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ABSTRACTS

The concept of grid spatial stability is introduced and used to judge the conver-
gence of the finite difference schemes for convection - diffusion problems. The higher
(2nd or 3rd) order upwind schemes are found not convergent at high Reynolds

numbers. A relaxation of the scheme leads to a time dependent problem.

An adaptive third order scheme is then suggested and demonstrated to be com-
parable to the fourth order upwind compact scheme. In the numerical experiments
with several model Burgers Equations this scheme produces satisfactory accuracy with

a modest number of grid points, particularly when the Reynolds number is high.



1. Introduction

In the finite difference approach for the solution of diffusion - convection equa-
tions in fluid mechanics it is attractive to have a "universal" scheme which is accurate
enough (say, free of numerical diffusion) to give a correct flow picture and yet able to
handle a large range of Reynolds numbers (say, for Reynolds numbers up to 10° or -
higher) without introducing too many grid points. In addition it is desirable if the

scheme can be easily programmed.

In searching for such a "universal" scheme the first problem one is encountered
with is the limitation of the grid Reynolds number Rg =Reuh, where Re is the Rey-
nolds number, u and h the velocity and grid size respectively. Such a limitation is due
entirely to the numerical schemes and the solution procedure. If it is violated non-
physical oscillations (wiggles) will occur in the numerical solutions (see [1] and [2]). In
an unsteady problem the non-physical oscillations receive an explanation of temporal
instability [2], which can be described by the standard stability analysis. In a steady
state problem, there are various explanations. For example, Roache [1] analyzes the
generating mechanism of the non-physical wiggles; Ciment, Leventhal and Weinberg [4]
conduct a standard linear spatial stability analysis to their operator compact implicit
scheme; by studying the error growth in various finite difference schemes, Leonard
[6-6] points out that the non-physical wiggles in a numerical solution are directly analo-
gous to the oscillatory nature of the marginal stability in the dynamic system. He also
introduces the concept of "feedback sensitivity", which sheds some light on the nature
of the problem. However,the "feedback sensitivity" is still a qualitative concept. For
example, it does not describe exactly why the non-physical oscillations occur when

Rg>2 and standard central difference scheme is used for the convective term.

In Section 2 of the present paper we attempt to give a systematic analysis, which
is termed Grid Spatial Stability (GSS), to the cause of wiggles in the numerical solu-
tions for a steady state problem; and then we consider several examples and show that

in order to overcome the grid spatial instability a natural and appropriate way is to



convert the steady state problem to a pseudo-unsteady one.

The second problem one confronts in searching for a "universal" scheme is the
problem of accuracy. As is well-known, for example, the first -order upwind scheme for
the convective term is once announced a scheme that circumvents the oscillatory
phenomena in the numerical solution. However, due to its low order of accufacy, there
is a strong inherent artificial diffusion which distorts the flow picture [14] and makes
the scheme unacceptable when the grid Reynolds number is high. Later several
schemes (the upwind corrected schemes) were presented, such as Dennis and

Chang[15], Kholsa and Rubin[10], to improve the problem with the artificial diffusion.
We postulate some major requirements for the proposed "universal" scheme:

(i) There is no or weak limitation to the Reynolds number, the scheme should pro-

duce stable wiggle-free solution in any case.

(ii) In order to be consistent with the central differencing diffusion term the con-
vective term in the scheme should be of at least 2nd or 3rd order accuracy, since the

error for the diffusion term is:
0(h?)/Re=uh /RgO(h?)=0(h®)

(iii) When a boundary layer is confronted, there is no overshoot or undershoot and

an accurate numerical outer solution may be achieved.

(iv) The scheme is compact enough and there is a tight coupling between the grid

points used for the convection and diffusion terms.

As a matter of fact research in this topic has been carried out via different
methods. For example, in [4] an operator compact implicit (O.C.I.) is presented and
later modified to an upwind compact scheme (see Christie[8]). Leonard [5-6] presents
second and third order schemes called QUICK and QUICKEST, which work well for
high Reynolds numbers, though there are still overshoots or undershoots when a sud-
den change is experienced; Kawamura et al[13] use a 5-point third order scheme to

compute a few typical problems in fluid dynamics up to the range of turbulence flow.

Following the above general guide-lines, in Section 3 of this paper we present an
adaptive scheme which is basically of third order accuracy, and "boundary layer fitting

" — special cares are taken when there is a sudden change in the velocity.



In Section 4 numerical experiments with the adaptive scheme for one-dimentional
Burgers equations are conducted and compared to the exact solutions or the numerical

results with a fourth order upwind compact scheme [8].

2. The Grid Spatial Stability

We first introduce the concept of grid spatial stability (GSS) for a (linearized) fin-
ite difference scheme. This is cast in a way similar to the method used by Lin[7] in the

theory of hydrodynamic stability and to the Von Neumann method of stability[12].

Assume that

L(u; )=/; | (1)
1=1,2...,n

is the finite difference equation approximating a steady-state diffusion- convection

equation, and U; the exact solution of (1).

Let
u;=U; + ¢;

be the perturbed values of U; with error e;. If e; do not grow with the solution process
of (1) the finite difference scheme is said to be spatially stable. One sees that such a
spatial stability is directly equivalent to the convergence of the solution procedure. Dif-
ferent solution procedures may lead to different spatial stabilities. However, a com-
monly occurring solution procedure (for example, the Jacobi iterative procedure)

involves expressing u; in terms of the u values at the adjacent grid nodes :

up =A(t gy, Ui 4 1, Ui 0yee) - (2)
For convenience the corresponding spatial stability is termed "Grid Spatial

Stability"(GSS).

Following Lin[7] and the Von Neumann method of temporal stability analysis (for
example, see Richtmyer and Morton[12]), a Fourier modal analysis may be conducted

for the errors e;. Therefore when considering anyone of the Fourier modes one may



write :

e;_g =ezp[V—1(i—2)q]
e =exp[V—1(i—1)o]
e; 41 =exp[V—1(i+1)q]
e; 40 =exp[V—1(:+2)q]

(where o=mk/n, k=0,1,2,... are the phase angles of the Fourier modes of the

errors)
and in particular, e; being associated with the complex valued amplification factor G:
e; =exp [\/—lia]G
By substituting ...e;_o , €;_1 , € , €41 €40 ...l
L(e; )=0 (3)

which is derived from (1), G can be solved. |G| <l indicates that the scheme is spa-
tially stable or the solution procedure is stable and convergent; while |G| >1

corresponds to the spatial instability.

The GSS criterion is based on the local grid pointwise structure of the finite
difference scheme and the very first concept of stability. This is in contrast to the con-
ventional stability analysis (for example, see [4]) which generally leads to a problem of
finding the eigenvalues of a global matrix and determining whether the spectral radius
is greater than unity or not. Except for a few typical cases the latter is often a more
difficult problem than the GSS criterion. In addition the GSS provides a convenient
way to consider the spatial stability/convergence of the scheme at the boundaries.
Even in a time dependent problem with an implicit scheme the GSS may also be used

to judge the convergence of the solution procedure at the given time level.



In order to illustrate how the GSS can be used to justify convergence of a scheme

or a "wiggle-free" solution,let us consider a few popular schemes:

(i) The Burgers equation with central difference for the convective term:

In this case (3) has the form:

" €it+1 —€i—1 €41 —2€ +ei_y

2h Reh?

where Re=Reynolds number, h=grid size.

or
Ry(e; 41 —ei1 )/2=€;41 —2¢; +e;_,
where Rg=Reuh

_ V-1 Rg sina
2

G

+cosa

In order that|G |<1, we must have Rg<2. Moreover, if the grid stability is considered
around the boundary, (3) should be modified to account for the boundary condition.

For example, if ug is specified at x=x(, then e;=0; we have

€y €9 —2€,
U ) = S s
°2h  Reh?

1/2 Rgexp 2V —1aj=exp[2V—1a]—2eap[V—-10] G

o - Rt

2
In order that |G|§ 1 it is necessary to have Rg<®6.

On the other hand if du/dx is specified at x==z,, we have,

61 —260 +C_1
Re h?

or



|G|=|cos|<1 for any Re.

This explains the phenomenon, as pointed out by Roache [1], that a derivative boun-
dary condition can cure the "wiggle" effect created by a Dirichlet boundary condition

when central differencing is used for the convective term.

(ii)The Burgers equation with the first order upwind differencing for the convec-

tive term:

Equation (3) has the form

vs0,  u 6 -1 _ G-l —2¢; +e;4
h Re h?
w<0 " Cit1 & _ €i-1 —2e; +e;4
h Re h?
or
Ry( G —e:vp(+\/—1 a)=2cos a—2G Rg= uhRe -
Thus

l 2cos a+Rgexp( \/—la) <1 forall Rg

1= 2 + Ry
(iii) The elliptic equation (say, in two dimensional space):
For simplicity, assume Ax = Ay = h, the five point scheme leads to:
i—1; te€iy1; teijo1 toe i —de; =0
or
exp [——\/——la]+ exp [\/—1a]+ exp {—\/—1,3]+ exp[\/——lﬂ]-—4G' =0

I cosa + cosf

lG’ |= <1 spatially stable;

In other words the five point scheme is always convergent (in the general sense).

(iv) A linear equation system with the coefficient matrix diagonally dominated:



Au = b with A = (a;;)

where u=(u; ,%g ,...eerytty,) is the unknown vector.

f_‘, a;; exp [j\/—la]

j=1,j%1

6= <

Ay
The system of linear equations is spatially stable.

(v)The Burgers equation with fourth order central differencing for the convective

term:
—eivo F8eiyy 86y teip ey 26 ey
v 12h Re h?
G = coso— V=1 Rg (8sina—sin20)
12
le|<1, if Rg<6/5.

From the above examples (i),(ii) and (v) it seems that an upwind scheme for the
convective term could help to relax the limitation to Rg. Unfortunately this is not

always true. Consider the following example:

(vi) The Burgers equation with second order one-sided upwind scheme for the convec-
tive term. Say,u>0, (3) has the following form:
3e; —dej_; + e iy —2€; tej

u =

2h Reh?

Then

o = 2cosa—Rg(—4cos at-cos20) 2— Rg\/—-l(4sin a—sin22c) /2
o 3/2Rg+2

When Rg is large, for a range of o (say, o e 7r),lG|=5/3>1 , the scheme is unstable.
However, if a relaxation method is applied to the solution procedure, the new amplifi-

cation factor becomes



£=(1-w)4+wG=1-w(1-G)
where w is the relaxation factor.

Then

=1 +

" 2(cos a—1)—Rg(3—4cos a+cos2a)/2—Rg/2\/—1(4sin a—sin2a) A
3/2Rg+2 (a)

and £ can hopefully be less than 1 for large Rg if w is small enough, details are given

in the next section.

Moreover, if we let the time step size

At= w
(3u)/(2h)+2/(Reh?)

in the time dependent problem
u; = —uu, +u,, /Re

with forward differencing in time and the same upwind scheme for the convective
term, and apply the conventional Von Neumann temporal stability analysis to it, we
can see that the amplification factor has exactly the same form (A). This manifests the
equivalence of such a time dependent problem to the above relaxed steady-state prob-

lem, and the GSS analysis may be replaced by the conventional Von Neumann tem-

poral stability analysis.



3. The Adaptive Scheme for
the Diffusion-Convection Equations

As is well known, in spite of its attractive convergence (spatial stability), the first
order upwind differencing is not acceptable for the convective term, particularly when
the Reynolds number is high. It produces false results due to the artificial
diffusion(e.g., see [14]). On the other hand, the conventional central differencing is free
of artificial diffusion but limited by the spatial stability condition Rg<C2. In order to
remove the limitation we have shown in the previous section by the GSS criterion that
a straightforward second order upwind scheme does not work but a relaxed one which
is equivalent to a time dependent problem may hopefully work. For this reason we only
need to consider the time dependent problems. A steady state problem is first relaxed
to a pseudo- time dependent problem and the steady state solution (if exists) can be

achieved when time t is large enough and the numerical solution practically does not

change.

There has been a constant effort in searching for such schemes: Leith[16], Leo-
nard[5,6] applied polynomial or exponential function interpolation to form their
schemes with an accuracy up to second or third order; Kawamura et al[13] obtained a
five-point scheme of third order accuracy with attractive numerical results, which
turns out to be a fourth order central differencing scheme plus a fourth order differ-
ence multiplied by a constant. These schemes produce good results particularly when
Re is high (though some still have certain artificial diffusion), however, when the unk-
nown function is subject to a sudden change (e.g., a boundary layer), they tend to

produce undesirable wiggles (see [6]).

Following the guide-lines postulated in Section 1, the purpose of the present Sec-
tion is to present an adaptive scheme which is basically of third order accuracy but
"boundary layer fitting"——around a boundary layer it becomes a one-sided second
order upwind scheme and avoids the wiggles. This procedure can be understood as a "

. . . . "
computational noise filtering .
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We first consider the one-sided second order upwind scheme and its temporal sta-

bility, then modify it to a third order upwind scheme and consider the stability as

well. Finally the criterion for switching from the third order scheme to the one-sided

second order scheme is presented.

The one-dimensional Burgers Equation with a source term S(x) is given as:

u; =—Uu, + u,,/Re + S(z)

(4)

where u is the unknown velocity, U=U(u,x) and S=S(x) are given functions; Re is the

Reynolds number.

(i) the one-sided second order upwind scheme:

for U>0,
Suy, —4up_y + U —2
e = oh
for U<O,
Uy, + AUy — Uy
U, =

2h

where m=1,2,...,n replaces i, i is reserved for \/—1, and h the grid size.

Let c= U At/h be the Courant number and

e At _c
Reh? Ry

where Rg is the grid Reynolds number.

The finite difference approximation to (4) is
ul+lm=ulm_c/2(3ulm_
l l
4u’py, g tu m—2)+l/(ulm+l_2ulm+ulm-—1)+s(mm)

for U> 0;

(5a)
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ul+lm=ulm—c/2(—3ulm+
+4“’m——l_uIm—2)+”(ulm+l_2ulm+ulm—1)+3(xm) (5b)
for U<0; where the integer | denotes t=IAt.

For both U>0 and U<O0 the Von Neumann stability analysis yields
G =1—2v(1—cosa)—c /2(1—cos a)? Fic /2[4sin a—sin20] (6)

G is a non-trivial function of the phase «, Figure 1 shows the polar stability diagrams
for the most severe case Re==00, (v=0) with the Courant number c¢=.2, .1 and .05.
One can see that the diagrams lie well within the unit circle and the scheme is stable.
However, one could have trouble when « is close to 0. When =0, G =1. From (6),

when a==0, by Taylor expansion of G,

1G] = V(1—~(va)*~c /BatfP+(c a)?
or
|G| == 141/2(c*—2v)d?
When v=0 (the most severe case),
|Gl = 141/2(c)®*>1.

Fortunately, provided c is small enough (say, ¢<.1)|G|is greater than unity only by a
second order infinitesimal which involves a small range of a; and there is no disasterous

error growth.

The one-sided scheme is appropriate for such a grid point at which u experiences
a dramatic change (i.e. a boundary layer exists). It does not need any information from
the other side of the grid point and yields formally second order accuracy. On the
other hand, for a regular grid point such a scheme does not provide the maximum
accuracy. For example, if U>0, the scheme (5a) utilizes 4 grid points x,,_q, T_1, T,
and «,,,,; while the one-sided scheme only takes the u values at the first 3 points. For
better accuracy and tighter coupling between the convection and diffusion terms in the
equation it is necessary to construct a third order upwind scheme for the convection

term.
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(ii) the third order upwind scheme

The third order scheme for the convection term is constructed by combining the above
one-sided upwind scheme and the central difference scheme in a way that their second

order error terms just cancel out. For example, for U>0

SUpy — 4y, 1+ Uy o hg(uzzx)m 3
92h =\Uz)m— 3 +O(h )
and
2
Um+1"Um—1 h*(Usez)m 4
2h "'(ua:)m+ 6 +O(h )

By eliminating the A2 terms one obtains the third order scheme for U>0,

2um+l+3um “Gum—l+um—2
6 =(uz )m +O(h'3) (7&)

for U<O, similarly,

—2u,, _1—3u,, +06u —u
m—1 mGh m+1 m+2 =(Uz)m +O(h3) (7b)

In the third order scheme (7a) and (7b) are used to replace the second upwind convec-

tive terms in (5a) and (5b) respectively.

A stability analysis similar to that for the second order upwind scheme may be

carried out:

[8sino—sin2a]
6

G =1—2v(1—cos a)—c /3(1—cos )’ —isgn(U)c

where sgn(U) is the Kronecker function of U. Figure 2 shows the half polar stability
diagram for Re=o00 and ¢=.2, .1 and .05. One sees that the diagrams lie well within

the unit circle except around a=0. A Taylor expansion at a=0 gives
|G |=1+(c?2—v)? (to 2nd infinitesmal)

A strict condition for |G|<l1 is ¢?/2<v or Rg<2/c. Nevertheless by the same argument
mentioned for the second order scheme, such a |G|value will not cause a disasterous

error growth, in general, c=.1 is quite appropriate for Re up to ca Table I lists the |G|
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values vs. o (in radian) for c=.1 and Re=oq one sees |G|is greater than 1 only by an

amount of the order 1074 for a =0.

With the third order scheme the convective term is more consistent with the dif-
fusion term as pointed out in 1. However, despite its higher accuracy the scheme still
produces spurious wiggles when u is subject to a sudden change (see Fig. 3) since it is a
two-sided scheme. In order to circumvent this one needs to consider the one-sided
scheme in (i). Although the formal accuracy is lower the one-sided scheme yields

wiggle-free solutions. An appropriate criterion is needed to switch from the third order

scheme to the second order one-sided scheme.

(iii) the criterion for switching to the second order upwind scheme:

As is well known, the third order scheme is based on the local cubic polynomial
interpolation. A sudden change in u will cause wiggles in the solution and spoil it, since
the local cubic polynomial approximation quickly deteriorates. Such wiggles are charac-
terized by the alternating ups and downs( the local extrema) at the successive grid
points. Nevertheless, an exceptional case is, if u values are still monotonic around the

boundary layer, say,

u(x)<u(x+h)<u(x+2h); with u(x+h)-u(x)>>h (there exists a boundary layer)

no wiggles will appear in the solution, and the local cubic polynomial or the third order
scheme is still accurate. On the other hand, if u(x+h) is a local extremum the third
order scheme is likely to yield a wiggle-like solution. In this case a second order one-
sided scheme which involves only grid points outside the boundary layer (i.e., x, x+h

and x+2h ) is preferable.

The monotonicity property is a useful tool for filtering the computational noise
and has been used by many authors for hyperbolic equations, particularly in handling

shock wave computations; for example, see Godunov([17] , Van Leer[11], etc..

In practice in the neighborhood of a boundary layer, the monotonicity is checked

by the sign of the product

s=|[(u(x)-u(x+h)][u(x+h)-u(x+2h)]
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If s is positive the monotonicity holds and the third order scheme is employed. Other-
wise we switch to the second order upwind scheme. This adaptive scheme makes max-
imum use of the third order scheme and switches to the second order one-sided
scheme just before the spurious wiggles appear in the solution. The third order scheme
is resumed if the monotonicity holds again. In Fig.3 the solution of a Burgers equation
with the adaptive scheme is shown as a comparison to the third order scheme result.
As a matter of fact this solution agrees almost exactly with the theoretical solution.

Both solutions are obtained through the pseudo- time dependent procedure.

In the next section several numerical experiments will be conducted and the
results are compared to the theoretical soluitons (if available) or the numerical results

by the fourth order upwind compact scheme (Christie [8]).

4. Numerical Results

In this section several versions of the Burgers equation, both steady and unsteady,
linear and non-linear, with different boundary conditions are solved numerically with

the present adaptive scheme. The results are compared to the theoretical exact solu-

tion or other existing numerical results.
(i)The first problem considered is the linear Burgers equation:
Uy, /Re—u, =0 0<z<l1, u(0)=1, u(1)=0 (8)

Different Re values from 5 to 10°% are considered. The analytical solution

will be used for comparison. There is a sharp boundary layer near x=1 when Re is
large. This model has been used by many authors for testing their schemes. In order to

obtain consistent accuracy with the scheme the fictitious points outside the boundary
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should be evaluated by cubic polynomial extrapolation when necessary. In all the cases
a modest number (10) of grid points are used. As mentioned above the solutions are

obtained by a pseudo- time dependent procedure:
Uy =‘uxz/Re —Uy

Table IIa gives the numerical solution for Re=>5. The exact solution is also listed
for comparison. With such a low Reynolds number the adaptive scheme is completely

of third order accuracy. The steady state solution is obtained at t==4 (400 time steps
with At=.01) with the max. error .002.

Table IIb shows a comparison of the results between the present method and the
fourth order upwind compact scheme by Christie(8] (referred to as U.C. in the table)
for Re=20 and 100. One sees that the two schemes yield quite comparable results.
Numerical solutions with the present adaptive scheme for Re=1000, 10* and 10° can

be found in Table Ilc. Figures 4a- 4d show the good agreements of the numerical

results with the analytical solutions (solid lines).

(ii) The second problem is a time dependent non-linear Burgers equation:

U = Uy /Re—uu, (9)
0<x<l1, t>0 and u(0,t)=u(1,t)=0; u(x,0)=sin(7x).

Cole[9] predicted the appearance of a sharp boundary layer as Re increases and
presented the analytical solution in a form of infinite series. Benton and Platzman|17]
describe the analytical solutions for a class of Burgers equations of this type. Christie[8]
gives some numerical results using his fourth order upwind compact scheme. They will

be used for comparison with the present method.

For Re=10, 1000 and 10000, t=5 and n (number of grid subintervals) =10 and
40 (At is changed accordingly to keep At/ Ax=.1) (9) is solved numerically by the
adaptive scheme. The results are listed in Table Illa. Figure 5 shows the curves for dif-
ferent Re numbers. The solid lines represent those curves with n=40. One sees the
results with n=10 and n=40 agree quite well. It is interesting to compare the present
numerical results with those obtained by the upwind compact scheme of Christie[8]. In

Table IIIb we list the numerical solutions by both schemes at x=.9 and t=.5. The
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results with the upwind compact scheme (U.C.) are taken directly from [8]. It can be
seen that the adaptive scheme presents more consistent results with different n when
Re is high (Re==10000). To further compare the two schemes in Table IIlc we present
the results in the case Re=10000, t=.5 and n=160 around the boundary layer.
Although the numerical evaluation of the analytical solutioﬁ is not directly available,
the adaptive scheme does yield a sharper boundary layer at x=1.0 than the upwind
compact scheme; there is a 23% difference at the grid point next to x=1.0. It seems

that the result with the present adaptive scheme could be better.

(iii) The third problem we have investigated is another non-linear Burgers equa-

tion:

Uy, /Re—uu, =u, —-5r<5 (10)

subject to u(-.5, t)=1, u(.5 t)=-1. Initially u(x,0) is a straight line passing through the
points (-.5,1) and (.5, -1).

The analytical (steady-state) solution is
=—atanh(a/2 Re z)

where « satisfies atanh[Rea/4]=1 and must be evaluated numerically by Newton’s

method.

Table IV lists the exact and numerical steady-state solutions for Re=10, 100 and
10° respectively. Here Ax=.05 and At=.005. The maximum error is around the mag-
nitude of 1072 even when Re is high. In Figure 6 we present the curves for Re=10, 100
and 10°%. The solid lines represent the exact solutions. It can be seen that both analyti-
cal and numerical solutions agree quite well with each other. It should be noted that

the symmetry property of u (about x=0) is used in the numerical solutions.
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5. Conclusion

In consideration of both accuracy and convergence for a steady state convection
dominated problem the Grid Spatial Stability shows the non-convergence of a higher
order upwind scheme. However a relaxation of the scheme proves to be equivalent to
the solution procedure of a pseudo- time dependent one. An adaptive upwiﬁd scheme
has been suggested to handle both time dependent and steady-state problems (via the
pseudo- time dependent procedure). The explicit scheme is generally of third order
accuracy in space but could become second order accurate at a thin boundary layer. It
has been demonstrated that the present scheme yields numerical results comparable to
those by the fourth order upwind compact scheme; and there is practically no limita-

tion to the Reynolds number, and no parameters to choose as well. (In the U.C.

method one has to choose a parameter )

In programming, similar to the first order upwind differencing, there is a little
more work than the regular central differencing. In addition, the scheme necessitates
extrapolation for the fictitious values outside the boundary points. However, comparing

to the advantages of the adaptive scheme the little extra work seems worthwhile.

In principle there is no difficulty to extend the present adaptive scheme to two or
three dimensional flow problems. The work is underway and will probably form the

subject of another paper.
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Non-linear Burger s Equation ug= uux-uxx/Re
Re=10,1000,10000; n=10,40
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Non-linear Burger s Equation uu,-u,./Re==0
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Table I

IGl vs. o (Re=00, c=.1)

o IGI
125664 1.000077
.251327 1.000283
.376991 1.000545
.502655 1.000748
.628319 1.000739
753982 1.000340

879646 .999357
1.005310 997594
1.130973 .994867
1.256637 991017
1.382301 .985924
1.507965 979518
1.633628 971794
1.759292 962816
1.884956 952727
2.010619 941747
2.136283 930176
2.261947 918384
2.387610 906799
2.513274 895884
2.638938 886116
2.764602 877952
2.890265 871796
3.015929 867967
3.141593 8666067
Table Ila

Numerical and Exact Solution of (8)

X numerical exact
.0 1.0 1.0
1 .996 .996
2 989 .988
3 977 976
4 .958 957
R3) 926 924
.6 873 871
7 784 782
.8 637 .636
9 396 396
1.0 0 0

max. error .0021 0




Table IIb

Numerical Solutions of (8)

Re 20 20 20 100 100 100
X Exact U.C. Adaptive Exact U.C. Adaptive
.0 1.0 1.0 1.0 1.0 1.0 1.0
d 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0 1.0 1.0
.5 1.0 .999 1.0 1.0 1.0 1.0
.6 1.0 1.001 1.0 1.0 1.0 1.0
7 997 993 .998 1.0 1.0 1.0
.8 .082 .990 .984 1.0 1.0 1.0
.9 .865 .839 873 1.0 1.002 .996
1.0 0. 0. 0. 0. 0. 0.
max. 0 .024 .008 0 .002 .004
error
Table Ilc
Numerical Solutions of (8)
Re 1000 1000 10000 10000 1000000 1000000
X exact numerical exact numerical exact numerical
.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 - 1.0 1.0 1.0 1.0
.3 1.0 1.0 1.0 1.0 1.0 1.0
A4 1.0 1.0 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0 1.0 1.0
.6 1.0 1.0 1.0 1.0 1.0 1.0
Vi 1.0 .999 1.0 1.0 1.0 1.0
.8 1.0 1.002 1.0 1.0 1.0 1.0
9 1.0 .996 1.0 1.0 1.0 1.0
1.0 0. 0. 0. 0. 0. 0.
Max.
error 0. .004 0. 0. 0. 0.




Table IIla

Numerical Solutions of (9) at t=.5

Re=10 . Re=1000 - Re=10000 -
X n==10 n=40 n==10 n==40 n==10 n=40
0. 0. 0. 0. 0. 0. 0.
1 1095 .1096 1216 1217 1216 1217
2 2173 2175 .2426 2426 .2428 .2428
3 3211 3214 3621 .3621 .3624 .3623
4 4176 4181 4794 4792 4797 4796
5 .5013 5019 .5931 .5929 .5936 .5934
.6 5614 .5616 7019 7017 7025 7024
7 0771 5756 .8044 .8032 .8056 8042
.8 .5114 5056 .8984 .8938 .8086 .8951
9 3180 3101 .9588 .9662 .9654 .9685
1.0 0. 0. 0. 0. 0. 0.
Table IIIb
Comparison of Numerical solutions at t=.5, x=.9
Re=10 v ’ " Re=10000 " ” ’
n=10 n=20 n=40 n==160 n=10 n=20 n=40 n=160
Adap-
tive .3180 / .3101 / 9654 / .9685 .9665
U.C. i 3110 / 3003 / 891 / .9590




Table Illc

Comparison of Numerical Results

Re=10" Re=10* Re=10°%
n=160,t=5  n=160,t=.5 n=160,t=.5
X U.C. Adaptive Adaptive
.9 .959 9665 .9667
.962 9701 9703
965 9735 9737
968 9768 9770
971 9799 9802
973 9829 9831
976 9856 9859
978 L9882 9886
95 980 .9907 .9910
981 9929 .9932
983 9948 9952
984 9966 L9970
985 9981 9985
985 9993 .9997
988 1.0001 1.0007
761 9901 1.0012
1.0 0. 0. 0.
Table IV

Comparison of Exact and Numerical Solutions of (10)

exact numerical exact numerical exact numerical

X Re=10 '’ Re=100 'y Re=10° by
-.5 1. 1. 1. 1. 1. 1

-4 9781 9779 1. 1. 1. 1.
-3 .9201 .9203 1. 1. 1. 1.
-.2 7766 7784 1 1. 1 1

-1 4731 4763 1 1.0026 1. 1.
.0 0. 0. 0. 0. 0. 0.
d -.4731 ~-.4763 -1. -1.0027 -1. -1.
2 -.7766 -.7784 -1. -1. ‘ -1. -1.
.3 -.9201 -.9203 -1. -1. -1. -1.
A4 -.9781 -.9779 -1. -1. -1. -1.
5 -1. -1. -1. -1. -1. -1.

max.

error .0033 .0027 0
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