (E-E)7 — (I-I)e + AK]
Adding and subtracting A X yields
ZTS(z,\)Zs
=ZF [u(a—G)f+ (E-E)7 — (I-I)e + A(A=X) + Ax]
~Z7 [u(a—G)ﬁ+ (E-E)7 — (I-T)e + Ax] .

The final formula is consistent with formula (e), page 832, of [30], suitably adapted to the exact penalty
function and the least squares structure.

Summarizing, we propose using BFGS to update Bz to §Z using the secant equation

- 13-
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Ezs =Y,
where
s =2 (—zx)
and
y=27 [/J(E—G)F+ (E-E)7 — (I-1)e + A)\] ,
and where the full projected Hessian required by the Coleman and Conn algorithm is taken to be
H;=pZ"GG'Z + B; .
It is worth mentioning that, in the unconstrained case, y reduces to the right hand side of the
secant equation used in [15]._ Consistent with Nocedal and Overton, the BFGS update used to obtain B,

is to be carried out only if Ypy has become negligible (i.e. small relative to |s |). This means that the
update is omitted when

n
HQHZWHSI

for fixed constants 7 and v as suggested in [30], where
g=Y(z-=z) .
Since B is symmetric, only a triangular portion needs to be stored.

In the global case; i.e. in the case where the set of active constraints has not stabilized, we continue
to apply the update so long as the number of active constraints remains constant. When the number of
active constraints is reduced from the k™ to the k+1° step, the “update B;” step of the algorithm resets
B, to the identity of the appropriate dimensions. When the number of active constraints is increased
from the k®* to the k+1°* step, the “update B;” step of the algorithm reduces By by deleting an
appropriate number of columns from the stored triangular portion of By. Finally, the initial matrix By is
taken to be the identity.

The resetting and initializing steps just described are quite naive. While they usually worked well
in the tests, it was sometimes advantageous to initialize and reset using the zero matrix instead of the
identity. There is room for improvement in the management of Bz for global steps.

5. Computational Considerations for Robustness

In this section we survey the measures taken to implement the foregoing in a robust fashion. Some
of what is described in this section is a simple application of the suggestions laid down by Gill, Murray,
and Wright in Chapter 8 of [22], the rest of what is described involves computational issues that were left
untreated in [6,7].

The projected gradient, ZZTV%(fb‘ ,i), must be tested to determine nearness to stationarity, and it
must also be sufficiently small in order for the minimization to be terminated. Since the columns of Z are
orthonormal, it is sufficient to test |ZT Ve (z,u)| for smallness. Nearness to stationarity is to be deter-
mined relative to the tolerance, 7, and acceptability for termination is determined relative to a much
smaller tolerance, #, which must be defined by the user. The test for stationarity takes the form of a
relative magnitude test

12799z 1) | < 7 reference, { | Ve ) I} (5.1)

where a reference value for | V¢ ,p) | is used on the right hand side of the inequality. Coleman and
Conn describe their algorithm throughout using the test in which

reference, { | Vd(z,p) I} = [ Vodz,u)l .

There are many alternatives to this reference value, depending upon the extent to which the implementor
wishes to account for orders of magnitude of difference in the values of the norm encountered during the
course of the minimization. For any scalar value val we are using
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reference, {val} = max(1,val) .

This avoids underflow, or a too stringent test, when val becomes close to zero. The tolerance 6, of
course, replaces 7 in (5.1) when the tests for convergence are being made.

By the same token, activity is determined by
le.(z) | < € referencey{c, ()}

and the violation of an equality constraint is determined by the reverse of this inequality. If ¢, defines an
inequality constraint, it is regarded as violated if

¢, (z) < —e referencey{c,(x)} .

We are using

1F@) 1+ S m e (o)]

K+m+1

referencey{c,(x)} = reference;

which served us as a general purpose, average function value. At more cost in space, a separate reference
value for each of the constraint functions would have been more robust for problems in which the con-
straints have significantly different scales.

Tests for feasibility are carried out exactly as for activity, except that a much smaller, user defined
tolerance, 7, is used in place of e.

The values of 107 and 1072 chosen initially for € and 7, respectively, have served well. The initial
value of p=1 is usually adequate, though other values are sometimes advantageous to use. Changes to u
are naive. It is reduced through division by 8 each time a minimizing = for ¥(z,x) is found that is not
feasible for (3.1.1). A more sophisticated management of u would be welcome.

We have been using 10~ for 4 and 107 for 0 for all of the problems reported on below.

The value of A\, must be tested to determine whether it is inside or outside of the interval [—1,41]
or of the interval [0,41], depending upon whether 1<r <k or k+1<r<k+m, respectively. It is advis-
able to recognize three cases, in fact, whether X, is strictly within its interval, strictly outside, or probably
on the boundary. The last case represents a critical situation in which it is impossible to be certain about
stationarity vs. optimality without gathering higher order information about the objective function and
the constraints. To distinguish the cases we have asked, for example, whether

A< -1-0 ,
or
AN>-1+10
or
—1—-0<X\<~-1+0 ,
and similarly for the other critical values, 0 and +1.
The value of g is regarded as too small when
p | F(z) | < macheps referencey{c,(z)} ,
where macheps is the “machine epsilon”. We regard € to be too small when
€<,
and 7 is regarded to be too small when

T <46
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The difference in penalty function values, ¢(z,x)—%¢(z,u), is to be tested to determine whether suf-
ficient decrease has been obtained. Ideally, a separate test should be applied for each of the step direc-
tions hg, d, and h4 +v. From the theory developed by Coleman and Conn we choose the condition for
sufficient decrease on the Newton step to be

Wo+ha+v,n) — Yo ,u) < B reference (127V4(z w) 1B+ 8 le(a)]} -
r €AC(z,€)

The tolerance 8 was taken to be 1075,

Sufficient decrease for the other two steps is demanded by setting the parameter eta to 0.9 in the
line search of [29], which represents a stringent requirement for function decrease. If the line search
reports failure to achieve this requirement, this is taken as insufficient decrease. Relying on the line
search to report problems proved to be a significant departure from the algorithm charted in [6,7], since
that algorithm assumes that sufficient decrease will be obtained when the step hy is used, and it assumes
that sufficient decrease is predictable when the step d is used.

In the event that degeneracy is detected, we have simply added a random perturbation, of the order
of magnitude of € |c.(z)| to c,(z), to resolve the situation. We remove this perturbation as soon as
[z —= | becomes larger than Vmacheps |z |. This was easy to implement for the tests, but the more
sophisticated techniques given in [3] should be kept in mind.

There has been recent discussion in the literature about the continuity of the QR factors of the
matrix of active constraint functions in algorithms such as the one being considered here; e. g., see
[4,9,23]. The general result has been that the matrices Y(z) and Z(z) derived from

Alz) = [Y(=) 2(2)] [R(x)
0

are not necessarily continuous in z unless special care is taken in the process that computes the factoriza-
tion. We have taken no special care. The algorithm appears not to suffer as a result of this neglect, even
though the convergence theory for the algorithm assumes the continuity of Z(z). This is consistent with
evidence that others; e. g. Coleman, have gathered to the effect that the continuity of Z(z) is more of a
theoretical concern than a practical one.

The numerical positive definiteness of the matrix H; is enforced by using the modified Cholesky
factorization described on page 111 of [22] during the process of solving (3.3.9).

The requirements for optimality are that, for reasonable choices of reference values,

1Z79 %z 1) | < 0 reference,{ | Vo(z 1) |}
—140 <X, < +1-90 for all reAC(z,€) and 1<r<k ,
6 <\, <+1—0 for all reAC(z ) and k+1<r<k+m ,

|9@ 1) — Y@, 1) | < 0 reference,{ |9 ,u) [} ,
|z — z | <~ reference,{ [Z [} ,

In this regard, v is being used in the spirit of 7 and 6 is being used in the spirit of \/7  in the notation
of Chapter 8 of [22], and we are avoiding, to a certain extent, the assumptions made in that reference
that the problem might be well scaled. One might also be prepared to accept as a case of optimal termi-
nation the event that one or more of the above fail to be satisfied, but notice should be given to the user
whenever this happens.

The results presented in [6,7]; i.e., that ¥(z,ux) can be globally minimized and that a rapid asymp-
totic rate of convergence is achieved, depend upon accurately predicting the behavior of ¥(z,u) using
¥z ,u#). This, in turn, depends upon having reasonable values of € and 7. Since there is no a prior: way
in which the values of 7 and € can be known, some positive values are chosen initially, and the algorithm
is adjusted to reduce these values whenever the value of the true penalty function at £ does not show suf-
ficient decrease over its value at z for any of the steps (1), (2a), or (2b) given in Section 3.7.
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Indications that ¥z ,x#) may not be an adequate predictor of the behavior of ¥(« ,ux) are provided
at each of the steps described in Section 3.7 whenever an appropriate measure of sufficient decrease in
the true penalty function is not achieved. Lack of sufficient decrease in steps (2a) and (2b) were covered
by Coleman and Conn, but their assumptions on the objective and constraint functions removed the case
of insufficient decrease in step (1). Through the use of a careful line search algorithm, however, sufficient
decrease in step (1) can also be monitored, and revisions of tolerances can be made if it is not attained.
We have taken the view that insufficient decrease in 9(z,u) on a Newton step is an indication that prox-
imity to a stationary point is being misjudged, and reduce the value of g in response. We wait until
insufficient decrease in ¥(z,u) is encountered on hg or d to reduce the value of €. Cases in which
attempts are made to reduce € even though AC(z,) = AC(z,0); i.e., ¥(z,u) = ¥z ,u) are signaled as
failure. These cases can arise, for example, when insufficient decrease on a line search is detected at a
point with no activities.

8. Computational Results
Thirty CNLLS problems were taken from Hock and Schittkowski [35]:

1,2, 6,13, 14, 15, 16, 17, 18, 20,
22, 23, 26, 27, 28, 30, 31, 32, 42,
46, 48, 49, 50, 51, 52, 53, 60, 65,
77, 79.

These were chosen because they were least squares problems or could be conveniently cast in that form.
The number of variables in these problems varies from 1 to 5, and the number of constraints varies from
1 to 13. The algorithm has successfully solved all of them.- The convergence on all problems clearly
showed a superlinear rate.

The algorithm was coded in a portable subset of FORTRAN IV and run in double precision arith-
metic on the f77 compiler of the 4.2BSD version of UNIX on a VAX 11/750 at York University. Linear
algebra services were provided by the LINPACK version of the Basic Linear Algebra Subroutines (BLAS)
augmented with a small number of matrix factorization routines provided by Gill, Murray, Wright, and
Saunders. The line searches were carried out by the algorithm due to Murry and Overton [29] using a
code provided by Michael Overton.

The following table presents the results. The column headed ‘“Problem Number’ uses the number-
ing as given in [35]. The function value obtained by our algorithm is found in the column headed “Func-
tion Value” for comparison with those listed. It should be noted that our objective functions
corresponded to those reported in [35] multiplied by % This was simply a matter of convenience for us in

arranging the test problems in least squares format. The number given in the “Number of Iterations”
column counts the number of steps through the while loop of the minimization for (z,s). The
“Number of Function Evaluations” column counts the number of times the values of fs(z), ¢;(x), and
¢c;(z) were collectively computed. Each execution of the while loop requires one evaluation of each f and
¢, and many executions of the line search will require one or more additional evaluations of the f’s and
¢’s collectively. The spread between the number of iterations and the number of function evaluations
provides an impression of how much work was required by the line search. The numbers listed in the
column headed “Hock and Schittkowski” give the number of function evaluations required by the best
method to attain a function value at least as good as the one we attained. We believe that our method of
counting function evaluations is consistent with Hock and Schittkowski’s, so that this column serves as a
basis for comparison.
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Problem Function Number Number of Hock
Number Value of Function and
Iterations | Evaluations | Schittkowski

1 | 7.307639d-5 13 22 24
2 | 2.470615d+0 5 7 18
6() | 1.004591d-22 8 12 10
13® | 4.921779d-1 9 14 45
14 | 6.967324d-1 5 8 6
150) | 1.532500d+2 3 3 5
16 | 1.256487d-1 11 41 89
17 | 5.000000d-1 16 23 12
18 | 2.500000d+0 25 61 )
20 | 2.009937d+1 32 44 20
22 | 5.000000d-1 6 9 9
23 | 1.000000d+1 5 7 7
26 | 6.939574d-9 24 48 19
27 | 2.000002d-2 14 24 25
28 | 9.629650d-35 2 2 5
30 | 5.000000d-1 2 2 14
31 | 3.000000d+0 15 22 10
32 | 5.000000d-1 8 10 3
42 | 6.055556d+0 3 4 10
46 | 6.336040d—7 18 33 14
48 | 1.232600d-32 2 2 7
49 | 3.662794d-6 11 17 9
50 | 9.937394d-10 8 9 18
51 | 2.311116d-23 2 2 5
52 | 2.663324d+0 7 8 )
53 | 2.046512d+0 8 9 8
60() | 1.628410d-2 14 20 9
65 | 4.767644d-1 11 22 —
770 | 1.207531d-1 28 55 16
79 | 3.938841d-2 17 33 10

There is no entry in the last column for problem 65, which serves to indicate that our program reached a
minimum value significantly lower than that of any of the methods reported on in [35]. In the first
column of the table a superscritp (1) indicates that p was set to 100 initially; all other problems were
started with u set to 1 initially. The two problems in question, 6 and 60, had constraint functions with
values that dominated the penalty function, forcing the the minimization process to take an unusually
long time in attempting to maintain the constraints within feasibility. The larger value of y compensated
for the imbalance in scale between the objective function and the constraints. The superscript ? indi-
cates that pu was set initially to 0.001. In the problems for which this was done, 13 and 16, the imbalance
of scale was far on the side of the objective function, causing the minimization to waste time registering a
sequence of infeasible stationary points for a sequence of decreasing values for p. The final superscript @)
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points out the problems for which setting Bz to zero rather than to the identity, initially and for each
reduction in the number of active constraints, had a marked effect on the time to solve the problem.
When B was initialized and reset using the identity, for example, the results for problem 77 were

Problem Function Number Number of Hock
Number Value of Function and
Iterations | Evaluations | Schittkowski
77 1.207531d-1 25 85 16

As already mentioned, the management of B; during the global steps is quite simplistic. The manage-
ment of the penalty parameter u is also quite naive. Improvement could be made in both areas. Despite
this, the method we have described shows itself very favorably in comparison with those tested by Hock
and Schittkowski. It did as well or significantly better than the best of the methods they tested on nearly
two thirds of the test problems.
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