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ABSTRACT

Multiple process structures are an important technique
for modularizing applications, but good interprocess commun-
ication requires careful design. This paper describes a new
process model called the dispatcher, which simplifies com-
munication by mediating the transfer of messages between
processes. Dispatchers manage courier processes and hence
support a type of non-blocking communication which is useful
in systems that provide only blocking primitives. Other
advantages of the dispatcher are its facilitation of incremental
development and support for well-defined process interfaces.
Experiences with the dispatcher are described, and some
extensions are presented.
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1. Introduction.

Modern operating systems encourage the use of multiple inter-
communicating processes for applications programming.1- These systems
support efficient process creation, scheduling, and communication, thereby
increasing parallelism and easing the transition to distributed environ-
ments. An important advantage is that multiple processes are often a
powerful means by which to decompose and modularize applications.4°
However, these advantages are offset by the need to solve new develop-
ment problems such as scheduling, deadlock, prioritization, and allocation
of concurrency. Proper resolution of these issues entails a significant
amount of design effort.

One recommended technique for design of multiple process structures
is to employ anthropomorphic models;® some examples are the adminis-
trator, courier, worker, and vulture.7»é This paper describes a new model
that simplifies interprocess communication — the dispatcher. Dispatchers
mediate a form of non-blocking communication, and so are useful in sys-
tems which only support blocking communications primitives. The
dispatcher evolved partly in response to perceived complexity in existing
models, and partly as a more robust (though less efficient) type of process
of particular utility in developing user interface applications. Experience
with the dispatcher shows that it can lead to well-designed process
modules, and so has advantages in addition to managing non-blocking
communication.

Before describing the dispatcher in more detail, we first briefly
describe the two main types of message passing primitives.



2. Blocking and non-blocking primitives.

Many applications can be modularized into independently executing
processes that communicate by means of messages. Generally, these mes-
sages are one of two types: those which block the invoking process, and
those which do not. Blocking primitives enforce a rendezvous of two
processes; each process stops at a specified point in its execution, and then
data is exchanged. For example, suppose that two processes x and y
wish to exchange data. Process X can request a rendezvous with process
y by invoking send(message, return_message, y). At some point
in its execution y permits the rendezvous by invoking
receive (message, x); this may have occurred before x invoked the
send. When rendezvous is achieved, y is unblocked and the message
message is transferred; x remains blocked wuntil y invokes
reply (return_message, X). X then obtains return_message and
can continue processing. Non-blocking primitives do not require rendez-
vous of processes; a non-blocking send results in kernel buffering of the
message until the recipient attempts to read it. Similarly, a non-blocking
receive simply checks to see if a message has been buffered. The trade-
offs between blocking and non-blocking primitives and the send—
recesive — reply cycle have been described at some length by Gentle-
man.

Each type of primitive is natural for specific classes of communica-
tion. Blocking primitives using a reply message are natural for situa-
tions where data must be transferred in both directions; for example, a
request for disk data should be answered with the data, and the request-
ing process should be blocked until the data is received. Non-blocking
primitives are natural for situations where communication is one-way and
a return value is unnecessary. For example, a process generating key-
board input events need not wait for a return value. An additional dis-
tinction is the responsibility for message buffering. Non-blocking mes-
sages are buffered by the kernel; blocking messages are buffered by the
application.

Several operating systems provide only blocking primitives; examples
include PORT,® Harmony,!? and MINIX.1! The robustness and simplicity of
blocking primitives are of overriding importance in the operating system
kernel, where buffering is especially costly and the unbounded queue prob-
lem especially troublesome. However, the natural applications of two-way
and one-way communication suggest that applications programmers
should be able to employ either type of communication. As a result, pro-
grammers often simulate non-blocking communication within a blocking-
only system using couriers.



3. Couriers.

Couriers are used to transmit messages when the originator of the
message does not wish to be blocked until the intended recipient is ready.
The code for a typical courier is seen in Figure 1, written in a C-like
language. The courier repeatedly sends to its creator for a packet,
extracts the message and the destination from the packet, and sends the
message to the destination. When the destination process is ready, it
receives the message from the courier, and may give it a message to be
returned to the sender. When the courier has received the message and
destination (but before the recipient has received the message), the sender
is unblocked and hence free to continue processing. The courier now
blocks on the recipient until it is able to transfer the message. In effect, a
courier provides a high-level operation similar to a non-blocking send by
“buffering” messages within processes.

#include <packet.h>

courier ()
{
int ready;
struct packet who_and_what;
Pid who;
char *what;
repeat
{
send(ready, who_and_what, Creator’s_id) ;
who = who_and_what.who;

what = who_and_what.what;
send (what, ready, who);
}

Figure 1. A courier.

Though the implementation of the courier itself is simple, the impact
of couriers on an application can be complex. For example, the number of
couriers in the system is important. If too few couriers exist, then some
processes will be delayed while needed couriers are created. If too many
couriers exist, the performance of the application or even the operating
system may be degraded. Furthermore, processes which employ couriers
suffer extra overhead in courier creation and destruction, in maintaining a
queue of ready couriers, and in distinguishing between messages from
other processes and the returning couriers. All these factors tend to
discourage the use of couriers, and hence of non-blocking communication.



4. Dispatchers.

The need for courier management led us to the notion of the
dispatcher. A dispatcher is a centralized courier service for a given set of
processes. A process wishing to transfer a message obtains a courier from
the dispatcher; the courier delivers the message and then reports back to
the dispatcher for further messages. The dispatcher creates its couriers,
manipulates the queue, and handles the return status of the couriers, thus
freeing the application processes of courier overhead. Since courier
management activities are quite general, it is both reasonable and useful
to handle them in an application-independent fashion.

#include <requests.h>
#include <msg.h>
request( activity, data, destination )

Tequests activity;

char *xdata;

Pid destination;

{
struct message msg;
int junk;

msg.pointer = data;
msg.req_type = activity;
msg.pld = destination;

send (msg, junk, dispatcher_id);

Figure 2. request.

In a dispatcher-oriented environment, an application consists of a set
of processes, a set of couriers, and a dispatcher which manages the
couriers. Any process can be the source or sink of a message, but mes-
sages are not sent or received by direct use of send and receive.
Instead, a process that wishes to send a message invokes a request; a
process wishing to receive a message invokes a get_request. These
calls entail the use of a courier for data transfer.

The form of the request call is shown in Figure 2; a request
instructs process destination to perform activity with parameters
data. A request is non-blocking, so the invoking process is permitted
to continue with its execution after the request has been noted. How-
ever, the invoking process may not assume that the recipient has immedi-
ately serviced the request. All that is guaranteed is that the request will
be eventually serviced, and that successive requests from the invoker
will be serviced in the order in which they are made. requests from
several processes to one are not serviced in a specific order unless order is



imposed by the recipient.

Within the request function the arguments are assigned to the
appropriate components of a record, and then sent to the dispatcher.
Code for the dispatcher is seen in Figure 3. Initially the dispatcher
creates a set of couriers and appends them to its ready queue; then the
dispatcher blocks while attempting to receive a message. If the message is
the result of a request, the dispatcher allocates a courier from the
ready queue, transfers the information to the courier, releases the courier,
and then replys to the requestor, hence unblocking it. If the message is
a notification of a returning courier, the courier is appended to the ready
queue.

#include <courier.h>
#include <msg.h>

dispatcher ()

{
couriers *courier_queue;
struct message msg.;
int junk;
Pid requestor;
Pid courier;

create_couriers();
Tepeat
{
requestor = receive_any(msg) .
if (a_courier(requestor))
append_to_queue (requestor) ;
else
{
courier = head_of_queue();
assign_courier (requestor, courier, msg);
reply (junk, requestor);

Figure 3. Dispatcher.

If there are no couriers available when a request is made, the
dispatcher has several options. In the example implementation we assume
that head_of_queue will create a courier if necessary. Other possibili-
ties are to note the request and let the requestor proceed, or to leave
the requestor blocked until a courier is available. This latter possibility
might be termed soft blocking: a request is not blocked unless no



resources are available for transmitting the message.

A process that wishes to receive messages invokes get_request.
The code for get_request is seen in Figure 4. get_request blocks
the invoking process, so it is usually employed only when the process has
completed servicing all other computation. get_request waits for a
courier to attempt rendezvous, then the message is extracted and copied
into a buffer (whose address was passed by the invoking process) and the
courier is released to return to the dispatcher. The return value of
get_request is the desired activity.

#include <requests.h>
#include <msg.h>
get_request( data )

**%char data,;

{
P1id pid;
struct message msg;
request activity;
int junk;

pid = receive_any (msg) .
activity = msg.request;
data = msg.data;
reply(junk, pid);
return(activity);

Figure 4. get_request.

Processes which use the dispatcher’s services typically assume a
server-like form as shown in Figure 5. Each process consists of a main
routine which repeatedly invokes get_request and directs these
requests to the appropriate function. In servicing requests a function may
(and typically does) issue new requests which are serviced by some
other process. get_request is invoked only as shown in the main
module of the process, and not in its other functions. This last constraint
ensures that the flow of messages into a process can be examined simply
by reading the main routine.

The main benefits of dispatcher-oriented process structuring derive
from the indirect use of message-passing primitives and flexible develop-
ment of process structures. The basic disadvantage of dispatcher-oriented
process structuring is the efficiency penalty of transmitting messages with
couriers.



Parallelism is more easily achieved in a dispatcher-oriented environ-
ment due to its indirect use of message-passing primitives. Careless use of
blocking primitives can result in an overconstrained order of execution
(i-e., subroutining) and hence very little parallelism. However, the use of a
request blocks a process only for the length of time necessary to obtain
a courier, so subroutining is avoided. Furthermore, communication is
more robust if the primitives are used indirectly. If message-passing primi-
tives are used directly and a message of incorrect type is received, the
sending process is destroyed. Similarly, sends to non-existent processes
cause the death of the sender. In the dispatcher-oriented environment, a
courier is destroyed rather than the requestor. The use of couriers for
communication implies an acyclic blocking graph, hence simple deadlock is
avoided. Because of the non-blocking nature of the request, two
processes can request activity of each other simultaneously without
simple deadlock, and in fact a process can make a Tequest to itself.

#include <requests.h>
main()
{

char *data;

requests activity;

initialise();

Trepeat
{
activity = get_request(&data);
switch(activity)
{
case type_1 : service_type_il(data);
case type_2 : service_type_2(data);
case type_n : service_type_n(data);
}
}

Figure 5. Main function of a process.



One other comment about standard message-passing primitives is that
their names are a potential source of misunderstanding. A process invok-
ing a send would seem to be the active initiator of a dialogue, and the
invoker of a receive seems to be the passive acceptor of dialogues.
Programmers might also reasonably conclude that send is used when
information is to be transmitted, while receive is to be used when infor-
mation is obtained. These perceptions are understandable because of the
normal connotations of the words “send” and “receive”. However, an
administrator® initiates dialogues and transmits information without
employing a send (instead, it Teplys to a waiting courier with the data
to be sent). send and receive can be considered identical in that they
indicate the desire for rendezvous; their most important difference is that
the process invoking receive is given control during the rendezvous.
The primitives get_request and request have the psychological
advantage that their connotations closely resemble their semantics.

The non-blocking nature of the request facilitates incremental
development of process structures. Blocking primitives interfere with
incremental development because processes may communicate only in cer-
tain restricted ways. This constraint is removed in the dispatcher-
oriented environment, so the programmer may freely add or delete
processes and requests without fear of deadlock. Furthermore, the
robust nature of the messages suggests that an application can be tested
before all its processes have been developed. Processes are not blocked if
their requests are not served, nor do they need to service any
requests they receive, so an incomplete application will not suffer pro-
cess structuring problems. For example, an application which has
processes for input, screen display, and file output can be created with
only a “stub” file output manager. requests to the file output process
need not result in any file output, but the stub permits the remainder of
the process structure to be implemented and tested. Functionality can
also be added to the stub incrementally by coding the activity to be taken
for each request separately.

5. The name service.

A preliminary implementation of the dispatcher was developed in
PORT V2.3 on an IBM PC/XT in order to test the viability of the model.
The major problems we expected were significant performance penalties
and possibly a variant of the unbounded queue problem i.e., exhausting
the list of couriers. While the use of couriers certainly increased the cost
of message-passing (and hence overall system load), we were agreeably
surprised to find that dispatcher-mediated communication was effective
except for tasks which would generate many messages that must be han-
dled in real-time, such as tracking a mouse.

Processes must specify the destination of their requests; as shown
in Figure 2, this implies that the process id of the destination is known.
We found this need to know the process ids of message recipients trouble-
some for two reasons. First, process ids are dynamic and hence must be
obtained at run-time, necessitating extra programming overhead. Even if



it were simple to obtain this information, it seemed that such low-level
knowledge reduced the modularity and robustness of the application.
Consequently we decided to enhance the dispatcher by adding a name
service that would map symbolic process identifiers to absolute process
ids. Given such a service, the processes no longer need to know absolute
process ids; requests can be made with the symbolic process identifiers,
which are resolved by the dispatcher at run-time.

In this enhanced dispatcher environment an application is started by
creating its dispatcher, whose first activity is to create the couriers and
processes involved in the application. The processes to be created are
listed in a startup file, which contains the location of the object file of
each process, and a symbolic name by which the other processes can
address it. The names and the associated process ids are entered into the
name service, with the dispatcher ensuring that there are no name colli-
sions. Next, the couriers are created; in the current implementation of the
dispatcher one courier is created for every process specified in the startup
file. Another possibility is for couriers to be created as they are needed.

Once the application’s processes have been created and the name ser-
vice has been initialized, the dispatcher mediates communication between
the processes as before. The implementation of request is changed
slightly since the dispatcher can now be referenced as Creator’s_id;
hence even the dispatcher’s process id can be known indirectly. Destina-
tion processes are referred to by their name rather than their (unknown)
process id. When the application is finished one of the processes sends a
termination request directly to the dispatcher so that the processes and
couriers can be destroyed in an orderly way.

The use of symbolic names for processes enhances the dispatcher’s
ability to support incremental development. Processes can be added or
deleted simply by modifying the startup file, without the need to recom-
pile or otherwise change the other processes. This facility is commonly
used in testing and comparison of alternative processes. For example, a
database query language process might include a request for search to a
process datastructure. If the programmer has coded data structure
processes Hash, B-tree, and SortedList so that they each handle
search in the appropriate manner, they can each be tested simply by
editing the startup file so that the desired process has the appropriate
symbolic name.

When processes are built using the message-passing primitives and
process ids directly, there is too much opportunity for the creation of
non-modular, application-dependent code. By contrast, the dispatcher
and name service environment foster a modular form of process develop-
ment. In this environment each process presents a highly abstract face to
the rest of the system, consisting only of its symbolic name and the set of
activities it services. The dispatcher explicitly enforces and supports the
development of modular process structures, promoting software reusabil-
ity and information hiding. We have found these characteristics especially
useful for rapid prototyping of user interfaces and software for
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psychological experiments.

A production dispatcher with name service has been implemented in
PORT and used for the development of several applications by the author
and research assistants. A request— get_request cycle averages
25.2 milliseconds, in comparison with a send— receive — reply
cycle under similar conditions which requires 6.2 milliseconds. The
dispatcher is more than four times slower than the direct messaging
method.

The first application was a graphical interface to hierarchical file sys-
tem. The interface was composed of five processes which handled input,
process state, data logging, graphical display, and the data structure. The
interface has undergone two revisions, and has served as the basis for
software used in three different user interface experiments. The use of
the dispatcher in each of these applications resulted in a significant
decrease in overall implementation effort. A second major implementa-
tion was a query mechanism for a videotex database that employed Venn
diagrams for specification of boolean keyword expressions.!2 This applica-
tion was developed concurrently with the graphical interface and
employed the same input and graphical display processes with a small
extension in functionality. Additional processes were developed for key-
word list management, display of query results, and management of venn
diagrams. Currently the file system interface and the keyword interface
are being merged.

6. Extensions.

The dispatcher has proved to be a worthwhile software utility for
developing and maintaining multiple process applications. During imple-
mentation we noted and explored some opportunities for extended func-
tionality.

The first extension resulted from the observation that the centraliza-
tion of messages in the dispatcher can be exploited for debugging pur-
poses. Since all of the application’s requests pass through the
dispatcher, it is a vantage point for observing the execution of the process
structure. Accordingly, we modified our implementation to include a sim-
ple “debugging” mode, in which each request’s source, destination, and
request type are displayed in a debugging window. By following the mes-
sages in the debugging window the programmer can trace the
application’s activity and observe erroneous or ignored requests, or
detect runaway processes. The programmer can also interrupt the
dispatcher at any point, thus halting the application temporarily. These
basic facilities could be augmented in several ways, including the provision
of a “single-message” capability (similar to single-step in a standard
debugger), dynamic modification of process priorities, dynamic addition or
deletion of couriers, and the ability to insert specific requests into the
application by hand.
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Another interesting extension results from the observation that the
modular interface of dispatcher processes promotes software reusability.
Processes in a dispatcher-oriented environment are highly independent
entities with a well-defined interface. As a result, programmers tend to
build processes which have general utility. For example, we built a Log
process which maintains a file of logged information. Log accepts
requests to open a named file, append a line of data, and close the file.
Any application which wishes to maintain a log can include this process in
its startup file, along with the appropriate identifier (i.e., the one to which
log requests are made by the application’s processes). Furthermore,
any number of log files can be handled by simply adding extra instances of
this process in the startup file. Log and other such processes can be
added to a general process library, thus significantly reducing the time to
develop new applications. Programming in a dispatcher-oriented environ-
ment bears some resemblance to Unix shell programming, in that both the
shell and the dispatcher are used to connect general processes to perform
some specific task. The dispatcher is more primitive than the Unix shell in
that it is not programmable, but it is more powerful in that its “pipelines”
can be non-sequential. This is an appealing view of process structuring,
but proper exploitation of the idea requires a more capable tool than the
dispatcher.

Several other extensions have been briefly investigated. A dispatcher
could be designed to handle create and destroy requests so that the
application’s components could be added or deleted as necessary. This
might be important if an application was quite large or only required some
processes at specific points in its lifetime. Another extension would be to
define a rename request that changes the names of one or more of the
application’s processes (and hence the message flow). Lastly, since a
dispatcher is indifferent to the activities of the processes it mediates, it
can manage other dispatchers. Since the current dispatcher generates no
requests, this would merely be a way to control the creation of a multi-
dispatcher process structure. A more powerful facility would result if
dispatchers could pass messages to parent dispatchers. Such a system
might be used to implement an inheritance hierarchy similar to that in
object-oriented systems, with nested dispatchers providing some services
and passing unknown requests up to their parent dispatchers. We have
not yet implemented a hierarchy of dispatchers.

7. Conclusions.

The dispatcher was originally intended to provide non-blocking com-
munication within a system that supports only blocking primitives. How-
ever, the abstraction provided by the name service would be a useful facil-
ity even in a system which supports non-blocking primitives. Hence the
dispatcher contains the core of a more general process structuring tool.

Experience with dispatchers suggests that it is unsatisfactory to
merely teach process structuring models without providing explicit pro-
gramming support. Existing process models are typically presented as
ideas, but the dispatcher is most valuable as an implemented utility that
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significantly reduces the amount of coding required to develop multiple
process structures. Modern programming languages encourage good con-
trol flow structures by making proper structuring easy; similarly, multi-
process structuring systems should encourage good process structures by
making proper process structuring easy. This type of environment is
especially suitable when the primary motivation is teaching or the applica-
tion requires incremental development.
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