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Abstract

This dissertation investigates the issues associated with making high quality document
processing systems available to casual users. A prototype document preparation system is
designed and implemented, which provides casual yet demanding users with simple, easy-
to-use, interactive access to high quality (batch) document formatting systems. The system
provides an interactive, syntax-controlled, structured what-you-see-is-almost-what-you get
editing environment for the creation of formatter-independent documents. These documents
can easily be transformed by the system into the appropriate input format for almost any
target batch formatter.

A practical document model that describes the components of documents and their
interrelationships is defined. A document class description language is defined with which
the syntax (structure) and semantics (appearance) of classes of documents can be described.
Such class descriptions are used by the system to aid the user in creating syntactically
correct documents. Mechanisms are developed for dealing with incomplete documents in a
syntax-controlled environment.

The dissertation further presents a user interface suitable for editing both the structure
and the content of documents. An important aspect of the user interface is its ability to
enforce correct document syntax, while still allowing reasonable and non-restrictive editing

operations.
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Chapter 1

Introduction

In recent years, as more and more people have gained access to computer systems, there
has been an increase in the number of people demanding access to systems for the creation
of high quality documents. Many of these users have little or no computer training and
might be termed casual users.

The objective of this dissertation is to investigate the issues associated with making high
quality document processing systems available to the casual user. A prototype system is

designed and implemented, which provides the user with the following features:
e an ability to view the document as it is being prepared,

e a method of constraining the document to ensure that it is “correct”, that is, it

conforms to some standard document format,

e a system with retargetable output (documents created on the system may be directed

to different batch formatters and to different interactive displays), and

e a method of editing documents even though the editing process may make the docu-

ments temporarily incorrect.

In order to construct such a document preparation system the following topics are examined:



¢ a practical model for documents which describes the syntax (or structure) of correct
documents and their associated appearances (or semantics) in terms of interactive

display and target batch formatters,

a language to implement the document model,

e a user interface consisting of a syntax-controlled editor which allows the user to create

documents described by the model, and

e a mechanism for handling incomplete and incorrect documents which temporarily

modifies the existing document model.

1.1 Motivation

As more people make use of computerised document preparation, a new type of computer
user can be identified. These new users are not computer experts. In fact they do not have
a computing background, are not familiar with programming languages or other esoterica of
computing, and are often only casual users of the computer. They have a problem, namely
to produce a neatly formatted document; they know the computer can help them in solving
the problem, and they want the solution with a minimum of (perceived) fuss and bother.
The terms in which they present the problem to the computer and in which they manipulate
the results should be easy for a human to use and understand and should be familiar, that
is, based on previous document experience.

The fact that these users might be novice or casual users does not necessarily say
anything about their document processing needs. Most of the time they require access
to sophisticated document preparation systems that are capable of producing high quality
formatted documents. Many powerful document preparation tools exist that are capable
of providing for their needs. However, these systems are often awkward and even difficult
to use, especially for the novice and casual user. A substantial amount of training is often

necessary before one can use these document systems intelligently, with the result that



casual users can either not afford the time to get acquainted with the system, or if they do
in fact manage to learn how to use it, they often forget what they have learned by the time
they want to use the system again.

Related to the widespread use of computers for document preparation, is the fact that
documents have become more “mobile”. Documents are no longer created and remain in a
single fixed form; to the contrary, copies of a document are often made in different forms.
The form may differ depending on the output medium, or the intended recipient. For
example, the same document may be formatted in different ways depending on whether it
is viewed on a terminal, printed on a line printer, or reproduced on a typesetter. Similarly,
a report that has initially been formatted according to internal company standards, might
have to be reproduced in a different form to conform to a customer’s standard.

Not only is it necessary to be able to change the form of documents, but it also is
necessary to reproduce them on different output devices, often using different computers.
We call such documents portable documents.

The need for portable documents resulted in the emergence of structured formatters
[Furut82]. In these formatters documents are regarded as consisting of logical objects
(sentences, paragraphs, sections, etc.), and the purpose of the formatter is to allow the
manipulation of these objects. Generally speaking, the clearer the structure of a document
is defined, the easier it is to reproduce the document in a different form. However, the rules
for constructing a correct document! may become more complicated, with the result that
the user has to know more in order to create a correct document.

It has been argued [Allen81] that batch formatting systems will always be able to do a
better formatting job than interactive what-you-see-is-what-you-get (WYSIWYG) systems.
We agree with this argument, but at the same time realise that the interactive approach

provides a far better work environment, especially for non-expert users of a system.

This dissertation examines the issues associated with providing high quality document

!Throughout this dissertation we will use the term “correct document” to refer to a document that

adheres to the structure (or syntax) that has been defined for that particular kind of document.



processing capabilities to the casual user in a changing environment. While this investiga-
tion is geared towards the casual and novice user, it is certainly the intention that expert
users alike would find any system that is developed, practical and efficient to use. The

major factors that influence the investigation are:
o Ease of document creation and editing,
e Flexibility in choosing the final appearance (layout) of the document, and
e Flexibility in choosing the type and quality of the output.

Each of these topics is discussed in more detail in the following sections.

1.1.1 Ease of Document Creation and Editing

As mentioned before, many sophisticated and powerful batch-oriented document formatters
exist today, such as TpX [Knuth84|, Scribe [Reid80|, TROFF [Ossan76], GML-based format-
ters [IBM84b, Water86|, and SCRIPT [IBM85, Water85]. These formatters are, however,

often not straightforward and easy to use, especially for the novice or casual user, because:

e The formatting language is often complicated and a user unfamiliar with programming
concepts may have trouble producing a quality document, or understanding some of

the more advanced features of the language.

e The commands and/or declarations to the formatter tend to interfere with read-
ing the document content, and the content in turn interferes with reading the com-

mands/declarations.

e The editing systems used to prepare input for the formatters are usually general

purpose editors and are not designed for the specific task of editing text documents.

For these reasons many authors of papers, articles and short documents who might wish to

use these batch-oriented formatters, are reluctant to do so.



It is our aim to overcome these drawbacks, not by producing yet another batch format-
ter, but by providing a uniform, user-friendly and helpful environment in which to create
documents that can be formatted by existing and future batch formatters. The environment
should not just be easy to use, but the user must feel confident that the document being
created in fact conforms to the requirements of the target batch formatter. The system
must therefore ensure the creation of correct documents.

An important aspect of convenient document editing, is immediate feedback. Batch-
oriented document processors can be very powerful and can afford to put a large amount
of effort into producing high quality output. They can for example use global information
to “optimise” the appearance of the final document [Knuth81]. Their major drawback,
however, results exactly from this batch-orientation: the time lapse between entering a
document description and seeing the result of that description is often too long. The user
might want to experiment with various formats and layouts, but the delay in turnaround

inhibits this and reduces productivity:

The ability to experiment with different formats is clearly invaluable to both
author and transcriber, providing that there are no serious restrictions resulting
from this facility. Having to “program” formatting effects is a mental burden
and requires sophisticated, complicated code all too often; debugging a sequence
of formatting codes is difficult unless a formatted copy of the same document

. exists for comparison. [Meyro82]

Because of the necessity of embedding commands in the document description, it is much
easier to make a mistake (and the elapsed time between making the mistake and discovering
it is much longer) in a batch-oriented system than in an interactive one.

Few, if any, editors have sufficient knowledge of the formatting language of the formatter,
to be able to tell the user immediately when a syntax error has been made. Even if such an
editor would exist, it would not be able to detect semantic errors unless it had an intimate

knowledge of the formatting process, in which case it might as well do the formatting itself.



Furthermore, in an interactive document processor it is possible to provide online, con-
text sensitive help that can guide the inexperienced user to use the system effectively. In
many of the current batch-oriented systems, error messages that are generated are often
cryptic and far away from the actual error; hence they are often not of much help other

than to indicate that some error has occurred.

1.1.2 Flexible Layout

As we have pointed out earlier, the use of computers for document preparation resulted
in requirements for more flexibility in producing the same document in different forms.
Obviously, the fewer changes that have to be made to a document description in order to

have it formatted in a different style, the better.

The so-called declarative approach to document specification provides exactly this fea-
ture. In formatting languages such as Scribe [Reid80] and GML [IBM84b, Water86] only
the logical components of the document (such as sections, headings, paragraphs, etc.) are
specified in the document description. These components are then uniformly formatted

according to a separate layout file or style sheet.

This approach greatly reduces the amount of necessary formatting detail that the user
has to supply. It provides more structure and portability to the document and more things
can be done with fewer commands. On the other hand, the user has less direct control
over the final appearance of the document. A discerning user might also find that the
components defined in a layout may not always meet the necessary requirements, and it is

often not easy to define new components, or change the style of existing ones.

Our objective is to provide a declarative system in which the user specifies the logical
components of the document, and the system provides the necessary formatting informa-
tion. However, it must be possible for the more experienced user to define new classes of

components and/or change the definition of existing components with relative ease.



1.1.3 Flexible Output

There are two aspects to output quality: the quality of the formatting process, and the
quality of the reproduction produced by the output device.

We have already commented on the ability of batch formatters to produce well formatted
documents. Some formatters are better at some tasks than others. It is therefore to be
expected that users would want to use different target formatters at different times. Our
system must be able to support different target formatters, but relieve the user from having
to know the details of the target formatting language. In other words, once a document
has been created using the system, the system must be able to generate the input for the
target formatter with very little user intervention.

Some output devices are more expensive to use than others (e.g. a typesetting machine
vs. a laser printer vs. a simple dot-matrix printer). It is not surprising therefore, that the
choice of output device will differ depending on the intended use of the document. An early
draft of a letter does not necessarily belong on a typesetting machine, just as the final copy
of a report or paper does not belong on a dot-matrix printer.

A major advantage of current batch-oriented document processors is that they usually
support a large variety of output devices. One can therefore use the same processor to
produce documents for a number of diverse output devices. If, on top of this, one has a

choice between a number of target formatters, the possibilities become even more attractive.

1.2 Outline

As we have already indicated, a number of issues are addressed in this dissertation, including

¢ The definition of a practical document model that describes the components of a

document and their relationships to each other,

e the creation of an appropriate language with which to describe both the structure and

appearance of classes of documents, and



o the design of a suitable user interface for editing the structure and content of doc-
uments. An important aspect of the user interface is its ability to enforce correct
documents without being so restrictive that the user finds this enforcement of correct
structure frustrating. In other words, incorrect documents can be produced during
the editing and creation process, but the system ensures that these documents are

correct before being translated to a specific target formatting language.

A document model! is outlined and motivated in the next chapter, which also provides a
framework within which our objectives are to be obtained. Chapter 3 defines and evaluates
a language for the description of document classes. Chapter 4 provides some theoretical
background relevant to the implementation of a prototype system which is described in
Chapter 5. The dissertation is concluded in Chapter 6 by summarising the contributions
that were made as well as pointing out some further areas of investigation. The remainder

of this chapter describes related work by other researchers.

1.3 Related Work

Document processing systems and their history have been surveyed extensively in the lit-
erature [Reid80, Brade81, Furut82, Meyro82, Beach85]. We will refrain from doing so yet

again, but will briefly mention those systems that have influenced our work.

1.3.1 Batch Formatters

Many batch formatters have been developed through the years, from RUNOFF [Saltz65] to
TEX [Knuth84] and one of its macro packages INTpX [Lampo86.

Among these systems Scribe [Reid80] and GML [IBM84b, Water86| are significant in
that they were among the first to separate document content from document form or style
explicitly. TEX is probably the most powerful formatter/typesetter that exists today that
is generally available and affordable. However, it requires a significant amount of learn-

ing/training on the user’s part for anything but the most trivial tasks. IATEX, a macro



package for TEX, is to some degree based on the Scribe model. For the most part it takes
a declarative approach and provides the user with a number of both high and low level
declarations. While it is considerably easier to use than TEX, there is still a lot of detail —

detail that a casual user can easily forget.

1.3.2 Interactive Systems

A plethora of interactive word processors/document editors are available that range from
the simple to the complex. See for example [Wiswe85| for a review of eighteen of the more
popular ones available for personal computers. Most of them are to some or other degree
WYSIWYG, but they rarely make use of document structure. They do not have the concept

of document syntax, and very seldom perform document syntax checking.

1.3.3 Syntax-directed Programming Language Editors

Syntax-directed editors (also called language-oriented editors) and their generators such as
the ALOE system [Medin82] and the Cornell Program Synthesizer [Teite81] and Synthesizer
Generator [Reps84] grew out of the need for program editors that would facilitate the cre-
ation of syntactically correct programs. Other recent syntax-directed editors are described
in [Campb84, Gansn83, Morri81].

The techniques used in these systems are to a large degree applicable to document
editors, and then their authors mention that document editors have been or might be
constructed, but do not go into any detail. This is probably because the systems mentioned
are geared towards programming languages which are generally speaking more explicitly
structured than documents with the result that the editors may seem to be too rigid for
use with documents. Furthermore, the incremental parsing (or recogniser) approach taken
by many syntax-directed editors is not easy to adapt for use with documents, as documents
often have ambiguous grammars. For example, if a section in a document consists of an
introductory paragraph followed by a number of subsections and possibly followed by a

closing paragraph, it is often not possible to determine whether the last paragraph belongs



to the subsection or the section.

Most syntax-directed editors have to be generated and compiled for a specific language
environment. In other words, for text documents, one has to create a different editor
for every document class or type such as business letters, technical document or thesis.
Our system enables the user to edit different classes by merely issuing a command. This is
achieved by interpreting document class descriptions, rather than having them pre-compiled
and built into the system.

DOSE |[Feile83, Feile86| is a multi-purpose display-oriented structure editor that makes
use of techniques very similar to ours. It is not specifically geared towards document editing,
but attempts to be an editor for anything for which an appropriate structural definition
can be written. Unfortunately, because it is to become a commercial product of Siemens
Corporate Research and Support Inc. in the near future, it was not possible to obtain enough
information about the system in order to make a detailed comparison between DOSE and

our system.

1.3.4 Structured Document Editors

Recently a number of structured document editors have been proposed and/or developed.
These include Etude [Hamme81] and its derivative the Interleaf Publishing System (IPS)
[Morri85|, PEN [Allen81], W [King86]|, Grif [Quint86], and systems by Kimura [Kimur84a,
Kimur84b], van Huu [vanHu85], Coray et al. [Coray86], and Furuta [Furut86]. In this
discussion we will concentrate on the more recent ones. |

All of the systems mentioned in the previous paragraph view documents as structured
objects, and rely to various degrees on some kind of description of a document type or class
to control the editing and formatting process.

IPS views the document as a simple sequence of components, where each component is
assigned a fixed set of properties whose values may be set by the user (one of the properties
is for example the object’s name). The components do not form a hierarchy - they are a

linearisation of the document components found in Etude. The other systems mostly use

10



context-free grammars (usually a modified BNF notation) to describe document structure.
In Grif the structure definition resembles a Pascal record declaration, while van Huu pro-
poses using SGML in his system. Coray et al. use a BNF notation (but use Kleene closure
rather than recursion to indicate repetition), and Kimura provides additional operators such

as constructing sets (or bags), links and shared objects, all specified in a C-like language.

Some of the systems include formatting information in the class description in the form
of attributes or properties of the objects (IPS, Coray et al.), while others (Kimura) provide
a programming language with which to describe the formatting. Most of the authors were
vague about the exact nature of the formatting information, merely making statements such
as “...presentation schema ... contains presentation rules for each type of element defined in
the structure schemas” [Quint86|. It is also not always clear how much of the formatting

can be specified by the user, nor how difficult this would be.

Both IPS and Grif are WYSIWYG systems running on high powered workstations with
high resolution bitmap screens. The other systems take a what-you-see-is-almost-what-
you-get approach, with some (Kimura, Coray et al., W) providing a mode in which the
document can be viewed in final form, provided the screen has the necessary capabilities.
By nature the WYSIWYG systems cannot display the document structure, although IPS
labels components in a special margin. Grif provides commands based on the document
structure (especially in movement, selection and creation of objects), but the user interface
does not stress the structural aspects because the system assumes the user is unfamiliar
with such concepts. One result of this is that Grif has to make use of heuristics in deciding
what action should be taken when the user deletes, copies or inserts within the document
text. Grif’s exact solution is not clear from the literature, nor the degree of success of
their approach. The authors simply state that “Grif manages the right choice between

manipulations done by structure and those done by text” [Quint86].

Kimura uses various nested and overlapping windows to indicate the document structure,
while Furuta uses a combination of grammar productions and windows. Both these systems

provide a generalised structure editor in combination with specialised editors for each type
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of (leaf-) component in the document. The W system uses embedded icons in the document
text to delimit objects. Various display modes allow the user to view and edit them under
different circumstances.

An important aspect of any syntax-directed editing system is the trade-off between the
amount of checking done to ensure correct structure and the flexibility afforded the user
when editing the structure. One approach is to use templates or place holders. Parts of
the document that are required (or even optional), but still missing are represented by
place holders (“ghost windows” or “blank slots” used by Kimura and “buttons” used by
Furuta). A penalty paid for this is the extra storage space and extra screen space required
for the place holders. Another approach is to allow free entry of text and mark-up (or
keywords indicating objects) and to re-parse the input at appropriate times. While this
approach works well for programming languages, it is less suitable for documents since that
re-introduces the dilemma of the user having to know a “formatting language”.

The literature on the systems mentioned before that do not use the place holder ap-
proach is not very clear about how they attempt to provide the user with a flexible editing
environment. The authors of Grif seem to indicate that it is the document class designer’s
responsibility to design a class description that is not restrictive. The author of W states
that “W will ensure that the document’s syntax definition is respected”, but says in the
same paragraph “W ... is not a syntax checker” [King86]. Coray et al. and van Huu do
not mention the issue at all. Obviously it is a non-issue in IPS since the IPS document
grammar accepts any object anywhere in the document.

As a final point we examine the output produced by the systems. IPS, W, Grif and Coray
et al. all produce fully formatted, ready-to-print documents (W’s author mentions that they
are considering producing PostScript [Adobe85] and TEX at a future date). Kimura, Furuta
and van Huu all produce output for batch formatters. It is doubtful that the scheme van
Huu proposed (a mapping table) would be successful, since it does not provide enough

power:
About the metalanguage contained in the map table, we must admit that it is
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more complicated than the elements described in the example of the previous
section. In fact, the language must provide the person who is building the map
table with instructions capable of describing all possible situations, according to
whatever needs of the user, might arise during the description of the document

for a formatting system. [vanHu85]
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Chapter 2

Framewoi'k for a Solution

This chapter describes the outline of a solution to the problem identified in Section 1.2.
We discuss the issues and problems associated with each part and indicate how we intend
to solve them. Before the solution can be described, however, it is necessary to develop a
conceptual model of a document that allows us to model a wide variety of documents in a

natural and intuitive way.

2.1 A Document Model

Many document models have been proposed and are being used [Shaw80, Furut82, Horak84,
Kimur84a, [SO85]. The model used in this dissertation is an adaptation of the one used by
Kimura and Shaw [Kimur84b, Kimur86|. Near the end of this séction we list and discuss
the differences between the two models.

A document is viewed as an object composed of a hierarchy of objects. Each object is an
instance of a class that defines the possible components and representations of its instances.
Typical (low level) classes are document components such as sections, paragraphs, headings,
footnotes, figures, and tables. Documents themselves are instances of document classes such
as business letters, papers for a particular journal, or theses for a given university.

Objects are either composite or basic. Composite objects are composed of other objects.
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The composition may be a mixture of ordered sequences and unordered sets of objects.
Basic objects have no constituent objects. Each basic object has a (possibly empty) string
of non-structural data associated with it that is referred to as the content of the object.
The content of a composite object is the aggregate content of its constituent objects.

For example, a technical paper may consist of a sequence of objects: a header, body,
appendix and bibliography. Each of these objects are in turn composed of other objects:
the body may consist of a sequence of sections, each a sequence of subsections. A given
subsection may again be a sequence of paragraphs and figures. Though the figures might
be ordered in relation to each other (fig.1 first, then fig.2), they might not be ordered with
respect to the paragraphs. The bibliography may be a set of reference items, the order of
which will depend on how the document is formatted: in one instance they may be ordered
alphabetically and in another, in order of reference.

We view a document as an abstract object that may have many concrete representations.
Abstract objects are the logical entities comprising a document (such as those listed earlier),
while concrete objects are the external representations of abstract objects and are usually
two-dimensional formatted images.

Each object may have characteristics other than its composition, content and the class
to which it belongs. These other characteristics are called attributes. All objects belonging
to the same class have the same attributes, although the value of a particular attribute may
differ from object to object (class instance to class instance).

For example, the object class figure may have the attribute depth, whose value in-
dicates how much extra empty space should be left for material that is to be pasted in.
Another attribute might be frame with possible values box, rule, or none, indicating
which kind of frame, if any, should be drawn around a figure. Different figures may then
have different frames depending on the value of their frame attribute.

Non-hierarchical relationships between objects are modelled by references between ob-
Jects. Such references are independent of the composition structure of the objects. Each

object class may define which classes of objects may be referenced. References are typically
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used to model such concepts as cross references, bibliographic references, index terms and
footnote references.
As was pointed out earlier, the above model was adapted from that of [Kimur84b|. The

differences between the two models are:

1. In our model the user-supplied text of a document is associated (as non-structural
data) with basic objects only, while in the Kimura/Shaw model non-structural data

may be associated with any object and not just basic ones.

This is not a fundamental difference, because, as far as this aspect is concerned, either
model can be simulated by the other. We did not find any need for non-structural
data to be associated with composite objects. Our approach makes both the model
and its implementation simpler, because of the clearer distinction between composite

and basic objects.

2. Our model does not make provision for shared objects. A shared object is one that
is an immediate child of more than one composite object. For example, if the same
mathematical formula appears in different places in a document, it is possible to create

a single abstract formula object that is shared by all objects that need it.

We have limited our model to exclude sharing simply for convenience. Shared objects
can certainly be included in the model similar to the way that Kimura has done.
However, shared objects are not widely used in documents and introduce complexities
in the implementation that can be avoided with a different approach as Furuta et al.

has indicated:

Since trees are more comprehensible than general graphs, and since many
documents are primarily tree structured, it may be more desirable to use
a tree-structured model and to include general relations among objects as

subsidiary information. [Furut82]
We have taken this approach and have found that references can be used to model
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shared objects where necessary.

3. The Kimura/Shaw model does not include object attributes as described on page 15.

2.1.1 Document Descriptions

In order to describe a document fully, three components have to be specified: content,
syntax, and semantics.

The content of the document is the text of the document, i.e. the string of characters
that forms the visible part of the document. Ideally this should also include any drawings,
figures or other graphical material. '

The syntaz of a document defines the structure of, and relationships between the various
objects that constitute the document.

We define the semantics of a document to be a description of the visual form or layout
into which the content would be formatted. It is therefore that which gives “meaning” to

the (abstract) objects in the document.

2.2 Outline of the System

Figure 2.1 illustrates the framework for the solution that we propose. The user creates a
document using an editor embedded in the system. Four pieces of information are needed:
the class of the document, its content, syntax and semantics. The document class and
content is determined by the user, while the syntax and semantics are determined by the
document class. For example, the document class could be: business letter, technical paper,
personnel form or legal document. General document classes have been given here as
examples, obviously there could be many types within each class.

The document syntax and semantics are predefined in a file or data base of class de-
scriptions. The data base may contain several semantic definitions (or layouts) for the same
document class. This document class data base may be created by the user, but normally

is composed by a “document designer”.
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Figure 2.1: Framework for a document preparation system

While the document is being entered, the editor uses the information in the document
class data base to assist the user in creating a correct document. The editor creates an
abstract, internal representation of the document that conforms to the class syntax and
contains the content of the document.

The abstract document can now be compiled into a concrete one by selecting a semantic
definition from the document class description and generating the appropriate output. Two
concrete representations are normally required: a screen display which approximates the
final appearance of the document, and a description of the document in the input language
of some target formatting system. It is highly desirable that the screen display be generated
continuously as the document is being created, providing an interactive editing environment.

The individual parts of the system are described in more detail in subsequent sections.

2.3 Document Class Descriptions

The document class data base contains the definitions of various classes of documents. Since

a class description is basically a document template (a document description without the
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content part), a class description consists of two parts: a syntactic and a semantic part.

2.3.1 Document Syntax

This part of a class description contains a description of the syntax or structure of any
document belonging to the given class. The structural description includes definitions of
the classes (types) of objects in the document class, their composition, and how they may
be combined to form documents of the given class. For example, in a “business letter”
class there could be such object classes as sender’s address, receiver’s address, salutation,
body and close. The body might be composed of other classes such as paragraphs and lists.
One of the syntax rules might state that the salutation must be preceded by the receiver’s
address and succeeded by the body.

Although not purely syntactic information, this part of an object class definition also
includes a list of all attributes associated with that class of object, the possible values that
each attribute may have, and the default value of each attribute.

The syntax description further defines which references may exist between objects.

Some of the questions that should be answerable by queries to the syntactic portion of

the class data base are the following [IBM84a]:
1. What are legal objects for the given document class?

2. Does a given object have attributes and what are they? (This is not to be confused

with determining the value of an attribute.)
3. Are the attributes of an object mandatory or optional?
4. What is the structure of the content of an object?

(a) Which objects can occur in the content?
(b) In what order can they occur?
(c) Which content objects can occur more than once?

(d) Which content objects are optional?
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5. Are references allowed from this object to any other object and if so, to which other

objects?

2.3.2 Document Semantics

This part of the data base contains layout information for each object in the class data base.
It assigns “meaning” to the objects in a document class by specifying the form or layout in
which each object would be presented to the user.

More than one layout may exist for the same document class. For example, a document
belonging to the class “technical paper” may have layouts corresponding to the publication
standards of various technical journals. There may therefore be a one-to-many relationship
between object structure definitions and object layouts.

The information contained in the semantic definition is used at least twice: to determine

how an object will be displayed on the screen, and to generate a target document description.

2.4 The Editor

The editor is an easy-to-use, interactive, formatter-independent document editor that allows
the user to create documents in a consistent way, regardless of which formatting system
is eventually used. The user specifies the document class and the editor obtains the class
description from the class data base. The user then proceeds to give a declarative description

of the document.

2.4.1 User Interface

Apart from the usual editing functions of copying, moving and deleting selected portions
of text, a create function is provided through which the user creates specific document
objects (such as headings, paragraphs, and list items). The attributes of each object are
obtained from the syntax description of the document class, while the semantic description

determines how each object is displayed (as it is being entered).
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The editor is syntax-driven. It allows the user to create only legal objects (ones defined
in the current document class) in their legal positions (determined by the syntax rules). For
example, while entering the receiver’s address in the business letter mentioned earlier, the
user is not supplied with any other create function than that of creating the salutation. This
implies a dynamic, state-driven user-interface: the functions/commands/menus available
to the user change as the state of the document or edit-session changes. Specifying a new

document class can cause a complete new menu-tree to be constructed.

The editor therefore takes the generator approach in language-oriented editor construc-
~ tion [Campb84]. This approach ensures that only acceptable constructs are created by the

user.

2.4.2 Partial Documents

While the generator approach ensures that only correct documents are created, it can very
easily become too restrictive to be useful. For example, a user might want to create the
body of a letter before having to be concerned with the receiver’s address. However, the
document grammar may force the user to create the address before the body. Not only
does the editor have to be flexible enough to allow the user to create objects in any order
(but not necessarily at any position), but it also has to be flexible during the editing of an

existing document.

Usually when something is modified, it is taken apart and then reconstructed. Similarly,
while a document is being edited (modified), it is possible that one or more of the syntax
rules must be violated in order to perform the edit effectively. The editor must allow the
user freedom to violate the rules “temporarily” while still encouraging the correction of

such a violation as soon as possible.

In addition to the standard syntax-driven editing environment, we make use of an un-
constrained editing environment (called the patch area), as well as introduce the notion of

partially correct documents to provide the required flexibility.
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2.4.3 Structure Editing vs. Content Editing

One advantage of dealing with documents in a structured way, is the fact that the scope
of operations can be specified in terms of the substructures of the document. For example,
the sections of a chapter, or the items in a list may be rearranged, or the cursor may be
moved to the start of the next chapter with a single command.

To be able to make use of the structure of the document, a user must be able to identify
and indicate the various substructures clearly and unambiguously. However, not enough
information is contained in the standard paper-like representation of a document for a user
to do this. It is furthermore confusing for the user to have to operate on a hidden data
structure, where the target of an operation is not directly connected to the context in
which the operation is issued. A clear distinction must therefore be made in the editor
between structure editing and content editing. At the same time, however, the transition
between structure editing and content editing should be natural for the user and should not

necessitate a change in the way which the user thinks about what he is doing.

2.5 Concrete Representations

A “compiler” embedded in the system generates formatter-dependent document descrip-
tions. Using the abstract document object produced by the editor, together with a semantic
description obtained from the class data base, it generates a document description in the
target formatfer’s description language.

The display hardware is regarded as just another target formatter and the display in-
structions as its document description language. The only difference is that the system must
be able to generate the document description for the display in an incremental manner. This
is necessary because the user views and manipulates this representation interactively and
it is not feasible, from a performance point of view, to regenerate the entire document each
time that the user makes a change, or even just displays a different portion of the document.

The output produced for the display gives a visual feedback of the objects that are in
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the document. What the user sees on the screen may not necessarily be the exact form of
the final output, since the display unit might not have the capability to display the object in
its true form. However, the visual feedback enables the user to recognise each object clearly
and determine that the display is approximately what is required. The user is not distracted
by formatting commands as in document descriptions for batch-oriented formatters.

It is not always clear how much semantic information should be included in the document
class definitions. If enough semantic information is included, the compiler should be able
to generate a document description for any target formatter without making assumptions
as to the availability of external layout or macro definition files. Since it has a complete
description of every object (including the parameters that will determine its layout), the
compiler can generate the appropriate tag and/or macro definitions for declarative target
formatters, or sequences of formatting commands for procedural ones.

However, most declarative target formatters already have layout files for the various
styles that are being used. To be able to use these layouts, they have to be “translated”
and included in the semantic part of the class data base. It might be much better if the
semantic part of the class data base only specifies the semantic class to which an object
belongs. Additional semantic information necessary to format the object is then obtained

by the target formatter from the external layout file.
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Chapter 3

A Document Class Description Language

Document class descriptions lie at the heart of the system outlined in the previous chapter.
These descriptions govern the editing process as well as the production of the correct con-
crete representation of the abstract document. This chapter describes the language with
which a document class designer describes a document class. First, however, the design

goals for the language are discussed.

3.1 Design Goals

The major design goal for the class description language can (somewhat obviously) be stated

as follows:

To provide a language through which the syntax and semantics of a document
class can be defined as needed for the document preparation system outlined

before.
The following sub-goals are identified:

1. The language must enable a class designer to describe the syntax of commonly used

document classes.
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2. It must be possible to describe several sets of semantic information for each document
class. In particular, it must be possible to give semantic descriptions for rendering
a document in the different input formats required by various batch formatters, as
well as in a form suitable for human consumption, and display and manipulation on

a terminal screen.

3. It must be easy to write a class description using the language. The language must

be expressive, simple and concise.

4. As pointed out in item 2, one of the concrete representations of a document must be
suitable for the interactive manipulation of the document. Class descriptions must
therefore be amenable to incremental processing in order to produce the concrete
representation interactively and incrementally as the document is changed by the

user.

Further sub-goals may be defined for that part of class description language that defines

the syntax of a document class:

1. The language must be able to express the complete syntax of commonly used document

classes. The syntax definition of a document class includes:

e Identifying classes of objects (such as sections, headings, lists, and paragraphs)

that compose the document class,

e Defining the composition of object classes from more elementary classes. This
may be done by using such concepts as containment, sequencing, repetition (both
bounded and unbounded), selection, optionality, and the interchange or shuffle

of other objects,

e Defining which cross references may exist between object classes (e.g. a sentence
may refer to a section or an item in the bibliography) and under what circum-

stances, and

e Defining attributes of object classes, such as those described on page 15.
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2. Notational conveniences (succinctness) must be provided for the class designer while

maintaining the readability and comprehensibility of the class description.

3. The syntax description must be implementable in the sense that it must be possible
for the document preparation system to use the description as a guide (or template)

for creating and editing documents of that class.

3.2 The Language

The class description language defines classes of objects. An object class definition consists
of three parts: a structure definition, attribute definitions, and a semantic definition. Using

a Backus-Naur-Form (BNF) notation we may write:
<class_definition> ::= <struct_def > <attr_defs> <semantic_def >;

In the subsections that follow, each of these class definition components will be discussed

in more detaill.
Note: When discussing class descriptions, and where the intent is clear, the term object

is often used for object class.

3.2.1 Structure and Composition

The syntax of the structure definition part of an object class definition can be defined in

BNF as follows?:

<struct.def> ::= <class_.name>
| <class_name> <composition>

<composition> ;1= = <ezxtended_reg_exp> <exceptions>

I

<ezceptions> €

!Appendix A contains the complete BNF definition for a class description, used in generating a class
description parser.

2The symbol ¢ is used to denote the null expression.
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|+ <ezcept list>
<except.list> = <except>

| <ezcept>, <except_list>
<ezxcept> = +<class_.name>

| —<class_.name>

In other words, the structure definition of a class consists of a class name (<class_.name>),
followed by an optional definition of the composition of the class (<composition>). The
composition is defined with the use of extended regular expressions (<eztended_reg_ezp>)
that may be modified by a list of exceptions (<ezcept list>).

If a composition is given in the structure definition of an object class, the objects in
that class are composite objects. If no composition is given, the objects are basic objects
(cf. Section 2.1).

Extended regular expressions are regular expressions [Hopcr79] extended with some
notational conveniences. The simplest extended regular expressions are the null expression
and an expression consisting of a single object class name. They respectively define an

empty composite object and one composed of a single other object. For example,

heading = TEXT;
TEXT;

defines heading to be a class of composite objects composed of a single object of the class
TEXT. TEXT in turn is a class of basic objects. Recall that a basic object has non-structural
data (text, in this instance) associated with it.

More complex expressions are constructed from symbols and operators. Symbols are
just class names as defined by the user. The valid operators are defined in the next few
paragraphs.

An extended regular expression defines a set of compositions, any one of which would
be a legal composition of an instance of the object class that is being defined. For example,

the expression
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a(b|c)d
defines the two compositions a b d and a ¢ d. Writing
z = a(blc)d

means that an object belonging to the class z must be composed of an a-object, followed
by either a b-object or a c-object and followed by a d-object.
If a and b are extended regular expressions (not necessarily only symbols), then the

following are also extended regular expressions and have the indicated meaning:

a b Sequencing. Any of the compositions defined by a followed by any of the compositions

defined by b, e.g.
z=cd
defines a class z object to be composed of a class ¢ object followed by a class d object.

alb Choice. Any of the compositions defined by a or any of the compositions defined by

b, e.g.
z = c|d
defines a class = object to be composed of either a class ¢ object or a class d object.

a#b Shuffle [Shaw78|. All compositions defined by a are interleaved with all compositions
defined by b. The relative order of the symbols in each composition remains the
same, but the symbols of one composition may be interleaved with that of the other
in any way. Formally (using the notation of [Hopcr79)), for a, b € S*, where S is

some alphabet and * indicates Kleene closure,

a#b = {a1brazbs...arby | a;, b; € S* and a = ajay...ak, b= bibs...b}
For example, if w, z, y and z are symbols, then

wzH#yz = {wryz, wyrz, WY2T, ywrz, ywar, y2WI}
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Table 3.1: Operator Precedence

highest ()
7+
sequencing
|

lowest #

a?  Optional. The compositions defined by a or the empty set.

Unbounded repetition, including none. Any of the compositions defined by a may

occur in sequence any number of times, including not at all.

a+ Unbounded repetition, but at least once. Any of the compositions defined by a may

occur in sequence any number of times, but it must occur at least once.

(a) Grouping. Brackets are used in the normal mathematical sense to impose precedence

on operations.

a*<n> Bounded repetition, including none. <n> must be a number greater than 0. Any
of the compositions defined by a may occur in sequence any number of times less

than or equal to <n>, including not at all.

a+<n> Bounded repetition, but at least once. <n> is a number greater than 0. Any of
the compositions defined by a must occur (in sequence) at least once, but not more

than <n> times

Table 3.1 shows the precedence of the various operators.

When writing object definitions, spaces and newline characters are significant only in
that they delimit symbols.

Figure 3.1 defines a document class TechDoc to be composed of a titlePage, a body, and
an optional appendices. The body is composed of either one or more parts or one or more

sections, etc. Only one basic object is defined, namely TEXT. Figure 3.1 also illustrates a
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%basicObject = paragraph | ordList | unordList | example;

TechDoc = titlePage bodyﬁappendices?;

titlePage = title author date abstract?;
title = TEXT;

author = TEXT;

date = TEXT?;

abstract = YbasicObject+;

body = part+ | section+;

pars heading Y%basicObject* section¥;
section = heading %basicObject* section*;
heading = TEXT;

paragraph = TEXT+;

ordList = (listItem | listPart)+;

unordList = (listItem | listPart)+;
listItem = paragraph %basicObject*;
listPart = paragraph (paragraph | example)*;
example = (alLine | %basicObject)+;

aLine = TEXT;

appendices = section+;
TEXT;

Figure 3.1: Class description for a general document



further notational convenience, namely the fact that expressions (or sub-expressions) may be
given symbolic names by preceding the name with a %. %basicObject has for example been
defined as a symbolic name. All occurrences of such symbolic names in other expressions are
treated as standing for the expression itself. In other words, they define parenthesized string
substitutions and are similar to parameterless macros found in programming languages.

<ezcepltions> define an optional list of exceptions that modify the composition of an
object and its constituents and are similar to the exceptions defined in SGML [ISO85]. It is
often convenient to define one object in terms of another, for example “A is like B, except
that it does not contain any Y objects” (e.g. an abstract is like a section, except that it
does not contain any subsections), or “A is like B, except that object Y can be added at
any point”.

Two kinds of exceptions may be specified: inclusions and exclusions, indicated by “+”
and “-” respectively.

An inclusion indicates that objects of a given class may appear anywhere in an object
or its constituents. For example, index term definitions can usually appear anywhere in the

body of a document. It is therefore convenient to write
body = part+ | section+ : +indexTerm

rather than having to include indexTerm in the definition of body as well as in the definition
of a copy of every object class that form constituent objects of body.

Inclusions of the form +R;, + Ry, . . ., + R, modify the composition of the affected object
classes by replacing each symbol and unary operator (if any) that applies to that symbol

alone, with another expression. A sequence
Sn

where S is a terminal or non-terminal symbol and 7 is either nothing or one of the unary

operators 7, %, or +, is replaced with

(Bi # B3 #---# R, # S)n
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The operators # and | remain unaffected. The class definitions that are modified in this
way (the affected object classes referred to before), are the class definitions of all objects
that may appear in the tree rooted by an object of the class being defined. For example,
using the indexTerm example of before and referring to Figure 3.1, the class definitions
for body, heading, paragraph, ordlist, unordList, listItem, listPart, example, and
aLine will all be modified. In other words, the definitions of all the composite objects that
may appear inside body, as well as that of body itself will be modified. In particular, the

definition for body with indexTernm included, results in the production
body = (indexTerm* # part)+ | (indexTerm* # section)+

An exclusion has the effect of removing the excluded symbol, together with the opera-
tor(s) most tightly bound with it, from the expressions that define the composition of the
affected objects. It is therefore as if the excluded symbols do not appear in the composition
expressions at all.

For example, in the class description of Figure 3.1 example is defined as
example = (alLine | %basicObject)+;

which implies that examples may contain examples. If we wish to prohibit this, we could

use an exclusion:
example = (aLine | %basicObject)+ : -example;
which effectively changes the composition of example to
example = (alLine | paragraph | ordList | unordList)+;

and also changes the composition of any listItem or listPart that appears inside an

example. The composition for listPart is, for instance, changed from
listPart = paragraph (paragraph | example)*;
to
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listPart = paragraph (paragraph)*;

If at any point a symbol is specified as both included and excluded, the exclusion takes

precedence.

Finally, note the difference between basic objects and empty composite objects:
someObject;

defines someObject to be a basic object, and all basic objects have user text associated with

them, even though the text might be the null string. On the other hand,
someObject = ;

defines someObject to be a composite object with no children or constituent objects. In
this case someObject has no user text associated with it and, in terms of our model, has
no content. The usefulness of this is illustrated in the footnote example given in the next

section.

3.2.2 Attributes

In the previous section we have described the structure definition part (<struct_def>) of

an object class definition
<class_definition> ::= <struct_def> <attr_defs> <semantic_def >;

In this section we describe the <attr_défs> part, namely the definition of any attributes
that may be assigned to an object class. As pointed out in the previous chapter, attributes
are characteristics of objects other than their composition and content. For example, we
can assign the attributes emphasis and quote to the basic object TEXT of Figure 3.1 by
writing
TEXT
{ emphasis: (some, more, most) = NONE,

quote : (yes, no) = no

b

33



Attribute definitions are optional and, if present, appear in braces ({}) after the structure
definition of an object class. An attribute definition has three components: the attribute
name (e.g. quote), its type (or alist of possible values that it may have, e.g. (yes, no)), and
the attribute’s default value (no). The attribute type can be specified as an enumerated
type (as in our example), a reference (or pointer) type, or as one of the built-in types
INTEGER, REAL, CHAR or STRING.

The formal syntax of attribute definitions is given by the BNF definition:

<attr_defs> ;:= ¢
| { <attr_list> }
<attr list> ::= <attr_def>
| <attr_def>, <attr_list>
<attr_def> = <attr_name> : <attr_val list> = <default>

-

| <attr_name> ~ <class.name> = <default>

For the sake of brevity we have not included the formal definition of <attr_val_list> as this
may be obtained from Appendix A.

The default value of an attribute (<default>) can be any of the values given in the
list of allowable values, or one of NONE or REQUIRED. NONE indicates that the attribute has
no value and REQUIRED indicates that the user has to specify a value at the time that an
instance of the object is created.

The second form of <attr_def >, the “-form, defines an attribute that has as value a
reference to any object of the indicated class. The only valid default values for such an
attribute are NONE and REQUIRED.

As an example of the use of both forms of attributes, we have added emphasised and
quoted text as well as footnote objects to the class description of Figure 3.1 as shown in
Figure 3.2. Note that attributes have been defined for three object classes: title, TEXT,
and fnRef. In the new description, paragraphs are defined as composed of a mixture of
TEXT and fnRef objects, where the latter are empty composite objects (they cannot have

any constituent objects and cannot contain any text). A fnRef object has an attribute that
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%basicObject = paragraph | footnote | ordList | unordList | example;
%anyText = TEXT (TEXT | fnRef)*;

TechDoc = titlePage body appendices?;

titlePage = title author date abstract?;
title = PLAIN_TEXT

- { footref - footnote = NONE };

author = PLAIN_TEXT;

date = PLAIN_TEXT?;

abstract = YbasicObject+;

body = part+ | section+;

part = heading Y%basicObject* sectionx;
section = heading Y%basicObject* sectionx*;
heading = PLAIN_TEXT;

paragraph = %anyText;

footnote = YbasicObject+ : -footnote, -fnRef;
ordList = (listItem | listPart)+;

unordList = (listItem | listPart)+;

listItem = paragraph %basicObjectx*;

listPart = paragraph (paragraph | example)*;
example = (aLine | %basicObject)+;

aline = }anyText;

appendices = section+;

PLAIN_TEXT;
TEXT
{ emphasis: (some, more, most) = NONE,
quote : (yes, no) = no
};
fnRef =

{ footref "~ footnote = REQUIRED };

Figure 3.2: General document class with footnotes
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must be initialised by the user and that points to a footnote object. Footnotes have been
added as footnote objects (and included in the %basicObject symbolic definition) and
are composed of one or more %basicObjects. However, neither footnotes, nor references to
footnotes may appear within a footnote because of the exclusions specified in the footnote
structure definition.

Notice that we have added a second basic class, PLAIN_TEXT, that, in contrast with the
TEXT class, does not have any attributes. Attributes can always be set by the user, but
in this document class definition there are instances where we do not want the user to be
able to set the attributes of text (such as the emphasis attribute for example), because the

attribute values are dictated by the environment (e.g. author names in the title page).

3.2.3 Semantic Definitions

The previous two sections described aspects of the class description language that relate to
the syntax of a document class. This section describes that part of the language that defines
the semantics of a document class, i.e. that part that defines how concrete representations
of an abstract object are to be produced.

The concept that is used is that of “unparsing schemes” [Medin82, Reps84]. The term
unparsing scheme refers to the fact that an abstract document can be represented by a parse
tree of the concrete document. An unparsing scheme therefore specifies how the parse tree
should be “unparsed” to obtain the concrete representation.

For example, the document fragment of Figure 3.3 can be regarded as having the struc-
ture depicted in Figure 3.4. An intelligent enough parser (e.g. a human being) could parse
this fragment to produce the parse tree of Figure 3.5. This parse tree is a representation of
the abstract document of which Figure 3.3 is a concrete representation.

In order to produce a paper-like document once again, the parse tree must be unparsed,
i.e. each node must be visited in the correct order and the appropriate output must be
generated at the appropriate time. Different unparsing schemes may be used to obtain

different concrete representations.
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Appendix H
Hyphenation

It is better to break a word with a hyphen than to stretch
interword spaces too much. Therefore TEX tries to divide
words into syllables when there’s no good alternative avail-
able.

But computers are notoriously bad at hyphenation. When
the typesetting of newspapers began to be fully automated,
Jokes about “the-rapists who pre-ached on wee-knights”
soon began to circulate.

Figure 3.3: A document fragment. (Taken from [Knuth84])

An unparsing scheme is a set of unparsing methods. Each method describes one way
of unparsing a class of objects (or class of nodes in the parse tree). More than one method
may be given for a single class within one scheme. The two paragraphs in the document
fragment in Figure 3.3 illustrate why this might be necessary. Both objects belong to the
class paragraph, but they are unparsed differently (the first line of the second paragraph is
indented) depending on whether they follow a heading or not. The unparsing scheme that
produces the document in the form of Figure 3.3 therefore needs at least two methods for
unparsing paragraphs.

An unparsing method is composed of a (possibly empty) set of variables and a set of
unparsing actions. An unparsing action is an ordered pair (a transition and a program) that
associates an unparsing program with a transition in a finite automaton constructed from
one of the extended regular expressions that defines the class syntax. An unparsing program
is a sequence of unparsing instructions that is executed when the particular transition is

3

made during execution of the finite automaton®. Unparsing instructions produce output

3Every automaton is assumed to have at least two “transitions” that are always executed: one labelled

initial that leads into the start state and is always executed to start the automaton, and one (or more)
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appendix

section
Appendix H
heading
PLAIN_TEXT
Hyphenation
paragraph
TEXT

It is better to break a word with a hyphen than to stretch
interword spaces too much. Therefore TEX tries to divide
words into syllables when there’s no good alternative avail-

able.

paragraph

TEXT
But computers are notoriously bad at hyphenation. When

the typesetting of newspapers began to be fully automated,

jokes about
TEXT (quoted)
the-rapists who pre-ached on wee-knights

TEXT
soon began to circulate.

Figure 3.4: Structure of a document fragment
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heading ———— PLAIN_TEXT

appendix section paragraph —— TEXT
TEXT

paragraph TEXT (quoted)
TEXT

Figure 3.5: Parse tree representing a fragment of an abstract document

and/or change the value of the variables accessible to the method.

For example, Figure 3.6 shows a fragment of the syntax and semantics of a document
class to which the document fragment of Figure 3.3 might belong. The semantic definition
for each object (the part enclosed in square brackets [...]) defines a scheme named gml
that produces a concrete representation of the object in a form suitable to serve as input
to a GML formatter. Only one method has been defined for each object and in each case
the method has been named Standard®. Notice that a method may have parameters. For
example, the method defined for section has a single integer parameter. Parameter passing

is always by value. The actions for each method are listed in the form
<transition> : <program>

e.g. section: @Standard(1) is one of the actions for the appendices object.
Figure 3.7 shows a finite automaton constructed for the appendices object defined

in Figure 3.6. Each transition in the automaton is labeled with the symbol causing the

labelled final that leads from any final state to an imaginary “truly final” state.
“There is nothing special about the name Standard — any name could have been used, and each method

could have had a different name. The only requirement is that different methods for unparsing the same

object within a single scheme, have unique names.
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appendices = section+
[ /gml/
Method Standard()
initial: @nl ":APPENDIX.",
section: @Standard(1),
final:
endMethod
1;

section = heading paragraph* sectionx
[ /gml/

Method Standard( level:integer )
initial: @nl ":H" level ".",
heading: @Standard(),
paragraph: @Standard(),

section: if level < 6 then
@Standard(level+1)
else
@Standard(level)
endif,
final:
endMethod
1;
heading = PLAIN_TEXT
[ /gml/
Method Standard()
initial: ,
PLAIN_TEXT: @Standard(),
final:
endMethod
1;

paragraph = TEXT+
[ /gml/
Method Standard()
initial: @nl ":P." @nl,
TEXT: @Standard(),
final:
endMethod
1;
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PLAIN_TEXT
[ /gnl/

Method Standard()
initial: ,
final:

endMethod

1;

TEXT ;
{ emphasis : (some, more, most) = NONE,
quote : (yes, no) = no
¥
[ /gml/
Method Standard()
initial: 1f quote = yes then
II:Q.II
endif
if emphasis = some then
":HP1."
elseif emphasis = more then
":HP2."
elseif emphasis = most then
":HP3."
endif ,
final: if quote = yes then
":eQ."
endif
if emphasis = some then
":eHP1."
elseif emphasis = more then
":eHP2."
elseif emphasis = most then
":eHP3."
endif

endMethod
1;

Figure 3.6: A sample class definition. The unparsing scheme generates a document descrip-

tion in GML.
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section [@Standard(1)]

initial ﬂ section O

[@nl ":APPENDIX. 'EIU [@Standard(1)]

final []
Figure 3.7: Finite automaton and unparsing programs for appendices objects

transition (e.g. section), as well as its unparsing program in square brackets. For simplicity

we have assumed a single unparsing scheme with only one method.

The Standard method in the gml scheme for appendices states that upon visiting an
appendices node during the unparsing process, the output : APPENDIX. (a GML formatting
directive) must be generated on a new line. Immediate children of the appendices node be-
longing to the class section should then be visited and unparsed with the Standard method
in the gml scheme defined for section. In other words, the method section.gnml.Standard
(using a Pascal-like notation) must be used to unparse section nodes when they are children
of an appendices node. As we have mentioned before, section.gml.Standard expects a

single integer parameter indicating the section level.

Unparsing methods for basic objects such as PLAIN TEXT and TEXT can only have
initial and final unparsing actions. It is implied that the text associated with a ba-
sic object is generated (emitted) between the initial and final unparsing actions for that
object.

We now give a more formal definition of the syntax of the semantic definition of a given
object class. Since the semantic definition contains many lists of things, some of which may
be empty and others not, and some whose items must be separated by special delimiters and

others not, and since standard BNF notation for lists are cumbersome, we use the following
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notation in describing the syntax of the semantic definition:
. <zzr®>*t ..
is used as shorthand for

. <zzz_list> ...

<gzz list> 1= <zre> | <zzr> O <zzr list>
and
. <zzIO®>* ..
is used as shorthand for

. <n_zzz_list> ...
<n_zrzlist> = ¢ | <zzz_list>

<zzz_list> 1= <zzz> | <z12> @ <zrz_list>

In this notation, ©® can be any non-alphanumeric symbol or delimiter such as a comma, or
a space. In the latter case it may be omitted altogether.

The syntax for the semantic definition of an object is then as follows:

<semantic_def > ::= [ <scheme>* ]
<scheme> 1= [<scheme_name>/ <method>*
<method> ::= Method <method_name> <parameters>

<local_vars>

<action,>*
endMethod
<paremeters> = ( <var_def,>*)
<var.def> = <var_name> : <var_type>
<local_vars> n=¢e | { <var.def,>T }
<action> = <trams_name,>% : <program>
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A <program> is simply a sequence of unparsing instructions. Appendix B contains a
description of all available unparsing instructions, while Appendix C.1 contains a complete
class description with three unparsing schemes.

Note that in general there are three kinds of “variables” that are used in unparsing

programs:

1. Attributes are associated with an object and are global to all unparsing methods in the
object class. As far as the unparsing programs are concerned, attributes are read-only

varlables.

2. Method parameters are variables that are passed to a method when the latter is invoked
(from within an unparsing program) to unparse an object. Method parameters are

the same as call-by-value parameters in the C programming language.

3. Local method variables are variables that are local to a method and are similar to

local variables in a C subroutine.

At least one unparsing scheme must be provided in a class description, namely one that
generates a concrete representation for the display screen. The first scheme defined for the
root object of the document class is always taken to be this scheme. For example, in the
class description given in Appendix C.1, the object TechDoc is the root of the class, and
the scheme display, the first scheme given in the root’s semantic description, will be used
for display purposes.

In general, the unparsing scheme used for display purposes differs from other unparsing
schemes only in that the Qunparse instruction may not be used in any display unparsing
program. This restriction results from the fact that the display unparsing scheme must
be executable in an incremental fashion and, as explained in Appendix B, the Qunparse
instruction allows for the unparsing of arbitrary subtrees in the document tree, which leads
to difficulties in determining at which point to restart the unparsing process when doing

incremental unparsing.
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3.3 Adequacy of The Language

The question arises as to the completeness of the class description language. Is it possible
to describe any class of document using the language? We will examine the question in two
parts, namely whether the language is powerful enough to describe the syntax (structure)
of any document, and whether the semantic descriptions are powerful enough to provide

any concrete representation.

3.3.1 Syntax

We define a document class to be context-free if the class structure can be described by
a context-free grammar (see for example [Hopcr79] for the definition and properties of
context-free grammars). Our class description language is sufficient to describe any context-
free class. This is true since every context-free grammar can trivially be represented in our
language by simply using the sequencing and choice operators.

On the other hand, if we disregard attributes and references, our language is no stronger
than a context-free grammar, and can therefore only describe context-free classes. In order
to prove this, we show that for any class description written in our language, there is
a context-free grammar that describes the class’ structure (disregarding attributes and
references).

First we show that the extended regular expressions that we use, are equivalent to
regular expressions: The sequencing operator as well as choice (), nullable repetition (*),
and grouping are all the standard operators found in regular expressions. The operators
optional (?), non-nullable repetition (+), and the bounded repetitions are regular because
there are well-known ways in which they can be written in terms of the other regular

operators, e.g.
a? = (a])
and

a+ = aax*
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In order to show that the shuffle operator (#) is regular, we construct a finite automaton
that accepts the language described by r1#r2, where r; and ry are regular expressions®.

Let My = (P, %, 61, po, F1) be the deterministic finite automaton (DFA) accepting rq,
where P is a set of states, ¥ an alphabet, §; the transition function, py the start state, and
Fy the set of final states. Let My = (Q, X, 83, qo, F2) similarly be the DFA accepting r2. The
(non-deterministic) cross-product machine M' = (PxQ,%, 6", [po, qo], F1 X Fa) will accept

r1#ry, if 8' is defined as follows:

For p,re P,¢qg,s€Q,and a € I,
8'([p,ql, @) = [r, 5]

if and only if
Si(p,a)=randq=s

or
8(q,a)=sandp=r

We have already indicated on page 31 how extended regular expressions with exceptions
are re-written as extended regular expressions without exceptions. It is therefore now clear
that our extended regular expressions are indeed equivalent to regular expressions.

Having shown the extended regular expressions to be regular, it is straightforward to
show that for any class description written in our language, there is a context-free grammar
that describes its structure (disregarding attributes and references): Since a context-free
grammar can be constructed for every regular set [Hoper79|, it is possible to construct
a context-free grammar describing the composition of every composite object class in a
document class description. If we combine these grammars into a single one by repeatedly

applying the substitution operation for context-free languages, we obtain a single grammar

®Ginsberg [Ginsb77] has shown shuffle to be regular using a non-constructive proof. The constructive
proof given here (for which the help of J. H. Johnson is gratefully acknowledged) is only provided to give an

indication of how this operator is implemented in the prototype of Chapter 5.
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for the class description. The closure property of context-free languages under substitution
[Hopcr79] ensures that this grammar is also context-free.

As we have seen, the description language makes use of an extended BNF notation to
define a context-free grammar for each document class. The right hand side of each rule
in the grammer is an extended regular expression, which we have shown to be equivalent
to regular expressions. This is an important aspect of the description language and allows
us to combine features of finite state automata (FSAs) with those of push-down automata
(PDAs) [Hoper79)] in the construction of a syntax-controlled document preparation system.

It is well known that context-free languages are recognised (or generated) by PDAs.
PDAs however, do not lend themselves easily to incremental execution. One automaton is
constructed for the complete grammar, and it is a non-trivial task to reconstruct the status
of the PDA if the user moves to an arbitrary point in the document and wishes to edit it.
Things become much simpler, however, if methods similar to those of recursive transition
networks (RTNs) [Woods70] are used to handle the grammar.

In our implementation the right-hand side of each rule in the class grammar is repre-
sented by a finite state automaton. In other words an FSA is used to recognise and/or
generate the constituents of each object in the document class. The FSAs are used to de-
termine the objects which can be added to the document, as well as the locations where
the objects can be added. The legality of structural editing operations are determined by
using the appropriate FSA to test the result. The alphabet of the FSA is simply all the
symbols that appear on the right hand side of the rule. The FSA does not make a distinc-
tion between terminal and non-terminal symbols — non-terminals are not expanded, but
are treated as terminals®.

The push and pop operations of RTNs are manifested in the context (FSA) switching
that occurs when the user traverses the structure of a document, as well as in the recursive

calls to unparsing methods that are executed while a document is being unparsed.

®This contrasts with Johnson’s INR system [Johns85] (a system for the manipulation of finite automata)

in which non-terminals are always expanded and their FSAs embedded in their parent’s FSA.
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Since our language describes context-free classes, we must ask the question whether all
document classes are context-free. This is certainly not the case, since one might want to
construct a document class that corresponds to the context-sensitive language {a‘b'ct|i > 0}
— e.g. the class of rectangular tables having three rows. (See for example [Hopcr79) for
more on this and other context-sensitive languages.) However, it is not clear that such
document classes are all that useful. In fact, empirical evidence suggests that similar to
programming languages, most useful document classes are indeed context-free, or can quite
easily be modelled with context-free languages. For example Kazman [Kazma86| describes
how the text of the Oxford English Dictionary (OED) is being structured using finite state
transduction. That project strongly indicates that the structure of the OED can for the
most part be described using only regular grammars, and the OED arguably belongs to one
of the more complex document classes.

Further evidence in support of the adequacy of our language lies in the fact that our lan-
guage closely resembles SGML [ISO85], which has recently been accepted as an international
standard for document description by the International Organisation for Standardisation.

There are, however, two concepts that are not supported in our language:

1. The language does not support the idea that the order of the constituent objects of an
instance of a particular class is imposed by its semantics (i.e. the unparsing scheme
used to unparse the instance), rather than by the instance itself. In other words an

instance of a class described in our language is always a sequence and never a set.

While this is not a major deficiency, it could have been useful. For example, different
publications may require the same components in a bibliography entry, however, the
order in which they must appear might differ (e.g. author, title, publication, date as
opposed to author, date, title, publication). If it had been possible to let the order be
determined by the unparsing scheme, it would have been possible to define a single

document class that catered for both cases.

The reason for this deficiency is twofold: First, the language does not make a distinc-
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tion between variable arity composite objects and fixed arity ones as in the ALOE
system [Medin82]. It is therefore not possible to refer to the n** child of an object
in an unparsing scheme (specifying for example that it should be unparsed in the ith
position), and know beforehand which class that object would belong to. The sec-
ond reason has to do with the mechanism with which an abstract object is unparsed,
namely by executing a finite automaton. The automaton takes as input the class
names of the children of the object in a left to right order. It is certainly possible to
define a function that will permute the input as desired, given that certain limitations
are introduced with regard to variable arity objects. However, this introduces further
complications with respect to incremental unparsing, and the added capability was

not deemed worth the added complexity.

2. Our language does not support shared objects, simply because, as explained in Sec-
tion 2.1, the document model on which the language is based, does not support it. It

is possible, however, to simulate shared objects through the judicious use of references.

3.3.2 Semantics

The language is certainly not complete as far as its semantic descriptions are concerned
because it is, for example, not possible to describe a concrete representation that involves
breaking the document into pages’. This in itself should not be of great concern because it
is not the intention that the language be able to describe arbitrary concrete representations.

There are two major types of concrete representations that we wish to describe: those
that are intended for human consumption (e.g. as displayed on the screen), and those that
are intended as input to batch document formatters. For the former it is not necessary that
the language cater to every conceivable representation of the document since the display
representation is not the final one. These concrete representations only serve as ways to

present still-to-be-formatted documents to the user in a way that is reasonably familiar to

"The language provides no mechanism for keeping track of the number of lines on the current page, nor

is there a way of deferring the unparsing of objects such as footnotes to the appropriate time and place.
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the user. It is sufficient that document objects only be displayed in distinctive ways so that
the user can recognise them for what they are, and distinguish between them.

The second class of concrete representations are more demanding, however, because we
would like to write unparsing schemes to produce input for any targét formatter. Is this
possible with our language?

There is no definitive answer. We have tried several experiments and have used the
language to write unparsing schemes for a variety of formatting languages, such as GML,
IATEX, TROFF and Script, as well as for a class description of class descriptions and so far
it has proven to be adequate (see the appendices for examples of class descriptions).

The ability to write unparsing schemes for any formatting language is not our only
concern. One of the design goals for the class description language has been the ability to
specify several sets of semantics for a single document class. The purpose behind this being
the desire that once a document has been created, the system should be able to generate
the appropriate input file for any batch formatter that is supported. While this is possible
for some document classes and some batch formatters, it is not universally possible.

The input language for every batch formatter implies some document syntax. Sometimes
the syntax for two different formatters are so different (because they are based on different
document models) that it becomes extremely difficult, and sometimes even impossible to
incorporate them into a single class description. As an example we have given a partial
class description for business letters in Appendix C.2. It contains semantic definitions for
GML and IATRX. Even though the models for letters in GML and IATEX are quite different,
they could have been combined in a single class description (as in Appendix C.2) if it had
not been for the incompatibility of their close objects. For GML the appropriate class
description is

close = greeting name;
greeting;

name = aline+;

aline;

which corresponds to the GML fragment
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:CLOSE.final greeting text
author’s name

title, etc.

:eCLOSE.

In IATEX on the other hand, it is necessary to define the close object as

close = name greeting;

greeting;
name = aline+;
alLine;

in order to generate the INTpX specification

\signature{author’s name \\ title, etc. }
\closing{final greeting text}

The two models are incompatible in terms of our class description language because the
IATEX close requires its constituent objects in the opposite order as the GML close.
The only way that this situation can be handled in our class description language is to
incorporate the content of one of the objects as an attribute of close — for example as was
done in Appendix C.2.

This example shows that it is necessary to first find a common model between formatters
before writing the appropriate class description and unparsing schemes, rather than writing
a class description and then adding unparsing schemes as the need arise. The latter approach
might not always be successful.

Lastly it needs to be pointed out that the method currently being used to assign unpars-
ing programs to transitions, namely by referring to terms in the regular expressions, does
not exploit the full power of finite automata. A single term in a regular expression might
correspond to more than one transition in a finite automaton (even in a deterministic finite
automaton), but one might want to assign different unparsing programs to each transition.

Consider for example the definition
dL = tH? 4dH? (t+ d7)+
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TERMS  DEFINITIONS

termAl

termA2 A block of text, called a definition, describing the term(s) listed
next to and immediately above it.

termB1 Some terms, like the C group below might not have a definition.

termC1
termC2

Figure 3.8: A sample definition list

which can be interpreted as the structure of a definition list (dL) that consists of optional
headings (tH and dH) for the terms (t) and term definitions (d) in the list. Such a definition

list is illustrated in Figure 3.8.

Figure 3.9 shows a finite automaton for this definition list class. Notice that although
each term (symbol) appears only once in the regular expression, both dH and t label more
than one transition in the automaton. It is quite conceivable that one would like to assign
different unparsing programs to the different t-transitions, or have different final unparsing
programs, depending on which final state is reached. Unfortunately the language currently

does not allow this.

This is a notational difficulty and not an inherent deficiency in the model. It is possible,
for example, to design a class description editor that would allow the user to specify class
structure with regular expressions or by building finite automata explicitly or a combination
of both. By request the user can then view the definition in either form and can assign
unparsing programs by indicating specific transitions or by using the transition labels as
is currently the case. Although this difficulty is an inconvenience, it does not limit the
unparsing schemes that the user can specify (even if the above interface is not supplied).
The user can simulate the effect by using variables to record information that otherwise

would have been implied by the transition.
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Figure 3.9: DFA accepting definition list

In summary: our class description language is sufficient to describe the syntax of any
context-free document class. It provides additional descriptive power through the use of
attributes, which includes references between objects. Empirical evidence suggests the se-
mantic descriptions are sufficient to describe the input to many batch document formatters,
provided that the batch input is modelled correctly by the syntax description. Finally we
note that the mechanism used to associate semantics with syntax needs to be enhanced if

full use is to be made of the power of the description language.
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Chapter 4

Theoretical Foundations

In this chapter we discuss some of the theory and algorithms that are necessary for the
construction of a prototype system based on the framework outlined in Chapter 2 and
using the class description language described in Chapter 3. In particular, we address the
issues of dynamic menu construction and the handling of incomplete documents. On first
reading the reader might want to skim through this chapter and return to it after having

read Chapter 5.

4.1 Menus and Their Construction

As will be seen in in Chapter 5, menus form a central part of the user interface of the
prototype system.

There are two general kinds of menus in the system: static menus and dynamic menus.
As their name implies, static menus remain the same throughout an editing session. Dy-
namic menus on the other hand, change depending on the current state of the editing
session.

The create menu is a dynamic menu. This menu is usually displayed at the bottom
of the screen while the document structure is being edited. It indicates which document

objects, if any, can be legally inserted after the current object. Obviously, as the cursor
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is moved around the document, or as new objects are added to the document, the create
menu will change.

The create menu is calculated dynamically from the finite automaton constructed for
the object class of the parent of the current object:

Suppose a correct object X of class z currently consists of a sequence of objects a;...ay,,
and that the cursor is currently on ag, 0 < k < m (k = 0 implies the cursor is on a
phantom first child, in which case a;...ax is the null sequence). We wish to construct a
menu containing the names of all classes of objects that may be inserted after aj without
violating the document class syntax.

Let §:(S,X) — S be the transition function of the finite automaton® that accepts all
members of object class z, where S is the set of states and ¥ the machine’s input alphabet.
Assume that the automaton is in state s, after having read symbol ar. The set of objects

that should appear in the create menu is then
{ b]8(sk,bak+1...am) is an accepting state }

Note that we have extended § in the usual way (see for example [Hopcr79]) by writing
8(s, a1...an,) for §(8(...6(6(s, a1), az)...,@m—1), @m). This set can be calculated in a straight-
forward manner by executing the automaton with ay...agbag,1...a,, as input string, using
different values for b. The only values for b that have to be considered are those that label
transitions from s;. We will assume that the function CONSTRUCT MENU( z, X, k ),
whose parameters correspond to the symbols that we have used, exists and that it returns

the create menu set as just described (i.e. the set of acceptable b’s).

Example

Let = be the class defined by the DFA of Figure 3.9 on page 53, and let

X=tHt

!We have assumed here that the automaton is a deterministic one. This does not have to be the case,

however, and a similar approach can be taken for a non-deterministic automaton.
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with tH the current object (i.e. k = 1, and s = 2). CONSTRUCT_MENU will return the
set {dH, t} , since both §(2, “dH t”) and 6(2, “t ¢”) are final (accepting) states. Only dH
and t will be considered since no other transitions are possible from state 2.

Note that if the current state of the automaton is stored with each symbol that is part
of the document (e.g. s;, is stored with a), it is not necessary to re-start the automaton
from its start state every time, but it can be started in state s; with input bag+...am. Nor
1s it always necessary to scan all of bag+1...am for each b, since for a given b, scanning can
be terminated as soon as an a; has been read for which the corresponding stored state is
~ the same as the current scan state. It is of course necessary that the state information
saved with the document is updated whenever the document structure changes (e.g. when

an object is added or deleted).

4.2 Partial Documents

As was pointed out in Section 2.4.2, the system must be able to accept partially complete (or
incomplete) documents. There are at least two ways in which this goal may be achieved.
The two methods differ with respect to the degree of incompleteness that is allowed in
documents.

Tail incompleteness allows only the “tail” or “right end” of an object to be incomplete.
This can be accomplished by regarding all the states in the automaton accepting a legal
composite object to be final states. This approach allows for a front-to-back creation process,
but leaves unresolved issues pertaining to the editing of a correct document. For example,

suppose an object class x is defined as
x = (a|b) cx*
and an instance of the class was created with composition
X, =accc
If the user should now decide that a must be replaced with b, there is no easy and convenient

way of accomplishing this while still allowing only tail incompleteness. One either has

56



to define elaborate transformation rules, or use the mechanism of moving portions of the
document to a non-syntax checking environment for editing and later insertion in the syntax
checking environment.

Sub-sequence tncompleteness on the other hand, allows an object to be accepted if it is
composed of any sub-sequence of a legal composition, where a sub-sequence is defined as in

[Aho74, page 361], namely

A string = = aja3...a, is a subsequence of string y = b1b;...b,, if x is y with zero

or more symbols deleted.

This approach allows the user to create sibling document components in any time order.
Sub-sequence incompleteness also allows for much more flexibility when an existing doc-
ument is edited. For example, the problematic case discussed under tail incompleteness
can be handled in a natural way if sub-sequence incompleteness is allowed. In fact, tail
incomplete documents form a subset of sub-sequence incomplete documents.

The prototype system described in Chapter 5 supports sub-sequence incomplete docu-
ments by modifying (at appropriate times) the finite state automaton constructed for each
object class. The automata are modified by adding null (¢) transitions: If §:(S,X) — S
is the transition function for such an automaton, with S the set of states and ¥ the input
alphabet, then for every r,s € S and a € ¥ such that §(r,a) = s, the transition §(r,€) = s is
added to the automaton. This is equivalent to changing the class grammar to one in which
e.very symbol is an optional one.

Unfortunately supporting sub-sequence incompleteness introduces a potential complica-
tion for the user. It is conceivable that a user might create a document that is sub-sequence
incomplete and then not know how to complete it. This is because the create menu contains
the names of all classes that may be inserted at the current point, and not just those that
will complete the document with the least number of insertions. In fact some items in the
create menu might cause the document to be even more incomplete. One way to partially

overcome this problem is for the system to mark those items in the menu that will complete
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the parent of the current object in the least number of insertions. If there are any required
objects, at least one of them will always be marked.

For a given object class z, we use Mz to denote the original automaton, and Mz, to
denote the one with the additional e-transitions. Mz, is used to unparse (format) an object
of class z and to construct a create menu as described in Section 4.1. Mz is used to check
for document completeness (described in the next section) and to mark those items in the
create menu that are necessary to complete the parent of the current object with the least

possible number of insertions (see Section 4.2.2).

4.2.1 Checking for Document Correctness

A composite object is checked for correctness by executing the finite state automaton for
that object, using the object’s children as input symbols. If all the input symbols have
been “read” and the automaton is in an accepting (or final) state, the object is correct
and complete as defined by that automaton. In this way Mz, can be used to “accept” a
sub-sequence incomplete object, while Mz can be used to check that the object is indeed
complete before output is generated for a target formatter.

We will assume that the function TEST_CORRECT( z, X ) exists that tests whether
the sequence of symbols X = a;...a,, is accepted by the automaton for objects of class z.

The function returns TRUE if the sequence is accepted, and FALSE if the automaton fails.

4.2.2 Marking Menu Items

The user must have some indication of how to complete a sub-sequence incomplete object
using a minimal number of insertions. The system therefore marks these items in the menu.
Note that once a user selects any item in the menu, the menu as well as the markings may
change completely.

There are three steps in the marking process:

1. Construct a finite automaton (we will call it MX,,,) that provides all possible legal

ways of completing the incomplete object.
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2. Determine the shortest path(s) from the initial to final state(s) in MXpn.

3. Use the set of shortest paths calculated in step 2 to mark the appropriate items in

the create menu.

The details of these steps are given next.
Let X, = a1a3...an, be a sub-sequence incomplete object of class z, and let ¥, be the set
of all symbols in the regular expression defining the class z. Let MX,, be a finite automaton

accepting the language
Tia1BiasX}. . LiamXy

where X% is the Kleene closure of ¥;. Construct MX,,;, to accept the intersection of the
languages accepted by MX, and Mr and find R, the set of shortest paths from the start
to any final state of MX,,;, (Section 4.2.3 describes an algorithm that constructs MX,;,
and R simultaneously). All elements (paths) in R have the same length |r|, and each one
defines one way of completing X, using the least number of insertions. R is used in the
marking algorithm we describe next.

Let Menu be the set of menu items (symbols) determined as described in Section 4.1.
If a. is the current object, i.e. the one after which a new object is to be inserted (¢ = 0
indicates the new object must be inserted in front of a;, the first object), then the algo-
rithm of Figure 4.1 can be used to mark the appropriate items in Menu. The functions
LEFTMOST MATCH and RIGHTMOST_MATCH are given in Figures 4.2 and 4.3.

In order to prove MARK correct, we need two lemmas:

Lemma 1 LEFTMOST MATCH produces the output as specified in at most O(|r|) time

if its inpul is as specified.

Proof: If ¢ = 0, the test of line 2 fails upon loop entry so that lines 3-5 are not executed
and line 6 returns O, which satisfies the output conditions.
For 1 < ¢ < |a| the loop of line 2 is executed until ¢ > c. ¢ and j both start at 1,

with 7 being incremented by 1 in every iteration. This ensures that a; is compared with a

59



© 0o oA ® N

MARK( X,, ¢, Menu, R )

INPUT:

X, = aj...am asub-sequence incomplete object of class z.

¢ - the index (in X,) of the current object.

Menu - the set of names of objects that may be inserted after a..

R - the set of shortest paths from the start to any final state of MX;,.
OUTPUT:

Menu, with those symbols marked that will allow X, to be completed in the
least number of insertions.
begin

n := |r|, the length of any element of R
if( |X,| > n )then return Menu with no items marked
for all r = rry...r, € B do
j = LEFTMOST MATCH( X,, ¢, r )
k := RIGHTMOST-MATCH( X,, c+1, 1)
1i=7+1
while( ¢ < k )do
mark r; in Menu
ti=1+1
endwhile
endfor
end

Figure 4.1: The marking algorithm
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LEFTMOST MATCH( a, c, )

INPUT:
strings a and r, with a a sub-sequence of r.
0<c<]a

OoUTPUT:

the smallest 7 > O such that a;...a, is a sub-sequence of rq...r;
begin
t:=3:=1
while( ¢ < ¢ )do
if(a; =
1:=1+1
endif
Ji=7+1
endwhile
return j — 1
end

Figure 4.2: LEFTMOST MATCH

RIGHTMOST_-MATCH( o, c, r )

INPUT:
strings a and r, with a a sub-sequence of r.
0<c¢<|qf
OUTPUT:
the largest j < |r| 4 1 such that a,...q|q| is a sub-sequence of r;...r);|
begin
i :=|a]
j=r|
while( ¢ > ¢ )do
if( a; = r; Jthen
1=1—-1
endif
Ji=7-1
endwhile
return j + 1
end

Figure 4.3: RIGHTMOST MATCH
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different r; (in line 3) in each iteration. Since 7 is incremented only if a; = r;, and since a
is a sub-sequence of r (in other words every a; is equal to at least one unique r;), the loop
of line 2 will terminate after at most |r| iterations with ¢ = ¢+ 1, a. = r;_; and a;...a. a

sub-sequence of ry...r;_;. Line 15 returns j — 1, which proves the lemma.

Lemma 2 RIGHTMOST_MATCH produces the output as specified in at most O(|r|) time

if its input is as specified.
Proof. Similar to Lemma 1.

‘We can now prove that MARK is correct: If X, is complete, it will be as long as any
element in R and no itemns have to be marked, in which case line 1 returns the correct
answer.

Since each element of R defines one way of completing X, using the least number of
insertions, and since the loop of line 3 operates on each element of R, we only have to show
that lines 4-9 mark all the required items defined by a given r € R. In other words, we
have to show that all symbols (in a given r) that can be inserted between a. and a.+1 such
that the new a;...a)y is still a sub-sequence of r, are indeed marked by lines 4-9.

By Lemma 1, 5 of line 4 is the smallest 5 such that a;...a. is a sub-sequence of r;y...r;.
Similarly, by Lemma 2, k of line 5 is the largest k such that a.i1...a) is a sub-sequence
of rk...r|,|. There are therefore no symbols in r other than r;;...ry—; that can be inserted
between a. and a.+1 while still satisfying the condition that a;...a; and a.11...a|q) are sub-
sequences of the remaining left and right portions of r respectively. Lines 6-9 mark exactly
these symbols in Menu. We therefore conclude that the marking algorithm is correct.

If a straight linear search is used in line 8, the worst case time complexity of the marking

algorithm is O(| R||r||Menul).

4.2.3 Constructing MX,,;, and R

The set R of shortest paths from the start to any final state of MX,,;,,, can be constructed

at the same time that MX,,;, is being constructed. In fact, it might not be necessary to
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construct the complete MX,,;, as it is sufficient to find only the final state nearest to the
start state in order to completely construct B. The construction algorithm for R is as

follows:

1. Form the state s] = [sys3], where sy is the start state of Mz and s; the start state of

MX,,. Set level(s}) to 0 and add it to a (hereto empty) list of states L.

2. Start at the front of the list L, and for every state s’ = [s1s2] in the list do the

following:

(a) For every symbol a € &, form the state ¢ = [61(s1,a)82(s2, a)], where &; and &,
are the transition functions of Mz and MX,, respectively. If ¢ is well defined and
is not in the list L, set level(q) to level(s') + 1 and append ¢ to the end of L.
Note: The states that are created are states in MX,,;, and the level of such a

state indicates the shortest distance that it is from MX,,;,’s start state.

(b) For every new state s’ added to L, keep a “from”-list of state-symbol pairs. A
pair (g, b) is added to the list for s’ only if s’ can be reached from state ¢ with a

single transition labeled b, and s' has a higher level than q.

(c) Stop scanning and adding new states to L as soon as the first level-group that
contains at least one final state is completed. A final state has the form [f; f2],

where f; is the final state of Mz and f; is the final state of MX,.

3. The shortest paths that we are looking for are defined (in reverse order) by following

the “from”-links starting at each final state in L.

This algorithm constructs the states of MX,,;, in a breadth-first order. This follows from
the fact that the standard breadth-first traversal technique is used in step 2(a), namely
keeping a queue of states (nodes) still to be “visited” and “visiting” them in the order they
were added to the queue [Stand80]. That states added to this queue are indeed states in
MX i, follows directly from the definition of an “intersection machine” [Hopcr79] and the

state construction of step 2(a).
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The level number assigned to each state in step 2(a) is the state’s distance from the
start state since the start state is assigned a level of 0, every other state is assigned a level
one greater than that of its predecessor, and the states are visited (created) once only and
in breadth-first order.

Since we are only interested in the shortest path(s) from the start to the nearest final
state(s), the algorithm terminates correctly in step 2(c) once all states at the same level of
the first final state have been created. It is necessary that all states at that level be created
to ensure that all shortest paths are found; for example more than one of them may be a
final state. By nature of their construction, the “from”-links define all these shortest paths.

Steps 2(a) and 2(b) and the test in step 2(c) are executed at most |Q1xQz| = mazimum
number of states in MX,,;, times. In step 2(a) every symbol in ¥, has to be examined
once for a cost of O(|Z;|). Determining that ¢ is not already in L has a worst-case cost of
|Q1 X Q2| assuming a simple linear search is used. Adding a “from”-link to a state can be
done in constant time so that the total cost of step 2 is O((|Zz| + Q1% Q2|)|@1% Q2|). The
set of shortest paths can be obtained in step 3 in O(]r||R|) time, which gives the complete
algorithm a time complexity of O((|2;] + |Q1 X Q2])|@1 % Q2] + |r||R|). While this might
seem excessive because of the |Q1xQ2|? factor, it should be pointed out that on average the
intersection machine has less than |@; x Q2| states and furthermore, the algorithm might
not have to create all of the states in the machine. In addition it seems that the automata

for objects in most practical document models tend to have only a few states.

Example

Let
z = a?((alb)c(a|b)?)*
and

X, = aaba
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Figure 4.4: The minimised finite automaton Mz that accepts a?((a|b)c(alb)?)*

b,c b,c a,c b,c a,b,c

) a g a 3 b A a @
Figure 4.5: The minimised finite automaton MX,

Mz is given by Figure 4.4 and MX,, by Figure 4.5. Using the method outlined in Section 4.1,
it is straightforward to determine that the create menus for each of the five insert positions
in X, each contain the items a, b and ¢. Table 4.1 illustrates the construction of MX,,;, and
R. The first two columns show the state list L, while the last column shows the from-list
for each state. The other three columns show the transition functions for MX,,;,. Note
that Table 4.1 does not define the complete MX,,;,, but only those states and transitions
used to construct R.

Figure 4.6 shows the “shortest path machine” constructed from the from-lists. In this
DFA each path from the start state to a final state defines one of the paths in R. In other
words, there are three ways of completing X, with only two insertions, namely aacbac,

aacbca, and acabea. If we perform the marking algorithm for each of the five insert positions,
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Table 4.1: States and Transitions in MX nin
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Figure 4.6: DFA accepting all shortest paths from start to final states in ZMXpin

we obtain the following:

a a a a a
blalb|ajb]|b|b|a]|b
c c c c c

The menu at each insert position is shown between square brackets ([]), while maarked menu
items are underlined. Note that we have constructed all five menus merely asan  1illustration.

The system constructs only the menu for the current position.
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Chapter 5
A Protbtype

This chapter describes the design and implementation of a prototype system built within
the framework presented earlier!.

We provide a syntax-controlled structured document editor that uses the information
given in document class descriptions to guide the user in creating documents that conform
to the particular document classes. We use the term syntax-controlled simply to distinguish
it from the normal syntax-directed programming language editors that can handle only one
set of syntax rules. Our system can switch dynamically between different sets of syntax
rules (class descriptions).

The system uses the dynamic menu construction algorithm described in the previous
chapter to present the user with menus that only allow the creation of correct documents
(in the sub-sequence incomplete sense). The system is also capable of producing different
output files for the same document, each output file being suitable as input for a different
target batch formatting system.

The driving engine of the system is a set of finite automata; the automata accept the
languages defined by the regular expressions that in turn define the object classes in the

class description. A finite automaton is built for each object class using a construction

!This dissertation, excluding the figures and tables, was written using an early prototype of the system.
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algorithm based on the one given in [Aho86|. These automata are used to determine the
objects which can be added to the document, as well as the locations where the objects can
be added. The automata are also used to drive the unparsing (or formatting) process that
produces the output file(s).

The automata that are built are “minimised” non-deterministic finite automata (NFAs).
The automata are minimised in the sense that they do not contain any epsilon (null) tran-

sitions, equivalent states are combined, and unreachable states are removed.

5.1 The User Interface

In order to attain the system goals that have been outlined in Chapter 1 the following design

decisions were made:

1. It must be possible to present a document to the user in a form that is reasonably

close to the final form that the user wants.

2. Not only the document content should be presented to the user, but also the document

structure.
3. The user must be allowed to edit the document structure explicitly.

The approach that has been taken in the prototype is one that could be termed an anno-
tated what-you-see-is-almost-what-you-get (WYSI-A-WYG) approach. A WYSI-A-WYG
display of the document is annotated with labels that indicate the structural aspects of the
document. For this purpose the display screen is divided into two parallel windows. The
formatted document content is displayed in a text window and the structure labels in a
structure window as illustrated in Figure 5.1%2. A third window at the bottom of the screen
is used for status and menu display.

Both the structure and text windows are used to edit the document. The structure

window is used to edit the document structure. Structure editing refers to the editing

2Unless otherwise stated, all screen examples are based on the class description in Appendix C.1.
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<start of document>
TechDoc
titlePg
title The Document Title
date August 19, 1986
body
section
heading 1 Some Heading Text
para This is the first paragraph of the section. Maybe I should
use a "real" document as an example rather than one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.|}
section
heading 2 Second Section Heading
<end of document>
I - Text]
Insert Character

Figure 5.1: Annotated WYSI-A-WYG display showing document structure and content

The labels in the structure window on the left are the class names of the objects

in the document. The indentation of the labels indicates the hierarchical levels.

The text window on the right shows the document content, formatted to have

an appearance similar to the final document.

The (empty) window at the bottom is a menu window that may contain a create
menu or other command menus at appropriate times. Its upper right corner
indicates the class name of the current object (the smallest object containing

the cursor), and the lower right corner indicates the current edit mode.

The block of reverse video at the end of the second paragraph is the cursor.
Here the size of the cursor is a single character. The cursor always indicates the

scope of editing operations, and its size is therefore adjustable by the user.
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operations that add, delete, copy, or move objects (instances of object classes) to, from,
or in the document, consistent with the document class description. For example, to add
a third paragraph to the first section of the document in Figure 5.1, we have to edit the
structure of the section, giving it a fourth child. Structural editing only influences the
content of the document in so far that the objects being created, deleted, copied, or moved,
“take their content with them”.

The text window is used to edit the document content. The content editing operations

do not influence the structure of the document.

5.1.1 Structure Editing

While the user is editing the document structure in the structure window, the cursor always
covers the current object and its constituents, as illustrated in Figure 5.2. This ensures that
the user can clearly see which part of the document is involved in the edit.

During structural editing, the system ensures that the document’s structure conforms
to the structure of its class as described in the class description. In other words, the system
ensures that the document is a valid instance of its class. This is mostly done by not
providing the user with an opportunity to create an incorrect document. At any point in
time the system presents the user only with a legal set of commands.

Figure 5.3 and Figure 5.4 illustrate how objects are added to a document. In Figure 5.3
the structure cursor is positioned® on the title object inside the title page, and the create
menu indicates that an object author can be created and inserted after the current object
by pressing the U key.

The way in which an item is displayed in the menu indicates whether it is a required
item or an optional one: required items are displayed in bold typeface while optional ones
(like author) are displayed in normal typeface.

Figure 5.4 shows the result after the user has typed a U. The author syntax requires a

®The complete list of commands (such as cursor movement commands) that are provided by the system,

is given in Appendix E.
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<start of document>

TechDoc
titlePg
title The Document Title
date August 19, 1986
body

seclion
heading 1 Some Heading Text

This is the first paragraph of the section. Maybe I should
use a "real" document as an example rather than one like this
which is, what, a meta document?

para

And another paragraph, just to give the document a little
more body.

section
heading 2 Second Section Heading

<end of document>

Section]

[75 Section
Structure

Figure 5.2: The cursor during structure editing

When editing the document structure, the cursor always covers the current

object (and its constituents). The menu window contains a list of objects that

may be inserted after the current object.
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TechDoc
titlePg

<start of document>

The Document Title

date August 19, 1986
body
section
heading 1 Some Heading Text
para This is the first paragraph of the section. Maybe I should
use a "real" document as an example rather than one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.
section
heading 2 Second Section Heading
<end of document>
Title
U aUthor ]
Structure
Figure 5.3: Ready to add an author object by typing U
<start of document>
TechDoc
titlePg
title The Document Title
author g
date August 19, 1986
body
section
heading 1 Some Heading Text
para This is the first paragraph of the section. Maybe I should
use a "real" document as an example rather than one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.
section
heading 2 Second Section Heading
<end of document>
r Plain text]
Insert Character:
Figure 5.4: The author object has been added. The user may now enter text.
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single child of class PLAIN_TEXT which is automatically created by the system. Furthermore,
since PLAIN_TEXT is a basic object (and therefore has user-supplied text associated with it),
the system automatically goes into text edit-mode in anticipation of the user’s text entry.
The diamond that is displayed is the null string placeholder and is displayed when the text
associated with a basic object is the null string. It is replaced by whatever text is entered
by the user.

Note that the “current object”, as indicated by the name in the top right corner of
the menu window, is not author but its first child, a PLAIN TEXT object. By design, basic
objects are not annotated with their class names in the structure window.

The preceding example shows how new objects are only added after the current object.
The use of phantom first children allows this approach to be valid even for adding an object
as an only child or inserting it at the start of a list of objects. If the class syntax and
current composition of a composite object permits new objects to be inserted in front of
the first child of the composite object, the system conceptually inserts a phantom child at
that position. A phantom child is classless and is only visible if the cursor is positioned on
it. It acts as a placeholder for objects that may be inserted at that position. We will show
two examples of its use.

After the user has entered the author’s name in Figure 5.4, and issued the “next”
command to position the cursor on the date object, the screen will be as shown in Figure 5.5.
Note that the command menu shows that an abstract can be inserted after the date in
the title page by pressing the A key. Figure 5.6 shows the result after such an operation.

The syntax for abstract, defined as
abstract = %basicObj+ : -footnote, -fnRef
which is equivalent to
abstract = (paragraph | ordList | unordList | example)+

requires that abstract has at least one child. The system therefore wants to create it

automatically. However, since the system cannot determine to which class the child should
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TechDoc
titlePg
title

author

<start of document>

The Document Title

G de V Smit

body
section
heading 1 Some Heading Text
para This is the first paragraph of the section. Maybe I should
use a "real" document as an example rather than one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.
section
heading 2 Second Section Heading
<end of document>
Date
A Abstract ]
Structure
Figure 5.5: Ready to add abstract after date
<start of document>
TechDoc
titlePg
title The Document Title
author G de V Smit
date August 19, 1986
abstract Abstract
e
body
section
heading 1 Some Heading Text
para This is the first paragraph of the section. Maybe I should
use a "real” document as an example rather than one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.
section
2
O Ordered list P Paragraph U Unordered list X eXample ]
Structure

Figure 5.6: Adding the first child of an object
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<start of document>
TechDoc
titlePg
title The Document Title
author G de V Smit
date August 19, 1986
abstract Abstract
para
body
section
heading 1 Some Heading Text
para This is the first paragraph of the section. Maybe I should
use a "real" document as an example rather than one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.
section
heading 2 Second Section Heading
[ Text]
Insert Character

Figure 5.7: The abstract has been added

belong, it positions the cursor on the phantom first child of abstract, and provides the user
with the opportunity to specify the class of the real first child. Once again the user only
has to type the appropriate letter. Figure 5.7 shows the result after a P has been typed.

The fact that all the object names in the create menu of Figure 5.6 are displayed in
bold, does not mean that they are all required objects, but rather that the required object
can belong to any of the indicated classes.

A second example of the use of a phantom first child is shown in Figure 5.8, which shows
the screen after the command “previous” has been executed in the situation depicted by
Figure 5.2.

Structural editing operations other than the insertion of new objects (e.g. deletion,
nesting, extraction, and changing objects’ classes — cf. Appendix E.5) are usually performed
by first marking sub-trees in the document tree and then specifying the operation to be
performed. The operation is only executed if the result will be a correct document in the
sub-sequence incomplete sense. The marking operation (at least during structure editing)

is such that only complete sub-trees can be marked. For example it is possible to mark a
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TechDoc
titlePg
title

date
body

section
heading

para

para

section
heading

<start of document>

The Document Title

August 19, 1986

1 Some Heading Text

This is the first paragraph of the section. Maybe I should
use a "“real" document as an example rather than one like this
which is, what, a meta document?

And another paragraph, just to give the document a little
more body.

2 Second Section Heading

<end of document>

?

l S Section

Structure]

Figure 5.8: The cursor positioned on a phantom first child

This is the result of issuing the command “previous” in the situation depicted

by Figure 5.2.
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sequence of sibling sub-trees such as three consecutive sections in a chapter; but it is not
possible to mark some children of a node together with a sibling of that node, such as the
last few paragraphs of a section together with the section that follows it. Editing operations
that require such marking have to be performed in separate steps.

The algorithms used by the structure editing commands of Appendix E.5 are given in

Appendix F.

5.1.2 Content Editing

Content editing operations are performed in the text window on the right hand side of
the screen and do not influence the structure of the document. All standard text editing
operations are provided: insert, overwrite, search, replace, copy and move.

The cursor always serves as a text selector, selecting the text that will be deleted, copied
or moved. The size of the cursor can be set to that of a character, a word, a sentence, a text
block?, or an arbitrary portion of text. Only text that the user has entered can be selected,
and not any text generated by system. For example, the cursor cannot be positioned on
the word Abstract just above the cursor in Figure 5.7. Issuing the cursor up command will
move the cursor to the text on the date line.

Deletion of content does not change the document structure. The user may select a
portion of text that spans more than one object and delete the text. This may result in one
or more empty basic objects in the document, but the document structure would remain
unchanged.

Text that is deleted is copied to a patch area that is described in the next section.

5.1.3 The Patch Area

The patch area is a special, non-restrictive editing environment that facilitates the moving
and copying of portions of the document, as well as making drastic changes to a document.

Anything that is deleted from the document currently being edited, is automatically copied

*A text block is the text forming the content of the current basic object.
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to the patch area, from where the user can copy it again to any place in the document. The
user can edit the patch area by issuing the “Patch” command.

There is no difference between editing the patch area and editing a normal document,
except that the system uses a standard, non-restrictive class grammar for the patch area.

The syntax for this grammar is

%Sigma = ob; | oby | obg ... ob,

patch = %Sigmax

where the ob;’s are all the object classes (basic and composite) that are defined in the
current document class grammar. Furthermore, the syntax for each composite object class

ob, 1s re-written as
ob, = %Sigmax

The result is that any combination and/or composition of any object is accepted in the
patch area.

A standard, very simple unparsing scheme is used for the patch area. There is only
one scheme, namely for the screen display, and each object class has only one method.

Composite objects are unparsed with the method

Method Patch
init: Qvs(2),
Sigma: @Patch(),
final:

endMethod

and basic objects with

Method Patch
init: @vs (1) @bold "<class>: " Qebold,
final:

endMethod

where <class> is the class name of the basic object as it would appear in the create menu.

Furthermore, all composite objects are labeled in the structure window (if its start label is
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<start of patch area>
Patch
titlePg
title Plain text: The Document Title
date Plain text: August 19, 1986
abstract
para Text: [J
body
section
heading Plain text: Some Heading Text
para Text: This is the first paragraph of the section. Maybe I should
use a
quote Text: real
Tegt: document as an example rather than one like this
which is, what, a meta document?
para Text: And another paragraph, just to give the document a little
more body.
section
[ EDITING PATCH AREA Text
Insert Character]

Figure 5.9: Editing the patch area

null, the menu name is used - cf. the next section). Figure 5.9 shows the patch area if the
complete document of Figure 5.7 were copied into it.

The contents of the patch area can be inserted in the document only if the result will
be a correct document (in the sub-sequence incomplete sense of Section 4.2). An incorrect
insert operation is rejected with a message indicating the reason for the rejection.

The patch area has its own patch area that behaves exactly like the normal patch area,

except that the user cannot edit it.

5.1.4 Menus

Menus form a central part of the user interface. They are implemented in such a way that
an item can be selected either by moving a cursor or pointer to the appropriate item, or by
a single keystroke. In this way provision is made for both the novice and experienced user.
The novice does not need to remember a variety of commands, while the expert is not held
up by having to point to menu items.

The dynamic construction of the create menu described in Section 4.1 requires that the
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of each of the strings that we now describe:
OList
ITtem
para 1. Start label. This string is used to mark the start of the
object in the structure window and is put as close as
possible to the start of the object (see Section
"strdisp"). In Figure "strings"™ OList, Item, and para are
all start labels. The null string ("#") will cause no
eltem label to be displayed.
Ttem
para 2. End label. This string is used to mark the end of the
object in the structure window, and is put as close as
possible to the end of the object (see Section "strdisp").
In Figure "strings™ eOList and eItem, are end labels. The
null string will cause no label to be displayed (as for
eltem example with the paragraph object) .
Item

para . Menu key. This single character indicates which key will

select this object class name when the name 1s displayed in
the create menu.

eltem
eOList
Paragraph
I F Footnote O Ordered list P Paragraph U Unordered 1list X eXample ]
Structure

Figure 5.10: Start and End labels; Menu key and name

document class designer provides some extra information in the document class description.
Four strings are required for each object class defined. Two of the strings are used in
menu construction and the other two when generating the structure display of an object.

Figure 5.10 illustrates the use of each of the strings that we now describe:

1. Start label. This string is used to mark the start of the object in the structure window
and is put as close as possible to the start of the object (see Section 5.2.2). In
Figure 5.10 OList, Item, and para are all start labels. The null string ("") will cause

no label to be displayed.

2. End label. This string is used to mark the end of the object in the structure window,
and is put as close as possible to the end of the object (see Section 5.2.2). In Figure 5.10
eOList and eltem, are end labels. The null string will cause no label to be displayed

(as for example with the paragraph object).

3. Menu key. This single character indicates which key will select this object class name

when the name is displayed in the create menu. It is displayed next to the object’s
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menu name in the create menu (e.g. 0, P, U, and X) and may not be null.

4. Menu name. The object class name as displayed in the create menu (e.g. Ordered
list, Paragraph, etc.). It is also used to indicate the current object type in the top

right hand corner of the menu window and therefore may not be null.

The above strings are defined (in quotes) in the order listed and delimited by “<” and
“>” immediately following the unparsing declarations for each object class. See for example

the class descriptions in Appendix C.

5.1.5 Attributes

Values are assigned to attributes through the “Edit Attributes” command (which may be
tied to a function key). This command opens an attribute window in which all the attributes
of the smallest object containing the cursor are displayed together with their current values
as illustrated in Figure 5.11.

The user is allowed to edit the attribute values through one of three methods, depending

on the type of attribute.
1. If the attribute is of one of the built-in types, the user must type in a value.

2. If the attribute is a user-defined type, an option list of possible values is displayed

and the user must select one.

3. If the attribute is a reference to another object, the user has to type in the name (id)

of the other object. This other object does not have to exist yet.

5.2 Concrete Representations

Once an abstract document object has been created by the editor, it is possible to generate
a concrete representation of the object using the unparsing schemes defined in the class

description. This section describes how this is accomplished.
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<start of document> Text
TechDoc emphasis: some more most
titlePg
title The Document Title
author G de V Smit
date August 19, 1986
abstract Abstract
para Let’s pretend this is the abstract of this document.
body
section
heading 1 Some Heading Text
para This 1s the first paragraph of the section. Maybe I should
CECIENS - ccunent as an example rather tLhan one like this
which is, what, a meta document?
para And another paragraph, just to give the document a little
more body.
section
heading 2 Second Section Heading
[ Textq
Attributesi

Figure 5.11: Editing object attributes

The attributes of the smallest object that contains the cursor are displayed in

the attribute window and may be edited by the user.
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Initially, we will assume that the finite automata constructed from the class description
are deterministic ones (DFAs), and that the document being unparsed is a complete one.
We will then show how both these assumptions can be relaxed to allow for non-deterministic
finite automata as well as incomplete documents. -

We represent a DFA by an array of states, where each state consists of an array of
transitions and a flag indicating whether it is an accepting state or not. Transitions are
represented by ordered triples of the form (symbol, next_state, program_list). A program_list
is a list of unparsing programs identified by a (scheme, method) ordered pair.

We use the term environment to refer to a set of variables and their current values.
The environment of an unparsing method consists of the parameters passed to the method,
any local variables declared in the method, as well as a copy of a standard set of variables

defining the following:

left margin

right margin

current line length

fill mode (character or word)
Justification (left, right, or centre)
underlining (on or off)

bolding (on or off)

reverse display (on or off)

One could regard the above set of variables as a standard set of parameters that are passed
to all methods. Any changes made to them by an unparsing program in a method only
affects that method and any methods that it calls. Notice the correspondence between an
environment and the stack frame in some implementations of programming languages such
as Pascal.

An abstract document object is represented as a tree (called the document tree), with
each constituent object in the document a node in the tree. The procedure to unparse any

subtree of the document tree is given by the following pseudo-code:
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dfa := the DFA describing this node’s class;
Determine the current unparsing scheme and method;
Allocate space for, and initialise the environment;
Execute the method’s “initial” unparsing program
(note that the program may reference and change the
values of the environment variables);
if the current node is a primitive node then
Output the text associated with the node;
else
state := dfa’s start state;
for every child of the current node do
Using the child’s class as a symbol, and state as
current state, find the next transition in dfa;
Execute the unparsing program in the current
method that is associated with the next
transition (it may reference and change the
values of the environment variables and may
include a recursive call to this procedure);
state := next state as defined by the transition;
endfor
endif
Execute the method’s “final” unparsing program;

De-allocate the environment;

No reference is made in this procedure to the final states of the DFA, and no provision
is made for not finding the next transition because, as we have stated, it is assumed that

documents are complete and therefore syntactically correct. This is not an unreasonable

assumption because:
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1. Tt is possible and quite reasonable® to disallow the unparsing of an incomplete docu-
ment for all unparsing schemes except the one that generates a concrete representation

for the display device.

2. By using the appropriate finite automata (Mz, as described in Section 4.2), sub-
sequence incomplete documents are accepted as complete documents. By definition
these automata ensure that any document being created is always “complete” and a

concrete representation can therefore be generated for the display device.

The unparsing procedure outlined previously assumes that deterministic finite automata
are being used. It is simple, however, to adapt the procedure for non-deterministic finite
automata (NFAs):

NFAs can easily be simulated by deterministic machines using an algorithm based on
the subset construction technique [Aho86]. The only complication lies with the unparsing
programs. When simulating an NFA, it is possible that at a given moment, more than
one transition must be made, each one labelled with the same symbol, but having different
unparsing programs. The simulation algorithm will make all the transitions, but which
unparsing program should be executed?

For example, suppose an object x is defined as
X =aa

and that the unparsing programs P and Q are associated with the first and second a-
transitions respectively. The class DFA for x is the simple one depicted in Figure 5.12
(the notation a[P] is used to indicate that unparsing program P is associated with the
transition labelled a). In order to handle a subsequence incomplete x, the DFA is changed
into the NFA of Figure 5.13.

When using the NFA to unparse an instance of x that consists of a single a, both

a-transitions are made®, but only one of the unparsing programs should be executed.

5The incomplete document would be rejected by the batch formatter anyway.

%Both transitions are made because they result from the NFA accepting the “strings” ae and ea.

86



:j alP] <> alQ] ()

Figure 5.12: DFA acceptinga a

alP] alQ@]

Figure 5.13: NFA accepting a? a?

Determining which unparsing program to execute is similar to disambiguating an am-
biguous grammar. Since documents are usually created in a front-to-back order, it is natural
to always choose the “earliest” unparsing program. The latter is determined as follows:

The states of the finite automaton are numbered in a breadth-first manner and the
program that is associated with the transition that originates from the lowest numbered
state is selected. If more than one transition has the same originating state, the tie is broken
in favour of the one with the lowest numbered destination state.

According to this method, the program P in our previous example would be executed.

5.2.1 Incremental Formatting

The unparsing scheme used to generate the concrete representation for the display device
differs from the other schemes in that it must be possible to execute it in an incremental
manner. As the user makes changes to the document, or as different parts of the document
are viewed, the concrete representation must be generated for a portion of the document
around the current point of interest.

Conceivably the unparsing process could be restarted from the beginning of the doc-
ument and terminated when enough of the document has been formatted. This, however

is unacceptable from a performance point of view. It is therefore necessary to be able to

87



restart the unparsing process almost anywhere in the document.

Restarting points are determined from the class description: the start of any unparsing
program in a method is a restart point if the program contains a “start a new line” instruc-
tion (e.g. @l or @vs — see Appendix B) that will be executed before any text is generated.
This ensures that upon restart, the unparsing process will know in which column to place
the output.

Before the unparsing process can be restarted at a restart point, the unparse state must

be restored. This includes
1. determining the finite automaton to be executed,
2. determining the current state of the automaton,
3. determining the current unparsing method, and
4. restoring the current method’s environment.

The finite automaton to be executed is simply the one that describes the class of the
current node’s parent. The current state, method, and environment information is stored

with each node in the document tree and is updated whenever the document is changed.

5.2.2 Structure Display

The structure display consists of at most two labels that are used to mark the start and
end of each composite object in the text window parallel to the structure window. Nested
levels of composition are indicated by successive indentation?.

The structure display is generated by the system and the only control that the class
designer has over it is specifying whether or not a label will be displayed for a particular

class and the label value if a label is displayed.

TA system installation parameter specifies the width of the structure window. The structure display is
clipped to fit in this window. Since documents generally do not have very deep structures, this is quite

acceptable.
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The following rules are used to construct the structure display. For the purpose of
stating the rules it is assumed the display is constructed sequentially from the start of
the document. The concept of “text generated by an object” is used to refer to the text
produced as a result of the unparsing of an object. This includes text generated by the
system and text (supplied by the user) that is associated with the object or any of its

constituent objects.
1. Only composite objects are labeled.

2. As far as possible, the start label appears on the first line of text generated by the

object or any of its constituents.

3. As far as possible, the end label appears on the last line of text generated by the

object or any of its constituents.
4. Only one label is displayed per line.

5. If a start label has to appear on a line that already contains a start label, the first
label is replaced by the second, and the first is displayed on an empty line immediately

above its old position. An empty line is a line that does not contain a label or text.

6. If an end label has to appear on a line that already contains a start label, the end

label is displayed on an empty line immediately below the start label.

7. When labels are moved to empty lines, any existing empty lines are first used before

extra empty lines are inserted.

5.3 Implementation History

Two prototypes have been created, while a full production system is currently under devel-

opment.
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In the first prototype a single class description was hard coded into the system. It was
mainly used to investigate various aspects of the user interface, and to lay the ground work
for the document manipulation and structure display routines.

The second prototype is very close to the description in this chapter. The differences
are accounted for by the fact that some features are only partially implemented, merely
to show their feasibility. For example only two unparsing schemes are supported (one for
the display and one for a target formatter) — the addition of further unparsing schemes is
straightforward. Another limitation is on the size of documents. Currently only fairly small
documents can be handled, but this restriction is being removed in the production version
(the first prototype had no such restriction).

The system is written in the portable Waterloo Systems Language [Boswe82] and at
present runs under IBM’s PC-DOS on IBM personal computers. The early prototype was
ported to an HP Portable Plus as well as A DEC Rainbow. The system requires about
60Kb of memory, of which around 8Kb are typically used for a class description.

The response time for cursor movement, text entering and structure editing is well within
the bounds of acceptability even though no special attention was given to optimisation.

The prototype systems have been used by a number of people within the Computer
Systems Groups, as well as few outsiders, amongst which were non-technical staff such as
secretaries. Much wider use will be necessary before any pronouncement can be made as
to the effectiveness of the system, however, those that have used it have been favourably

impressed.
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Chapter 6

Conclusions

This disseration investigated the issues related to the accessibility of high quality text
processing by non-computer specialists. An important objective was to make high-quality
batch-processing document formatters available to the casual computer user. It is proposed
that this be achieved by providing a document editing environment which is controlled by
the syntax and semantics of a given document class. This way it is possible to reduce and
possibly eliminate the requirement for a user to have a knowledge of document composition

and formatting languages and systems.

6.1 Contributions

The design and implementation of a prototype document processing system suitable for use

by casual users is described. The prototype has the following properties:

1. Entering of text is controlled by an editor which “knows” the structure or syntax of
the type of document being entered. When the user enters a new document the type

of document is specified so that the editor can be reconfigured.

2. The appearance (semantics) of the text displayed on the screen while the document

is being entered or edited, strongly resembles the appearance of the final document,
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3. The appearance (semantics) of a document which is produced as an output from
the system is a file containing the text of the document and imbedded formatter
commands related to its structure. This document can be passed to the appropriate

batch formatter to obtain the final high-quality document.

4. During the editing phase the constraints on document structure are considerably
relaxed so that restructuring the document is feasible. However, the system does
verify that a “complete” document exists before producing final output, proinpting

the user to complete the document if that is not the case.
5. The system is retargetable in several ways:

e the documents produced are portable over different batch formatters,

e the screen display can be modified to take advantage of different display tech-

nologies, and
e the system itself is written using software portability principles.
In order to provide these properties, it was necessary to explore the field of document pro-

cessing and to advance knowledge in several areas. In particular, a number of contributions

have been made, including:
1. We have provided syntactic methods of describing documents, including methods:

e to describe any document whose structure can be characterized by a context-free

gramimar,

e to describe documents by context-free grammars where each production is a
regular expression, thus allowing the use of finite automata models for semantic

production,

o to amplify the descriptive power of the such grammars by providing a mechanism

for handling exceptions,
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o to modify the grammar dynamically so that violations of the grammar are allowed

during editing functions, and

e to dynamically generate menus which depend both on the document grammar

and on the current state of the document.
2. We have provided semantic methods for describing documents, including methods:

e to allow the document processing system to be easily retargetted to different

types of displays, and

e to allow the output of the document processing system to be retargetted easily
to different existing document formatting systems, by allowing several document
descriptions to be available simultaneously and by allowing the document and

its structure to be stored separately from its semantics.

6.2 Further Investigation

At present no special provision is made for handling mathematical formulas, tables and
graphic objects. Formulas can be incorporated with relative ease (at least as far as the user
interface is concerned) by using the excellent approach taken in Grif [Quint86] and Edimath
[Quint83, Quint84]. The existing unparsing language will have to be adapted/expanded to
cater for the display of the formulas on screen.

Allowing for tables and graphic objects would be somewhat more complicated, primarily
because editing of these objects in general requires a completely different user interface than
that of text. It is also questionable if these kinds of objects can be described with a context-
free language as required by our system.

It is possible that complete table and graphics subsystems will have to be developed, or
alternatively, ways have to be found to interface with existing systems. The challenge would
be to integrate the graphic, table and text user interfaces in a satisfactory way. Another

difficulty lies in the fact that batch formatters usually have very limited capabilities as far
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as graphic images are concerned, so that it would be difficult to find a batch formatter for
the final formatting of documents containing arbitrary graphic objects.

More work is needed in providing a suitable class description editor. While the system
itself can be used to create class descriptions, a more specialised system is needed. Such a
class designer system would allow the user to define document syntax using both extended
regular expressions and finite automata. The class designer can then use either method to
view the class syntax and assign unparsing programs to transitions. In this way full use can
be made of the information encoded in each state of the finite automata. It would also be
helpful if the user could specify the concrete representations using a program-by-example

methodology using such principles as established in Query By Example [Zloof75].
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Appendix A

Document Class Description Grammar

In the following BNF notation, “is defined as” (::=) and “or” (|) are the only meta char-
acters, and only if they are delimited by spaces. All other symbols are part of the language
being described. Where | has to be part of the language, ‘|’ is used. We have followed the

convention that all terminal symbols appear in upper case (e.g. ID).

class_def ;i= def list
def list = defatem ;

| deflist ; def item
def_item 1= symb_def

| struct_def attr_defs semantic_def label _def

symb_def = symb_name = ext_reg_exp
symb_name ::= % ID
struct_def n=1D

| ID composition

composition 1= = ext_reg_exp exceplions
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| =
ext_reg_exp 1= e_term

| ext_reg_exp # e_term

e_term o= eterm ‘|’ e_term?
| e_term?
e_term?2 = e_term?2 e_factor
| e_factor
e_factor 2= closure opt_int
| group ?
| group
closure ::= group *
| group +
group ;:= ( ext_reg_exp )
| ID

} symb_name

opt_int o=

| INT
exceptions =

| : except list
except_list ;1= except

| except.list , except
except =+ 1D

| - ID
attr_defs n=

| { attr_list }
attr_list = attr_def
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| attr_list , attr.def
attr_def ;= attr.name : var_type = value
| attr_name ~ ID = ID
attr_name = 1D

var_type 1= type_name

| ( value_list )

type_name  ::= N.INTEGER
| N.REAL
| NSTRING
| N.CHAR
value_list ::= value

| value_list , value

value 2=1ID | INT | REAL

semantic_def ::= [ n_scheme_list |
n_scheme list ::=
| n_scheme_list scheme
scheme ::= / ID / n_method list
n_method_ list ::=
| n_method_list method
method ;= METHOD ID parameters
local_vars
action_list
ENDMETHOD
parameters ::= ( n_var_deflist )
n_var_def list ::=

| var_def list
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var_def_-list  ::= var_def

| var_def list , var_def
var_def 2= ID : var_type
local_vars n=

| { var_def list }
action_list  ::= action

| action_list , action
action ;:= trans.list : program
trans_list ;= trans

| trans_list , trans
trans n=1D

| ID.INT

program o=
| program instr
mstr ;1= 1f_statement
| assignment
| call
| command

| ezpression

if_statement ::= IF bool_ezp THEN program
n_elsef list
n_else
ENDIF

n_elseif -list =

| n_elseif list else_if
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else_if

n_else

bool_exp

rel_op

assignment
call
call_parms

n_ezp list

exp_list

command

::= ELSEIF bool_exp THEN program

| ELSE program

;1= expression

| expression rel_op expression

| @QEMPTY

| @FIRST ( ID , rel_op , value )
| @LAST (ID , rel_op , value )

=L > <>l =l>=1< =

= ID = expression
= @ ID call_ parms
;= (n_exp_list )

| exp_list

;1= expression

| exp list , expression

= @NL

| @VS (INT )

| @TODAY

| @UNPARSE ( ID , call )
| @ ENTRE

| @ECENTRE

| @LEFT

| @RIGHT

| @VORMAL
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op

eTpression

term

factor

| @BOLD

| @QEBOLD

| @QUNDERLINE
| @QEUNDERLINE
| @REVERSE

| @EREVERSE

| @FILL_WORDS
| @FILL_CHARS
| @LM op ( INT )
| @RM op (INT )
| @LL op (INT )

;1= expression + term

| expression — term

| term

;:= term * factor

| term / factor
| term ! factor

| factor

2= ( expression )

| & ID

| ID

| INT

| REAL

| STRING
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| reference

reference 2=1ID" . ID

label_def n=
| < STRING, STRING , STRING , STRING >
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Appendix B

Unparsing Instructions

The following is a list of all the instructions and operators that may be used in the unparsing

programs of an object class’ semantic description.

"< string>"

Generate (emit) the string <string>.

<name>

The value of the attribute, parameter or variable with the given name.

& <name>
The value of the attribute, parameter or variable with the given name, converted to

a string.
Assignment

String concatenation. E.g. "abc" 1 "XYZ" is equivalent to "abcXYZ".

if <bool ezp> then <program> else <program> endif

The obvious.
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<name>".<attr_name>
The value of the attribute <attr_name> of the object to which the variable <name>

points. <mame> must be a link variable.

@nl

Start a new line.

Qvs(<number>)
Conditional vertical space: generate a maximum of <number> newline characters,
i.e. if necessary, add newline characters to the output so that <number> of them will

follow each other.

@today
Supply today’s date as a string.

Qempty
The value 1 if the object being unparsed has no content, otherwise the value 0. In
other words, if the current object is a composite one and it has no children, or if it
is a basic object and has no text (i.e. the null string) associated with it, the value of

this operator is 1.

@first(<attribute>, <relation>, <value>)
The value 1 if the current object is the first object of its class (starting from the
beginning of the document) that has the indicated attribute whose value satisfies the
given relation. <relation> can be any of the relational operators = (equal), < (less
than), > (greater than), <= (less or equal to), >= (greater or equal to), or <> (not
equal to). If the current object does not have the indicated attribute, the attribute
value does not satisfy the relation, or the object is not the first of its kind satisfying

the condition, the value of the operator is 0.

Q@last(<attribute>, <relation>, <value>)

The value 1 if the current object is the last object of its class (before the end of the
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document) that has the indicated attribute whose value satisfies the given relation.
<relation> can be any of the relational operators = (equal), < (less than), > (greater
than), <= (less or equal to), >= (greater or equal to), or <> (not equal to). If
the current object does not have the indicated attribute, the attribute value does not
satisfy the relation, or the object is not the last of its kind satisfying the condition,

the value of the operator is 0.

Q< method_name>(<parm;>, ... <parm,>)
Unparse the constituent object, using its <method_name> unparsing method (in the

current scheme) and pass the given parameters (if any) to that method.

Qunparse(<obj.name>, @Q<method_name>(<parm;>, ... <parmy>))
Unparse the object <obj_name> using its <method_name> unparsing method (in the
current scheme) and pass the given parameters (if any) to that method. <obj_name>

must be a reference to an existing object.

Qcentre ... Qecentre

Centre lines.

Qleft
Left justify lines.

@right
Right justify lines.

@bold ... Qebold
Bold text.

@underline ... Qeunderline

Underline text.

@reverse ... Qereverse

Display text in reverse video.
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@normal

The combined effect of @ebold, @eunderline, and Qereverse.

@Qfill_ words

Perform word-wrap during text output, i.e. fill lines with words.

@fill chars

Do not perform word-wrap during text output, i.e. fill lines with characters rather

than words.

Qlm+(<n>)
Adjust the left margin by +<n> columns and position the output pointer there (<n>
is an unsigned number). If there is already text in that column, position the output

pointer at the end of that text.

@lm—(<n>)
Adjust the left margin by —~<n> columns and position the output pointer there (<n>
is an unsigned number). If there is already text in that column, position the output

pointer at the end of that text.

Qlm=(<n>)
Set the left margin to be <n> columns wide and position the output pointer on the
left margin (<n> is an unsigned number). If there is already text in that column,

position the output pointer at the end of that text.
@rm-+(<n>)
Qrm—(<n>)

@rm=(<n>)

Same as @lm, but pertaining to the right margin.
@ll+(<n>)
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@ll-(<n>)

Qll=(<n>)

Adjustment of line length.
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Appendix C

Document Class Descriptions

This appendix contains a number of class descriptions serving as examples of the use of the

class description language.

C.1 A Simple Technical Document

This is a class description for a class of simple technical documents. The semantic definition

contains unparsing schemes to generate concrete representations suitable for
1. a screen display,
2. input to a GML formatter, and
3. input fo TEX using the INTEX macros.

In order to limit the size of the description, not all objects that would normally be part of
a document class are described here.
Examples of the display output for this class description can be found throughout Chap-

ter 5. Appendix D.1 contains sample output for the GML and IATgX unparsing schemes.

%basicObj = paragraph | footnote | ordList | unordList | example;
%hanyText = (TEXT | quote) (TEXT | quote | fnRef)x*;
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TechDoc = titlePage body appendices?

[ /display/

Method Standard()

initial:
titlePage:
body:
appendices:
final:
endMethod

/gml/

@Standard(),

@Standard(),
@Standard(),

Method Standard()

initial:
titlePage:
body:
appendices:
final:
endMethod

/latex/

evs(1) ":Gboc",
@Standard(),
@Standard(),
@Standard(),
eénl ":eGDOC"

Method Standard()

initial:

titlePage:
body:
appendices:
final:
endMethod
]

< "TeChDOC" . nn .

@vs(1) "\documentstyle{report}"
@nl "\begin{document}",
@Standard(),

@Standard(),

@Standard(),

@vs(1) "\end{document}"

"ll’ nu >,

titlePage = title author? date? abstract?

[ /display/

Method Standard()
initial: @centre,

title: @Standard (),
author: @Standard(),
date: @Standard (),
abstract: Qcentre @Standard(),
final:

endMethod
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/gmi/
Method Standard()
initial: ¢@nl ":TITLEP",

title: @Standard(),
author: @Standard(),
date: @Standard(),
abstract: @Standard(),
final: @nl ":eTITLEP"
endMethod
/latex/
Method Standard()
initial: ,
title: @Standard(),
author: @Standard(),
date: @Standard(),
abstract: @Standard(),
final: Qvs(1) "\maketitle"
endMethod
]
< "titlepg" , nn , ||T|| \ "Title page " >;

title = PLAIN_TEXT
{ footRef "~ footnote = NONE }
[ /display/
Method Standard()

initial: evs(2),
PLAIN_TEXT: @Standard(),
final: Qvs(2)
endMethod
/gml/
Method Standard()
initial: @nl ":TITLE."

if footRef <> NONE then
" fnid='" footRef~.id "’'"
endif

Hon
. »

PLAIN_TEXT: @Standard(),
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final:

endMethod
/latex/
Method Standard()
initial: @vs(1) "\title{",
PLAIN_TEXT: @Standard(),
final: if footRef <> NONE then
Qunparse( footRef, @Standard() )
endif
n}u
endMethod
]
< "title" , nn s "T" . "Title" );

author = PLAIN_TEXT
[ /display/
Method Standard()

initial: Qvs(1),
PLAIN_TEXT: @Standard(),
final:
endMethod
/gml/
Method Standard()
initial: @nl ":AUTHOR.",
PLAIN_TEXT: @Standard(),
final:
endMethod
/latex/
Method Standard()
initial: @vs(1) "\author{",
PLAIN_TEXT: QStandard(),
final: ftn
endMethod
1
< "author", "", "U", "aUthor" >:

date = PLAIN_TEXT
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[ /display/
Method Standard()

initial: evs(2),
PLAIN_TEXT: @aDate(),
final:
endMethod
/gnl/
Method Standard()
initial: @nl " :DATE.",
PLAIN_TEXT: @Standard(),
final:
endMethod
/latex/
Method Standard()
initial: @vs(1) "\date{",
PLAIN_TEXT: @Standard(),
final: nin
endMethod
]
< "date" s LR . "D" , "Date" >,

abstract = YbasicObj+ : -footnote, -fnRef
[ /display/
Method Standard()
initial: @Qvs(2) "Abstract" Qvs(1),
basicObj: @Standard(),
final:
endMethod

/gml/
Method Standard()
initial: @nl ":ABSTRACT.",
basicObj: @Standard(),
final:
endMethod

/latex/

Method Standard()
initial: @vs(1) "\begin{abstract}",
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basicObj: @Standard(),

final: @vs(1) "\end{abstract}"
endMethod
]
< "abstract", "", "A", "Abstract" >;

body = part+ | section+
[ /display/
Method Standard()
{ rank : integer }
initial: rank=0,

part: rank=rank+1 @Standard(rank),
section: rank=rank+l @Standard{&rank),
final:
endMethod
/gml/

Method Standard()
initial: @nl ":BODY.",

part: @Standard (),
section: @Standard(1),
final:
endMethod
/latex/
Method Standard()
initial:
part: @Standard(),
section: @Standard(1l),
final:
endMethod
]
< "body" . nn . "B" . "Body-" >;

part = heading Y%basicObj* sections
{id : string = NONE,
shortTitle : string = NONE
}
[ /display/
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Method Standard( rank:integer )
{ sectCount : integer }
initial: sectCount=0
Qvs(2) Qcentre "PART " rank Qecentre,
heading: @PartHead(),
basicObj: @Standard(),
section: sectCount=sectCount+1
@Standard(&sectCount),
final:
endMethod

/gml/
Method Standard()
initial: @nl ":HO"
if id <> NONE then

" ID=" id
endif
if shortTitle <> NONE then

" STITLE=""" shortTitle """"
endif

" on
heading: @Standard(),
basicObj: @Standard(),
section: @Standard(1l),
final:
endMethod

/latex/
Method Standard()

initial: @vs(1) "\part"

if shortTitle <> NONE then
"[" ghortTitle "1"

endif,

heading: @Standard(id),

basicObj: @Standard(),

section: @Standard(1),

final:
endMethod
]
< "partll' "", |IP||' "Part" >’
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section = heading Y%basicObj* section*
{ id : string = NONE,
shortTitle : string = NONE
}
[ /display/
Method Standard( hNum:string )
{ ssCount:integer }
initial: ssCount=0 @vs(2) hNum " ",
heading: @Standard(),
basicObj: @Standard(),
section: ssCount=ssCount+1
@Standard (hNum!"."!&ssCount),
final:
endMethod

/gml/
Method Standard( level:integer )
initial: @nl ":H" level
if id <> NONE then

" ID=" id
endif
if shortTitle <> NONE then

" STITLE=""" shortTitle """
endif

"non
heading: @Standard(),

basicObj: @Standard(),
section: 1if level < 6 then

@Standard(level+1)
else
@Standard(level)
endif,
final:
endMethod
/latex/

Method Standard( level:integer )
initial: @vs(1)
if level=1 then
"\chapter"
elseif level=2 then
"\section"
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elseif level=3 then
"\subsection"
elseif level=4 then
"\subsubsection"
elseif level=5 then
"\paragraph"
else
"\subparagraph"
endif
if shortTitle <> NONE then
"[" shortTitle "]"
endif,
heading: @Standard(id),
basicObj: @Standard(),
section: if level < 6 then

@Standard(level+1)
else
©@Standard(level)
endif,
final:
endMethod
1
< "gection", """, "s", "Section" >:

heading = PLAIN_TEXT
[ /display/
Method Standard()

initial: ,

PLAIN_TEXT: @Standard(),

final: Qvs(2)
endMethod

Method PartHead()

initial: Qvs(1) @Qcentre,
PLAIN_TEXT: @Standard(),
final:
endMethod
/gml/

Method Standard()
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initial: ,
PLAIN_TEXT: @Standard(),

final:
endMethod
/latex/
Method Standard(id:string)
initial: nn
if id <> NONE then
"\label{" id u}n
endif,
PLAIN_TEXT: @Standard(),
final: "}
endMethod
1
< "heading", u", an, "Heading" >:

paragraph = %anyText
[ /display/
Method Standard()
initial: @Qvs(2) " "o
anyText: @Standard(),
final:
endMethod

Method Blocked()
initial: @vs(2),
anyText: @Standard(),
final:

endMethod

Method Plain()
initial: ,
anyText: @Standard(),
final:

endMethod

/gml/
Method Standard()
initial: @nl ":P." @nl,
anyText: @Standard(),
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final:
endMethod

Method Plain()
initial: @nl,
anyText: @Standard(),
final:

endMethod

/latex/

Method Standard()
initial: @vs(2),
anyText: @Standard(),
final:

endMethod

Method Plain()

initial: ,
anyText: @Standard(),
final:
endMethod
]
< "parall' "", ||P|1, IlParagraph" >’

footnote = paragraph %basicObj* : -footnote, -fnRef
{ id : string = required }
[ /display/
Method Standard()
initial: @vs(2) "[" id ": " @lm+(3) @rm-(3),
paragraph.1: @Plain(),
basicObj: @Standard() ,
final: @vs(1l) @Im-(3) "I" @vs(2)
endMethod

/gnl/

Method Standard()
initial: ,
basicObj: "",
final:

endMethod
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Method AsFootNote()
initial: @nl ":FN id=" id,
paragraph.1: @Plain(),
basicObj: @Standard(),
final: @nl ":eFN."
endMethod

/latex/

Method Standard()
initial: ,
basicObj: "",
final:

endMethod

Method AsFootlNote()
initial: "\footnote{",
paragraph.1: @Plain(),
basicObj: @Standard(),

final: nin
endMethod
1
< "footnote", "endFoot","F", "Footnote" >;
ordList = (listItem | listPart)+

{ compact : (0, 1, 2) = NONE }
[ /display/
Method Standard()
{ itemcount : integer }
initial: itemcount=0 @vs(2),
listItem: itemcount=itemcount+1

Q0rdered(itemcount),
listPart: @Standard(),
final: Qvs(2)
endMethod
/gnl/

Method Standard()
initial: @nl ":0L"
if compact <> NONE then
" COMPACT=" compact
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endif
".ll'
listItem: @Standard(),
listPart: @Standard(),
final: @nl ":eQL."
endMethod

/latex/
Method Standard()
initial: @vs(1) "\begin{enumerate}",
listItem: @Standard(),
listPart: @Standard(),
final: @vs(1) "\end{enumerate}"
endMethod

]
< "OList", "eOList", "O", "Ordered list" >;

unordList = (listItem | listPart)+
{ compact : (0, 1, 2) = NONE }
[ /display/
Method Standard()
initial: ,
listItem: QUnordered(),
listPart: @Standard(),
final: Qvs(2)
endMethod

/gml/
Method Standard()
initial: @nl ":UL"
if compact <> NONE then
" COMPACT=" compact
endif
won
listItem: @Standard(),
listPart: @Standard(),
final: @nl ":eUL."
endMethod

/latex/
Method Standard()
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initial: @vs(1) "\begin{itemize}",
listItem: @Standard(),
listPart: @Standard(),
final: @vs(1) "\end{itemize}"
endMethod
1

< "UList", "eUList", "U", "Unordered list" >;

listItem = paragraph %basicObj=*
[ /display/
Method Ordered( index : integer )

initial: Qvs(2) index "." @lm+(5),
paragraph.1: @Plain(),
basicObj: @Standard(),
final: Qvs(2)
endMethod

Method Unordered()

initial: Qvs(2) "x" @lm+(5),
paragraph.1: @Plain(),
basicObj: @Standard(),
final: Qvs(2)

endMethod

/gml/

Method Standard()
initial: @nl ":LI." ,
paragraph.1: @Plain(),
basic0Obj: @Standard(),
final:

endMethod

/latex/

Method Standard()
initial: @vs(1) "\item ",
paragraph.1: @Plain(),
basicObj: @Standard(),
final:

endMethod

1
< "Ttem", "eltem", "I", "Item" >;
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listPart = paragraph (paragraph | example)*
[ /display/
Method Standard()
initial: Qvs(2) ,
paragraph.1: @Blocked(),
paragraph.2: @Standard(),

example: @Standard(),
final: Qvs(2)
endMethod
/gml/
Method Standard()
initial: @nl ":LP." ,

paragraph.1: QPlain(),
paragraph.2: @Standard(),

example: @Standard(),
final: Qvs(2)
endMethod
/latex/
Method Standard()
initial: @vs(1) "\vskip{\bigskipamount}",
paragraph:  @Standard(),
example: @Standard(),
final: @vs(1) "\vskip{\bigskipamount}"
Qvs(1)
endMethod
]
< "LP", ""' llP", "list Part" >;
example = (aLine | %basicObj)+ : -example, -footnote, -fnRef

[ /display/
Method Standard()
initial: @1m+(3),

alLine: @Standard(),
basicObj: @Standard(),
final:

endMethod
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/gml/
Method Standard()
initial: @nl ":XMP",

aline: @Standard(),
basicObj: @Standard(),
final: @nl ":eXMP."
endMethod
/latex/

Method Standard()
initial: Qvs(2) "{\tt ",

aline: @Standard (),
basicObj: @Standard(),
final: "y
endMethod
]
< "example" R " . "x" s "example" >;

alLine = %anyText
[ /display/
Method Standard()
initial: @vs(l) @fill_chars,
anyText: @Standard(),
final: @vs(1)
endMethod

/gml/
Method Standard()
initial: @vs(1) @fill_chars,
anyText: @Standard(),
final: avs(1)
endMethod

/latex/

Method Standard()
initial: @vs(1) "™\\ ",
anyText: @Standard(),
final: Qvs(1)

endMethod
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< ||line|| , nn , "LII . Hline" >,

appendices = section+
[ /display/

Method Standard()
{ apdxCnt : integer }
initial: apdxCnt = O,
section: apdxCnt=apdxCnt+1

@Standard("A"!&apdxCnt) ,

final:

endMethod

/gnl/
Method Standard()
initial: @nl ":APPENDIX.",
section: @Standard(1l),
final:
endMethod

/latex/
Method Standard()
initial: @vs(1) "\appendix" @nl,
section: @Standard(1l),
final:
endMethod
1
< " appdx" , nn s "A" . "Appendixﬂ >;

PLAIN_TEXT
[ /display/

Method Standard()
initial: ,
final:

endMethod

Method aDate()
initial: @vs(2)
if Qempty then
Qtoday
endif,
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final:
endMethod

/gnl/

Method Standard()
initial: ,
final:

endMethod

/latex/

Method Standard()
initial: ,
final:

endMethod

]

< "", "", "Pll, "Plaln text" >;

TEXT

{ emphasis : (some, more, most) = NONE }

[ /display/
Method Standard()

initial: if emphasis = NONE then
@normal
elseif emphasis = some then
Qunderline
elseif emphasis = more then
@bold

elseif emphasis

most then

@bold @Qunderline

endif
final: if emphasis = some then
@eunderline
elseif emphasis = more then
@ebold

elseif emphasis

most then

@eunderline @ebold

endif
endMethod

/gml/
Method Standard{)
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initial: if emphasis = some then

":HP1."

elseif emphasis = more then
":HP2."

elseif emphasis = most then
":HP3."

endif ,

final: if emphasis = some then

":eHP1."

elseif emphasis = more then
":eHP2."

elseif emphasis = most then
":eHP3."

endif

endMethod
/latex/

Method Standard()
initial: if emphasis = some then
u{\em "
elseif emphasis = more then
H{\bf "
elseif emphasis = most then
"{\SC "
endif ,
final: if emphasis <> NONE then
ll}"

endif

endMethod
]

£ nn "t . IITH’ "Text" >,

quote = %anyText
[ /display/

Method Standard()
initial: Hunn .
anyText: @Standard(),
final : wunn

endMethod

/gml/
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Method Standard()

initial: ":Q.",
anyText: @Standard(),
final: "eQ."
endMethod
/latex/

Method Standard()
initial: "°‘‘",
anyText: @Standard(),
final: naon

endMethod

]
< "", ""' "Q"' llQuote">;
fnRef =

{ footRef "~ footnote = REQUIRED }
[ /display/
Method Standard()
initial: "{see footnote " footRef".id "}",

final:
endMethod
/gnl/
Method Standard()
initial: if @first( footRef, =, footRef ) then
".FNREF refid=" footRef~.id "."
else
Qunparse( footRef, @AsFootNote() )
endif,
final:
endMethod
/latex/

Method Standard()
initial: Qunparse( footRef, @AsFootNote() ),
final:
endMethod
]

< Hn s " . IIR" , IlfootRef“ >'
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C.2 A Business Letter Class

This is a partial class description for a business letter. In order to limit the size of the
description, some objects (e.g. paragraph) are not defined. Their definitions can be obtained
from the class description of Appendix C.1. Furthermore, unparsing schemes are only given
for GML and IATRX and none for the display.

The purpose of this example is to illustrate how different target formatter input models
can be combined into one class description. Note for example how the closing greeting and
signature are handled in the close object.

Appendix D.2 illustrates the output obtained with the given unparsing schemes.

%0bjects = paragraph | simpList | ordList | unordList;
BusLetter = header body close
[ /gml/

Method Standard()

initial: @left @fill_words @11=(80) @lm=(0) @rm=(6)
".GDOC",

header,body,close: @Standard(),
final: @nl ":eGDOC"

endMethod

/LaTeX/

Method Standard()

initial: Qleft @fill_words @11=(80) @lm=(0) Qrm=(6)

"\documentstyle{letter}"
@nl "\begin{document}",
header,body,close: @Standard(),

final: @nl "\end{document}"
endMethod
] < "BusLetter", "eBusLetter", "B", "Business Letter" >;
header = fromAddress? date toAddress salutation
[ /gml/

Method Standard()
fromAddress, date, toAddress, salutation: @Standard()
endMethod
/LaTeX/
Method Standard()
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fromAddress, date, toAddress, salutation: @Standard()

endMethod
] < "header"' "", "H". I|Headerll >‘
fromAddress = aLine aLinex*
{ depth : integer = NONE }
[ /gml/

Method Standard()

initial: @nl ":FROM"
if depth <> NONE then " DEPTH=" depth endif ".",

aLine: @Standard()

endMethod

/LaTeX/

Method Standard()
initial: @nl "\address{",
al.ine.1: @Standard(),
aline.2: "\\@nl" @Standard(),

final: "}
endMethod
] < "from", nn' nFn, "From" >

date
{ depth : integer = NONE,
align : (left, right) = NONE
}
[ /gnl/
Method Standard()
initial: @nl ":DATE"
if align <> NONE then " ALIGN=" align endif
if depth <> NONE then " DEPTH=" depth endif
" n ‘
endMethod
/LaTeX/
Method Standard()
initial: @nl if @empty then "\date{"
else "\renewcommand{\today}{" endif
final: B
endMethod
] < "date", uu, nDn. "Date" >:

toAddress = aline alLinex
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{ depth : integer = NONE }
[ /gml/
Method Standard()
initial: @nl ":TO"

if depth <> NONE then " DEPTH=" depth endif

aline.1: @NoNewline(),
aline.2: @Standard()
endMethod
/LaTeX/

Method Standard() »
initial: @nl "\begin{letter}{",
aline.1: @Standard(),
aline.2: "\\@nl" @Standard(),
final: n}n

endMethod

] < "tou R "nn s "T" s "T°" >;

salutation
[ /7gml/
Method Standard()
initial: @énl ":0PEN."
endMethod
/LaTeX/
Method Standard()
initial: @nl "\opening{",

final: n}n
endMethod
] < "salute", "", "S", "Salutation" >;
body = subject? %O0bjectsx
[ /gml/

Method Standard()
subject, Objects: @Standard()
endMethod
/LaTeX/
Method Standard()
subject, Objects: @Standard()
endMethod
] < "bod-y-" , nn . "B" ) IIBody" >;

subject
{ depth : integer = NONE }
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[ /gml/
Method Standard()
initial: @nl ":SUBJECT"
if depth <> NONE then " DEPTH=" depth endif "."
endMethod
/LaTeX/
Method Standard()
initial: @nl "{\bf ",
final: "}"
endMethod
] < "SubjeCt", llll, "BII, "SqueCt" >;

close = aLine aline*

{ depth  : integer = NONE,
greeting : string = "Yours sincerely",
initials : string = NONE
),
[ /gml/
Method Standard()
initial: @nl ":CLOSE"
if depth <> NONE then " DEPTH=" depth endif "."
if greeting <> NONE then greeting endif,
alLine: @Standard(),
final: @nl ":eCLOSE."
if initials <> NONE then initials endif
endMethod
/LaTeX/
Method Standard()
initial: @nl "\signature{",
al.ine.1: @Standard(),
aline.2: "\\@nl" @Standard(),
final: "}" @nl "\closing{"
if greeting <> NONE then greeting endif "1}"
if initials <> NONE then @nl "\ps " initials endif
endMethod
] < ||CIOSe", "", "C", Ilclose" >;
aline
[ /gml/

Method Standard()
initial: @nl
endMethod
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Method NoNewline()
initial:

endMethod

/LaTeX/

Method Standard()
initial:

endMethod

] < ||1ine" , nn s IIL" , llLinell >l

C.3 A Class Description For Classes

This class description describes the class of document class descriptions and can be used to
turn the prototype system into a class description editor. This description serves both as
an example of a class description and as an example of the output produced by that class
description.

Only one unparsing scheme is given, namely one that produces a file that may serve as
input to a class description compiler (that compiles the description into a set of tables suit-
able for use by the prototype system). The same scheme can be used for display purposes.
What follows is the content of the file just mentioned, when the class description itself is

used as input. In other words, the description given here describes itself.

%type = an_int | a_real | a_string | pointer | enumerate;

%command = nl | vs | today | centre | ecentre | left | right | normal |
bold | ebold | underline | eunderline | reverse | ereverse | fillWord
| £fillChar | 1m | rm | 11;

docClass = macro* objClass+
[ /classgen/
Method Standard()
initial: @11=(80) @lm=(1) @rm=(6) Qleft @fill_words @normal,
macro,objClass: @Standard(),
final:
endMethod
] < "Class", "endClass", "D", "DocClass" >;

macro = name expression
[ /classgen/
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Method Standard()
initial: Qvs(1l) @lm-(1),
name: @Standard(),

expression: " = " @lm+(4) @Standard(),
final: ";"
endMethod
] < "macro", uu, nMn, "Macro" >

objClass = name composition? attributes? unpScheme* labels
[ /classgen/
Method Standard()
{ hadUnp:integer = 0 }
initial: @vs(2),
name,composition,attributes: @Standard(),

unpScheme: if hadUnp then Qvs(2) else @vs(1) " [" endif
@Standard() hadUnp=0,
labels: @vs(1) if hadUnp then " ] " else " (1" endif

@Standard() hadUnp=1,
final: if hadUnp=0 then Qvs(1) "[]" endif ";"
endMethod
] < "ob]'ect". |I"’ "0"’ Ilobject" >|

name
[ /classgen/
Method Standard()
initial:,
final:
endMethod
] < nn, un' uNu' "Name" >;

composition = expression (inclusion | exclusion)*
[ /classgen/
Method Standard()
{ first:integer = 1 }

initial: " = ",
inclusion,exclusion: if first then " : " else ", " endif
@Standard() first=0,
final:
endMethod
] < ""' L "' IICI!, "compositionu >,
inclusion
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[ /classgen/
Method Standard()
initial: "+",
final:
endMethod
] < "nn . " ) "I" . " Inc 1usi°n" >;

exclusion
[ /classgen/
Method Standard()
initial: "-",
final:
endMethod
] < " uEn' "Exclusion" >;

expression
[ /classgen/
Method Standard()
initial:,
final:
endMethod
] < nu, nn, nxu, uxpressionn >;

attributes = (name %type default?)+
[ /classgen/
Method Standard()
{ moreThanOne:integer = O }
initial: @lm+(3) @vs(1) "{" @lm+(2),
name: if moreThanOne then "," @vs(1) endif @Standard()
moreThanOne=1,
type,default: @Standard(),
final: if moreThanOne then @lm-(2) @vs(1) "}" else " }" endif
endMethod
] < "attr", "", "A", "Attributes" >;

an_int =
[ /classgen/

Method Standard()
initial: ":integer",
final:

endMethod
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] < uu, "n, nIn' "Integer" >

a_real =
[ /classgen/
Method Standard()

initial: ":real",
final:
endMethod
] < ""’ "", HR"’ "Real" >.

a_string =
[ /classgen/
Method Standard()

initial: ":string",
final:
endMethod
] < "", Illll IIS!I. IIString" >

pointer
[ /classgen/
Method Standard()
initial: "°",
final:

endMethod
] < IIII' ""’ IIP!I' IIPointerll >

enumerate = name namex
[ /classgen/
Method Standard()
initial: "(",
name.1l: @Standard(),

name.2: ", " @Standard(),
final: ")*"
endMethod
] < "nn . "y , "E" . IIEnumerateﬂ >;

default
[ /classgen/
Method Standard()

initial: " = ",
final:
endMethod
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] < nu, un’ uDu, "Default" >

unpScheme = name aMethod+
[ /classgen/
Method Standard()
initial: @lm+(5),
name: "/" @Standard() "/v,
aMethod: @Standard(),
final:
endMethod
] < "scheme", nul "S", "Scheme" p

aMethod = name parms variables? (transition+ program):*
[ /classgen/
Method Standard()

{ firstTrans:integer = 1,
comma:integer = O,
undoIndent:integer = O

}

initial: @1m+(2) @vs(1) "Method ",

name,parms,variables: @Standard(),

transition: if comma then "," endif if undoIndent then @lm-(4)
endif if firstTrans then @lm+(2) @vs(l) endif @Standard() if
firstTrans then @lm+(2) endif firstTrans=0 comma=1,

program: ":" @Standard() undoIndent=1 firstTrans=1,
final: if comma then @lm-(4) endif @vs(1l) "endMethod"
endMethod
] < "method" . " , "M" . "Methodll >;

parms = (name %type)*
[ /classgen/
Method Standard()
{ comma:integer = 0 }
initial: " (",
name: if comma then ", " endif @Standard() comma=1,
type: @Standard(),
final: ")"
endMethod
] < uu' nu' "P", "Parms" >;

variables = (name %type default?)+
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[ /classgen/
Method Standard()
{ moreThanOne:integer = O }
initial: @lm+(2) @vs(1) "{" @lm+(2),
type.default: @Standard(),
name: if moreThanOne then "," Qvs(l) endif @Standard()

moreThanOne=1,
final: if moreThanOne then @lm-(2) Qvs(1) "}" else " }" endif

endMethod
] < "variables", """, "V" "Variables" >;

transition
{ occurrence:integer = NONE }
[ /classgen/
Method Standard()

initial:,
final: if occurrence<>NONE then "." occurrence endif
endMethod
] < "I!, IIH' "T"’ "Transitions" >,

program = (an_if | assign | call | %command | expression)*

[ /classgen/
Method Standard()

initial:,
an_if,assign,call,command: @Standard(),
expression: " " @Standard(),
final:
endMethod
] < wnoonnowpn "pRrogram" >:

an_if = boolExpr program (boolExpr program)* program?
[ /classgen/
Method Standard()
initial: " if",
boolExpr.1: @Standard() " then",
boolExpr.2: " elseif" @Standard() " then ",
program: @Standard(),
final: " endif"
endMethod
] < IIII, H", IlI", 'IIf" >;

boolExpr = expression | empty | first | last

136



[ /classgen/
Method Standard()

initial: " ",
expression,empty,first,last: @Standard(),
final:
endMethod
] < nn' uu’ an’ "BoolExpr" >;

empty =
[ /classgen/

Method Standard()
initial: "Qempty",
final:

endMethod

] < nn s ny , llE" R "isEmpty" >,

first = name expression
{ relation:(less, le, eq, ne, ge, gt) = REQUIRED }
[ /classgen/
Method Standard()
initial: "@first(",
name: @Standard() if relation=less then ",<," elseif
relation=le then ",<=," elseif relation=eq then ",=," elseif
relation=ne then ",<>," elseif relation=ge then ",>=," elseif
relation=gt then ",>," endif,
expression: @Standard(),
final: ")"
endMethod
] < IIH, Il'l' "F". "Firstll >;

last = name expression
{ relation:(less, le, eq, ne, ge, gt) = REQUIRED }
[ /classgen/
Method Standard()
initial: "@last(",
name: @Standard() if relation=less then ",<," elseif
relation=le then ",<=," elseif relation=eq then ",=," elseif
relation=ne then ",<>," elseif relation=ge then ",>=," elseif
relation=gt then ",>," endif,
expression: @Standard(),
final: ")"
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endMethod
] < nn' un, nLn' "Last" p

assign = name expression
[ /classgen/
Method Standard()
initial: " ",
name: QStandard() "=",
expression: @Standard(),
. final:
endMethod
] < u", nu, u=u, "Assign" >

call = name callParm*
[ /classgen/
Method Standard()
{ comma:integer = 0 }

initial: " @",
name: @Standard() "(",
callParm: if comma then "," endif @Standard() comma=t1,
final: ")"
endMethod
] < "u, un' ucu’ "Call" >

callParm
[ /classgen/
Method Standard()
initial:,
final:
endMethod
] < nn . " II' "P" , ||ca11Parm"‘ >,

labels = begTag endTag menuTag menulLabel
[ /classgen/
Method Standard()
initial: @lm+(5) "<",
begTag,endTag,menuTag: @Standard() ",",
menulabel: @Standard(),
final: " >"
endMethod
] < "labels", "", "L",6 "Labels" >;
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begTag
[ /classgen/
Method Standard()
1nitia1 : nHann .
final : nuun
endMethod
] < un' nu’ uBn' "BegTag" >;

endTag
[ /classgen/
Method Standard()
initial: nmeun .
final : nuny
endMethod
] < nn . " ) "E" s "EndTag" > ;

menuTag
[ /classgen/
Method Standard()
1n1t1a1 : "o ,
flnal : HRIRIN ]
endMethod
] < nu, uu, nTu, "menuTag" >;

menulabel
[ /classgen/
Method Standard()
lnltlal nwHnn .
final : nmiun
endMethod
] < [IN]] . nn , "Lll , "menuLabelll >;

nl =
[ /classgen/
Method Standard()

initial: " énl",
final:
endMethod
] < nu, nn' nNn, "Newline" >;

Vs
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{ count:integer = REQUIRED }
[ /classgen/
Method Standard()

initial: " @vs(" count ")*"
final:
endMethod
] < nu . "nn . IIV" , "VertSpace" > ;

today =
[ /classgen/

Method Standard()
initial: " Qtoday",
final:

endMethod

] < H", IHI' "T", llTodayll >,

centre =
[ /classgen/
Method Standard()

initial: " Qcentre",
final:
endMethod
] < "Il' "". "c"' "Centre!l >’

ecentre =
[ /classgen/
Method Standard()

initial: " Qecentre",
final:
endMethod
] < n", un’ nEn' "eCentre" >;

leftJust =
[ /classgen/

Method Standard()
initial: " @left",
final:

endMethod

] < uu’ uu, "JH. "justifyLeft" >;

rightJust =
[ /classgen/
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Method Standard()
initial: " @right",
final:
endMethod
] < IIH’ ""’ IIJ", "justlfleght" >,

normal =
[ /classgen/
Method Standard()

initial: " @normal",
final:
endMethod
] < i , "y s "0" . |ln0rma1" >’

bold =
[ /classgen/

Method Standard()
initial: " @bold",
final:

endMethod

] < |l", "Il' "Bll' llBold" >,

ebold =
[ /classgen/

Method Standard()
initial: " @Qebold",
final:

endMethod

] < "nn s nn , "E" . IleBold" >;

underline =
[ /classgen/
Method Standard()

initial: " @Qunderline™,
final:
endMethod
] < nn s "y ) "U" . "Underline " > ’
eunderline =

[ /classgen/
Method Standard()
initial: " Qeunderline",
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final:
endMethod
] < nn’ "u' uEn, "eUnderline" >;

reverse =
[ /classgen/
Method Standard()

initial: " Qreverse",
final:
endMethod
] < uu' nu. an’ "Reverse" >;

ereverse =
[ /classgen/
Method Standard()

initial: " Qereverse",
final:
endMethod
] < nu' uu' nEn' "eReverse" P
fillWord =

[ /classgen/
Method Standard()

initial: " @fill_words",
final:
endMethod
] < l!ll' "Il’ IlF"’ llfillwords" >;

fillChar =
[ /classgen/
Method Standard()
initial: " @fill_chars",
final:
endMethod
] < H"' ""' "F"' llfillCharS" >’

Im =
{ operator: (increment, decrement, assign) = REQUIRED,
width:integer = REQUIRED
}
[ /classgen/
Method Standard()
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initial: " @lm" if operator=increment then "+" elseif

operator=decrement then "-" else "=" endif "(" width "),
final:
endMethod
< " . nn . HL" s "Le:ftMarg" >;

operator:(increment, decrement, assign) = REQUIRED,
width:integer = REQUIRED

/classgen/
Method Standard()
initial: " @rm" if operator=increment then "+" elseif
operator=decrement then "-" else "=" endif "(" width ")",
final:
endMethod
< muomwwpw "RightMarg" >:

operator:(increment, decrement, assign) = REQUIRED,
length:integer = REQUIRED

/classgen/
Method Standard()
initial: " @rm" if operator=increment then "+" elseif
operator=decrement then "-" else "=" endif "(" length ")",
final:
endMethod
< "n s "n s IIKI! , llLineLengthll >,
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Appendix D

Sample | Output

In this appendix we provide some examples of the output produced by the class descriptions

in Appendix C.

D.1 A Simple Technical Document

Examples of the output generated by the display unparsing scheme of the class description
of Appendix C.1 can be found throughout Chapter 5. Figure D.1 illustrates a fragment of
output produced by the latex scheme of the same class description!. The same document
fragment is shown in Figure 5.10 on page 81, while the output produced by the IATEpX

formatter (using Figure D.1 as input), can be seen on page 81.

Figure D.2 shows the same document fragment in GML, while Figure D.3 shows the
result if formatted with Waterloo SCRIPT GML [Water86].

!The 1atex scheme of Appendix C.1 is actually a subset of the scheme that produced the output of
Figure D.1 — not all objects present in Figure D.1 are defined in the class description of Appendix C.1. The

same comment applies to the GML example.
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of each of the strings that we now describe:

\begin{enumerate}

\item {\em Start label.} This string is used to mark the start of the
object in the structure window and is put as close as possible to the
start of the object (see Section"\ref{strdisp}). In Figure \ref{strings}
{\tt OList}, {\tt Item}, and {\tt para} are all start labels. The null
string ({\tt ""}) will cause no label to be displayed.

\item {\em End label.} This string is used to mark the end of the object
in the structure window, and is put as close as possible to the end of the
object (see Section™\ref{strdisp}). In Figure~\ref{strings} {\tt eOList}
and {\tt eltem}, are end labels. The null string will cause no label to
be displayed (as for example with the {\tt paragraph} object).

\item {\em Menu key.} This single character indicates which key will
select this object class name when the name is displayed in the create
menu.

\end{enumerate}

Figure D.1: IATEX code generated by the latex scheme for a technical document

D.2 A Business Letter

This section illustrates the output generated by the unparsing schemes of the business letter
class of Appendix C.2. Figures D.4 and D.5 show the output generated from a sample letter
using the gml and LaTeX schemes respectively, while Figures D.6 and D.7 show the output

from the two formatters.
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of each of the strings that we now describe:

:0L.

:LI.

:HP1.Start label.:eHP1. This string is used to mark the start of the
object in the structure window and is put as close as possible to the
start of the object (see

:HDREF refid=strdisp.). In

:FIGREF refid=strings. :HPO.OList:eHPO., :HPO.Item:eHPO., and
:HPO.para:eHPO. are all start labels. The null string
(:HPO.:Q.:eQ.:eHP0.) will cause no label to be displayed.

:LI.

:HP1.End label.:eHP1. This string is used to mark the end of the object
in the structure window, and is put as close as possible to the end of the
object (see

:HDREF refid=strdisp.). In

:FIGREF refid=strings. :HPO.eOList:eHPO. and :HPO.eltem:eHPO., are end
labels. The null string will cause no label to be displayed (as for
example with the :HPO.paragraph:eHPO. object).

:LI.

:HP1.Menu key.:eHP1. This single character indicates which key will
select this object class name when the name is displayed in the create
menu.

:e0L.

Figure D.2: GML code generated by gml scheme for technical document
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of each of the strings that we now describe:

1.

2.

3.

Start label. This string is used to mark the start of the object in the
structure window and is put as close as possible to the start of the object
(see "Structure Display”). In Figure 5.10 OList, Item, and para are all
start labels. The null string (" ") will cause no label to be displayed.

End label. This string is used to mark the end of the object in the struc-
ture window, and is put as close as possible to the end of the object (see
"Structure Display”). In Figure 5.10 eOList and eltem, are end labels.
The null string will cause no label to be displayed (as for example with
the paragraph object).

Menu key. This single character indicates which key will select this

object class name when the name is displayed in the create menu.

Figure D.3: Output produced by the GML formatter
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:GDOC

:FROM.

Skilpadvrekvandors

Sannaspos

Die Vlakte

:DATE. 29 Februarie 1912

:TO.Piet Pompies

Putsonderwater

Grammadoelaland

:0PEN.Dag ou siel

:SUBJECT .Water in die Knersvlakte

:P.

Ons vrek van dors hier in die vlakte; maar aanhou en uithou, dis ons
klagte, bring ons nog niks meer te wagte.
:CLOSE.Jou unitgevrekte vriend

Boggom

Die Bult van Bulfontein

:eCLOSE.BB/gds

:eGDQOC

Figure D.4: Output produced using the gml scheme for business letter
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\documentstyle{letter}
\begin{document}
\address{Skilpadvrekvandors\\
Sannaspos\\

Die Vlaktel}
\renewcommand{\today}{29 Februarie 1912}
\begin{letter}{Piet Pompies\\
Putsonderwater\\
Grammadoelaland}

\opening{Dag ou siel}

{\bf Water in die Knersvlakte}

Ons vrek van dors hier in die vlakte; maar aanhou en uithou, dis ons
klagte, bring ons nog niks meer te wagte.

\signature{Boggom\\

Die Bult van Bulfontein}

\closing{Jou uitgevrekte vriend}

\ps BB/gds

\end{letter}

\end{document}

Figure D.5: Qutput produced using the LaTeX scheme for business letter
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Skilpadvrekvandors
Sannaspos
Die Vlakte
29 Februarie 1912
Piet Pompies

Putsonderwater
Grammadoelaland

Dag ou siel:
Water in die Knersvlakte

Ons vrek van dors hier in die vlakte; maar aanhou en uithou, dis ons klagte,
bring ons nog niks meer te wagte.

Jou uitgevrekte vriend,

" Boggom
Die Bult van Bulfontein
BB/gds

Figure D.6: Business letter output from a GML formatter
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Skilpadvrekvandors
Sannaspos
Die Vlakte

29 Februarie 1912

Piet Pompies
Putsonderwater
Grammadoelaland

Dag ou siel
Water in die Knersvlakte

Ons vrek van dors hier in die vlakte; maar aanhou en uithou, dis ons klagte, bring
ons nog niks meer te wagte. .

Jou unitgevrekte vriend

Boggom
Die Bult van Bulfontein

BB/gds

Figure D.7: Business letter output from INTpX formatter
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Appendix E

Command Summary

This is a summary of all the commands available to the user of the document preparation
system. Some commands are tied to function or other special keys, and some appear in
command menus. For those that are tied to function keys, we have listed the key name (for

an IBM-PC keyboard) in parenthesis after the command name.

E.1 Control

E.1.1 Edit Structure (TAB)

Allow structural editing of the document. The current object is highlighted and the create
menu is displayed and activated. The menu contains all objects that may be inserted in the

document after the current object.

E.1.2 Edit Content (TAB)

Allow textual (content) editing of the document. The create menu is removed and the user

is allowed to edit the text associated with the basic document objects.
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E.1.3 Command Menu (Esc)

Display and activate the command menu. The command menu contains standard word-
processing commands such as filing, search and replace, directory maintenance and copying
commands.

E.1.4 Edit Attributes (F9)

Enable the editing of the current object’s attributes, if it has any. A menu listing all the
attributes, the values they may have, and their current values are displayed and the user is

allowed to change it through selection and/or entering new values.

E.1.5 Patch

Edit the patch area. A non-restrictive grammar is used to edit the content of the patch

area.

E.1.6 Exit Patch

This command terminates editing of the patch area.

E.1.7 Insert/Overstrike (F5)

Flip between inserting/overstriking characters when editing text.

E.1.8 Extend (F6)

Anchor the cursor at its current position and allow it to be enlarged with the use of the
cursor movement keys.

E.1.9 Help (F10)

Whenever this command is issued, on-line, context-sensitive help is displayed in a pop-up

help window.
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E.2 Cursor Movement (Structure)

E.2.1 Previous (1)

Position the cursor on the previous sibling of the current object if one is defined according
to the current unparsing scheme. If the current object is the leftmost sibling and the class
grammar allows the current object to have an older sibling, position the cursor on the
phantom first child of the current object’s parent. If no older sibling is allowed, position
the cursor on the previous object in the pre-order traversal of the document tree. If the

current object is the root of the document tree, this command has no effect.

E.2.2 Next (|)

Position the cursor on the next sibling of the current object if one is defined according to
the current unparsing scheme. If no sibling is defined, position the cursor on the next object
in the pre-order traversal of the document tree (i.e. the next sibling of the parent of the
current object, recursively). If the current object is the rightmost in the document tree (as

defined in pre-order), this command has no effect.

E.2.3 Parent (<)

Position the cursor on the parent of the current object.

E.2.4 Child (—)

Position the cursor on the first child of the current object. If a phantom first child is allowed,

position the cursor on the phantom child.

E.2.5 Root (Ctrl-Home)
Position the cursor on the root of the document tree.
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E.2.6 Oldest Sibling (Home)

Position the cursor on the current object’s oldest sibling.

E.2.7 Youngest Sibling (End)

Position the cursor on the current object’s youngest sibling.

E.3 Cursor Movement (Content)

In text mode, the cursor can only be positioned on text that the user has typed in, and
only this text can therefore be edited. The one exception to this rule is that the cursor may
be positioned in the single column beyond the end of the text of a basic object, or on the

placeholder for an empty basic object.

E.3.1 Character (F1)

Set the cursor size to one character.

E.3.2 Word (F2)

Set the cursor size to a word.

E.3.3 Sentence (F3)

Set the cursor size to a sentence.

E.3.4 Block (F4)

Set the cursor size to a “text block”. A text block is the unit of text that is associated with

a basic object.

E.3.5 Up (1)

Move the cursor up one line, or, if in sentence or block mode, to the previous sentence/block.
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E.3.6 Down (})

Move the cursor down one line, or, if in sentence or block mode, to the next sentence/block.

E.3.7 Left (<)

Position the cursor on the previous character, word, sentence or block.

E.3.8 Right (—)

Position the cursor on the next character, word, sentence or block.

E.3.9 Start of Line (Home)

Position the cursor at the start of the line.

E.3.10 End of Line (End)

Position the cursor at the end of the line.

E.3.11 Screen Up (PgUp)

Move the screen window a screen full of lines towards the start of the document and position

the cursor at the same relative position on the screen.

E.3.12 Screen Down (PgDn)

Move the screen window a screen full of lines towards the end of the document and position

the cursor at the same relative position on the screen.

E.4 Cursor Movement (Structure and Content)

The following two commands are convenient to use to reposition the cursor on the screen
while still pointing to the same position in the document, as well as to examine the full

extent of the cursor if it covers an area larger than the screen.
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E.4.1 Scroll Up (Ctrl «)

Move the screen window up one line in the document, while keeping the cursor at its current
position in the document. The top of the cursor is not allowed to scroll off the bottom of

the screen.

E.4.2 Scroll Down (Ctrl —)

Move the screen window down one line in the document, while keeping the cursor at its
current position in the document. The bottom of the cursor is not allowed to scroll off the

top of the screen.

E.5 Structure Editing

E.5.1 Copy

The part of the document currently “covered” by the cursor is copied to the patch area,
overwriting the previous content of the patch area. The document remains unchanged.
E.5.2 Delete (Del)

The part of the document currently covered by the cursor is deleted and saved in the patch
area, overwriting the previous content of the patch area.

E.5.3 Insert (Ins)

The current content of the patch area is inserted in front of the cursor. The command has

no effect if its execution will result in a document that is not partially correct.

E.5.4 Nest (F8)

The currently marked objects (which have to be siblings), are made the children of a single

composite object that replaces them in the document tree. The user is prompted with a
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create menu to indicate the class of the new parent. The command has no effect if it cannot

be performed while still maintaining a partially correct document.

E.5.5 Extract (F7)

The opposite of Nest. The current composite object (the cursor must be positioned on one,
thus marking a subtree in the document) is replaced by its children. The command has no

effect if it cannot be performed while still maintaining a partially correct document.

E.5.6 Split

The parent of the current object is split at the current object, creating two new objects of
the same class as the parent. The older siblings of the current object become the children of
the older of the two new objects, while the current object and its younger siblings become
the children of the other new object. This second new object becomes the new current
object. The command has no effect if it cannot be performed while still maintaining a

partially correct document.

E.5.7 Join

The current object and its older sibling are joined into one object that has both their
children. The user is prompted with a create menu to indicate the class of the new parent.
The command has no effect if there is no older sibling, or if it cannot be performed while

still maintaining a partially correct document.

E.5.8 Change Class

Change the class of the current object. The user is presented with a menu that lists the
classes into which the object may be changed. The command has no effect if there are no

legal options.
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E.6 Content Editing

E.6.1 Backspace («+—)

Delete the character preceding the cursor. The command has no effect if that character

belongs to a different text block.

E.6.2 Copy

The text currently covered by the cursor is copied to the patch area, overwriting the previous
content of the patch area. The document remains unchanged. Text is copied to the patch

area as basic objects. These basic objects become siblings of each other in the patch area.

E.6.3 Delete (Del)

Delete the text covered by the cursor and save it in the patch area, overwriting the previous
content of the patch area. Text is copied to the patch area as basic objects. These basic
objects become siblings of each other in the patch area. Note that only the text of basic
objects can be deleted. No objects are deleted, with the exception of basic objects that are
already empty.

E.6.4 Insert (Ins)

The text of all the basic objects in the patch area is inserted as one text string into the

current basic object in front of the cursor.

E.6.5 Search

Allows the user to search for occurrences of a text string in the document.

E.6.6 Replace

Allows the user to search for occurrences of a text string and replace them with another

string.
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Appendix F

Some Structure Editing Algorithms

The algorithms presented here implement the structure editing commands of Appendix E.5.
We use the following notational conventions: a, is the current object, while a;...ap...a,, are

the children of the current object’s parent.

We make use of the functions CONSTRUCT MENU and TEST_CORRECT described
in Chapter 4, as well as the following functions that we do not describe any further as their

names are self-explanatory:

PARENT_OF,
CHILDREN_OF,
CLASS_OF, and
CONCAT

The function TEST_SUBTREF is used in the insert algorithm and is defined in Figure F.1.
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TEST.SUBTREE( s )
INPUT:
s - any document object
OUTPUT:
the value TRUE if the object and its constituents recursively conforms to their
respective class descriptions
begin
if s is a basic object then
return TRUE
else
by...b, := CHILDREN_OF( s)
if( TEST_-CORRECT(CLASS_OF(s), by...by) Jthen
for : := 1 tomdo
if( TEST.SUBTREE(b;) = FALSE )then
return FALSE
endif
endfor
endif
endif
return TRUE
end

Figure F.1: TEST SUBTREE
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F.1 Insert

begin
by...b,, = content of patch area
class :== CLASS_OF(PARENT_OF(a,))
if( TEST_.CORRECT (class, ay...ap-1b1...bnay...a,) Jthen
for::=1tomdo
if( TEST SUBTRFEE(b;) = FALSE )then
return FALSE
endif
endfor
endif
insert b;...b, in front of a,
end

F.2 Nest

This algorithm assumes the user has marked a,...aq, a substring of a,...a,,, and returns a

menu of object classes, any one of which can be used to nest the marked objects.

begin
class :== CLASS_OF(PARENT_OF (a,))
Menu := CONSTRUCT MENU (class, ay...ap-18¢41..-Gm, p — 1)
for each class class € Menu do
if( TEST_.CORRECT (class, ap...aq) = FALSE )then
remove class from Menu
endif
endfor
return Menu
end

F.3 Extract

begin
class := CLASS_OF (PARENT_OF(ayp))
if( TEST_-CORRECT (class, CHILDREN_OF(a,)) Jthen
replace a, with its children
endif

end
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F.4 Split

begin
by :== PARENT_OF(a,)
by...by...bn, := CHILDREN_OF (PARENT_OF(b;) )
if( TEST_-CORRECT(CLASS_-OF(PARENT_OF (bp)), b1...byby...bn) Jthen
create a node s of class CLASS_OF (b,)
assign ap...ap, to s as children
insert s after b,
endif
end

F.5 Join

begin
class := CLASS_OF(PARENT_OF(ay))
Menu := CONSTRUCT_MENU (class, ay...ap—28p41--.Gm, P — 2 )
by...b, := CONCAT( CHILDREN_OF (b,_1), CHILDREN_OF(b,) )
for each class class € Menu do
if( TEST.CORRECT (class, by...b,) = FALSE )then
remove class from Menu
endif
endfor
return Menu
end

F.6 Change Class

begin
class :== CLASS_.OF (PARENT_OF(ay))
Menu := CONSTRUCT_MENU (class, a1...8p—18p41.--Gm, p— 1)
by...b, := CHILDREN_OF(a,)
for each class class € Menu do
if( TEST_.CORRECT( class, by...bp) = FALSE )then
remove class from Menu
endif
endfor
return Menu
end
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