Integrating Connective Clue Processing
into the Argument
Analysis Algorithm Implementation

Trevor J. Smedley
Department of Computer Science

Research Report CS-87-34
June 1987

Integrating Connective Clue Processing into the Argument
Analysis Algorithm Implementation

Trevor J. Smedley

Department of Computer Science
University of Waterloo
Waterloo, Ontario
CANADA N2L 3G1

ABSTRACT

The argument analys1s algorithm presented by Cohenl4 was
implemented by Smedley®. This was a basic implementation which
did not include any clue processing. This report describes the addition
of basic connective clue processing to the implementation.

Introduction

Argument Processing

The argument processing algonthm used for this implementation is from
Cohenl4 and will not be described in detail here. It is used to analyse arguments,
where an argument is taken as a one way discourse intended to convince the hearer
of some point. Basically, the algorithm incrementally builds a tree showing the
claim-evidence relationships present in the argument. It does this by selectively
applying the test "Is propos1t10n A evidence for proposition B?" The basic algorithm
was implemented by Smedley and this report focuses on adding some clue process-
ing to this basic implementation. The basic algorithm is as follows:

-2 =
The following loop is executed for each new statement in the argument:

forever do:
i1f NEW evidence for L then
1f no sons of L are evidence for NEW then
/* just test rightmost son for evldence */
attach NEW below L
set L to NEW
exlt forever loop
else
attach all sons of L which are evidence for NEW below NEW
attach NEW below L
exlt forever loop
endlif
else
set L to father of L
endlf
enddo

Clues

Clues are words or phrases which a speaker introduces into an argument to help
the hearer in understanding. There are two basic types of clues: redirection and con-
nective. Redirection clues provide information regarding where statements fit into
an argument. They are things such as "return to...", "about the..." etc. These are not
dealt with in this report.

Connective clues are phrases such as "in particular”, "for example", "in addition"
and "as a result”. These give the hearer information as to how the statements fit
together. For example, "as a result” indicates that the statement which follows has a
previous proposition as evidence.

There are a number of different classes of connective clues. The types which are
covered by this implementation are:

category relation to some prior proposition example

parallel brother in addition
detail son in particular
inference father as a result
summary father to multiple sons in sum

This implementation is by no means complete. There are still many problems
which remain to be solved: multiple clues, clues which act as both connective and
redirection, clues which fall into more than one category, other types of connective
clues, and many others.

-3 —

The algorithm which has been implemented will handle all arguments without
clues exactly as the old algorithm, and will also take advantage of the above classes
of connective clues. Thus this implementation supercedes the previous one. It is as

follows:

For each new statement in the argument, the following loop is executed. Note

that cluel = parallel, clue2 = detail, clue3 = inference and clue4 = summary.

forever do:
if L = dummy and clue2 then
INTERRUPT-DISCOURSE (and exit loop)
endif
/* see 1f rightmost son exlsts */
if (cluel or clue3 or clue4) and no rightmost son of L then
1f L = dummy then
INTERRUPT-DISCOURSE (and exit loop)
else
set L. to father of L
endlf
endif
if NEW evidence for L then
/* see 1f sons will reattach */
1f no sons of L are evidence for NEW then
if (clue3d or clue4) then
if L. = dummy then
INTERRUPT-DISCOURSE (and exit loop)
else
set L to father of L
endif
else
/* normal attaching */
attach NEW below L
set L. to NEW
exlt forever loop
endif
else
/* some son wants to reattach */

attach all sons of L which are evlidence for NEW below NEW

attach NEW below L
exlt forever loop
endif
else
set L. to father of L
endif
enddo

—4 —

Implementation

The following is a description of the changes made to the or 5gmal implementa-
tion. For a description of the original implementation see Smedley”. As in the origi-
nal implementation, it is assumed that the input as already been parsed, and that
clues have been flagged. The examples show how this is done.

Changes

Only one predicate of the original implementation had to be changed. That is
the predicate hybrid_, which handles the main processing of the arguments. The ori-
ginal code was left unchanged and code to handle the clues was added at the begin-
ning. The clauses are ordered to agree with the order of the presentation of the algo-
rithm. The first clause handles the first if clause. The next three are the if part of
the next if clause, and the next three are the else part. The last four clauses handle
the if clause in the last half of the algorithm which deals with inference and sum-
mary clues. The first two are the if part, and the last two are the else part.

The only predicate which was changed to add the clue processing was the predi-
cate "hybrid_". The ongmal code was left unchanged and new code was added. Here
is the new code for the "hybrid_" predicate. For the remaining code see Smedley>.

%
% This bullds the argument tree for hybrid type of arguments. The
% algorithm 1s from R. Cohen. See the documentatlon for a detalled
% description.
%
% The first entries handle connective clues.
%
hybrid_(_ det211()) dummy) <-
printf("failed due to detall clue" [])

nl
printf ("no father found" [1)
nl
printf ("tree so far is:" [1)
nl;

%
hybrid_(_ parallel () dummy) <-
not (rightmost_child (dummy _))
printf ("falled due to parallel clue" [1)

nl

printf ("no possible brothers" [])
nl

printf ("tree so far is:" [1)

nl;

hybrid_(_ inference() dummy) <-
not (rightmost_child (dummy _))
printf("falled due to inference clue" [])
nl

-5

printf("no possible son to re-attach" [1)
nl
printf ("tree so far is:" [])
nl;

hybrid_(_ summary () dummy) <-
not(rightmost_child (dummy _))
printf("failed due to summary clue" [])

nl

printf ("no possible sons to re-attach" [])
nl

printf ("tree so far is:" [])

nl;

%
hybrid_(S parallel(T) L) <-
not (rightmost_child (L))
printf ("parallel clue saves an oracle call" [])
nl
printf("‘‘Last’’ has no sons to be brothers" [])
nl
father (X L)
!
hybrid_(S parallel(T) X);
hybrid_(S inference(T) L) <-
not (rightmost_child (L _))
printf ("inference clue saves an oracle call" [])
nl
printf("“‘Last’’ has no sons avallable to be re-attached" [])
nl
father(X L)
!
hybrid_(S inference(T) X);
hybrid_(S summary(T) L) <-
not (rightmost_child (L _))
printf ("summary clue saves an oracle call" [])
nl
printf("““Last’’ has no sons avallable to be re-attached" [])
nl
father (X L)
!
hybrid_(S summary(T) X);
%
hybrid_(_ inference(T) dummy) <-
no_sons_evidence (dummy inference(T))
printf("failed due to inference clue" [])
nl
printf ("no posslble sons to re-attach" [])
nl

—6 —

printf ("tree so far 1s:" [])
nl;

hybrid_(_ summary(T) dummy) <-
no_sons_evidence (dummy summary(T))
printf("falled due to summary clue" [])

nl

printf("no possible sons to re-attach" [])
nl

printf ("tree so far is:" [])

nl;

%

hybrid_(S inference(T) L) <-
evidence_oracle(inference(T) L _)
no_sons_evidence (. inference(T))
printf ("inference clue causes continuation" [])
nl
father (X L)
{
hybrid_(S inference(T) X);

hybrid_(S summary(T) L) <-
evidence_oracle (summary(T) L _)
no_sons_evidence (L summary(T))
printf ("summary clue causes continuation" [])
nl
father (X L)
!
hybrid_(S summary(T) X);

%

% standard algorithm

%

hybrid_([] N L) <-
evlidence_oracle(N L)
no_sons_evidence (L. N)
assert_father (L N);

hybrid_([] N L) <-
evidence_oracle(N L _)
attach_sons(L N)
assert_father (L N);

hybrid_([H | T] N L) <-
evidence_oracle(N L)
no_sons_evidence (L. N)
assert_father (L N)
hybrid_(T H N);

hybrid_([H | T] N L) <-
evidence_oracle(N L _)
attach_sons(L N)
assert_father (L N)

hybrid_ (T H L);

hybrid_(S N L) <-
not(evlidence_oracle(N L _))
father(X L)
hybrid_(S N X);

Examples
The following examples show how the code works with various examples.

Example 1
This shows how the new code works with an example wlth no clues.

Waterloo Unix Prolog [Release 2.0 -- Oct., 1985]
?consult(hybrid.1);

? analyse([[the,clity,1s,a,mess],
[the,playground,area,ls,all,run,down],
[the,sandboxes,are,dirty],
[the,swings,are,broken],
[the,parks,are,a,dlsaster],
[the,highway,system,also,needs,revampingl]);

The argument 1s;

[the,clty,1s,a,mess]
[the,playground,area,is,all,run,down]
[the,sandboxes,are,dirty]
[the,swings,are,broken]
[the,parks,are,a,disaster]
[the,hlghway,system,also,needs,revamping]

Is
[the,playground,area,is,all,run,down]
evidence for

[the,clty,1s,a,mess]

(answer y or n) y

Is

[the,sandboxes,are,dirtyl

evidence for
[the,playground,area,is,all,run,down]
(answer y or n) y

Is

[the,swings,are,broken]
evidence for
[the,sandboxes,are,dirtyl
(answer y or n) n

Is

[the,swlngs,are,brokenl]

evidence for
[the,playground,area,is,all,run,down]
(answer y or n) y

Is
[the,sandboxes,are,dirty]
evidence for
[the,swlngs,are,brokenl]
(answer y or n) n

Is
[the,parks,are,a,dlisaster]
evldence for
[the,swlngs,are,broken]
(answer y or n) n

Is

[the,parks,are,a,disaster]

evidence for
[the,playground,area,is,all,run,down]
(answer y or n) n

Is
[the,parks,are,a,dlsaster]
evidence for
[the,city,1s,a,mess]
(answer y or n) y

Is
[the,playground,area,is,all,run,down]
evidence for
[the,parks,are,a,disaster]

(answer y or n) y

Is
[the,highway,system,also,needs,revamping]
evidence for

[the,clty,1ls,a,mess]

(answer y or n) y

Is

[the,parks,are,a,disaster]

evlidence for
[the,highway,system,also,needs,revampingl
(answer y or n) n

Argument tree;
[the,city,1s,a,mess]
[the,parks,are,a,disaster]
[the,playground,area,is,all,run,down]
[the,sandboxes,are,dirty]
[the,swings,are,broken]
[the,highway,system,also,needs,revamping]
yes
yes

Example 2

The processlng of a parallel clue 1s shown with this example.

?consult(clue.l);

? analyse([[the,clty,1s,1n,serlous, trouble],
[there,are,some,fires, going],
[three,separate,blazes,have,broken,out],
parallel([in,addition,a, tornado,1s,passing, throughl)1);

The argument 1ls;

[the,city,1s,1n,serlious, trouble]
[there,are,some,fires, golng]
[three,separate,blazes,have,broken,out]
parallel([in,additlon,a,tornado,1s,passing, throughl])

Is

[there,are,some,fires,going]
evidence for
[the,city,1s,1n,serlous, trouble]
(answer y or n) y

Is
[three,separate,blazes,have,broken,out]
evidence for
[there,are,some,fires,going]

(answer y or n) y

parallel clue saves an oracle call
‘‘Last’’ has no sons to be brothers

Is

parallel([in,addition,a, tornado,1s,passing, throughl)
evlidence for

[there,are,some,fires, going]

(answer y or n) n

Is
parallel([in,additlon,a,tornado,l1s,passing, throughl)
evidence for

[the,city,1s,1n,serlous, trouble]

(answer y or n) y

Is

[there,are,some,fires,going]

evidence for
parallel([in,addition,a,tornado,1s,passing, throughl)
(answer y or n) n

Argument tree;
[the,city,1s,1n,ser10us,trouble]
[there,are,some,fires,golingl
[three,separate,blazes,have,broken,out]
parallel([1n,addition,a, tornado,1s,passing, throughl)
yes
yes

Example 3

An inference clue 1s demonstrated; along with the way lncoherence 1s
handled.

?consult(clue.2);

? analyse([[the,parks,are,a,mess],
[the,park,benches,are,a,mess],
[the,playgrounds, are,a,mess],
inference([as,a,result,the,highways,are,a,mess])]);

The argument 1s;

[the,parks,are,a,mess]
[the,park,benches,are,a,mess]
[the,playgrounds,are,a,mess]
inference([as,a,result,the,highways,are,a,mess])

Is
[the,park,benches,are,a,mess]
evidence for

—-11 —

[the,parks,are,a,mess]
(answer y or n) y

Is
[the,playgrounds,are,a,mess]
evidence for
[the,park,benches,are,a,mess]
(answer y or n) n

Is
[the,playgrounds,are,a,mess]
evidence for
[the,parks,are,a,mess]
(answer y or n) y

Is
[the,park,benches,are,a,mess]
evidence for
[the,playgrounds,are,a,mess]
(answer y or n) n

inference clue saves an oracle call

*‘Last®’ has no sons avallable to be re-—-attached
Is

inference([as,a,result, the,highways,are,a,mess])
evlidence for

[the,parks,are,a,mess]

(answer y or n) n

Is

[the,parks,are,a,mess]

evidence for

inference([as,a,result, the,highways,are,a,mess])
(answer y or n) n

%

% The argument 1s determined to be incoherent

%

falled due to 1nference clue

no possible sons to re-attach

tree so far 1is:

Argument tree;

[the, parks,are,a,mess]
[the,park,benches,are,a,mess]
[the,playgrounds,are, a,mess]

yes

yes

—12 —

Example 4

Both a parallel and a summary clue in one argument.
?consult(clue.3);

? analyse([[it,snowed, today],
[it,ralned,yesterday],
parallel([and, there,1s,hall,forecasted, for, tomorrow]),
summary ([in, sum, the,weather,1is,terrible])]);

The argument 1s;

[it,snowed, todayl

[1t,rained,yesterday]

parallel([and, there,1s,hall, forecasted, for, tomorrow])
summary ([in, sum, the,weather,is,terrible])

Is
[1t,ralned,yesterdayl
evidence for
[it,snowed, today]
(answer y or n) n

Is

[1it,snowed, today]
evldence for
[it,ralned,yesterday]
(answer y or n) n

parallel clue saves an oracle call

‘‘Last’’ has no sons to be brothers

Is

[it,rained,yesterday]

evidence for

parallel([and, there,is,hall, forecasted, for, tomorrow])
(answer y or n) n

summary clue saves an oracle call

‘‘Last’’ has no sons avallable to be re—-attached

Is
parallel([and,there,1s,ha11,forecasted,for,tomorrow])
evidence for

summary ([in, sum, the,weather,1s,terrible])

(answer y or n) y

Is
[1t,rained,yesterday]
evidence for

—13 —

summary ([1in,sum, the,weather,is,terriblel])
(answer y or n) y

Is

[1t,snowed, today]

evlidence for

summary ([in, sum, the,weather,1is, terrible])
(answer y or n) y

Argument tree;
summary([in, sum, the,weather,1is,terrible])
[1t,ralned,yesterday]
parallel([and, there,1s,hall,forecasted, for, tomorrow])
yes
yes

Example 5
Shows how a detall clue can slgnal incoherence.
?consult(clue.4);

? analyse([[it,snowed, today],
[1t,rained,yesterday],
detall ([in,particular,there,is,hail,forecasted, for, tomorrow]),
summary([in,sum,the,weather,1s,terrible])]);

The argument 1ls;

[1t,snowed, today]

[it,ralned,yesterday]

detail ([in,particular, there,1s,hall,forecasted, for, tomorrow])
summary ([in, sum, the,weather,1s,terrible])

Is
[it,rained,yesterday]
evidence for
[it,snowed, today]
(answer y or n) n

Is

[1t,snowed, today]
evidence for
[it,ralined,yesterday]
(answer y or n) n

Is
detail([1n,particu1ar,there,1s,hail,forecasted,for,tomorrow])

—14 —

evidence for
[it,ralned,yesterday]
(answer y or n) n

falled due to detall clue
no father found

tree so far 1s:

no

yes

Example 6
A summary clue signals incoherence before any oracle calls.
?consult(clue.B);

? analyse ([summary([in, sum,the,weather,was,awfull),
[it,ralned,last,week],
[and,snowed,all, the,week,beforell]);

The argument 1s;

summary ([in, sum, the,weather,was,awful])
[it,rained, last,week]

[and, snowed,all,the,week,before]

falled due to summary clue

no possible sons to re—attach
tree so far 1s:

no

yes

Example 7

This example shows how an 1lnference clue can cause contlnuatlon of the
processing.

?consult(clue.8B);

? analyse([[1,had,to,walt,to,see,1f,anyone,called],
[1,d1idnt,get, the,letter,saying,1,got, the, job],
[1,didnt,pick,up,my,mail,at,school],
[the,mall,room,was,locked,and,1,forgot,my,keyl,
inference([as,a,result,1,had, to,stay,home, todayl)]);

The argument 1s;
[1,had,to,walt,to,see,1f,anyone,called]
[1,d1dnt,get,the,letter,saying,1,got, the, jobl

—~15 —

[1,didnt,pick,up,my,mall,at,school]
[the,mall,room,was,locked,and,1,forgot,my, key]
inference([as,a,result,1,had, to,stay, home, todayl)

Is
[1,didnt,get,the,letter,saying,1,got, the, job]
evlidence for
[1,had,to,walit,to,see,if,anyone,called]
(answer y or n) y

Is

[1,d1dnt,pick,up,my,mail,at,school]

evidence for
[1,dldnt,get,the,letter,saylng,1,got, the, jobl
(answer y or n) y

Is
[the,mail,room,was,1ocked,and,i,forgot,my,key]
evidence for

[1,didnt, pick,up,my,mall,at,school]

(answer y or n) y

inference clue saves an oracle call

‘‘Last’’ has no sons avallable to be re-attached

Is

Inference([as,a,result,1,had, to,stay,home, todayl)

evidence for

[1,didnt,pick,up,my,mail,at,school]

(answer y or n) y

%

% We have now found a father for [as a result...], but slnce there no
% sons to re-attach below the staement, and the clue indicates that

% there must be a son, we continue looklng for a father farther up in
% the tree.

%

Is

[the,mall,room,was,locked,and, 1, forgot,my,key]

evidence for

inference([as,a,result,1,had, to,stay,home, today])

(answer y or n) n

inference clue causes continuatlon

Is

inference([as,a,result,1,had, to,stay,home, today])
evidence for
[1,didnt,get,the,letter,saying,1,got, the, job]
(answer y or n) n

—16 —

Is
lnference([as,a,result,1,had, to,stay, home, today])
evidence for
[1,had,to,wa1t,to,see,if,anyone,called]
(answer y or n) n
%
% The sentence [as a result...] fits in at the top, below "dummy"
%
Is
[1,had,to,wa1t,to,see,if,anyone,called]
evidence for
inference([as,a,result,1,had, to, stay, home, today])
(answer y or n) y
%
% and a son gets re-attached, as required
%
Argument tree;
inference([as,a,result,1,had, to,stay,home, today])
[1,had, to,walt, to,see,1f,anyone,called]
[1,d1ldnt,get,the,letter,saying,1,got, the, job]
[1,didnt,pick,up,my,mall,at,school]
[the,mail,room,was,1ocked,and,1,forgot,my,
yes
yes
7quit;

References

1. R. Cohen, Investigation of Processing Strategies for the Structural Analysis of
Arguments, Proceedings of ACL Conference, pp. 71-75 (June, 1981).

2. R. Cohen, A Computational Model for the Analysis of Arguments, University
of Toronto Technical Report CSRG-151, (October, 1983).

3. R. Cohen, A Theory of Discourse Coherence for Argument Understanding,
Proceedings of CSCSI/SCEIO Conference, pp. 6-10 (May, 1984).

4. R. Cohen, Interpreting Clues in Conjunction with Processing Restrictions in
Arguments and Discourse, Proceedings AAAI 1987, (To Appear).

5. T.J. Smedley, An Implementation of a Computational Model for the Analysis
of Arguments — An Introduction to the First Attempt, Technical Report
CS-86-26, University of Waterloo, (1986).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

