Updating Materialized Database Views

José A. Blakeley

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1

ABSTRACT

Query processing in relational database management systems can be sped up by
keeping frequently accessed users’ views materialized. However, only if the materi-
alized views are kept up to date with the base relations does this avoid the need to
access the base relations in response to queries.

This thesis explores several important subproblems towards the solution of the
view maintenance problem, using the assumption that a view is described by selec-
tion, projection, and join. The main contributions of this work are:

e the characterization of updates to base relations that cannot affect a materialized
view;

The conditions given for the detection of updates of this type, called srrelevant
updates, are necessary and sufficient and are independent of the database state.

o the characterization of updates to base relations that can be reflected in a mate-
rialized view using only the information provided by the update expression, the
view definition, and the contents of the materialized view;

Updates of this type are called autonomously computable updates. Two cases
of autonomously computable updates are studied: unconditional, or scheme-
based, and conditional, or instance-based. We present necessary and sufficient
conditions for unconditionally autonomously computable insertions, deletions,
and modifications, as well as necessary and sufficient conditions for condition-
ally autonomously computable insertions and deletions.

e an approach to differential update of materialized views.

The method, based on query modification, uses the state of the base relations
and the net changes applied to the base relations since the latest update of the
view. Differential re-evaluation leads to a special multiple query optimization
problem. This multiple query optimization problem is formally stated and
two solutions, one based on query decomposition and the other based on
space search methods, are explored.

Finally the thesis explores the support of snapshots by treating them as materialized
views that are updated periodically.

Acknowledgements

There are several people who have made possible the successful completion of
this work to whom I am indebted. First amongst these is my wife Lucy whom
at the expense of putting her own carrer as a public accountant on hold, decided
to undertake this adventure in Canada with me. She has been the source of love,
encouragement, and support on a daily basis throughout my graduate studies.

I have been extremely fortunate in having Professors Frank Wm. Tompa and
Per-Ake Larson as my thesis supervisors. I have benefited a great deal by learning
from their technical skills through the many interactions I have had with them.
Their encouragement, friendship, support, and prompt feedback at all stages in the
development of this work are deeply appreciated.

To the other members of my thesis committee, Professors Stan Burris, Stavros
Christodoulakis, Ian Munro, and Abraham Silverschatz for their helpful criticism.

To Neil Coburn for the collaboration we had. In particular, the results in Section
4.2 on unconditionally autonomously computable updates were developed jointly
with him. I also want to thank Neil for ihe useful comments he made to a draft of
the thesis.

To my parents José Alfredo and Josefina for their constant love and support.
To Mr. Fidencio Ruiz Guajardo and Mrs. Lucinda E. Gonzélez de Ruiz for their
moral support.

To all my friends during my graduate years at Waterloo for the useful discussions
at several stages during our studies.

The financial support from the Consejo Nacional de Ciencia y Tecnologia de
México (CONACYT), the Department of Computer Science at the University of
Waterloo, the Natural Sciences and Engineering Research Council of Canada, and
Cognos, Inc., Ottawa are gratefully acknowledged.

Contents

1 Introduction

1.1 Previouswork i e e e e e e

1.2 Thesisoutline i i ittt ittt e
Notation and Basic Assumptions

Irrelevant Updates
3.1 Irrelevant imsertions,

3.2 Irrelevant deletions

3.8 Summary e e e e e e e e e e e e e e

Autonomously Computable Updates

4.1 Basic cOnCept8 . . . v v i i i e e e e e e e e e
4.2 Unconditionally autonomously computable updates
421 Imsertionst ittt uernnmaeeens
422 Deletions
4.2.3 Modificationg e s e e
4.3 Conditionally autonomously computable updates
4.3.1 Imsertions i i it inieveenseens
432 Deletions i i e e e
44 SUMMATY . . . ¢t v v v vt v e o s st e e e

ii

13
13
14
16
19
23

5 Differential re-evaluation of views 66

5.1 Selectviews L L e e 57
5.2 Project views Lo e e 58
5.3 Product views o e 59
5.4 Project-Select-Join views L L 0oL 63
B.S Summary e e e e e e e e e e e e e 64
6 A Multiple Query Optimization Problem 65
6.1 Introduction. e 65
6.2 Relatedwork 65
6.3 Theproblem, 67
6.4 Alternativesolutions L e 69

6.4.1 Differential re-evaluation with no sharing of common subex-
Pressions v v it it e e e e e e e e e e e e e e 69

6.4.2 Cost comparison of differential re-evaluation with no sharing
of common subexpressions and complete re-evaluation 72
6.5 Query representation« . o it bttt e e e 75
6.6 A solution using query decomposition 79
6.7 A solution using space searchmethods 88
6.8 SUIMMATY ¢t v it e e e e e e e e e e e e e e e 92
7 Updating Materialized Views 93
7.1 Imtroduction i ittt e 93
7.2 Consistently up-to-date materialized views 94
7.3 Smapshots o i i e e e e e e e e e 95
7.3.1 Snapshot refresh using old and new values 96
7.3.2 Snapshot refresh using only new values 100
7.4 Amount of data required to update a materialized view 104
7.5 Summaryt i e e e e e e e e e e 105
8 Conclusions and Future Research 106
81 Conclusions it i e e 106
8.1.1 Iirelevant updates 106
8.1.2 Autonomously computableupdates. 107
8.1.3 Differential re-evaluationof views 108
82 FutureResearch 109

iv

List of Tables

6.1 Alternative plans for queries vy, vo,and v3. 91
6.2 Costsfortasksandplans. 91
6.3 Coalesced costs fortasksandplans. 92
7.1 Amount of data required to update a materialized view 105

List of Figures

6.1 Comparison between complete and differential re-evaluation
6.2 Comparison between complete and differential re-evalnation

6.3 Multi-query graphfor Av L0 0L,

vi

Chapter 1

Introduction

Database management systems have become a widely used tool for the ac-
cess and maintenance of large collections of shared data. Systems based on
the relational model are rapidly gaining acceptance. The relational model
was introduced by Codd [CODD70] and is described in detail in several
books [DATE86,MAIER83a, KORTH86,ULLMAS82].

In the relational model, the data and the relationships among data are rep-
resented by a collection of tables (base relations) each of which has a number of
columns (attributes) with unique names. A user interacts with a database man-
agement system by submitting requests for data selection, called queries, and for
data manipulation, called updates. Both the queries and the updates are formulated
ueing an appropriate data manipulation language.

In arelational database system, a database may be composed of derived relations
in addition to base relations [MYLOP75,TSICH77|. A derived relation — or view
— is defined by a relational expression (query) over the base relations. A derived
relation may be virtual, which corresponds to the traditional concept of a view, or
materialized, meaning that the relation resulting from evaluating the expression over
the current database instance is actually stored. As base relations are modified by
update operations, the materialized derived relations may also have to be changed.
A materialized derived relation can always be brought up to date by re-evaluating
the relational expression defining it, provided that the necessary base relations are
available. However, complete re-evaluation of the expression is often wasteful, and
the cost involved may be unacceptable. Throughout the thesis, all derived relations
are assumed to be materialized, and the terms derived relation and view are used
synonymously.

Consider a database scheme D = (D, S) consisting of a set of base relation
schemes D = {R;, Rz, ..., Ry} and a set of view definitions S = {E;, Es, ..., En},
where each E; € S is a relational algebra expression over some subset of D). Suppose
that an update operation U/ is posed against the database d on D specifying an

2 CHAPTER 1. INTRODUCTION

update of base relation r, on R, € D. To keep the views consistent with the base
relations, those views whose definition involve R, may have to be updated as well.
The general maintenance problem for views consists of: (1) determining which views
may be affected by the update U, and (2) performing the necessary updates to the
affected views efficiently.

As a first step towards the solution of this problem, we consider the following
important subproblems. Given an update operation U and a potentially affected
view E;:

e Determine the conditions under which the update { has no effect on the view
E;, regardless of the database instance. In this case, the update U is said to
be irrelevant to E;.

o If the update U is not irrelevant to E;, then determine the conditions under
which E; can be correctly updated using only { and the instance of E;, for
every instance of the database. That is, no additional data from the base
relations D is required. In this case, the effect of U on E; is said to be
uncondstionally autonomously computable.

o If the effect of the update U on E; is not unconditionally autonomously com-
putable, then determine the conditions under which E; can be correctly up-
dated using only U and the current instance of E;. In this case, the effect of
U on E; is said to be conditionally autonomously computable.

o If the effect of the update U on E; is not conditionally autonomously com-
putable, then determine efficient algorithms to carry out the update of the
view,

The maintenance problem for views is important for several reasons.

Structuring the internal level of the database: Larson and Yang proposed
a new approach to structuring the database in a relational system at the internal
level [LARSOB85]. In current relational systems there is a one-to-one correspondence
between conceptual relations and stored relations, that is, each conceptual relation
exists as a separate stored relation (file). This is a simple and straightforward rep-
resentation, but its drawback is that the processing of a query often requires data to
be collected from several stored relations. Instead of directly storing each concep-
tual relation, they proposed structuring the stored database as a set of materialized
views. The choice of stored relations should be guided by the actual or anticipated
query load so that frequently occurring queries can be processed rapidly. To speed
up query processing, some data may be redundantly stored in several views.

The structure of the stored database should be completely transparent at the
conceptual level. This requires a system capable of automatically transforming
any user update against a conceptual relation, into equivalent updates against all
stored relations affected. The same type of transformation is necessary to process
user queries. That is, any query posed against the conceptual relations must be

transformed into an equivalent query against the stored relations. The query trans-
formation problem has been addressed by Larson and Yang [LARSO85,LARSO86|.
Preliminary results on the update transformation problem are given by Blakeley,
Coburn, and Larson in {BLAK86b].

Enhancing query processing: Materialized views provide an important device
to enhance the response time of frequently posed queries in conventional relational
systems. When a user knows that he will be using a portion of the database very
frequently, he may choose to keep his own view of the data materialized for faster
retrieval and reduction of processing and communication costs. From a user’s point
of view, a materialized view may appear to be always up to date with the base
relations. In this case we say that the view is consistently up-to-date. There are
two ways in which this can be achieved. The first is to update the materialized
view immediately after any of the base relations that participate in its definition
is updated. The second is to delay the update of the materialized view until the
next time the user wants to look at its contents. This type of update is on demand
and implies that between any two consecutive accesses of the view no updates are

applied to it. Consistently up-to-date views are referred to as evolving views by
Tsichritzis and Lochovsky [TSICH77].

On the other hand, a materialized view is not necessarily updated immediately
when some base relation mentioned in its definition is updated. This type of view
may be brought up to date only periodically or upon request from the user. In this
case we say that the view is periodically updated. Views in the latter category are
usually called snapshots [MYLOP75,ADIBA80,BLAK86a,LINDS86]. Notice that
the support of consistently up to date views on demand as well as the support of
snapshots are technically the same problem. The results presented in this thesis

apply to the support of either consistently or periodically updated materialized
views.

Distributed database environments: The detection of irrelevant or au-
tonomously computable updates also has applications in distributed databases.
Suppose that a view is stored at some site and that an update request, possi-
bly affecting the view, is submitted at the same site. If the effect of an update is
autonomously computable, then the view can be correctly updated locally without
requiring data from remote sites. If the request is submitted at a remote site, then
we need to send only the update request itself to the site of the view. If an update
is irrelevant to a view, then no action to update that view is required.

All other cases will require sending some amount of data to the site housing
the view to bring it up to date. The straightforward way of updating a view is to
re-evaluate the expression defining the view at the site where the base relations are
stored and then send the result to the remote site. At the remote site, the process
of updating the view would consist of deleting the current contents of the view and
inserting the new state of the view. However, the communication costs required by
such solution may be very high because every time we want to update a view we
need to send its whole new state to the remote site. In this thesis we are interested
in finding more efficient ways of bringing the view up to date. In particular, we

4 CHAPTER 1. INTRODUCTION

propose a differential method to compute the changes necessary to bring the view
up to date as a result of the latest updates to the base relations, thus reducing the
amount of data sent between sites.

In addition to the motivations presented above, the maintenance problem for
views also has applications in the area of integrity enforcement and trigger support.
Static integrity constraints can be enforced through mechanisms that depend on
defining a view. If we can show that an update operation has no effect on the view
associated with an alerter or integrity constraint, then the update cannot possibly
trigger the alerter or result in a database instance violating the integrity constraint.
The results presented in this thesis have direct applications in this area as well.

It must be stressed that the problem analyzed in this thesis is completely differ-
ent from the problem of updates through views. In that problem, a user is allowed to
pose updates directly to a view, and the difficulty is in determining how to translate
updates expressed against a view into updates to the base relations. In the model
proposed in this thesis, the user can only update base relations; direct updates to
views are not considered. Therefore, rather than analyzing the traditional problem
of deriving appropriate update translations, this thesis is concerned with finding
efficient ways of keeping materialized views up to date with the base relations. The

reader interested in the problem of updates through views may refer to work by
Keller [KELLE86] or Medeiros and Tompa [MEDEI86].

1.1 Previous work

The idea of storing derived relations to help improve the response time of the
database is not new [SCHMI75]. Schkolnick and Sorenson [SCHOLS81] proposed the
materialization of join relations as a way to improve the performance of frequently
posed queries. The process of transforming a (fourth) normal form database scheme
to one containing join relations is called denormalization. They suggested the idea
of denormalizing base relations at the storage level to reduce the need for joining
base relations, yet giving the user the impression that the normalized base relations
are actually stored. One of the problems in a denormalized database is to be able tc
transform queries posed against the normalized base relations to queries involving
the joined relations. Schkolnick and Sorenson addressed the query transformation
problem for the special case in which the denormalized relations are join relations.
Larson and Yang [LARSO85] have addressed the query transformation problem for
the more general case in which the stored database consists of relations defined by
relational expressions involving selections, projections, and joins. The problem of
keeping the materialized derived relations up to date with the base relations is not
addressed in either of these two papers.

A view indez, also called links and selectors [SCHMI75,TSICH77], is a special
case of a materialized view which instead of containing full tuples, contains pointer:
to the tuples in the base relations that contribute to the tuples in the view. A view
index is basically an indirect version of a materialized view.

1.1. PREVIOUS WORK 5

Schmid and Bernstein [SCHMI75] studied alternative data structures for sup-
porting links and selectors. However, they did not present details on how to keep
these indices up to date in the presence of updates to the base relations.

Roussopoulos [ROUSS82| presents an algorithm for selecting a subset of views,
which when indexed, minimizes the total cost of answering a given set of queries as
well as the cost of maintaining the view indices during updates to base relations,
subject to some maximum amount of storage available for indexing. The cost of
updating the view index after an update to a base relation is estimated to be the
cost of computing the whole view index from scratch by re-evaluating the expression
defining the view. The results in this thesis can also be applied to update view
indices more efficiently.

Work directly related to the maintenance of materialized views has been reported
by Koenig and Paige [KOENI81] and by Shmueli and Itai [SHMUES84]. Koenig and
Paige investigated the support of derived data (views) in the context of a functional
binary-association data model. This data model puts together ideas borrowed from
binary-association models, functional models, and the entity-relationship model,
within a programming language suitable for data definition and manipulation. In
their model, views can be explicitly stored and then maintained. For each possible
change to the operands of the view, there exists a procedure associated with this
change that incrementally updates the view. This procedure is called the dersvative
of the view definition with respect to the change. Their approach relies on the
availability of such derivatives for various view definition/change statement combi-
nations. This thesis, and particularly the examination of differential re-evaluation of
views, can be interpreted as forming a theoretical basis for deriving such derivatives
automatically.

Shmueli and Itai’s approach consists of continuously maintaining an acyclic
database, together with information that may be useful for future insertions and
deletions. Their definition of views is limited to the projection of a set of attributes
over the natural join of all the relations in the database scheme. Thus selection
conditions are omitted. Furthermore, Shmueli and Itai consider the maintenance of
only one materialized view.

The need for an efficient mechanism to update materialized views has been ex-
pressed before by several authors. Gardarin et al. [GARDA84] considered concrete
views (i.e., materialized views) as a candidate approach for the support of real time
queries. However, they discarded the approach because of the lack of an efficient
algorithm to keep the concrete views up to date.

Horwitz and Teitelbaum [HORWIS85] proposed a model for the generation of
language-based environments which uses a relational database along with attribute
grammars, and they suggest algorithms for incrementally updating views, moti-
vated by the efficiency requirements of interactive editing. Buneman and Clemons
[BUNEMT79] propose virtual views for the support of alerters, which monitor a
database and report to some user or application whether a state of the database,
described by the view definition, has been reached.

6 CHAPTER 1. INTRODUCTION

In other work, Lindsay et al. [LINDS86] present a differential algorithm for
maintaining snapshots defined by relational algebra expressions involving only the
operators select and project. More details of their work will be given in Chapter 7.

In summary, the need for the support of materialized views has been reported by
several authors in the literature. However, the problem of maintaining such views
has as yet received little attention. We address the main issues in the support of
updates to materialized views as well as laying the groundwork for future research
in the area.

1.2 Thesis outline

In Chapter 2 we provide the reader with the basic notation and concepts used
throughout the thesis. Chapter 3 deals with the first aspect of updating materialized
views, namely, the detection of irrelevant updates. By being able to detect this type
of update, the system may obtain substantial cost savings in the maintenance of
materialized views. The chapter presents necessary and sufficient conditions for the
detection of irrelevant updates as well as an algorithm to perform such a test.

When an update applied to a base relation is not irrelevant to a view, its effect
on the view may be autonomously computable. In Chapter 4 we present necessary
and sufficient conditions for the detection of autonomously computable updates as
well as showing how to carry out the update based on the update expression and the
contents of the view. We consider two cases called unconditionally autonomously
computable updates and conditionally autonomously computable updates. Uncon-
ditionally autonomously computable updates are those where the update can be
carried out for every possible database instance. Conditionally autonomously com-
putable updates are those that can be carried out for the current database instance
but not for all possible database instances. By determining whether the effect of an
update to a base relation on a materialized view is autonomously computable, great
reductions in communication and in processing costs may be obtained. Communi-
cation costs are reduced in environments where the materialized view is stored at a
site which is different from the site housing the base relations. In such environments,
the only information required to be sent to the site containing the materialized view
is the update expression itself. Processing costs are reduced in environments where
the internal scheme of the system contains derived relations and the user sees the
data as represented by the conceptual scheme. In such an environment the user
poses updates to relations as represented in the conceptual scheme. To update the
derived relations appropriately, the system must be able to translate the update
posed to the base relation to an update on the derived relation. This in general
may require the reconstruction of some base relations from the derived relations,
the application of the update to the base relation, and finally the recomputation
of the derived relation. If we know that the update is autonomously computable,
then the first two stages are saved, and the system can update the derived relation
immediately based on its contents and on the update expression.

1.2. THESIS OUTLINE 7

If an update to a base relation is neither irrelevant nor autonomously com-
putable, then we could proceed to re-evaluate the expression defining the view from
scratch in order to bring it up to date. However, a complete re-evaluation is not
always the best solution. In Chapter 5 we present a differential re-evaluation ap-
proach to updating materialized views. The idea is to manipulate the expression
defining the view and to decompose it into a set of similar expressions operating
on small relations in such a way that the individual re-evaluation of each of those
expressions is substantially cheaper than complete re-evaluation. The approach
provides a procedure to compute the set of changes that have to be applied to the
view to bring it up to date. This problem, in turn, introduces an interesting mul-
tiple query optimization problem. In Chapter 6 we give some suggestions for the
efficient execution of the set of expressions obtained by the differential re-evaluation
approach.

The algorithms discussed in Chapters 3 through 6 readily apply to the support
of consistently updated materialized views. In supporting periodically updated
materialized views, other aspects have to be considered, the main one being, how
to keep track of the changes applied to base relations between two consecutive
requests to update a materialized view. Chapter 7 presents a thorough discussion
of the different alternatives.

Finally, Chapter 8 contains a summary of the main contributions of this thesis
along with a discussion of some important problems for future research.

Chapter 2

Notation and Basic
Assumptions

In this chapter we present some of the notation and assumptions used throughout
the thesis. Additional notation is introduced in the appropriate places when needed.
Many of the results in subsequent chapters rely on having an algorithm for testing
the satisfiability of Boolean expressions. Such an algorithm, for a certain subclass
of Boolean expressions, is also presented in this chapter.

A database scheme D = (D, S) consists of a set of (base) relation schemes
D = {Ry,Rz,...,Rn}, and a set of view definitions S = {Ey, E,, ..., E,}, where
each E; € S is a relational algebra expression over some subset of D. A database
instance d, consists of a set of relation instances ry,rq,..., ry, one for each R; € D.
We require no constraints (e.g., keys or functional dependencies) to be imposed on
the relation instances allowed. A view materialization v(E;, d) is a relation instance
resulting from the evaluation of the relational algebra expression E; against the
instance d. In this thesis, we consider only relational algebra expressions formed
from the combination of projections, selections, and joins, called PSJ-ezpressions.

It is well known that every PSJ-expression can be transformed into an equivalent
expression in a standard form consisting of a Cartesian product, followed by a
selection, followed by a projection. It is easy to see this by considering the operator
tree corresponding to a PSJ-expression. The standard form is obtained by first
pushing all projections to the root of the tree and thereafter all selection and join
conditions. From this it follows that any PSJ-expression can be written in the form
E =xp (0c(Riy X Ri; x---x Ry,)), where R;,, R;,,..., R;, are relation schemes, Cis
a selection condition, and A = {A4,, A,..., Ax} are the attributes of the projection
We can therefore represent any PSJ-expression by a triple E = (A, R,), where
A = {A;,Ag,..., A;} is called the attribute set, R = {R;,,Ri,,..., R;,} is the
relation set or base, and C is a selection condition comprising the conditions of al
the select and join operations of the relational algebra expression defining E. The

attributes in A will often be referred to as the vistble attributes of the view. We
also use the notation:

a(C) the set of all attributes appearing in condition C
a(R) the set of all attributes of relation R

a(R) the set of all attributes mentioned in the set of relation schemes R, that is,

Ur,cr a(&)-
The following example illustrates the above notation.

Example 2.1 Consider three relation schemes Ry(H,I), Rz(J, K, L), Ra(M, N),
and a view defined by the expression

E = nygin(oa>20(R1) W=7 7L (0s=30(R2)) ML>M oN<10(R3)).

This relational algebra expression can be converted into the equivalent expression

E' = ngrn(0(a>20)(1=17)(7=30)(L> M) (N <10)(R1 X Rz X R3)),
which in turn can be represented using the triple notation as

= ({H, L; N}: {R11R2: R3}1 (H > 20)(I = J)(J = 30)(L > M)
(N < 10)),

In this example, a(C) = {H,I,J,L,M, N}, a(R,) = {H, I}, a(R2) = {J, K, L},
a(R3) = {M, N}, and «(R) = {H ILJ,K,L,M,N}.

We assume that each relation in R is referenced only once in the associated
PSJ-expression, that is, the expression contains no self-joins. The reason for this
assumption is that we need to identify the relation to which an attribute used in
the selection condition of a view definition belongs. This assumption can easily be
removed by extending the relational algebra expressions allowed in a view definition
with a renaming operator and hence to support RPSJ-expressions (rename-project-
select-join expressions). The renaming operator maps each attribute name used in
multiple references of the same relation into a distinct attribute name. A RPSJ-
expression can thus be represented by a four-tuple E = (N, A,R,C), where A,
R, and C have the same meaning as before, and N = {S; « R;,...,S, «— Rn},
n > m, is a mapping that allows distinct names S; to be used throughout the
remainder of the expression and specifies which relation R; is to be accessed at run
time.

Example 2.2 Consider the relation scheme employee(name, salary, manager), and
a view containing “all employees who are managers.” The view can be defined using
the following RPSJ-expression:

10 CHAPTER 2. NOTATION AND BASIC ASSUMPTIONS

E = ({S, — employee, S; — employee}, {S1.name}, {S1, S2},
({S1.name = S;.manager)).

(W]

For simplicity we assume from now on that a relation is referenced only once in a
relational expression defining a view, that is, we restrict ourselves to views defined
by PSJ-expressions rather than RPSJ-expressions.

The update operations considered are insertions, deletions, and modifica-
tions. In the same way as in relational languages such as SQL [CHAMB76] and
QUEL [STONET6], each update operation affects only one base relation. The fol-
lowing notation will be used to describe the update operations:

INSERT (R, T): Insert into relation r, the set of tuples T', where each tuple t € T
is defined over R,,.

DELETE (R,,Cp): Delete from relation r, all tuples satisfying condition Cp,
where Cp is a selection condition over a(R,). Notice that by allowing this
form of delete operation we automatically cover the form where a set of tu-
ples to be deleted is explicitly presented. That is, the operation DELETE
(Ru, {t}) transforms into the operation DELETE (Ru, A 4¢r, (4 = t[4]))-

MODIFY (R,,Ca,Fun): Modify all tuples in r, that satisfy the condition C)y,
where Cps is a selection condition over a(R,). Far is a set of expressions,
each expression specifying how an attribute value of r, is to be modified.

Note that both the attributes modified and the attributes from which the new
values are computed are from relation R,. The set of expressions F s of a MODIFY
operation is assumed to contain an update expression for each attribute in R,.
We restrict the update expressions in Fjs to unconditional functions that can be
computed “tuple-wise.” Unconditional means that the expression does not include
any further conditions (i.e., all conditions are in Cps). Tuple-wise means that, for
any tuple in r, selected for modification, the value of the expression can be computed
from the values of the attributes of that tuple alone. The type of expressions we
have in mind are simple, for example, H := H + 5 or I := 5. Further details are
given in Chapter 4.

Several update operations as discussed above may be grouped together within
a transaction. A transaction is an indivisible sequence of update operations. Indi-
visible means that either all update operations are successfully performed or none
are performed. Further, updates within a transaction may update several base
relations. The use of transactions is explored more explicitly in Chapters 5 and 7.

All attribute names in the relations are taken to be unique. We also assume that
all attributes have discrete and finite domains. Any such domain can be mapped
onto an interval of integers, and therefore we will treat all attributes as being defined
over some interval of integers. For Boolean expressions, the logical connectives will

11

be denoted by “Vv” for OR, juztaposition or “A” for AND, “—” for NOT, “=” for
implication, and “<” for equivalence. To indicate that all variables of a condition C,
are universally quantified, we write V (C) and similarly for existential quantification.
If we need to identify explicitly which variables are quantified, we write V X (C),
where X is a set of variables.

An evaluation of a condition is obtained by replacing all the variable names
(attribute names) by values from the corresponding domains. The result is either
true or false. A partial evaluation (or substitution) of a condition is obtained by
replacing some of its variables by values from the corresponding domains. Let C
be a condition and ¢ a tuple over some set of attributes. The partial evaluation
of C with respect to t involves the replacement of variables in C by values for the
corresponding attributes in ¢ and is denoted by C[t[Y]], where Y represents the
set of attributes replaced. When Y consists of all attributes that C and ¢ have in
common, we denote the partial substitution of C with respect to t by simply C[t].
The result of a partial substitution is a new condition with fewer variables.

Detecting whether an update operation is irrelevant or autonomously com-
putable involves testing whether or not certain Boolean expressions are valid (i.e.,
tautologies), or equivalently, whether or not their complements are unsatisfiable.

Definition 2.1 Let C(z),%2,...,%,) be a Boolean expression over variables
Z1,%2,...,%n. Cis validif V zy,29,...,2, C(2z1,Z2,...,%,) is true, and C is unsat-
isfiable if B z1,22,...,2n C(%1,%2,...,2%n) is true, where each variable z; ranges
over its associated domain.]

A Boolean expression is valid if it always evaluates to true, unsatisfiable if it
never evaluates to true, and satisfiable if it evaluates to true for some values of its
variables. Proving the validity of a Boolean expression is equivalent to disproving
the satisfiability of its complement. Proving the satisfiability of Boolean expressions
is, in general, NP-complete [COOK71]. However, for a restricted subclass of Boolean
expressions, polynomial algorithms exist. Rosenkrantz and Hunt [ROSENS80| de-
veloped such an algorithm for conjunctive Boolean expressions. Each expression g
must be of the form 8 = ;1 A 2 A - - - A Bix,where each §; is an atomic condition of
the form (z 0 y + ¢) or (z 0 c), where § € {=,<,<,>,>}, z and y are variables,
and c is a (positive or negative) integer. Each variable is assumed to range over the
integers. The improved efficiency arises from not allowing 6 to be the operator #.

Deciding whether a conjunctive expression in the subclass described above is
satisfiable can be done in time O(n®), where n is the number of distinct variables
in B. The sketch of the algorithm is as follows: (1) the conjunctive expression
is normalized, that is, it is transformed into an equivalent one where only the
operators < or > are used in the atomic formulae; (2) a directed weighted graph
is constructed to represent the normalized expression; and (3) if the directed graph
contains a cycle for which the sum of its weights is negative then the expression is
unsatisfiable, otherwise it is satisfiable. To find whether a directed weighted graph
contains a negative cycle Floyd’s algorithm [FLOYD62] can be used, which finds all

12 CHAPTER 2. NOTATION AND BASIC ASSUMPTIONS

the shortest paths between any two nodes in a directed weighted graph. A complete
example illustrating the use of this algorithm in the context of detecting irrelevant
updates is given at the end of Chapter 3.

We can also efficiently decide the satisfiability of Boolean expressions of the form
C=CivCaV---VCp

where each C; = Bi; ABi; A+ APk, ¢ = 1,...,m, is a conjunctive expression in
the subclass described above. The expression C is satisfiable if and only if at least
one of the conjunctive expressions C; is satisfiable. Similarly, C is unsatisfiable if
and only if each of the conjunctive expressions C; is unsatisfiable. We can apply
Rosenkrants and Hunt’s algorithm to each of the conjunctive expressions C;; this
takes time O(mn®) in the worst case, where n is the maximum number of different
variables mentioned in a single disjunct in C.

In this thesis, we are interested in the case when each variable ranges over a finite
snterval of integers. The definitions of valid, satisfiable, and unsatisfiable are thus
modified to restrict the ranges of variables to predetermined domains. Henceforth
all universally and existentially quantified variables are implicitly range-restricted.
For this case, Larson and Yang [LARSO85] developed an algorithm whose running
time is O(n?). However, it does not handle expressions of the form (z 6 y+c¢) where
¢ # 0. We have developed a modified version of the algorithm by Rosenkrantz and
Hunt for the case when each variable ranges over a finite interval of integers. The
full details of the modified algorithm are given in [BLAK86b] and are not reported
here.

An expression not in conjunctive form can be handled by first converting it
into disjunctive normal form and then testing each disjunct separately. Several of
the theorems in Chapters 3 and 4 will require testing the validity of expressions
of the form C; = Cz. The implication can be eliminated by converting to the
form (—C;) Vv C2. Similarly, expressions of the form C; 4> C2 can be converted to

(Cl A Cz) \ ("iC]_ A -ICQ).

As an aside we note that the NP-completeness of the satisfiability problem is
caused by the fact that converting an expression into disjunctive normal form may,
in the worst case, lead to exponential growth in the length of the expression.

Chapter 3

Irrelevant Updates

In certain cases, an update operation applied to a relation has no effect on the state
of a view. When this occurs independently of the database state, we call the update
operation trrelevant to the view. It is important to provide an efficient mechanism
for detecting irrelevant updates so that re-evaluation of the relational expression
defining a view can be avoided or, at least, the number of tuples considered in the
re-evaluation can be reduced.

This chapter presents necessary and sufficient conditions for the detection of ir-
relevant updates. The conditions are given for insert, delete, and modify operations
as introduced in the previous chapter. First we define what it means for an update
to be irrelevant.

Definition 8.1 Let d be an instance on the set of relation schemes D, and let d’
be the resulting instance after applying the update operation U to d. Let E =
(A,R,C) be a view definition. The update operation U is irrelevant to v(E,d) if
v(E,d') = v(E, d) for all instances d. m]

If the update operation ¥ does not modify any of the relations over which the view

is defined then, obviously, U cannot have any effect on the view. In this case U is
said to be trivially srrelevant to the view.

3.1 Irrelevant insertions

An insert operation is irrelevant to a view if none of the new tuples will be visible

in the view. Theorem 3.1 covers the form of insert operation introduced in Chapter
2.

Theorem 3.1 The operation INSERT(R,,T) is srrelevant to the view defined by
E = (A,R,C), R, € R, if and only if C[t] is unsatisfiable for every tuple t € T.

13

14 CHAPTER 3. IRRELEVANT UPDATES

Proof: (Sufficiency) Consider an arbitrary tuple t € T. If C[t] is unsatisfiable, then
C[t] will evaluate to false regardless of the assignment of values to the variables
remaining in C[t]. Therefore, there cannot exist any tuple defined over the Cartesian
product of the relations in R — {R,} that would combine with ¢t to satisfy ¢ and
hence cause an insertion into v(E, d).

(Necessity) Consider a tuple t € T, and assume that C[t] is satisfiable. C[t]
being satisfiable means that there exists a tuple s defined over the base R, denoted
by s(R), such that s[A] = t[A] for every attribute A € R,, s[A] = pa for every
attribute A € a(R,) U a(C), where p4 is the lowest value in in the domain of
attribute A, and the rest of the values s[A], A € a(C) — R, are assigned in such a
way that C[s] = true. The fact that C[t] is satisfiable guarantees the existence of
values for attributes in a(C) — R,.

We can then construct a database instance d using s, such that the insertion of
t into r, will cause a new tuple to be inserted into the view v(E, d).

To construct d, we build a relation instance r; for each relation scheme R; €
R — {R,}. Each relation r; contains a single tuple ¢;, where ¢;[R;} = s[R;]. The
database instance d consists of the relation r, = @ and relations r; = {t;} for
each R; € R — {R,}. Clearly, v(E,d) = 0. However, if we obtain d' from d
by inserting tuple t into r,, then v(E,d’) will contain one tuple. Therefore, the
INSERT operation is not irrelevant to the view. (]

Example 3.1 Consider two relation schemes R;(H,I,J), Rz(K, L), and the fol-
lowing view and insert operation:

E = ({H, K, L}, {Ry, Rz}, (H > 23)(J = K)(L < 10))
INSERT (R;, {(15, 20, 35), (26, 20, 45)}).

To predict the effect that the insertion is going to have on the view, we need tc
analyze each of the tuples being inserted. For the tuple ¢; = (15,20, 35), C[t;] =
(15 > 23)(35 = J)(L < 10) = false. Since C[t;] is unsatisfiable, then inserting tuple
t; into r; will not affect the view regardless of the contents of the database. For the
tuple t; = (26, 20, 45), C[t2] = (26 > 23)(45 = J)(L < 10) is satisfiable. Therefore
inserting tuple ¢; into r; is not irrelevant because it might affect the view, depending
on the current contents of the database. C

3.2 Irrelevant deletions

A delete operation is irrelevant to a view if none of the tuples in the view will b
deleted. Theorem 3.2 covers the form of delete operation introduced in Chapter 2

Theorem 3.2 The operation DELETE (R,,Cp) is srrelevant to the view define
by E = (A,R,(C), R, €R, if and only if the condition Cp A C is unsatisfiable.

3.2. IRRELEVANT DELETIONS 15

Proof: (Sufficiency) If Cp A C is unsatisfiable, then no tuple ¢ defined on R can
have values such that Cp[t] and C|t] are simultaneously true. Assume that ¢ contains
values such that Cp[t] is true, meaning that the delete operation causes the deletion
of the tuple ¢|R,] from r,. Since t cannot at the same time satisfy C, then ¢ could
not have contributed to a tuple in the view. Thus the deletion of t|R,] from r, will
not cause any data to be deleted from the view defined by E. Therefore, the delete
operation is irrelevant.

(Necessity) Assume that Cp A C is satisfiable. Let a(C) U a(Cp) =
{z1,%2,...,71}. Because Cp A C is satisfiable, there exists a value combination
z = (z9,23,...,2?) such that C[z] A Cp|z] is true. We can then construct an in-
stance of each relation in R such that deleting one tuple from r,, R, € R, will
indeed change the view. Each instance r;, R; € R, contains one tuple ¢; as follows:

e if R; contains attribute zx, 1 < k < I, then ¢j{zi] = 22.
e if R; contains an attribute y, y & {z1, z2,..., %}, then ¢;{y] = py, where the

value yu, is any value in the domain of y, say the lowest value in the domain.

Initially the database instance d contains the relation instances r; = {¢;}, R; € R.
Hence, v(E,d) will contain one tuple. Applying the delete operation to d then
gives an instance d’ where the tuple ¢, from relation r, has been deleted. Clearly,
v(E, d') = 0. This proves that the deletion is not irrelevant. m]

Example 8.2 Consider two relation schemes R;(H,I,J), Rz(K, L), and the fol-
lowing view definition and delete operation:

E = ({H,L},{Ry, Rz}, (I > J)(J = K)(K > 10))
DELETE (R, (I < 5)).

To show that the deletion is irrelevant to the view we must prove that the following
condition holds:

VI,J,K-[(I> J)(J = K)(K > 10)(I <5)].

Clearly, the condition can never be satisfied and therefore the delete operation is
irrelevant to the view.]

Corollary 8.8 The operation DELETE (Ry, {t}) is irrelevant to the view defined
by E = (A,R,C), R, € R, if and only if C[t] 1s unsatisfiable.

Proof: The operation DELETE (R, {t}) can be expressed in terms of the delete
operation stated by Theorem 3.2 as DELETE (Ry, {Ru}, Ascr, (4 = t[4))).

Theorem 3.2 establishes that in order for a delete operation to be irrelevant, the
condition Cp A C must be unsatisfiable. For the operation DELETE (Ry, {t}), this
is equivalent to testing

16 CHAPTER 3. IRRELEVANT UPDATES

¢ N\ (a=t4)

A€ER,

which is equivalent to C[t]. The corollary then immediately follows from Theo-
rem 3.2. 0O

3.3 Irrelevant Modifications

The detection of irrelevant modifications is somewhat more complicated than in-
sertions or deletions. The form of modify operation considered in this section is as
introduced in Chapter 2.

Consider a tuple that is to be modified. It will not affect the view if one of the
following conditions applies:

o it does not qualify for the view, neither before nor after the modification;

e it does qualify for the view both before and after the modification, but all the
attributes visible in the view remain unchanged.

Theorem 3.4 introduced in this section covers the two cases mentioned above, but
before we state the theorem, we need some additional notation.

Consider a modify operation MODIFY (R,, Car, Far) and a view defined by E =
(A, R,C). Let a(R,) = {A1, A2, ..., A;}. For simplicity we will associate an update
expression with every attribute in R,, that is, Fps = {fa,, fa,s-.-, fa,} Where
each update expression is of the form fa4;, = (A; := (arithmetic expression)). If an
attribute A; is not to be modified, we associate with it a trivial update ezpression
of the form f4, = (A; := A;). If the attribute is assigned a fixed value ¢, then
the corresponding update expression is f4; = (Ai := ¢). The notation p(fa,)
will be used to denote the right hand side of the update expression f4,, that is,
the expression after the assignment operator. The notation a(p(fa,)) denotes the
variables mentioned in p(f4,). For example, if fa, = (A := A; + c) then p(fa,;) =
45 +c and alo(fa,) = {As}

By substituting every occurrence of an attribute A; in C by p(fa,) a new condi-
tion is obtained. We will use the notation C(Fas) to denote the condition obtained
by performing this substitution for every variable A; € a(R,) N a(C).

An update expression p(fa,) may produce a value outside the domain of A;.
We make the assumption that such a modification will not be performed, that is,
the entire tuple will remain unchanged. Each attribute A; of R, must satisfy a
condition of the form (A; < Uy,)(A: > La;) where Ly, and Uy, are the lower
and upper bound, respectively, of its domain. Consequently, the updated value of
A; must satisfy the condition (p(fa,) < Ua,)(p(fa;) = La,;) and this must hold
for every A; € a(Ry). The conjunction of all these conditions will be denoted by
Cp(Far), that is,

3.3. IRRELEVANT MODIFICATIONS 17
Ca(Pa)= A (o(fa) S Ua)e(fas) 2 La))
Ai€a(Ry)
The following example illustrates the notation introduced above.

Example 8.8 Consider two relation schemes RI(H I,J) and R;(K, L), and the
following modify operation:

MODIFY(R;,(H >8)A(I > J),{H := H+20,1:=15,J :=J}).
For this modify operation we have:

=(H:=H+20) p(fa)=H+20 ofp(fx))={H}
fr=(I:=15) p(fr) =15 a(p(fr)) =
fr=(J:=J) plfs)=J a(p(fs)) = {J}

=(H>B8)A(I2J).
If the condition of a view definition is C = (H > 30) A (I = J), then
C(Fn)=(H+20>30)A(15=J).

Assuming that the domains of the variables H, I, and J are given by the ranges
[0, 50}, [10, 100], and [10, 100], respectively, we obtain:

Co(Far) = (H + 20 > 0) A (H + 20 < 50) A (15 > 10) A (15 < 100)A
(J = 10) A (J < 100).

O

Theorem 3.4 The operation MODIFY (R, Car,Fas) is srrelevant to the view de-
fined by E = (A,R,C), R, € R, f and only if

V[CruACB(FuM) = (-CA-C(BM))V(CACEM) A (4= p(fa))] (8.1)
A€l

vhere] = Ana(R,) .

Proof: (Sufficiency) Consider a tuple ¢ from the base R such that ¢ satisfies Cps
and Cp(Fas). Because condition (3.1) holds for every tuple, it must also hold for
t. Hence, either the first or the second disjunct of the consequent must evaluate to
true. (They cannot both be true simultaneously.)

Let us denote by ¢’ the corresponding modified tuple. If the first disjunct is true,
both C[t] and C[t'] must be false. This means that neither the original tuple ¢, nor

18 CHAPTER 3. IRRELEVANT UPDATES

the modified tuple ¢/, will contribute to the view. Hence changing ¢ to t’ will not
affect the view.

If the second disjunct is true, both C[t] and C[t'] must be true. In other words,
the tuple t contributed to the view and after being modified to t', it still remains in
the view. The last conjunct must also be satisfied, which ensures that all attributes

of R, visible in the view have the same values in ¢ and t'. Hence the view will not
be affected.

(Necessity) Assume that condition (3.1) does not hold. That means that there
exists at least one assignment of values to the attributes, i.e., a tuple ¢, such that the
antecedent is true but the consequent is false. Denote the corresponding modified
tuple by t’. There are three cases to consider.

Case 1: C[t] = false and C[t'] = true. In the same way as in the proof of Theorem
3.1, we can then construct a database instance d from ¢, where each relation in
R contains a single tuple and such that the resulting view is empty. For this
database instance, the modification operation will produce a new instance d’
where the only change is to the tuple in relation r,,. The Cartesian product of
the relations in R then contains exactly one tuple, which agrees with ¢ on all
attributes except on the attributes changed by the update. Hence, the view
v(E, d') will contain one tuple since C[t'] = true. This proves that the modify
operation is not irrelevant to the view.

Case 2: C[t] = true and C[t'] = false. Can be proven in the same way as Case 1, with
the difference that the view contains originally one tuple and the modification
results in a deletion of that tuple from the view.

Case 3: C[t] = true, C[t'] = true but A, .., (Ai = p(fa,)) is false, that is, t[A;] #
t'[A;] for some A; € AN a(R,). In the same way as above, we can construct
an instance where each relation in R contains only a single tuple, and where
the view also contains a single tuple, both before and after the modification.
However, in this case the value of attribute A; will change as a result of
performing the MODIFY operation. Since A; € A, this change will be visible
in the view. This proves that the update is not irrelevant to the view. O

The following example illustrates the theorem.

Example 8.4 Suppose the database consists of the two relations r; and r2 on
schemes R;(H,I) and Ry(J, K) where H,I,J and K all have the domain [0, 30].
Let the view and modify operation be defined as:

E= ({I’ J}1 {RlsRZ}’ (H > 10)(I= K))
MODIFY (Ry, {Ri}, (H > 20), {(H := H + 5), (I :=)}).

Thus the condition given in Theorem 3.4 becomes

3.4. ALGORITHM FOR DETECTING IRRELEVANT TUPLES 19

VY H,I,J,K[(H > 20)(H+5>0)(H+5 < 30)
= (~((H > 10)(I = K))) A (~((H + 5 > 10)(I = K)))
v (H >10)(I = K)(H + 5> 10)(I = K)(I = I)]

which can be simplified to

V H,I,K[(H > 20)(H < 25)
= (~((H > 10)(I = K))) A (=((H > 5)(I = K)))
v (H > 10)(I = K)).

By inspection we see that if I = K, then the second term of the consequent will
be satisfied whenever the antecedent is satisfied. If I # K, the first term of the
consequent is always satisfied. Hence, the implication is valid and we conclude that
the update is irrelevant to the view. m|

3.4 Algorithm for detecting irrelevant tuples

We stated in the beginning of this chapter that the detection of irrelevant updates is
important because re-evaluation of the relational expression defining a view may be
avoided completely, or at least, the number of tuples considered in the re-evaluation
may be reduced.

In Chapter 5, we will present an approach to differentially updating a view, the
approach being based on the fact that any update operation applied to a relation
can be reduced to a set of tuples being deleted, a set of tuples being inserted, or
a combination of both. In that context, detecting which tuples in a set of tuples
affecting a relation are irrelevant is important.

This section presents an algorithm based on the algorithm by Rosenkrantz and
Hunt [ROSEN80] for determining which tuples in a set of tuples are irrelevant to a
view. The type of Boolean expressions allowed by the algorithm are those defined in
Chapter 2 on page 11. Before describing the algorithm we need another definition.

Deflnition 8.2 Consider a tuple ¢ € r on scheme R, and a conjunctive Boolean
expression C. Let Y = a(C), and Y; = Y N R (the attributes of Y in R). We dis-
tinguish between two types of atomic formulae in C[t], called variant and invariant
formulae, respectively.

e Variant formulae are those directly affected by the substitution of ¢[4] in
for A € Y;. This type of formula may have the form (z 6 t[A]), or (t[4] ¢ d);
where z is a variable and t[A], d are constants. Furthermore, formulae of the
form (z 0 t[A]) are called variant non-cvaluable formulae, and formulae of
the form (¢[A] 0 d) are called variant evaluable formulae. Variant evaluable
formulae are either true or false.

20 CHAPTER 3. IRRELEVANT UPDATES

o Invariant formulae are those that remain invariant with respect to the substi-
tution of ¢ for Y; in C. This type of formula may have the form (z 4 ¢), or
(z 0 y + ¢); where z, y are variables, and c is a constant.

Notice that the classification of atomic formulae in C depends on the relation scheme
of the set of tuples ¢t substituting for attributes Y; in C. O

Algorithm 3.1
Input:

i) aconjunctive Boolean expression C = 1 AfzA- - -AB,, where each f;,1 <i < n,
is an atomic formula of the form (z 6 y), (z 8 y + ¢), or (z 0 ¢}, where z, y are
variables (representing attributes) and c is a constant;

ii) a relation scheme R of the relation to be updated; and

iii) a set of tuples Tj, = {t1,t2,...,%q} on scheme R. T, contains those tuples
inserted into or deleted from the relation r.

Output: a set of tuples T,,; C T;,, which are (potentially) relevant to the view.

1. The conjunctive expression C is normalized (see below).

2. The normalized conjunctive expression Cy is expressed as Cynv ACvevar A
CvnEevaL. Crnv is a conjunctive subexpression containing only invariant
formulae. Cvgvar is a conjunctive subexpression containing only variant
evaluable formulae. Cy NEV AL i8 a conjunctive subexpression containing only
variant non-evaluable formulae.

3. Using C;nv, build the invariant portion of the directed weighted graph.
4. For each tuple t € T;,, do the following:

4.1 Substitute the values of ¢ for the appropriate variables in Cvpvar. If
CvEevaL[t] = false, then ignore tuple ¢, otherwise continue to step 4.2.

4.2 Substitute the values of ¢ for the appropriate variables in Cy ygv ar. Build
the variant portion of the graph and check whether the substituted con-
junctive expression represented by the graph is satisfiable. If the expres-
sion is satisfiable, then add ¢ to Ty,:, otherwise ignore it. O

An important component of the algorithm is the construction of a directed
weighted graph G = (V,), where V = «(C) U {0} is the set of nodes, and & is
the set of directed weighted edges representing atomic formulae in C. Each member
of £ is a triple (n,, n4, w), where n,, nqg € V are the origin and destination nodes
respectively, and w is the weight of the edge. An atomic formula (z < y + ¢)
translates to the edge (z,y,c). An atomic formula (z > y+¢) translates to the edge

3.4. ALGORITHM FOR DETECTING IRRELEVANT TUPLES 21

(v, z,—¢). An atomic formula (z < ¢) translates to the edge (‘0’, z,¢). An atomic
formula (z > ¢) translates to the edge (z,°0’, —c).

The normalization procedure mentioned in the algorithm takes a conjunctive
expression and transforms it into an equivalent one where each atomic formula has
as comparison operator either < or >. Atomic formulae (z < y+¢) are transformed
into (z < y+c—1). Atomic formulae (z > y+ c)are transformed into (z > y+c+1).
Atomic formulae (z = y + c) are transformed into (z < y+c¢) A (z >y +¢).

The satisfiability test consists of checking whether the directed weighted graph
contains a negative weight cycle or not. The expression is unsatisfiable if the graph
contains a negative cycle. Algorithm 3.1 is a modification of the algorithm by
Rosenkrantz and Hunt [ROSENS80| applied to testing the satisfiability of the con-
dition C[t] for each ¢t € T;,. Therefore, Algorithm 3.1 runs in time O(|T;.[|V|[?).
Also, the correctness of Algorithm 3.1 follows directly from the correctness of the
algorithm by Rosenkrantz and Hunt.

Certainly, Algorithm 3.1 can also be used to test the satisfiability of Boolean
expressions alone, that is, when we do not know what are the values taken by some of
the variables mentioned in the condition. In this case, Cvgvar = nil, CynEV AL =
nil, and ¢ = Cryv. Algorithm 3.1 is in this case the same as Rosenkrantz and
Hunt’s. The following example illustrates Algorithm 3.1.

Example 8.5 Consider two relation schemes R, (H, I) and R2(J, K, L), and a view
defined by the expression

E = ({I,J},{R1, Rz}, (H > 10)(L < 50)(I = K)(L > K + 24)).

Suppose that the set of tuples T = {(10, 20), (12, 24), (14, 32)} are to be either
inserted into or deleted from relation r; on scheme R;. The input to Algorithm 3.1
consists of the Boolean expression

C = (H > 10)}(L <50)(I = K)(L > K + 24),
the relation scheme R, (H, I), and the set of tuples T}, = T.

1. The Boolean expression C is transformed into the normalized Boolean expres-
sion

Cn = (H 2 11)(L < 49)(I < K)(I > K)(L > K + 25).

2. Since the tuples in T}, are defined on scheme R;, we obtain:

Cinv = (L<49)(L2> K +25)
Cvevar = (H211)
Cvnevar = (I L K)(I2=K).

CHAPTER 3. IRRELEVANT UPDATES

3. Using Crnv, we build the invariant portion of the directed weighted graph as
shown below.

4. This step is performed for each tuple t € T;,,. For the tuple ¢t = (10,20) we
obtain Cv gy aL[t]| = (10 > 11) = false. Thus, the tuple (10, 20) is irrelevant.

For the tuple ¢t = (12,24) we obtain Cv v aL[t] = (12 > 11) = true, therefore
Step 4.2 of the algorithm is performed. At Step 4.2 we obtain

CVNEVAL[t] =(24< K)(24 > K)

The complete directed weighted graph is shown below.

49 <25

0) (K

We can see that the graph contains no negative-weight cycle, therefore the
expression C[t] is satisfiable which in turn implies that the tuple (12,24) is
not irrelevant.

Finally, for the tuple ¢ = (14, 32) we obtain CypvaLit] = (14 > 11) = true.
At Step 4.2 of the algorithm we obtain CynvevaLrlt] = (32 < K)(32 > K).
The complete directed weighted graph is shown below.

3.5.

SUMMARY 23

49 25

32

0) (K

-32

The graph contains the negative-weight cycle 0 — L — K — 0 of weight —8,
which clearly indicates that the expression

Clt] = (14 > 11)(L < 50)(32 = K)(L > K + 24)

can never be satisfied. Therefore, the tuple (14, 32) is irrelevant.

The output of the algorithm is T,y = {(12,24)}. Thus, using Algorithm 3.1 we
have been able to reduce from three to one the tuples that must be consider to
update the view defined by F as a result of the insert operation. The next step is
to use the set T, as part of the input to an algorithm for differential re-evaluation
of views. Such algorithm is presented as Algorithm 5.1 in Chapter 5 of this thesis.

(]

3.5 Summary

We have presented necessary and sufficient conditions for the detection of irrelevant
updates as introduced in Chapter 2. The detection of irrelevant updates is done
without any access to the database. The update operations supported represent
a nontrivial class of updates available in current relational languages. Finally, a
polynomial algorithm for detecting irrelevant tuples was presented.

Chapter 4

Autonomously Computable
Updates

If an update operation is not irrelevant to a view, then some data from the base
relations may be needed to update the view. An important case to consider, how-
ever, is one in which all the data needed is contained in the view itself. In other
words, the new state of the view can be computed solely from the view definition,
the current state of the view, and the information contained in the update opera-
tion. Updates of this type are called autonomously computable updates. Within this
case, two subcases can be further distinguished, called unconditional or condstional
as explained below.

Definition 4.1 Consider a view definition E and an update operation {/, both
defined over the relation schemes D. Let d denote an instance of D before applying
U and d’ the corresponding instance after applying U.

o The effect of the operation U on instances of the view defined by F is said
to be unconditionally autonomously computable if there exists a function
Fy g(v(E,d)) such that

vV d
v(E,d') = Fy g(v(E,d)).

e The effect of the operation U on an instance v{E, d) of the view defined by E
is said to be conditionally autonomously computable with respect to v(E, c?) if
there exists a function Fy g(v(E,d)) such that

V d such that u(E,d) = v(E,d)
v(E,d") = Fy g(v(E,d)).

24

4.1. BASIC CONCEPTS 25

(m]

In this chapter all updates considered are assumed to be relevant (i.e., the test
for irrelevancy is false). Section 4.1 presents some basic concepts required in the
chapter. Section 4.2 presents necessary and sufficient conditions for the detection of
unconditionally autonomously computable updates, and Section 4.3 does the same
for conditionally autonomously computable updates.

4.1 Basic concepts

The concepts covered by the following definitions were originally introduced by
Larson and Yang [LARSO85].

Definition 4.2 Let C be a Boolean expression over the variables z;,z2,...,Zn.
The variables z3,...,Zx, k < n, are said to be nonessential in C if

V' Z1yeens Thy ThilyeeorTny Ly eosZh
[C(Z1ye ey Thy Bty ey Tn) € C(Z), . oy Bhy Tht1y e -y Zn)]-

Otherwise, z;,...,z) are essential in C. o

A nonessential variable can be eliminated from the condition simply by replacing
it with any value from its domain. This will in no way change the value of the
condition. For example, the variable H is nonessential in the condition

(I >58)(J =I)((H > 5)V (H < 10)),

since the predicate (H > 5) V (H < 10) will evaluate to true for any value assigned
to variable H. Similarly H is nonessential in

(I > 5)(H > 5)(H <5),
since the condition will evaluate to false for any value assigned to H.

Definition 4.3 Let Co and C; be Boolean expressions over the variables
Z1,%3,...,%n. The variables z;, za,..., %k, k < n, are said to be computationally
nonessential in Co with respect to C, if

V' ZayeeeyThy Zhailye-os Ty Thyeoy Tg
[Ci(Zay- oy Thy Tht1se s Tn) ACL(Zh, .o Zhy Th41y -+) Zn)

= (ColTry.+ s Thy Tht1y- -y Tn) & Co(ZYy .. s Thy Tht1y -+ s Za))]-

Otherwise, 3, Za, . . ., Zx are computationally essentialin Co with respect to C;. O

26 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

The idea behind this definition is that if a set of variables z;,z3,...,zx are
computationally nonessential in Co with respect to C1, then given any tnple defined
over the variables z;,z,,...,z, satisfying the condition Cy, where the variables
Z1,%2,..., Tk have been projected out, we can still correctly evaluate whether the
tuple satisfies the condition C; or not without knowing the exact values for the
missing variables z3,z2,..., k. This is done by assigning surrogate values to the
variables z;, %2, ..., Zx as explained by Larson and Yang [LARSOS85].

Example 4.1 Let €, = (H > 5) and Co = (H > 0){(I = 5)(J > 10). It is easy to
see that if we are given a tuple (3, j) for which it is known that the full tuple (k, <, 7)
satisfies C;, then we can correctly evaluate Co. If (h,3, j) satisfies C; then the value
h must be greater than 5, and consequently it also saiisfies (H > 0}. Hence, we
can correctly evaluate Co for the tuple (3, j) by assigning to H any surrogate value
greater than 5. O

For completeness, we give a brief description from [LARSO85] on how surrogate
values are computed. Consider Algorithm 3.1, which given a set of tuples 7" and a
Boolean expression C, tests whether Cit;], t; € T, is satisfiable. Algorithm 3.1 has
to be modified to return an assignment of values to the variables in a{C[t;]) when
the expression is satisfiable, such that the expression evaluates to true.

Now, consider the PSJ-expression Q@ = (A4, Ry, C,;) defining a query and the
PSJ-expression E = (A, R, () defining a view, and suppose that we want to find
which tuples in v(E, d) satisfy C,. We are interested in the case where all variables in
the set N = (a(C,)Ua(C)) — A are computationally nonessential in C, with respect
to C, since every tuple in the view satisfies C. Let a(Cq) U a(C) = {y1,¥2,.--sn},
N = {y1,¥2,.--,Yk}; k¥ € n, and assume that we have shown that all variables in
N are computationally nonessential in C, with respect to C. Surrogate values for
Y1,¥2, .-+, Yk can then be computed by invoking Algorithm 3.1 with input: v(E, d),
A, and C.

For each tuple ¢; € v{E,d) the algorithm returns a set of values 49,43,...,42,
where y? = t;[yi], k+1 < ¢ < n. The values 39, 43,...,) are the required surrogate
values needed to evaluate Cg on the tupie ¢;.

The fact that C[t;] is satisfiable gnarantees that surrogate values for the variables
Y1, Y2, ..., Yx always exist.

Algorithm 3.1 already saves time by building the invariant portion of the graph
used to test for satisfiability only once.

Definition 4.4 Let C be a Boolean expression over variables zi,za,...,%Zn,
Y1,Y2,---3Ym. A variable y;, 1 £ ¢+ < m, is said to be uniquely determined by
Z1,%2,...,%n and C if

v xlv"rznsyl:"'symay’h”-1y'm
{C(zl""aznsylt"'aym) A c(zla”'szn)yl]_:---)y'm) = (y-=y1)]

4.2. UNCONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 27

a

If a variable y; (or a subset of the variables y1,y2,. .., ¥m) is uniquely determined by
a condition C and the variables z;,...,z,, then given any tuple ¢t = (z,,...,z,),
such that the full tuple (z1,...,%n,¥1,...,Ym) is known to satisfy C, the miss-
ing value of the variable y; can be correctly reconstructed. How to reconstruct
the values of uniquely determined variables was also shown by Larson and Yang
[LARSOS85]| and it is similar to the way surrogate values are derived for computa-
tionally nonessential variables as explained above. If the variable y; is not uniquely
determined, then we cannot guarantee that its value is reconstructible for every
tuple. However, it may still be reconstructible for some tuples.

Example 4.2 Let ¢ = (I = H)(H > 7)(K = 5). It is easy to prove that I and
K are uniquely determined by H and the condition C. Suppose that we are given
a tuple that satisfies C but only the value of H is known. Assume that H = 10.
Then we can immediately determine that the values of J and K must be 10 and 5,
respectively. 0

Definition 4.5 Let E = (A, R, () be a view and let Ag be the set of all attributes
in a(R) that are uniquely determined by the attributes in A and the condition C.
Then At = A U Ag is called the eztended attribute set of E. ()

It is proved by Larson and Yang [LARSO85] that A™ is the maximal set of attributes
for which values can be reconstructed for every tuple of E.

4.2 TUnconditionally autonomously computable
updates

1t should be stressed that if the update U on a view defined by E is uncondition-
ally autonomously computable, then the update can be performed for every view
instance v(E,d). This characterization is important primarily because of the po-
tential cost savings realized by updating the view using only the information in its
current instance.

The theorems presented in this section show that if an update U is uncondition-
ally autonomously computable on instances of a view defined by E, then there exists
a deterministic procedure P(U, E, v(E, d)) which correctly computes v(E, d') using
only the information provided by its input parameters U, E, and v(E, d), regardless
of the database instance d. In other words, P does not need to access any other
relations than the view instance. The actual procedure depends, of course, on the
update operation . The sufficiency parts of the proofs in the theorems outline the
required procedure.

28 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

The following lemma shows that no such procedure exists when the effect of an
update is not unconditionally autonomously computable.

Lemma 4 Consider a view definstion E = (A, R,C) with instance v(E, d), and
an update Y. Let P(U,E,v(E,d)} be a deterministic procedure (function) whese
result depends only on the values of its input parameters and which computes the
corresponding staie of the view afier the update. If the effect of the updaie i on
the view is not unconditionally autonomously computable, then P cannoct correctly
compute the updated insiance v(E,d") for every possible detabase tnstance d.

Proof: If an update is not unconditionally autonomously computable, then there is
no function Fy g(v{E,d)) which can compute v{E, d') for every database instance
d. In other words, there exisi at least two databhase instances d: and d; such
that v(E,dy) = v(E,d;) and v(E,d}) # v{E,d,). For these two view instances,
the procedure P must produce the same updated view instance because the input
parameters are exactly the same. Hence, the result must be wrong for at leass one
of the database Instances d; or ds. O

Therefore, any procedure P that claims to compute the updaited state of a view
instance based only on the information provided by U, F, and the current view
instance will provide an incorrect result when the effect of the update on instances
of E is not unconditionally autonomously computable. Under such circumstances,
we need a different procedure P’ which requires additional data {e.g., tuples from
the base relations) to compute the updated view instance correctly.

4.2.1 Insertions

Consider an operation INSERT (R, T} where T is a set of tuples to be inserted
into ry. Let & view be defined by £ = (A, R,), B, € B. The effect of the INSERT
operation ! om the view is unconditionally autonomously computable if

A. for each tuple ¢ € T we can correctly dacide whether ¢ will {regardiess of the
datzbase instance) satisfy the selection condition € and hence should be inserted
into the view, and

B. the values for all attributes visibie in the view can be cbitained from ¢ ounly.

Note that if ¢ could cause the insertion of more than one tuple into the view, then
the update is not autonomously computable. Suppose that ¢ generates two different
tuples tc be inserted: ¢; and £5. Then £; and ¢ must differ in at least one attribute
visible iz the view; otherwise only one tuple would be inserted. Suppose that they
differ on 4; € A. A4; cannot be an atiribuie of B, because the exact value of every
attribute in R, is given by i. Hence, the values of 4; in #; and i3 would have to be
obtained from other tuples. We cannot always guarantee that the required tuples
will be available in the current instance of the view.

f R, € R, then the update cannot kave any effect on the view.

4.2. UNCONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 29

Theorem 4.1 Consider a view defined by E = (A,R,C), R ={R;,...,R,,}, and
the update INSERT (R,,{t}), R. € R. The effect of the insert operation on the
view E s unconditionally autonomously computable if and only if R = {R,}.

Proof: (Sufficiency) If R = {R,}, then all attributes required to compute the
selection condition C as well as all the visible attributes A are contained in the new
tuple ¢t. Hence, the effect of the insertion is autonomously computable.

(Necessity) If R includes other base relations schemes in addition to R,, then
the insertion of tuple ¢ into r, may affect the view defined by E. Whether it does
depends on the existence of tuples in relations whose schemes are in R — {R,}.
We can easily construct a database instance d where it is necessary to access the
database to verify the existence of such tuples, even for the case when a(C) C a(R.)
and A C a(R,). The database instance d = {ry,r2,...,rn} is constructed as
follows. Each relation r;, 1 < ¢ < m, 1+ € {u,j}, contains a single tuple ¢;, and
relations r, and r; are empty. Clearly v(E,d) = 0. Now suppose that tuple ¢ is
inserted into ry and furthermore, assume that C[t] = true. Even though tuple ¢
satisfies the selection condition of the view and it contains all visible attributes, it
will not create an insertion into the view because relation r; contains no tuple. The
effect on the view of inserting ¢ then depends on data outside the view. Therefore,
the effect of the update cannot be unconditionally autonomously computable. 0O

Example 4.8 Consider two relation schemes R,(H,I) and R;(J, K). Let a view
and insert operation be defined as:

E, = ({H,I},{R:}, (H > 10)(I = 5))
INSERT(R,, {(6, 10), (12, 5)}).

Clearly, the effect of the insert operation is unconditionally autonomously com-

putable on every instance of the view defined by E;. On the other hand, if a view
is defined by the expression

E; = ({Ha I}) {Rh Rz}: (I= J)(H > 10))!

then the insert operation cannot be unconditionally autonomously computable (on

every instance of E,) because the insertion of a new tuple into the view will depend
on the existence of certain tuples in relation r,. (]

4.2.2 Deletions

To handle deletions antonomously, we must be able to determine, for every tuple
in the view, whether or not it satisfies the delete condition. This is covered by the
following theorem.

Theorem 4.2 The effect of the operation DELETE (R,,Cp) on instances of the
view defined by E = (A,R,C), R, € R, 15 guaranteed to be autonomously com-
putable if and only if the atiributes in (a(Cp) U a(C)) — At are computationally
nonessential in Cp with respect to C.

30 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

Proof: (Sufficiency) If the attributes in (a(Cp)U a(C)) — At are computationally
nonessential in Cp with respect to C, then we can correctly evaluate the condition

Cp on every tuple in the view v(E, d) by assigning surrogate values to the attributes
in a(Cp) — A*.

(Necessity) Assume that (a(Cp) U a(C)) — A* contains an attribute z, and
assume that z is computationally essential in Cp with respect to . We can then
construct two tuples ¢t; and t2 over the attributes in A* Ua(C) U o(Cp) such that
they both satisfy C, t; satisfies Cp but to does not, and ¢; and t; agree on all
attributes except attribute z. The existence of two such tuples follows from the
definition of computationally nonessential attributes. In the same way as in the
proof of Theorem 3.2, each of ¢; and ¢2 can now be extended into an instance of
D, where each relation contains a single tuple. Both instances will give the same
instance of the view, consisting of a single tuple ¢;{A] (or tz[A]). In one instance,
the tuple should be deleted from the view, in the other one it should not. The
decision depends on the value of attribute z which is not visible in the view. Hence
the update cannot be unconditionally autonomously computable. a

Example 4.4 Consider two relation schemes R;(H, I), R3(J, K). Let the view and
the delete operation be defined as:

E = ({J,K},{Ry, B2}, (I = J)(H < 20))
DELETE(R,, (I = 20)(H < 30))

The attributes in (a(Cp) U a(C)) — At = {H,1,J} - {I,J,K} = {H} must
be computationally nonessential in Cp with respect to C in order for the effect of

the deletion to be autonomously computable. That is, the following condition must
hold:

V H,I,J,KH [(I=J)(H<20)A(I=J)(H < 20)
= ((I=20)(H < 30) & (I = 20)(H' < 30))].

The conditions (H < 30) and (H' < 30) will both be true whenever (H < 20)
and (H' < 20) are true. Any value taken on by the variable I will make the
condition I = 20 either true or false, and hence the consequent will always be
satisfied. Therefore, the variable H is computationally nonessential in Cp with
respect to C. This guarantees that for any tuple in the view we can always correctly
evaluate the delete condition by assigning surrogate values to the variable H. Notice
that because I € At is uniquely determined by C and the variables A, we must
also find surrogate values for 1.

To further clarify the concept of computationally nonessential, consider the fol-
lowing instance of the view E. '

o(E,d: J K
10 15
20 25

4.2, UNCONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 31

We now have to determine on a tuple by tuple basis which tuples in the view should
be deleted. Consider tuple ¢; = (10, 15) and the condition ¢ = (I = J)(H < 20).
We substitute for the variables J and K in C the values 10 and 15, respectively,
to obtain C[t;] = (I = 10)(H < 20). Any values for H,I that make C[t;] =
true, are valid surrogate values. For I the only value that can be assigned is 10
and for H we can assign, for example, the value 19. We can then evaluate Cp
using these surrogate values, and find that (10 = 20)(19 < 30) = false. Therefore,
tuple ¢, should not be deleted from v(E,d). Similarly, for t; = (20,25) we obtain
Cltz] = (I = 20)(H < 20). Surrogate values for H and I that make C[tz] = true are
I =20, H = 19. We then evaluate Cp using these surrogate values and find that
(20 = 20)(19 < 30) = true. Therefore, tuple ¢; should be deleted from v(E,d). O

4.2.3 Modifications

Deciding whether modifications can be performed autonomously is more compli-
cated than for insertions or deletions. In general, a modify operation may generate
insertions into, deletions from, and modifications of existing tuples in the view as
a result of updating a relation. We summarize the conditions imposed by these
possibilities in the following four steps and give one theorem for each step.

A. Prove that every tuple selected for modification which does not satisfy C before
modification, will not satisfy C after modification. This means that no new
tuples will be inserted into the view.

B. Prove that we can correctly select which tuples in the view should be modified.
Call this the modify set.

C. Prove that we can correctly select which tuples in the modify set will not satisfy
C after modification and hence can be deleted from the view.

D. Prove that, for every tuple in the modify set which will not be deleted, we can
(autonomously) compute the new values for all attributes in A.

Theorem 4.8A The operation MODIFY (R,,Cu,F) is guaranteed not to cre-
ate any new tuples which need to be snserted snto the view defined by E =
(A,R,C),R, €R, if and only if

V [~C ACa ACB(Fac) = —C(Fu)]-

Proof: (Sufficiency) Assume that the condition holds. Consider a tuple ¢ in the
Cartesian product of the relations in the base R, and assume that ¢ is selected for
modification. Let ¢’ denote the corresponding tuple after modifications. Assume
that ¢ does not satisfy C and hence will not have created any tuple in the view.
Because the above condition holds for every tuple, it must also hold for ¢ and hence

32 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

t' cannot satisfy C. Consequently, modifying ¢ to t' does not cause any new tuple
to appear in the view.

(Necessity) If the condition does not hold, then without loss of generality we can
construct a database instance such that each relation contains only one tuple and
the view is empty before modification but contains one tuple after modification.
The fact that the condition does not hold indicates that there exists at least one
tuple t defined over the variables «(R) such that

(=C ACm A CB(Far) = C(Fu))t] = true.

Using ¢, we can construct the database instance d; = {ry,1,...,71,m}, where r; ; =
{tle(R)]}, 1 < 2 < m. Clearly, v(E,d;) = ¢ and v(E,d}) will contain one tuple.
This proves that the condition is necessary. O

Also, from the necessity part of the above proof we can see why when a modify
operation causes the insertion of a new tuple into the view, the effect of the oper-
ation cannot be unconditionally autonomously computable on every instance of E.
Consider the database instance d; = {ra,1,...,r2,m}, where ro; =r1;, 1 <i<m,
i # u, and rg 4 = B. Clearly, v(E, d;) = v(E, d3) = @, however, v(E, d}) # v(E, d}).
Therefore, there cannot exist a function which based solely on the information pro-
vided by U, E, and the instance v(E, d) will produce the correct result v(E, d’) for
every database instance d.

Before we proceed with the next theorem, we must comment on an interesting
implementation aspect. Given a MODIFY operation and a view defined by an
expression E, we first test whether or not the update is irrelevant and then (if it
is not irrelevant) we proceed to test whether or not the update is autonomously
computable.

The test for irrelevant updates is stated by Theorem 3.4 and the first test for
autonomously computable modifications is given by Theorem 4.3A. These two tests
can be cascaded as explained below.

The condition for irrelevant modifications is given by
V [CumACB(Fu) = (-CA-C(Fu))V (CAC(Fu) Apier (Bi = o(fB:))]-
where I = AN a(R,) . This is equivalent to testing

v [(—'C ACm /\CB(FM) = "'lC(FM))
A (C ACnm ACB(FM) = C(FM) AB.-EI(B‘ = p(fB')))]

which is equivalent to testing

V [-CACMACB(Fr)=>-C(Fum)] A
V [CACMACB(Fu)=> C(Fu) Ap,cr(Bi = p(fB:))]-

4.2. UNCONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 33

Notice that the first condition of the outermost “A” operator is exactly the condition
stated by Theorem 4.3A. Therefore, if the test for irrelevant modifications is done
in two stages according to the above condition and if the results of the tests are
recorded somewhere for later use, then when it comes to testing for autonomously
computable modifications we can save testing the condition of Theorem 4.3A by
recalling the result from the test for irrelevant modifications.

Theorem 4.3B Consider a view E = (A,R,C) and a modify condition Cps, and
assume that the condition of Theorem 4.8A holds. Then the tuples from the view
satisfying the condition Cps A Cp(F) can be correctly selected for every database
instance d if and only if the atiributes in

[2(Car) Ua(C) Ua(Ca(Fa))] - A*

are computationally nonessential sn Cp A Cp(Fprr) with respect to C. Recall that

a(Cm) € a(Ry).

Proof: (Sufficiency) If the attributes in [a(Cax) U a(C) U a(Cp(Fr))] — At are
computationally nonessential in Cps A Cp(F ps) with respect to C, we can correctly
evaluate the condition Cpr ACp(F ar) on every tuple in the view v(E, d) by assigning
surrogate values to the attributes in [a(Car) U a(Cp(Far))] — AT.

(Necessity) Assume that [a(Crp) Ua(C)Ua(Cp(Far))] — At contains attribute
z, and assume that z is computationally essential in Cps A Cp(F ar) with respect to
C. We can then construct two tuples ¢; and t2 over the attributes in A* U a(C) U
a(Cm) U a(Cp(Far)) such that they both satisfy C, ¢, satisfies Cas A Cp(Far) but
t2 does not, and ¢; and it agree on all attributes except attribute z. In the same
way as in the proof of Theorem 3.2, each of £{; and tz can now be extended into an
instance of D, where each relation contains a single tuple. Both instances will give
the same instance of the view, consisting of a single tuple ¢;[A] (or t2[A]). In one
instance, the tuple in the view should be modified, in the other one it should not.
The decision depends on the value of attribute z which is not visible in the view.
Hence, the update cannot be unconditionally autonomously computable.]

Theorem 4.3C Given that the condition of Theorem 4.8B holds, the tuples in the
view defined by E chosen for modification by Cas that will satisfy C after modi-
fication can be correctly selected for every database instance d if and only if the
attributes in

[a(C(Fa)) Ue(C) Ua(Cr) Ua(Ca (Ba))] - A*

are computationally nonessential in C(Fps) with respect to the condition C A Cpr A
Ce(Fum).

Proof: (Sufficiency) If every attribute z € [a(C(Fum)) U a(C) U o(Cx) U
a(Cp(Fum))] — At is computationally nonessential in C(Fj)s) with respect to
CACMmACp(Fa), we can correctly evaluate the condition C(F) on every tuple of
the view v(E, d) by assigning surrogate values to the attributes in a(C(Far)) — A*.

(Necessity) Assume that [a(C(Frp))Ua(C)Ua(Crm)Ua(Cp(Fa))]— At contains
an attribute z and that z is computationally essential in C(F) with respect to the

34 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

condition C A Car A Cp(Fpr). In the same way as in the proof of Theorem 3.2,
we can then construct two tuples ¢; and t2 over the attributes in At U a(C) U
a(Cum) Ua(C(Fum)) Ua(Cs(Far)). We first build the tuple ¢, and ¢, making sure
that ¢1[z] # tz[z]. The fact that z is computationally essential in C(Fas) with
respect to the condition C A Cpr ACp(Far) guarantees that such values exist. Now,
since we require both tuples ¢; and t; to satisfy the conditions C,Cpr and Cp(F rr),
t1 to satisfy C(Fas), and t3 not to satisfy the condition C(F rr), we choose the values
for the set of variables (At Ua(C)U a(Cry) U a(C(Fur))Ua(Ca(Far))) — {z} on
each tuple accordingly. This construction guarantees that tuples ¢; and ¢ty will
differ at least on attribute z. Let t} and t} denote the corresponding tuples after
modification. Because z € (a(C(Fn)) — At) at least one attribute in «(C), say
attribute y, must be affected using variable z in some update expression within the
modify operation. Because t}[y] and t5[y] are computed using two different values
of z, then t}[y] # t4|y] (this is true because of the type of update expressions we
allow as part of the modify operation). Therefore, ¢t} and t}, will differ on at least
attribute y. Again, since z is computationally essential in C(F) with respect to the
condition C ACpr ACp(Fas) then one of the tuples, say t) will satisfy C while ¢}, will
not. We can now extend ¢; and ¢; to obtain two different database instances where
each relation contains only one tuple. In both cases the view contains the same tuple
and the tuple is selected for modification. In one case (for the instance obtained
from t2) the single tuple in the view should be deleted after the modification, while
in the other case it should not. The decision depends on the value of z, which is
not visible in the view nor derivable from it. We cannot correctly decide, based on
the data in the view, whether the tuple satisfies C after modification, and thus the
update cannot be unconditionally autonomously computable.]

The next theorem establishes the conditions under which the modified values for
the attributes in A can be correctly computed. But, before we state the theorem
we need a new definition.

Definition 4.6 Let C be a Boolean expression over the sets of variables W, X, Y
and let f represent an expression over the sets of variables X,Y, Z. The value of

the expression f is said to be uniquely determined by condition C and the set of
variables X if

VW,X,Y,2,Y,2 [CW,X,Y)ACW,X,Y') = (f(X,Y, 2) = f(X,Y’, Z'))].
0

Example 4.5 Let C(H,I,J) = (H =5)A(I =10—-J) and f(I,J) := (I + J). For
any values of I and J that satisfy C we are guaranteed that the value of I + J, and
hence f, is 10. In other words the condition of Definition 4.6 becomes

vV H,ILIJJ
(H=5)A(I=10—J)A(H=5)A(I'=10-J
= ((I+J)=(+J))

4.2. UNCONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 35

As this is a valid implication we conclude that f is uniquely determined by C (in
this case the sets X and Z are empty). Note, that we can state this in spite of the
fact that we do not know the value of either I or J. O

Theorem 4.8D Assume that the condition of Theorem 4.8 C holds. For all tuples
in the view which are not to be deleted after modification, the new values for the
attributes sn A can be correctly computed if and only if for each B; € AN a(R,),
the value of the ezpression p(fp,) is uniquely determined by the condition CACp A
C(Fa) ACp(Far) and the attributes in At.

Proof: (Sufficiency) Assume that for each B; € A N a(Ry), the value of the
expression p(f5,) is uniquely determined by the condition CACMAC(Far)ACB(Far)
and the attributes in A*. As p(fp,) gives the new value for attribute B;, this means
that the given condition and the visible attributes contain sufficient information to
determine the updated values of B;. We have assumed this for each B; € Ana(R,),
therefore, the value of every modified attribute in A is autonomously computable.

(Necessity) Assume that the values for the modified attributes can be correctly
computed, that ANa(R,) contains a single attribute B; with a non-trivial fp,, and
that p(fp;) is not uniquely determined by the condition CACar AC(Fpr) ACB (F)
and the attributes in A*. We can then construct two tuples ¢; and ¢z over the
attributes in a(R,)UAUa(C)Ua(Crm)Ua(C(Far))Ua(Cr(Far)) such that ¢y and
tz both satisfy C,Car, C(F), and Cp(Far), and the tuples disagree on the values
of some of the attributes in a(p(fB,;)) but agree on the values of all attributes in
A and on the values of all remaining attributes. The different attribute values are
such that evaluating p(fB,) over t; and t3 gives two different results. In the same
way as in the proof of Theorem 3.2, each of ¢; and ¢ can now be extended into
an instance of D, where each relation contains a single tuple. Both instances will
give the same instance of the view, consisting of a single tuple ¢;[A] (or t2[A]).
In both instances the tuple in the view should be modified. However, the value
of the modified attribute, B;, will be different depending on whether we use ¢; or
t2. Hence, the values of the modified attributes cannot be correctly computed, and
therefore, the update cannot be unconditionally autonomously computable. (m|

Note in Example 4.5 that we cannot, in general, use Algorithm 3.1 to test the
condition of Definition 4.6 because the atomic formula in the consequent may involve
more than two variables. However, the following corollary establishes a sufficient
condition that allows to compute the new values of the attributes in A for which
we can still use Algorithm 3.1.

Recall that a(p(fp;)) denotes the set of attributes occurring in the right hand
side expression of fp,. Define the set Z as

Z= UB.-eAna(R.)a(P(st))

that is, Z is the set of attributes from which the new values for the attributes in A
are computed.

36 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

Corollary 4.3D The values of the atiributes in A can be correctly computed if all
variables in Z are uniquely determined by the condition CAC AC(FMm)ACB(Fu)
and the attributes in At

Proof: If the values of the variables in Z are uniquely determined by the condition
CACu AC(Fr)ACp(Fa) and the attributes in A, then all functions fp;, B; €
Anc(R,), are also uniquely determined by the condition CACy AC(Fm)ACE(F)
and the attributes in A*. Thus, by Theorem 4.3D the values of the attributes in
A can be correctly computed. o

In practice it is probably better to enforce the conditions of Corollary 4.3D than
the conditions of Theorem 4.3D.

We give an example which proceeds through the four steps associated with
Theorems 4.3A through 4.3D, at each step testing the appropriate condition.

Example 4.6 Suppose a database consists of the two relation schemes R;(H,I)
and R3(J, K, L) where H,I,J, K and L each have the domain [0, 30]. Let the view
and modify operation be defined as:

E= ({I’ J}s {Rl; RZ}: (I= K)(L = 20))
MODIFY (Rz, (K > 5)(K < 22), {(J := L +3), (K := K), (L := L)}).

From the definition of the view we can see that A = {I,J} and At = {I,J, K}.
Step A:

V LKL [-((I=K)(L=20)A (K >5)K < 22)
A (L+320)(L+3 < 30)(K > 0)(K < 30)(L > 0)(L < 30)
= ~((I = K)(L = 20))]

This shows that the given implication is valid, and therefore, the given modify
operation will not introduce new tuples into v(E, d).

Step B: [¢(C) Ua(Cu)Va(Cp(Fun))]— At ={I,K,L} - {I,J,K} = {L}

V LK,LL [(I=K)L=20)A(I=K)(L = 20)
= ((K > 5)(K < 22)
A (L+32 0)(L+3 < 30)(K > 0)(K < 30)(L > 0)(L < 30)
« (K>5)(K<22)
A (L' +3 > 0)(L' + 3 < 30)(K > 0)(K < 30)(L' > 0)(L' < 30)

Clearly, any value for L and L’ that make the antecedent true will cause the two
conditions in the consequent to evaluate to true. Therefore, L is computationally
nonessential in CpsCp(F) with respect to C, and thus the tuples in the view that
satisfy Cas can be correctly selected.

4.2. UNCONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 37

Step C:

[2(C(Fm))Va(C)Uua(lCu)Ua(Ca(Fum))] — AT

{I,K,L}-{I,J,K}
{L}

V ILK,LL [(I=K)L=20)A(K>5)K <22)
A (L+320)(L+3 < 30)(K > 0)(K < 30)(L > 0)(L < 30)
A (I=K)(L' =20)A (K > 5)(K < 22)
A (L' +3 > 0)(L' +3 < 30)(K > 0)(K < 30)(L' > 0)(L' < 30)
= ((I = K)(L = 20) & (I = K)(L' = 20))]

From the above condition it is clear that L is computationally nonessential
in C(Far) with respect to C A Cy A Ce(Far). Thus, C(Far) can be computed

autonomously.
Step D:

V ILK,LL [(I=K)L=20)A (K >5)(K < 22) A (I = K)(L = 20)
A (L+3 > 0)(L+ 3 < 30)(K > 0)(K < 30)(L > 0)(L < 30)
A (I=K)(L' =20) A (K > 5)(K < 22) A (I = K)(L' = 20)
A (L' +3> 0)(L' +3 < 30)(K > 0)(K < 30)(L' > 0)(L’ < 30)

= ((L+3)=(L+3))]

The above condition verifies that the expression f; is uniquely determined by the
condition C A Cas A C(Far) A Cp(Fae) and the variables A*. Therefore, the new
values of modified tuples in v(E, d) are autonomously computable.

In summary, consider a numeric example for the given database scheme.

Before

ri: H I r: J K L
1 [3 19 5 20
2 15 10 15 29
3 22 16 22 20
4 20 18 20 29

After

ri: H I ro: J K L
1 5 19 5 2
2 15 32 15 29
3 22 23 22 20
4 20 32 20 29

vEd): I J
5 20
22 16

oE,d): I J
5 20
22 23

Step A provides assurance that the tuples in the Cartesian product of r; and
ra, which do not satisfy C before modification, will not satisfy C after. Step B
guarantees that we can determine which tuples in v(E,d) to modify: the second.
Step C allows us to determine which modified tuples in v(E, d) will be deleted since
they will no longer satisfy condition C; in this case no tuple will be deleted from the
view. Step D ensures that we can compute the new values for the modified tuples.

o

38 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

4.3 Conditionally autonomously computable up-
dates

Even when an update is not unconditionally autonomously computable, for a given
database instance d the information provided by the current view v(E, d) and the
update operation may still be sufficient to compute the updated state of the view
v(E, d'). This type of update is called conditionally autonomously computable. The
purpose of this section is to explore how far can we push the idea of autonomously
computable updates if, during the process of deciding whether an update is au-
tonomously computable, we are given access to the current contents of the view.

In this section we present necessary and sufficient conditions for determining
when an update is conditionally autonomously computable. The updates considered
are insertions and deletions. Work in progress covering modifications is described
in Section 8.2.

4.3.1 Insertions

Consider the update operation INSERT (R,,T), where T is a set of tuples to be
inserted into relation r,. Let a view be defined by E = (A, R, (), R, € R, with
instance v(E,d). The effect of the INSERT operation on v(E,d) is conditionally
autonomously computable if and only if

A. for each tuple t, € T, we can build the new tuples to be inserted into the view.
In this step, the new tuples are assembled using the inserted tuple ¢, and the
tuples already present in the view v(E, d).

B. we can prove that the new tuples generated in the previous stage represent
all the tuples that need to be inserted into the view for the current database
instance d.

Comparing these with the conditions for unconditionally autonomously computable
insertions, notice that now several tuples may be inserted into the view.

Example 4.7 Consider two relation schemes Ry (H,I) and R,(J, K, L) with rela-
tion instances:

1 10 10 25
2 20 10 26
3 30 20 31

rn: H I r»: J K L
5
6

foy
-3

Let a view be defined by the expression E = ({H, I, L}, {Ry, Rz}, (I = J)) with
instance:

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 39

vE,d): H I L

1 10 25
1 10 26
2 20 31

If relation r; is affected by the operation INSERT (R;, {(4, 10)}), then the tuples
(4,10, 25) and (4, 10, 26) will have to be inserted into v(E, d) to bring it up to date.
(]

We now present the conditions under which it is possible to compute the new tuples
that must be inserted into the view as a result of an insertion into a base relation.
Theorem 4.4A corresponds to part A, and Theorem 4.4B corresponds to part B.
But first, we introduce some additional notation.

Consider the current instance v(E,d) of a view E = (A,R,C), R =
{R1,Rs,...,Rn}. Throughout this section ¢ denotes a tuple in v(E,d) and et
denotes the same tuple augmented so that it is defined over the extended set A+,
Let ¢, be a new tuple inserted into relation r, on R, € R. A tuple ¢ € v(E, d) can be
extended into a tuple ¢(*) that also includes all attributes in At and Z = a(C)—A*
by concatenating the set of variables Z(¥) = {zg'),zg'), .. .,z.g")}, q = |Z|, as shown
below.

e et ——e——Z ()

4 N
v 1

[}

) >|

Let Zx = a(Rx) N Z (the attributes from Z in Ry), 1 < k < m, and let the
instance v(E, d), extended with |Z|* |v(E, d)| distinct variables, be denoted by v*.
The following definition, adjusted to our notation, is from Maier [MAIER83a].

Definition 4.7 The projeci-join mapping mg of vt is defined as:
Mg = %Q, (v"') X XG,(O+) X...X ram(v"'),

where Gy = [a(Rg) N A*]U Z; (the attributes from Ry which are either visible or
used in), 1 < k < m. 0

A tuple w € mg defines a tuple in the view v(E,d) if w[A] € v(E,d). A tuple
® € mg defines a tuple not in the view v(E,d) if w[A] ¢ v(E,d). The set of
candidate tuples to be inserted into the view as a result of ¢, being inserted into r,
is given by

Tu =g, (vT) x ... x wg,_, (vF) X {tu} X 7G4, (vF) X ... X 7g,, (v7F).

40 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

To accept a tuple t € Ty, into the view, we must prove that t[A] € v(E, d'), where
d’' represents the updated database instance d.

Example 4.8 Consider three relation schemes R;(H,I), Rz(J,K,L), and

R3(M,N), and a view E = ({H,I, K, L, N}, {Ry, Rz, R}, (I > J)(L = M)) with
instance:

wWEd: H I K L N
2 22 15 30 16
3 26 25 42 19

The extended instance vt and the project-join mapping mg are given by:

vt: H I J K L M N
2 22 z%l) 15 30 zy) 16
3 26 2@ 25 42 2P 19

I J K L M N

22 2V 15 30 Y 16 w
22 zil) 15 30 22 19 @,
22 2@ 25 42 Y 16 w,
2 22 25 a2 2 10 s
26 zh) 15 30 z?” 16 4
26 2V 15 30 zzz) 19 @5
26 2@ 25 42 Y 16 we
26 zi’) 25 42 2% 19 w,

W oW W W N

Assuming that the tuple ¢, = (25, 28, 30) is inserted into rz, the set T, is given by:

T.

1r}u(v+) X {t.,,} X rMN(v"’)
= {(2,22,25,28,30,2", 16)
(2, 22,25, 28,30, 2, 19)
(3,26, 25, 28, 30, 2", 16)
(3,26, 25, 28, 30, 249, 19)}.

For t = (2,22, 25, 28, 30, zgl), 16) to influence the view, for example, we must now
show that t[A] = (2, 22, 28, 30, 16) will be in v(E, d'). O

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 41

Lemma 1 Consider the current instance v(E,d) of a view E = (A,R,C), R =
{Ri,R3,..., R}, and exstend it to include the attributes in Z = a(C) — A*. Lett
be a tuple in Ty. Then t[A] is guaranteed to be in v(E,d') if and only if

v z(l)» ceey z(*h (A Clu) A_'C['Df] = C[t]),

where w; € mg s such that w;[A] € v(E, d), W; € mg is such that w;[A] & v(E, d),

Z(k) = {zgk),...,z,(,f)}, 1< k < |v|, and |v| = |v(E, d)| represents the number of
tuples in v(E, d).

Proof: (Sufficiency) If the condition holds, then no matter which of the values for
the sets of variables Z(%), 1 < k < |v| are chosen to make the antecedent true, the
condition for inclusion will evaluate to true for t. Thus regardless of the values for
unseen attributes in d, the tuple ¢[A] will belong into the view v(E,d’). If Z = 0,
then all attributes required to evaluate the condition C are visible and we only need
to evaluate C[t]. Surrogate values for the missing variables Z can be obtained as
explained in Section 4.1.

(Necessity) If the condition does not hold, then there exists a database instance
dy that generates the view v(E,d;) = v(E, d) for which the new tuple ¢[A] should
not be inserted. That is, because the condition does not hold, there exists a vari-
able z € Z with a value 2, such that A; C[w;](2) A; ~C|®;](z) = Clt](2) is false.
To construct the database instance d;, we use the project-join mapping mg for v+
corresponding to the given view v(E, d). Surrogate values are assigned to all vari-
ables Z — {2} in mg in such a way that A; Clw;] A; ~C[®;] is true. We assign the
value 2z; to all occurrences of z in the tuples of mg. The database instance d;
consists of the relations r; formed from ng;(mg), 1 < ¢ < m, padded arbitrarily
with values for attributes in a(R;) that are neither visible nor used in €. Clearly,
v(E,d;) = v(E,d). If we now insert the tuple ¢, into r, to obtain the updated
instance d}, then the tuple ¢[A)], t € T, should not be inserted into the view. 0O

Lemma 2 Consider the current instance v(E,d) of a view E = (A,R,C), R =
{Ri1,Rs,...,Rp}, extended to include the attributes in Z = a(C) — A*. Lett be a
tuple in T,. Then t|A] is guaranteed not to be in v(E, d'), if and only if

v zM,..., Z0D (A Clwi] A\ ~Clw;] = ~C[t)),

where w; € mg s such that w;[A] € v(E, d), w; € mg is such that w;[A] & v(E, d),

Z*) = {zgk),...,z,(,'f)}, 1< k < |v|, and |v] = |v(E, d)| represents the number of
tuples in v(E, d).

Proof: (Sufficiency) If the condition holds, then again no matter which of the
values for the sets of variables Z("), 1 < k < |v|, are present in the database, the
tuple t[A] cannot belong into the view. If Z = @, then all attributes required to
evaluate the condition C are visible and we only need to evaluate —~C|t]. Surrogate
values for the missing variables Z can be obtained as explained in Section 4.1.

42 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

(Necessity) If the condition does not hold, then there exists a database instance
d; constructed in a similar way as in the proof of Lemma 1 that generates the view
v(E, d;) = v(E, d) for which the new tuple ¢[A] should be inserted.]

Theorem 4.4A If the insertion of the tuple t,, 13 conditionally autonomously com-
putable, then cvery tuple t € T, that does not satisfy the condition of Lemma 2
satisfies the condition of Lemma 1 and t[A] will be present in v(E,d').

Proof: Consider the contrapositive in two parts: (b) If there exists a tuple t € T,
such that ¢ does not satisfy the condition of Lemma 2 and t[A] is not present in
v(E,d'), then the insertion of ¢, is not conditionally autonomously computable.
The proof of Lemma 2 is a proof of part (b). For part (a), in the same way as in the
proofs of Lemmas 1 and 2, we can construct two database instances d; and d; such
that v(E,d;) = v(E, d2) = v(E, d), and such that the insertion of ¢, into r, of d;
(d2) will cause t{A] not to be accepted (rejected). Consequently, we cannot decide
whether t[A] should be inserted without further information about the database
instance. |

Note that if the conditions of Lemmas 1 or 2 do not hold, then we cannot be
sure whether a newly generated tuple ¢ € T,, constructed using surrogate values for
the missing variables in Z, include values that actually exist in the database. Also,
if Z = @ (that is, all variables used in the condition C are visible in the view), the
test of these conditions reduces to evaluating C[t] for each t € T,,.

Some comments regarding the size of the expressions resulting from the con-
ditions given by Lemma 1 and Lemma 2 are necessary. The size of the an-
tecedent of the conditions of Lemma 1 and Lemma 2, namely A, C[w;] A; —C[@;],
is |v(E, d)|™|C|, where |u(E,d)| denotes the number of tuples in the view, m is
the number of different relation schemes in the view definition, and |C| denotes the
number of atomic terms in the condition C. However, not all of the Boolean expres-
gions derived from C in the antecedent refer to free variables in the consequent C|t].
In Example 4.8, for instance, the variables zg') for attribute J are not free in C|t|;
satisfying the condition (I > J) in w; has no effect on C[t]. Hence, we want to know
how many Boolean expressions derived from C must be included in the antecedent
to be able to test the conditions of Lemma 1 and Lemma 2 correctly.

Assuming that the consequent C[t] refers to free variables from k distinct re-
lation schemes, we want to know how many rows w, % € mg refer to these free
variables. Such rows represent exactly the conditions C{w]|, =C[®] from the expres-
sion A; C[wi] A, C[®;] that must be tested. To solve this, consider the problem of
counting arrangements of size k. Each position of an arrangement may be occupied
by one of b different elements. In our case b = |v(E, d)|. The total number of ar-
rangements is b*. We are given the arrangement b, ba, ..., bx and we are asked to
find the total number of arrangements that contain the element b; in position 1 or
the element by in position 2 and so on until position k. This is given by b* — (b—1)*.
The inserted tuple ¢, takes the place of the variables in relation scheme R,. We
also have to count all different rows of mg which are associated with the remain-
ing m — k relation schemes. Thus, the number of Boolean expressions C[w] in the
antecedent of the conditions given by Lemma 1 or Lemma 2 is:

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 43

(Io(E,))™* [(lo(E, d)|)* - (lo(E, d)| - 1)*].

where (|v(E, d)|)™* is the number of tuples in the project-join mapping of those
relations containing none of the free variables in C|t].

Notice also that the condition of Lemma 1 can be simplified by eliminating the
condition A; ~C[®@;] from the antecedent, still resulting in a sufficient condition for
the acceptance of the tuple t. If the condition A; C[w;] = C|t] holds, then the tuple
t can be safely accepted. However, if the condition does not hold, then it may still
be the case that t could be safely accepted if we use the information provided by
the expression A; ~C[w;]. Similarly, the condition of Lemma 2 can be simplified,
to obtain a sufficient condition for the rejection of tuple ¢.

Theorem 4.4A leads to an algorithm to assemble the new tuples to be inserted
into the view as indicated in part A at the beginning of this section. The algorithm
is represented by the following steps.

1. Compute the sets T, and mg.

2. The set of tuples T, may be reduced by retaining only one copy of the tuples
that agree on all attributes A+ U «(R,).

3. For each t € T, if the condition of Lemma 1 holds, then keep ¢ in T, else
if the condition of Lemma 2 holds, then remove t from T, else terminate
unsuccessfully.

4. The tuples to be inserted into the view are 4 (Ty).

Notice that Step 3 could be made more efficient by first discarding all tuples ¢t € T,
such that C[t] evaluates to false. For an illustration of the algorithm refer to Step
A in Example 4.10 on page 48.

The above algorithm indicates how to compute a set of new tuples to be inserted
into the view as a result of inserting one tuple into relation r,. How can we make
sure that these are all the tuples that must be inserted to bring the view up-to-date?

The rest of this subsection presents a necessary and sufficient condition for
testing whether the set of tuples T,, generated by the above algorithm represent all
tuples that must be inserted into the view as a result of inserting the tuple ¢, into
Tu.

To achieve this purpose, we need a notion which will allow us to prove that
all values for variables in a(R — {R,}) N a(C) which can potentially interact with
the values from the tuple ¢, to produce a new insertion into a view v(E,d) are
somehow contained in the view itself. This notion is called coverage and is stated
in the following definition.

Definition 4.8 Consider a view definition £ = (A,R,(), where R =
{Ri,Ra,..., Ry}, and the update operation INSERT (Ry,{t.}), Ru € R.

44 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

Let v(E,d) be the current instance of the view. Let V7 = «a(R) N
a(C) N At (ie., the attributes from relation R; that participate in C
which are visible or uniquely determined by the view), and Z; = [a(R) N

a(C})] — A* (ie., the attributes from relation R; that participate in C which
are not visible nor uniquely determined by the view), 1 <! < m, ! # u. The vari-

ables Uf:'l'f,#u(Y; U Z;) are said to be covered in the instance v(E, d) with respect
to the insertion of the tuple ¢, into r, if the following condition holds:

v Yl,Zl,-..,Yu_l,Zu_l,Yu+1,Zu+1,...,Ym,Zm
[C[tu](Y1,Z1,...,Yu 1,Zu, 1,Yu+1,Zu+1,...,Ym,Zm)=>

PP N S I i (T
A Clwi] A; ~Clw;] =>V C[w. \R1](Y1,Z1 YA
A
PO ISR L N (T SN ()
A Clon] Ay ~C107] 2 Vs ot \ B (¥, Zumn)} A (4.1)
PN Y O S I RN 1
/\ C[w']/\ —1C[w11=>v C[wt\Ru-H](wtls Zus1)} A
A
{Vzgl),...,z,(,f),...,z{lvl),...,z,(,l.yn

A Clus] Aj ~Clw;] = V; Clwi \ Rn)(Yems Zm)},

where w;, w; € mg, C|w;\ R] denotes the substitution of values from w; for variables
in C except for those in scheme R, z,(') denotes variables in [a(R;) N «(C)] — AT,
1 <1< m, and |v| = |v(FE, d)| denotes the number of tuples in v(E, d). We use R
instead of a(R;) in C[w; \ Ry] to simplify notation. m]

In other words, the variables U:Z'{",#u(Yl U Z;) are covered in the instance v(E,d)
with respect to the insertion of the tuple t,, into r, if every tuple t; €r;,1 <1< m
and ¢ # u, that can possibly combine with ¢, to generate a new insertion ¢ into
v(E,d) (ie., Clty X -+ X ty—1 X ty X tup1 X ' -+ X by, | = true) is already present in
the view. That is, t; = e[a(R;)], 1 <1 < m, i # u, and ¢ € v(E, d). The following
example illustrates the above definition.

Example 4.9 Consider three relation schemes R;(H,I), R2(J,K,L), and
R3(M, N) with instances ry, rz, and ra, respectively.

rn: H I ro: J K L rs: M N
1 20 19 14 5 5§ 1
2 22 22 15 10 10 2
3 23 23 50 30 30 4
4

25

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 45

i} First consider the view defined by the expression
E, = ({Ha 1,J,K, L}) {Rls RZ}’ (I < J))

with instance v(E;, d) shown below:

v(E,d): H I J K L mg, :
1 20 22 15 10
1 20 23 50 30
2 22 23 50 30

I J K L

20 22 15 10 w,
20 23 50 30 w,
20 23 50 30 ws
20 22 15 10 w4
20 23 50 30 ws
20 23 50 30 wsg
22 22 15 10 wm
22 23 50 30 wq
22 23 50 30 ws

BN N e e e

Suppose that the update operation INSERT (R;, {(4, 21)}) is applied to relation
ri. Then we can see that Yo = {J} and Z; = §. To be sure that the set of
tuples T, = {(4, 21, 22, 15, 10), (4, 21, 23,50, 30) } are all the tuples that must be
inserted into v(E, d) as a result of the insertion of the tuple (4,21) into ry, we
need to prove that the variables Y, are covered. That is, we must prove the
validity of the following condition:

V Y, (C[tu](YZ) =
P R N ()

/\.C[w:l/\ ¢ =>V C[W:\Rz](Yz)}l

Since the antecedent A; C[w;] A; ~C[®@;] = true in this example, the condition
simplifies to:

V Yz (Cltu)(Y2) = V;Clwi \ Bz](Y2)).
This 1s equivalent to testing the condition:

V J[(21<J) = (20<J)V(20<J)V(20< J)V (20 < J)
v(2o0<J)v(20<J)V(22< J)V (22 < J)]

Since the implication is valid we can then conclude that the variable J is covered
in the instance v(E), d) with respect to the given insert operation. That is, there
cannot be a tuple in r; such that the J value matches the newly inserted tuple
but does not match any tuple already present in the view.

46 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

ii) Now consider the view E; = ({H, J, K, L}, { Ry, Rz}, (I < J)) which is exactly
the same view as E; except that attribute I is not visible. The project-join
mapping for E; is given by:

I J K L

230 22 15 10 w;
2(1) 23 50 30 w,
z(1) 23 50 30 ws
2(2) 22 15 10 w,
2(2) 23 50 30 ws
2(?) 23 50 30 we
2(3) 22 15 10 w,
z(3) 23 50 30 wy
2(3) 23 50 30 wg

mg, :

DM N R b e e e

In this case Yy = 8, Z; = {I}, Y2 = {J}, and Z; = . Again, to verify whether
the variables in Y3 are covered we need to test the condition:

vV Y; (C[tu](YQ) =>
(¥ 20,20, 5 A, Clun] A ~Clas] = Vi, Clus\ Ral(¥3).

This is equivalent to testing the condition:

v J[21<J) =
(v 2(1),2(2) 203) (2(1) < 22)(2(1) < 28)(z(V) < 23)
(2 < 22)(2(¥ < 23)(2(?) < 23)
(23 > 22)(2(® < 23)(2(®) < 23)
= (W < J)v(® <)V (2 <)]

Once again the implication holds and we can conclude that the variable J is
covered in the instance v(E2,d) with respect to the given insert operation.
Therefore, the set of tuples T, represent all tuples that should be inserted into
the view as a result of the given update. Note that for any inserted tuple
ty = (h,t) having a value 7+ < 21 the variable J will not be covered in the
instance v(E,, d).

iii) Finally, consider the view
Es=({H,1,J,K,L,M,N},{Ry, Rz, Rs}, (I = J) A (L = M))

with instance:

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 47

vEs,dj: H I J K L M N
2 22 22 15 10 10 2
3 23 23 50 30 30 4

The corresponding project-join mapping is give by:

meg,: H I J K L M N
2 22 22 15 10 10 2 w,
2 22 22 15 10 30 4 w
2 22 23 50 30 10 2 1w,
2 22 23 50 30 30 4 w3
3 23 22 15 10 10 2 1wy
3 23 22 15 10 30 4 ws
3 23 23 50 30 10 2 1w
3 23 23 50 30 30 4 wp

Suppose that the operation INSERT (R, {(22, 60, 30)}) is applied to relation
r2. Then we can verify that Y; = {I}, Z, = 0, Ys = {M}, and Z5 = §. To
be sure that the set T, = {(2,22, 60,30, 30,4)} are all the tuple to be inserted
into v(Es, d) as a result of the given insert operation, we need to prove that the
variables in ¥; U Y3 are covered. That is, we need to prove the validity of the
condition:

A4 Y]_,Ys (C[tu](Yl,Ys) =
(Vi Clwi \ Ba](Ya) AV Clui \ Rs](Y5))).

This iz equivalent to testing the condition:

V ILM[(I=22)(30=M) =
((I = 22)(10 = 10) v (I = 23)(30 = 30))
A((22 = 22)(10 = M) v (23 = 23)(30 = M))].

Since the implication is valid we conclude that the variables I and M are covered
in the view v(E3, d) with respect to the given insert operation. For ¢, = (3, k,),
I is not covered if j & {22,23} and M is not covered if 5 & {10, 30}. a

Theorem 4.4B Consider a view definition E = (A, R, C) with instance v(E, d) and
the operation INSERT (R, {tu}). The set of tuples T, to be inserted into v(E, d)
as a result of the insert operation represent all tuples that must be snserted into the
view if and only if all variables in U::'l':,#u(Y, UZ),Yi=a(R)Na(C)nAt and
Z; = [a(R) Na(C)] — A*, are covered in the instance v(E,d) with respect to the
tnsertion.

Proof: (Sufficiency) If the condition for coverage holds, then it is guaranteed that

any combination of values for the variables in U::;':,;éu(Y; U Z;) that make the
condition

48 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

Cltu](Y1, 21, -y Yur1, Zu—1,Yus1, Zutiy-- o Yy Zim)

hold, will be present as part of some subset of tuples currently stored in v(E, d).
Each of the conjuncts in the consequent of Condition (4.1) of Definition 4.8, that
is,

v zgl) ’z(l) . (IVI) ..zl
A C[w.]/\ “C[“’J] = V c[“’t\Rl](Yth)a

assures that all combinations of values for the variables Y;, Z; which when combined
with the inserted tuple ¢, will make the antecedent of Condition (4.1) evaluate to
true (i.e., creating a new insertion into the view) are already represented in the
view. Building the set T,, involves generating all tuples that result from combining
ty with the tuples in v(E, d). Hence T, will contain all tuples that must be inserted
into the view as a result of inserting ¢, into r,.

(Necessity) If the condition for coverage does not hold, then there is at least one
variable z € |7 Tizu(Y1U Z;) with value z; such that C[t,](21) = true which is not
available in any tuple currently stored in the view v(E,d). The value z; causes a

conjunct of the consequent of Condition (4.1) to be false. Assume that this conjunct
is given by

R O TN Co It (T N ()
A Cluil A ﬂC[w,]=>V Clus \ Bal(),

where 2 € a(R;). We can then construct a database instance d; = {r,...,r,,} such
that v(E, d;) = v(E, d), where database instance d; contains the value 2, in some
tuple of relation r;. To construct the database instance d; we use the project-join
mapping mg for vt corresponding to the given view v(E, d). Surrogate values are
assigned to the variable z in tuples from mg in such a way that A; C[w;] A; ~C[,]
is true. Relations r;, 1 < I < m, are assigned the set of tuples my R‘)(mE). In
addition, rp, = rs U {t'} where t'[z] = z; and t'[z] = w;i|z], z € a(R)) — {z}, for
some w; € mg. Although t[A] should be inserted into the view, ¢t will not be
represented in T,. (m|

Corollary 4.4 The effect of inserting the tuple t,, into ry on the view 1s conditronally
autonomously computable with respect to the view instance v(E, d) if and only if the
conditions of Theorems 4.4A and 4.4B hold. O

We illustrate the full algorithm resulting from Theorems 4.4A and 4.4Bregarding

conditionally autonomously computable insertions through an example.

Example 4.10 Consider two relation schemes R, (H, I), R2(J, K, L), and their cor-
responding relation instances:

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 49

rn: H I ro: J K L
1 18 17 14 11
2 24 21 15 30
3 28 26 50 23
4 25 3 25 42
5 21

Consider a view defined by
E=({H,I,J,K},{Ry, R}, [(H=2)(I < J)V(H=5)I> L)V (I=K)])

and its corresponding instance:

v(E,d): I J K

H
2 24 26 50
5
4

21 17 14
25 3 25

Assume the following update is applied to the database: INSERT (R, {(2, 25)})-
Step A: First, we build vt, mg, and T,,.

vt: H I J K L mg: H I J K L
2 24 26 50 sz’ 2 24 26 50 z w
4 25 8 25 29 2 24 3 25 2P w,
5 21 17 14 zis) 2 24 17 14 oY s
4 25 26 50 2V W3
£ 25 3 25 20 wg
£ 25 17 14 2D 4
5 21 26 50 2V 5
5 21 3 25 zi” s
5 21 17 14 2P ws
T.: H I J K L
2 25 26 50 sz
2 25 3 25 29
2 25 17 14 zi”

The first tuple t = (2,25, 26, 50, z{l)) in T, can be safely accepted because the
condition of Lemma 1, shown below, holds.

50 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

v zgl)

[((2=2)(24 < 26) v (2 =5)(24 > 2{")) v (24 = 50)) (from w;)
A —((4=2)(25 < 26) Vv (4=5)(25> 2V) v (25 = 50)) (from ws)
A =((5=2)(21<26)V (5=5)(21> 2V v (21 = 50)) (from ws)
= (2=2)(25 <26) Vv (2=5)(25> 2Y) v (25 = 50)]

For the second tuple t = (2, 25,3,25,2{2)) in T, we also test the condition of
Lemma 1.

v z{z)

[~((2=2)(24 < 3) v (2 = 5)(24 > 21P) v (24 = 25)) (from ;)
A (4=2)(25<3)v(a=5)(25>22) v (25=25)) (from w,)
A ~(5=2)(21<3)V(5=5)(21>2?) V(21 =25)) (from we)
= (2=12)(25 <3) Vv (2=35)(25> 2{?) v (25 = 25)]

Clearly, the above condition holds, and the tuple ¢ = (2, 25, 3, 25, z§2)) in Ty, can be
safely accepted into the view.

Finally, for the third tuple t = (2, 25, 17, 14, z?)) in T, we test the condition of
Lemma 2.

v z£3)

[-((2=2)(24 < 17) v (2=5)(24 > z{P) v (24 = 14)) (from w,)
A ~(4=2)(25<17)V (¢ =5)(25 > 2V) v (25 = 14)) (from w,)
A (6=2)(21<17)Vv (56 =5)(21> zfﬁ) V(21 = 14)) (from wj)
= -((2=2)(25<17) v (5 =2)(25 > 2{>) v (25 = 14))]

Clearly, the above condition holds, and the tuple ¢ = (2,25,17, 14, 2{3)) in T, can
be safely rejected from the view.

Step B: Here we are interested in finding out whether the new tuples assembled
in Step A represent all tuples that need to be inserted into the view.

We can verify that in this example Y2 = {J, K} and Z; = {L}. Testing whether
the variables Y3 U Z; are covered requires testing the following condition:

V Y2, 2 (Clt](Yz2, Z2) =
(v 2(0,23), 200 A, Clus] A; ~Clws] = V, Clus \ RBa](Y2, Z2)).

This is equivalent to testing the condition:

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 51

V JK L ((2=2)(25<J)V(2=5)(25>L)V(25=K) =
(v 20, 22 5()

(2 =2)(24 < 26) v (2 = 5)(24 > 2{")) v (24 = 50))
A((4 = 2)(25 < 3) v (4 = 5)(24 > 2{?) v (25 = 25))
A(5 = 2)(21 < 1T) v (5 = 5)(21 > 2*) v (21 = 14))
A-((2=2)(24 < 3) V(2 =5)(24 > 2{V) v (24 = 25))
A-((2=2)(24 < 17) v (2 =5)(24 > 2V) v (24 = 14))
A -((4 = 2)(25 < 26) v (4 = 5)(25 > 2V) v (25 = 50))
A-((4=2)(25<17)V (4 =5)(25 > zia)) vV (25 = 14))
A =((5 = 2)(21 < 26) v (5 = 5)(21 > 2V) v (21 = 50))
A-((5=2)(21 < 3) v (5 = 5)(21 > V) v (21 = 25))
= (2=2)(24<J)V(2=5)(24> L)V (24 = K)
Ad=2)(25<J)V(4=5)(25> L)V (25 = K)
A(5=2)(21 < J)V (5 =5)(21> L) v (21 = K))].

The implication is valid, and therefore, attributes J, K, and L are covered in the
view with respect to the given insert operation. Hence, the set of tuples T,, generated
at Step A as a result of the insertion of the tuple (2,25) into r; are all tuples that
need to be inserted into v(E, d) to bring it up to date. |

Performing conditionally autonomously computable insertions is in general ex-
pensive because the number of terms of the Boolean expressions that have to be
tested are typically exponential in the number of tuples of the view. However, not
surprisingly, conditionally autonomously computable insertions are easier to per-
form if the attributes that participate in the condition defining the view are visible
in the view (i.e., a(C) C A).

4.3.2 Deletions

Unconditionally autonomously computable deletions require that all variables in the
conditions Cp and C, which are not seen in the view, be computationally nonessen-
tial in Cp with respect to C. This condition should hold for every possible combi-
nation of values from the domains of the variables in [a(Cp) Ua(C)] — At.

In some situations, even though a variable in [a(Cp) U &(C)] — A7 is computa-
tionally essential in Cp with respect to C, it may still be possible to compute the
delete operation autonomously.

Example 4.11 Consider again the relation schemes R, (H, I) and R3(J, K, L), with
corresponding instances

52 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

rn: H I r: J K L
1 16 17 18 23
2 20 19 14 25
3 24 24 18 33

Let a view be defined by £ = ({H, J, K, L}, {Ry, R}, (J < I)(I < L)), and thus
its corresponding instance is

vEd): H J K L
2

17 18 23
2 19 14 25
3 19 14 25

Now consider a delete operation DELETE (R, (I < 20) V (I > 22)). Even though
I is computationally essential in Cp = (I < 20) V (I > 22) with respect to C =
(J < I)(I < L), we can still determine from the tuples present in the view as well
as the absence of tuple (3, 17, 18, 23) that the third tuple in v(E, d) is precisely the
one that needs to be deleted. 0

Lemma 8 Consider the current instance v(E,d) of a view E = (A,R,C), R =
{R1,R;,..., Ry}, estended to include the atiributes in Z = a(C) — A*, and the
update operation DELETE (Ry,Cp). Thent € vt is guaranteed to stay in the view
v(E, d') if and only if -

vz, .., z00 (A Clwi] A\ —Clw;] = ~Cplt]),

where w; € mg 1s such that w;[A] € v(E, d), w; € mg is such that w;[A] &€ v(E, d),

Z(k) = {z{k),...,zyf)}, 1 < k < |v], and |v| = |v(E, d)| represents the number of
tuples 1n v(E, d).

Proof: (Sufficiency) If the condition holds, then no matter which of the values for
the sets of variables Z(*), 1 < k < |v] are chosen to make the antecedent true,
the tuple t[A] will belong into the view. If Z = @, then all attributes required to
evaluate the condition Cp are visible and we only need to evaluate Cp[t]. Surrogate
values for the missing variables Z can be obtained as explained in Section 4.1.

(Necessity) If the condition does not hold, then there exists a database instance
d, that generates the view v(E,d;) = v(E,d) for which the tuple t{A] should be
deleted. Because the condition does not hold, there exists a variable z € Z with
a value 2; such that A; C[wi](2) A; ~C[®;](2) = ~Cplt](2) is false. To construct
the database instance d; we use the project-join mapping mg for vt corresponding
to the given view v(E,d). Surrogate values are assigned to all variables Z — {2}
in mg in such a way that A; C[w;] A; ~C[w;] is true. We assign the value z; to

4.3. CONDITIONALLY AUTONOMOUSLY COMPUTABLE UPDATES 53

all occurrences of z in the tuples of mg. The database instance d; consists of the
relations r; = ng,(mg), 1 <+ < m. Clearly, v(E,d,) = v(E,d). If we now apply
the update to relation ry to obtain the updated instance dj, then the tuple t{A],
t € vt, should be deleted from the view. =]

Lemma 4 Consider the current instance v(E,d) of a view E = (A,R,C), R =
{R1,Rz,...,Rp}, extended to snclude the attributes in Z = a(C) — A™Y, and the
update operation DELETE (Ry,Cp). Thent € vt 1is guaranteed to be deleted from
the view v(E, d') if and only if

vzW,..., 20 (A Clwi] A -Clw;] = Colt)),

where w; € mg is such that w;[A] € v(E, d), W; € mg s such that w;[A] € v(E, d),

Z®) = (0,29}, 1 < k < v, and |v] = |v(E, d)| represents the number of
tuples in v(E, d).

Proof: (Sufficiency) If the condition holds, then no matter which of the values for
the sets of variables Z(¥), 1 < k < |v| are chosen to make the antecedent true, the
tuple t{A] cannot belong into the view. If Z = @, then all attributes required to
evaluate the condition Cp are visible and we only need to evaluate Cp[t]. Surrogate
values for the missing variables Z can be obtained as explained in Section 4.1.

(Necessity) If the condition does not hold, then there exists a database instance
dj constructed in a similar way as in the proof of Lemma 3 that generates the view
v(E, d;) = v(E, d) for which the new tuple {[A] should not be deleted. o

Theorem 4.5 If a delete operation is conditionally autonomously computable, then
every tuple t € vt that does not satisfy the condstion of Lemma 8 satisfies the
condition of Lemma 4 and t[A] will not be present in v(E,d').

Proof: Consider the contrapositive in two parts: (a) if there exists a tuple t € v
that does not satisfy the condition of Lemma 3 and t[A] € v(E, d'), then the deletion
is not conditionally autonomously computable. The proof of Lemma 3 is a proof of
part (b). For part (a), in the same way as in the proofs of Lemmas 4 and 5, we can
construct two database instances d; and d; such that v(E, d;) = v(E, d3) = v(E, d),
and such that the delete operation on r, of d; (d;) will cause t[A] not to stay (be
deleted). Consequently, we cannot decide whether t[A] should be deleted without
further information about the database instance. a

Example 4.12 Consider Example 4.11 on page 51. Let a view be defined by the
expression E with instance v(E,d). The extended instance vt and project-join
mapping are given by

54 CHAPTER 4. AUTONOMOUSLY COMPUTABLE UPDATES

vt: H I J K L mg :
2 27 17 18 23
2 29 19 14 25
3 22 19 14 25

I J K L

20 17 18 23 w
2V 19 14 25 w,
2V 19 14 25 ws
z, 17 18 23 w,
2?10 14 25 ws
22 19 14 25 we
2 17 18 23 w,
2%3) 19 14 25 wy
2% 19 14 25 ws

W oW W NN NN N
.
N
L

Now consider a delete operation DELETE (R, (I < 20) v (I > 22)). For the first

tuple t; = (2,z£1), 17,18,23) € vt we find that the condition of Lemma 3, given
below, holds.

v 2
1
[(zgl) > 17)(29) < 23) (from w;)
A (zgl) > 19)(z§1) < 25) (from wy, ws)

= (" <20) v (Y > 22)))

holds, thus tuple ¢;[A] should not be deleted from the view.

For the second tuple t; = (2, z£2), 19, 14,25) € v* we find that the condition of
Lemma 3, given below, also holds.

v z(z)
1
(282 > 17)({? < 23) (from w,)
A (zgz) > 19) (zgz) < 25) (from ws, we)

= =((z{? < 20) v ({? > 22)))

Thus tuple ¢3[A] should not be deleted from the view.

Finally, for the third tuple ¢t5 = (3,2\>), 19, 14, 25) € v+ we find that the condi-
tion of Lemma 4, given below, holds.

v zf”

[(z?) > 19)(2&3) < 25) (from wy, ws)
A [> 17) (2P < 23)] (from wy)
= (2 <20)v (® > 22)]

Thus tuple ¢t3|A] should be deleted from the view. o

4.4. SUMMARY 55

The conditions given by Theorem 4.5 to determine whether a delete operation
is conditionally autonomously computable are necessary and sufficient. Testing this
condition is likely to be expensive. However, if all the attributes of the condition Cp
are visible in the view, then the test reduces to evaluating Cp|e] for each ¢ € v(E, d).

4.4 Summary

This chapter has dealt with the problems of: (a) establishing the conditions to de-
tect when the effect of an update to a base relation is autonomously computable
in a view, as well as (b) describing the procedures to carry out the update based
on the information provided by the update to the base relation, the expression
defining the view, and the contents of the view instance. We have established the
difference between unconditionally autonomously computable updates (i.e., those
that can be performed regardless of the database instance) and conditionally au-
tonomously computable updates (i.e., those that can be performed for a particular
instance). Section 4.2 described necessary and sufficient conditions for uncondi-
tionally autonomously computable insertions, deletions, and modifications. Section
4.3 described necessary and sufficient conditions for conditionally autonomously
computable insertions and deletions.

Chapter 5

Differential re-evaluation of
views

When the effect of an update to a relation is not autonomously computable we need
to find other ways of updating the materialized views. As pointed out early in this
thesis, a materialized view can always be brought up to date by re-evaluating its
defining relational expression against the updated database. We refer to this way
of updating a view as complete re-evaluation.

In this chapter we present an approach based on “query modification” to re-
evaluating a view differentially. By differential re-evaluation we mean bringing the
materialized view up to date by computing which tuples must be inserted into or
deleted from the view based on the actual updated tuples from relations whose
schemes are mentioned in the view definition.

The differential re-evaluation mechanism is always performed at the site where
the relations are stored. For simplicity, it is assumed that the relations are updated
by transactions and that the differential update mechanism is invoked as the last
operation within a transaction (i.e., as part of the commit of a transaction). It
is also assumed that the information available when the differential view update
mechanism is invoked consists of: (a) the contents of each relation before the exe-
cution of the transaction, (b) the set of tuples actually inserted into or deleted from
each relation, (c) the view definition, and (d) the contents of the view that agrees
with the contents of the relations before the execution of the transaction.

Notice in particular that (b) only includes the net changes to the relations:
for example, if a tuple not in the relation is inserted and then deleted within a
transaction, it is not represented at all in this set of changes. Thus the set of inserted
tuples and the set of deleted tuples have no tuples in common. This assumption
is not unreasonable considering that the differential re-evaluation mechanism is
invoked as part of a transaction, and the net changes to the base relations are still
available, for instance, in main memory or in the log file.

56

5.1. SELECT VIEWS 57

Because of the above, it does not make sense in this chapter to talk about
updates of the form:

e DELETE (Ry,Cp)
e MODIFY (Ry,Cas, Far)

and instead we only need the forms:

o INSERT (Ry,T)
e DELETE (R.,T)

For convenience, in this chapter and the next we refer to the view definition
by the actual relational algebra expression instead of the triple (A,R,C) used in
previous sections. We also refer to the view instance v(E, d) by simply v.

5.1 Select views

A select view is defined by the expression E = o¢(y)(R), where C (the selection
condition) is a Boolean expression defined on Y C a(R). Let i, and d, denote the
set of tuples inserted into or deleted from relation (instance) r, respectively. The
new state of the view, called v/, is computed by the expression v = (vUo¢(y) (i) -
oc(v)(dr). That is, the view can be updated by the sequence of operations

INSERT (E, o¢(v)(ir))
DELETE (E, o¢(v)(dr))-

Assuming |v| > |d,|, it is cheaper to update the view by the above sequence of
operations than recomputing the expression E from scratch.

Example 5.1 Consider the relation scheme R(H,I) and a view defined by E =
ou>10(R). Suppose that after the view v is materialized, the relation r on R is
updated by the insertion of the set tuples 3, and the deletion of the set of tuples
d,, where 1, Nd, = @. Then the new state of the view, called v/, is computed by
the expression

v = vUousiolir) — or>10(dr)-

From this it is clear that if the size of the set oy 10(d,) is comparable to the size
of v, then complete re-evaluation of the view will be cheaper. |

58 CHAPTER 5. DIFFERENTIAL RE-EVALUATION OF VIEWS

5.2 Project views

A project view is defined by the expression E = nx(R), where X C a(R). The
project operation causes more difficulty than a select operation for updating views
differentially. The difficulty arises when the relation r is updated through a delete
operation.

Example 5.2 Consider a relation scheme R(H, I), a project view defined as E =
n1(R), and the relation r shown below:

r: H I v I

1 10 10
2 10 20
3 20

If the tuple (3,20) is deleted from relation r, then the view can be updated by
deleting the tuple (20) from it. However, if the tuple (1, 10) is deleted from relation
r, then the view cannot be updated by deleting the tuple (10) from it. The reason
for this difficulty is that the distributive property of projection over difference does
not hold (i.e., wx(r1 — r2) # nx(r1) — 7x(ra)). m}

There are two alternatives for solving the problem.

1. Attach an additional attribute to each tuple in the view, a multiplicity counter,
which records the number of operand tuples that contribute to the tuple in
the view. Inserting a tuple already in the view causes the counter for that
tuple to be incremented by one. Deleting a tuple from the view causes the
counter for that tuple to be decremented by one; if the counter becomes zero,
then the tuple in the view can be safely deleted.

2. Include the key of the underlying relation within the set of attributes projected
in the view. This alternative allows unique identification of each tuple in the
view. Insertions or deletions cause no trouble since the tuples in the view are
uniquely identified.

We choose alternative (1) since we do not want to impose restrictions on the
views other than the class of relational algebra expressions allowed in their defini-
tion. In addition, alternative (2) becomes an special case of alternative (1) in which
every tuple in the view has a counter value of one.

We require that relations and views include an additional (invisible) attribute,
which we will denote N. For relations, this attribute need not be explicitly stored
since its value in every tuple is always one. The select operation is not affected by
this assumption. The project operation is redefined as

5.3. PRODUCT VIEWS 59

x(r) = {{(X)|X'=XU{N}and
3u € r[(u[X] = t[X]) A (t[N] = D w[N]

weEW
where W = {w | w € r A w[X] = ¢t[X]})]}.

The union and difference of two relations on scheme R are defined as:

riur; = {t(R)|(Buer(t{R-—{N}=u[R-{N}])V
Jvery(t[R - {N}] =v[R—{N}])) A
t{N] = u[N]+ v[N]}

and

ri—rg = {t(R)|(Querit{R—{N}=u[R-{N}])A
Av e ry(t[R— {N}] = v[R - {N}]) At(R)=u(R))V
(Buer,ver(tiR—{N} =uR-{N]=v[R-{N}])A
t[N] = maz(u[N] — v[N],0))}

Notice that by redefining these operations, the distributive property of projec-
tion over difference now holds (i.e., 7x(r1 — r2) = nx(r1) — xx(r2)), and thus
the differential update can be accomplished by INSERT (E, rx (3,)) and DELETE
(E, xx(d,)).

To complete the definition of operators to include the multiplicity counter the
Cartesian product operation is redefined as

rxs = {t(Y)|Y=RuSand3Iu,v|(ucr)A(ves)A
(t(R— {N}) = u(R—{N})) A (¢(S - {N}) =v(S—{N}) A
(¢(N) = u(N) » v(M))]},

where ‘s’ denotes scalar multiplication.

5.3 Product views

A product view is defined by the expression
E=R; xRz X---X R,.

We consider first changes to the relations exclusively through insert operations, next
we consider changes exclusively through delete operations, and finally we consider
changes through both insert and delete operations.

60 CHAPTER 5. DIFFERENTIAL RE-EVALUATION OF VIEWS

Example 5.8 Consider two relation schemes R(H,I) and S(J, K), and a view
defined as E = R x S. Suppose that after the view v is materialized, the relation r
is updated by the insertion of the set of tuples #,. Let ' = r U1,. The new state
of the view, called v', is computed by the expression

= r'xs
(rus,) xs
(r x s) U (3, x 3).

If we let ¢ty = %, X s, then v = v U4,. That is, the view can be updated by
inserting only the new set of tuples ¢, into relation v. In other words, one only
needs to compute the contribution of the new tuples in r to the Cartesian product.
Clearly, it is cheaper to compute the view v' by adding 7, to v than to recompute
the Cartesian product completely from scratch. m]

This idea can be generalized to views defined as the Cartesian product of an ar-
bitrary number of relations by exploiting the distributive property of Cartesian
product with respect to union.

Consider a database d = {ry,ra,...,rp} and a view defined as E = R; X Ry X
-+ X Rp. Let v denote the materialized view, and the relations ry,7s,...,7p be
updated by inserting the sets of tuples ,,,%,,,...,tr,. The new state of the view
v’ can be computed as

o= (7'1 Uirl) X (T2 Uir,) X - X (Tp Uir,).

Let us associate a binary variable §; with each of the relation schemes R;,1 <
t < p. The value zero for §; refers to the tuples of r; considered during the current
materialization of the view v (i.e., the old tuples), and the value one for §; refers to
the set of tuples inserted into r; since the latest materialization of v (i.e., the new
tuples 1,). The expansion of the expression for v/, using the distributive property
of Cartesian product over union, can be depicted by the truth table of the variables
&;. For example, if p = 3 we have

$r, X T2 X tr,
8, X3p, XT3
$r, X8y Xty

6 b6 &b

0O 0 O ry XraXrs

0 0 1 ry X rz Xty
0 1 O which ry X Z',-, Xrs
0 1 1 Tepre— r1 X tpy X ey
1 0 O sents ty, Xra X3
1 0 1

1 1 0

1 1 1

5.3. PRODUCT VIEWS 61

where the union of all expressions in the right hand side of the table is equivalent
to v'. The first row of the truth table corresponds to the Cartesian product of
the relations considering only old tuples (i.e., the current state of the view v).
Typically, a transaction would not insert tuples into all the relations involved in
a view definition. In that case, some of the combinations of Cartesian products
represented by the rows of the truth table correspond to null relations. Using the
table for p = 3, suppose that a transaction contains insertions to relations r, and
ra only. One can then discard all the rows of the truth table for which the variable
63 has a value of one, namely rows 2, 4, 6, and 8. Row 1 can also be discarded,
since it corresponds to the current materialization of the view. Therefore, to bring
the view up to date we need to compute only the Cartesian products represented
by rows 3, 5, and 7. That is,

v = v U (Tl Xi,-, b4 7‘3)
U (i, X r2Xrs)
U (in X tp, X 1'3).

The computation of this differential update of the view v is certainly cheaper than
recomputing the whole Cartesian product.

So far we have assumed that the relations change only through the insertion of
new tuples. The same idea can be applied when the relations change only through
the deletion of old tuples.

Example 5.4 Consider again two relation schemes R(H, I) and S(I,J), and the
view defined as E = R X S. Suppose that after the view v is materialized, the
relation r is updated by the deletion of the set of tuples d,. Let v = r — d,. The
new state of the view, called v/, is computed as

d r'xs
(r—dy)xs
(r x 8) — (dr x 3).

v

If we let d, = d, X s, then v = v—d,. That is, the view can be updated by deleting
the new set of tuples d, from the relation v. It is not always cheaper to compute the
view v’ by deleting from v only the tuples d,; however, this is true when |v| 3 |d,].
a

The differential update computation for deletions can also be expressed by means
of binary tables. Thus, the computation of differential updates depends on the
ability to identify which tuples have been inserted and which tuples have been
deleted. :

Example 5.5 Consider two relation schemes R(H,I) and S(J, K), and a view
defined as E = R x S. Let r and s denote instances of the relations named R and
S, respectively, and v = r X s. Assume that a transaction T updates relations r
and s. For any tuple ¢ in the Cartesian product of the updates, one of the following
conditions (or symmetric condition) must hold:

62 CHAPTER 5. DIFFERENTIAL RE-EVALUATION OF VIEWS

Case 1: t €1, X t, is a tuple that has to be inserted into v.

Case 2: t €1, X d, i8 a tuple that has no effect in the view v, and can therefore be
ignored.

Case 3: t €1, X s is a tuple that has to be inserted into v.
Case 4: t € d, X d, is a tuple that has to be deleted from v.
Case 5: t € d, X s is a tuple that has to be deleted from v.

Case 6: t € r X 8 is a tuple that already exists in the view v.

0O

From now on, all tuples are assumed to be tagged in such a way that it is possible
to identify inserted, deleted, and old tuples. In general, we can describe the value of
the tag field of the tuple resulting from a Cartesian product of two tuples according
to the following table.

ri e ry Xry

insert 1insert insert
insert delete ignore
insert old insert
delete insert ignore
delete delete delete
delete old delete
old insert insert
old delete delete
old old old

where the last column of the table shows the value of the tag attribute for the
tuple resulting from the Cartesian product of two tuples tagged according to the
values under columns ry and ro. Tuples tagged as “ignore” are assumed to be
discarded when performing later Cartesian products. In other words, they do not
“emerge” from the Cartesian product.

The semantics of the Cartesian product operation has to be redefined to compute
the tag value of each tuple resulting from the Cartesian product based on the tag
values of the operand tuples. In the presence of projection this will be in addition
to the computation of the count value for each tuple resulting from the Cartesian
product as explained in the section on project views. Similarly, the tag value of
the tuples resulting from a select or project operation is described in the following
table.

5.4. PROJECT-SELECT-JOIN VIEWS 63

r_ oc)lr) mx(r)
insert insert insert
delete delete delete
old old old

In practice, it is not necessary to build a table with 2P rows. Instead, by knowing
which relations have been modified, we can build only those rows of the table
representing the necessary subexpressions to be evaluated. Assuming that only &k
such relations were modified, 1 < k < p, building the table can be done in time
Oo(2*).

Once we know what subexpressions must be computed, we can further reduce
the cost of materializing the view by using an algorithm to determine a good order
for execution of the joins (i.e., Cartesian products with the associated Boolean
predicates). Notice that a new feature of our problem is the possibility of saving
computation by re-using partial subexpressions appearing in multiple rows within
the table. Efficient solutions to this problem are examined in Chapter 6.

5.4 Project-Select-Join views

A project-select-join view (PSJ-view) is defined by the expression
E = ﬂ‘x(ac(y)(Rl X Rg X oo X Rp)),

where X is a set of attributes and C(Y) is a Boolean expression. We can again
exploit the distributive property of Cartesian product, select, and project over union
to provide a differential update algorithm for PSJ-views.

Example 5.8 Consider two relation schemes R(H,I) and S(J, K), and a view
defined as E = x4 (0(n=J)a(s>10)(R X S)). Suppose that after the view v is mate-
rialized, the relation r is updated by the insertion of tuples ¢,. Let ' = r U1,. The
new state of the view, called v’, is computed by the expression

v xa(oH=0)A(7>10)(7" X 8))
xa(oH=0)A(7>10)((r Ui,) X 8))
malo@=)A(r>10){(r X 8)) Uma (U(H—J)A(J>10) (¢, x 8))
vURA(o@E@=0)A(I>10)(8r X 8

If we let ¥, = xa(o(H=0)A(J>10)(E+ X 8)), then v/ = vU4,. That is, the view can
be updated by inserting only the new set of tuples s, into the relation v. m]

We now present the outline of an algorithm to update PSJ-views differentially.
The algorithm also incorporates a filtering stage which removes irrelevant tuples
from each set of updates to the relations.

Algorithm 5.1
Input:

64 CHAPTER 5. DIFFERENTIAL RE-EVALUATION OF VIEWS

i) the PSJ-view definition E = nx (0¢(R1 X Rz X - -+ X Rp)),
ii) the contents of the relations r;,1 < 5 < p, and

iii) the sets of updates 7;, 1 < 5 < p, denoting the collection of insertions ¢; into
and deletions d; from relation r;.

Output: a transaction to update the view.

1. Remove irrelevant tuples from each relation #;, 1 < 7 < p. This is done by
invoking Algorithm 3.1 with input parameters C, R;, and #;. Algorithm 3.1

returns the relation f;- containing only relevant tuples.

2. For each base relation r;, 1 < 5y < p, compute r;. =r; —d;.!

3. Build those rows of the truth table with p columns corresponding to the
relations being updated. If F;- = @, then discard rows where §; = 1.

4. For each row of the table, compute the associated PSJ-expression substituting
r; when the binary variable §; = 0, and #; when §; = 1.

5. Perform the union of results obtained for each computation in Step 4. The
transaction consists of inserting all tuples tagged as insert, and deleting all
tuples tagged as delete. O

Observe that: (I) we can use for E an expression with a minimal number of
joins. Such expression can be obtained at view definition time by the tableau
method of Aho, Sagiv and Ullman [AHO79] extended to handle inequality condi-
tions [KLUGB80); and (II) Step 4 poses an interesting optimization problem, namely,
the efficient execution of a set of PSJ-expressions (all the same) whose operands
represent different relations and where intermediate results can be re-used among
several expressions. Chapter 6 explores this problem in more detail and provides
several approaches to its solution.

5.5 Summary

An approach to differentially re-evaluating materialized views defined by arbitrary
PSJ-expressions has been presented. The method, based on query modification, uses
the state of the base relations and the net changes applied to the base relations since
the latest update of the view. Differential re-evaluation leads to a special multiple
query optimization problem whose solution is explored in the next chapter.

1This step has been added to the algorithm from an observation by Han-
son [HANSO86).

Chapter 6

A Multiple Query
Optimization Problem

6.1 Introduction

In the previous chapter we presented a differential approach to updating material-
ized views. The approach, based on query modification, requires the computation
of several queries, all having the same relational expression but different operands.
After a review of related work, we define the multiple query problem formally and
present a simplistic cost model. In Section 6.4 we describe geveral alternatives for
solving the problem and also introduce a back-of-the-envelope analysis for the case
when the queries are optimiged individually and not globally. In Section 6.5 we
present a representation of the queries being optimised intended to facilitate the
detection of common subexpressions. In Section 6.6 we present a solution based
on a new heuristic for query decomposition of multi-query graphs. In Section 6.7
we present a solution to the problem based on space-search methods. The main
emphasis in this section is on a new way of generating alternative access plans tak-
ing into account the characteristics of this particular multiple query optimisation
problem.

6.2 Related work

The majority of the work on query optimiszation has focused on improving the
performance of queries presented one at a time. The paper by Jarke and Koch
[JARKES4| is an excellent survey of this field.

Much work has been done to find efficient ways of computing relational opera-
tors and to find efficient methods of selecting access paths. As classical examples,

65

66 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

Blasgen and Eswaran [BLASG76] compare algorithms for computing joins by con-
sidering only the cost of accessing secondary storage, and Selinger et al. [SELIN79]
describe how System R chooses access paths. In the latter, optimal access paths
are obtained by an exhaustive search of all possible access paths, where the cost
formulae used involve I/O as well as CPU costs. Estimates of the size of inter-
mediate results are obtained by utilizing very approximate selectivities. Ibaraki
and Kameda [IBARA84| discuss optimal ways for computing joins represented by
a connection graph using the nested loops method. Their results indicate that the
optimal nesting order for joins represented by a connection graph having the form
of a tree can be found in polynomial time. For more general types of graphs they
prove that the problem is NP-complete.

An important technique used in query optimization is “query modification.” The
purpose of query modification is to find expressions that are equivalent to the given
query, but whose evaluation is more efficient. Some of the laws of relational algebra
used in query modification are described in the books by Ullman [ULLMA82] and
by Maier [MAIER83a]. Among the approaches to query optimization that are based
on query modification we can include: optimization of algebraic expressions, query
decomposition, tableau query optimization, and optimization of conjunctive queries.

Recently, some researchers have started to investigate techniques for improv-
ing the performance of a set of queries as a whole, rather than a query at a time
[GRANT81,SELL86a,SELL86b,CHAKR86]. All the aspects previously considered
for the optimization of single queries are also relevant for the optimization of mul-
tiple queries. Among these aspects we can include:

e query representation,

query modification,

¢ plan enumeration,

cost estimation,

optimal plan selection.

Some other aspects already addressed in the optimization of single queries become
even more important in the optimization of multiple queries, for example, the de-
tection and use of common subexpressions [FINKE82,JARKES5|. It is precisely
this aspect that makes multiple query optimization worthwhile. If the queries to be
optimized do not share any subexpression (i.e., they refer to disjoint sets of rela-
tions), then single query optimization is sufficient. Also, the detection of common
subexpressions as well as the efficient storage and management of temporary results
for multiple queries makes the optimization process closer to the optimization of
code for compilers.

6.3. THE PROBLEM 67

6.3 The problem

Suppose we want to maintain the materialized view v = mx (o¢(y)(r1 X rax- - -xrp)),
and that a transaction T updates ¢ < p relations. The updated view v’ is then
given by the expression v/ = v U Av, where v represents the contents of the view
before the execution of the transaction, the operator LI denotes the simultaneous
union or difference of tuples, and Av is given by the expression

Av = wx(oc(ri X - XrpogXrh_ 41 X Xrp_y X #p))
mx(oc(ri X - - X rpog X rp_oq X o X Fpoy X 1))
mx(oc(ry X - - Xrpog X rh_ oy X oo X Fp1 X fp))

cccc

ax(oc(ri X+ X rp_g X fp_gq1 X -+ X fp_1 X).

Relations r;, 1 < ¢ < p, represent the relations used to compute v. Relations
ri=r;—d;, p—q+1<j<p, where d; C #; represents the set of deletions made
to relation r; within the transaction. Relations #; represent the net changes (i.e.,
insertions and deletions) made to the corresponding relations within the transaction.
Relations #; are assumed to be non-empty. Thus, if ¢ relations are updated, then
Av will consist of the union of 29 — 1 PSJ-expressions. The problem is how to
compute Av efficiently. This is equivalent to trying to minimize the overall cost
of the evaluation of the set of queries {v;,vz,...,v2¢_1}, where each v; is an PSJ-
expression.

Multiple query optimization is a natural approach to solving this problem. The
reasons that make a multiple query optimization approach attractive are: (a) the
set of queries to be optimized is known in advance, (b) all queries v; share the
same projection and selection condition, (c) since there is extensive relation overlap
among the queries, many subexpressions can be shared.

Before we start dealing with query optimization we need a cost model. Some of
the notation used throughout the chapter is given below:

|ri] size of relation r; (e.g., number of tuples, number of pages).
P number of relations involved in a query expression.
q number of relations updated.

sel;; selectivity factor of a join involving relations r; and r;.

The selectivity sel;; with respect to the join of r; and r; is defined to be the expected
fraction of tuples from r; X r; satisfying the join condition.

For simplicity, it is assumed throughout this chapter that each query to be op-
timized is represented by a connection graph consisting of a chain of nodes. A
chain (of nodes) is a connected undirected acyclic graph with maximum degree 2.
Each node in the chain represents a relation in an expression. Each edge between
two nodes labeled r; and r; represents a join condition between these two rela-
tions. We also assume that all joins are performed using the nested loops method
[BLASG76,IBARA84].

68 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

Given two relations r; and r; to be joined, the cost of computing the join
cost(r;, r;) and the estimated size of the result size(r;,r;) are given by:
cost(ri,r5) = |ri|*|rj]

size(ri, ri) = |ri| * |rj| * sely;.

Example 6.1 Consider three relation schemes R,(H,I,J), R:(K,L), and
R3(M, N, O) with relation instances ry, r and r3, and the query

E = o(j=k)a(L<m)(r1 X r2 X r3).

Assume that |ry| = 100, |rz| = 60, |r3| = 80, sely2 = 0.1, and selz3 = 0.4. There are
two ways of evaluating the expression E depending on two different nesting orders
for computing the joins. Let us denote these two different nesting alternatives by
nest;(E) and nesto(E), respectively. The cost of evaluating the expression E using
two different nesting orders is given by:

cost(nesty(E)) = cost(ry,r2) + cost(ri|J = K]rz,r3)
[ra|* |rz| + |ra] # |rz| * seliz * |rs]
(100)(60) + (100)(60)(0.1)(80)
54,000

Il

and

cost(nestz(E))

cost(rz, ra) + cost(rz2[L < M]rs,ry)
|r2| * |rs| + [rz| * |rs| * selzs * |ry
(60)(80) + (60)(80)(0.4)(100)

= 196,800

I

Instead of performing two joins, we can perform the two joins at the same time.
The idea is to join each tuple ¢t € ro with relations r; and r3. We refer to this way
of performing the join as two-way join. This strategy is denoted by nests(E) and
its cost is given by:

cost(nesta(E) = |ral* (jrs] + Iral)
= 60(100+ 80)
10, 800
In all cases, the estimated size of the result is 19200. O

Given a relation r; and a selection operation to be applied over r;, the cost of
computing the selection cost;; and the estimated size of the result size;; are given

by:
costy; = |ri

size;; = |ri| % seli

6.4. ALTERNATIVE SOLUTIONS 69

We want to emphasize that this is a simplistic cost model which was adopted
in order to concentrate on the treatment of query optimization throughout this
chapter. The model carries the assumption of uniformity and independence
of attribute values. Other cost models using similar assumptions are given in
[BLASG76,SELIN79,YAO78,YAO79,GRANT81,SELL86b]. It has been shown by
Christodoulakis [CHRIS81| that such assumptions often lead to pessimistic estima-
tions of query costs.

6.4 Alternative solutions

There are two general alternatives available for computing the expression v'.

1. Complete re-evaluation. This alternative is the simplest. Every time one
or more relations participating in a view definition is updated, the view ex-
pression is re-evaluated from scratch to bring the view up-to-date with the
relations.

2. Differential re-evaluation. In this alternative we have two options depending
on the amount of sharing of common subexpressions we are willing to exploit.

e No sharing of common subexpressions.
— Optimize each expression that participates in Av independently.

e Sharing of common subexpressions. The main problem here is to enu-
merate a reasonable number of strategies leading to a good amount of
sharing.

~ Exhaustive search.
— Query decomposition.
~ Space search methods.

6.4.1 Differential re-evaluation with no sharing of common
subexpressions

In this strategy, the set of changes to be applied to the view is computed by opti-
mizing each of the queries that compose Av, independently. This is the alternative
where current query optimizers can be utilized directly. We assume that all selec-
tions on single relations are performed first and at the end we are left only with the
problem of finding an optimal order for computing a sequence of joins represented
by a chain. The algorithm presented is a dynamic programming solution to the
problem of finding an optimal nesting order for computing a sequence of p joins.
The algorithm considers one- and two-way joins. The solution is inspired by the
algorithm given by Aho et al. [AHO74] to find an optimal nesting for computing a
sequence of matrix multiplications.

The following is a description of variables used in the algorithm:

70 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

p the number of relations to be joined.
e cost[t, j] is a p X p array to record the minimum cost of computing the sequence
of joins r;[6;]ri41[0i41] - - - [05-1]r;, where [61],7 < I < 7—1, represents a theta-

join between relations r; and relation r; .

e sel[i] is a p — 1 vector containing the selectivity factor of the join between
relations r; and r;41.

e est_size[t,j] is a p X p array to record the estimated size of the result of
performing ri[0;]riv1(0i41] - - [65-1]r5.

e size[t| is a p vector containing the size of relation r;.

e type[t,j] is a p X p array to record the type of join which makes cost[t, 5]
minimal. Type one is for one-way join and type two is for two-way join.

o best[s, 5] is a p X p array to record the value of k for which cost[z, 5] is minimal
as defined below.

cost(z, 7] = min(costl |, 5], cost2ls, 7)),

where
0 fi=7
costls,] = { mini<k<;(cost[, k] + costlk + 1, 5]+
est_size[i, k| * est_size[k + 1,7]) otherwise.
and
0 fi=y
cost8[t, j] = ¢ mini<k<j(costli, k] + cost[k + 2, 7]+

(est_size[s, k] + est_size[k + 2, 7]) * size[k + 1]) otherwise.

Algorithm 6.1. Dynamic programming algorithm to find a minimal-cost nesting-
order for computing the sequence of joins r[01]rz2[f2] - - - [fp—1]7p-

Input: size[t], 1<t <pandselj],1<7j<p-—-1

Output: the array best from which a minimal cost nesting for computing the p —1
joins can be obtained. According to the cost model of Subsection 6.3 the estimated
cost of the one-way join r;[0;]r;+1 is given by size[:] * size[s + 1], and the estimated
size of the result is given by size[i] # size[s + 1] * sel[s]. The cost of a two-way join
7;[0:]ri+1[0i+1]ri42 is given by size[s + 1](ssze[s] + size[s + 2]). The estimated size of
the result is the same as in the case of the one-way join.

6.4. ALTERNATIVE SOLUTIONS 71

cost[t, 5] =0,1<1 <5< p;
est_sizelt, 7] =0,1<i< j<p;
est_sizeli,1] = size[t], 1 <i < p;
for w=1untilp—1do
for 1 = 1 until p — w do
J=1+w;
cost(t, 7] = Mincost(cost, 1, j, k, t);
est_size[t, j| = est_size[s, k] * est_size[k + 1, 7] * sel[k];
best[s, 7] = k;
typeli, 7] = t;
od;
od;
return(best);

The subroutine Mincost takes as input the array cost and the indices ¢ and j,
returning the minimal cost[s, j] as well as the value of k, ¢ < k < 7, for which

cost(t, k| + cost[k + 1, 5] + est_size[s, k] * est_size[k + 1, 7]
or
cost[t, k] + cost[k + 2, 7] + (est_size[i, k] + est_size[k + 2, 7]) * size[k + 1]

is minimal. If the first expression is minimal, then ¢ = 1 otherwise ¢t = 2.

The algorithm produces an optimal nesting in time O(p®). Ibaraki and Kameda
[IBARAB84) present an algorithm that finds an optimal nesting for joins whose con-
nection graph is a tree in time O(p?logp), using a slightly different cost function
than the one presented in Subsection 6.3. Also, Ibaraki and Kameda’s algorithm
does not take into consideration two-way joins.

Example 6.2 Consider again Example 6.1. The computations made by Algorithm
6.1 can be depicted by the following table.

cost=0 cost=6,000 cost=10,800
t =1 | est_s1ze=100 | est_s12e=600 | est_s1ze=19,200
best=1 best=1
type=1 type=2
cost=0 cost=4,800
1=2 est_size=60 | est_size=1,920
best=2
type=1
cost=0
1=3 est_size=80

72 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

The optimal nesting cost is given by cost[1, 3] = 10, 800. Since type[l,3] = 2, the
optimal nesting requires a two-way join. Since best[1,3] = 1, the optimal nesting
involves the scan of relation ry, where each tuple of r; is joined simultaneously with
relations ry and rs. In general, if best[1,p] = k and type|l, p| = 2, then the optimal
nesting involves the scan of relation ri+;, where each tuple of relation ri4 is joined
simultaneously with the result of ry X - -- X rx and the result of rx42 X --- X rp. To
obtain the optimal nestings for each of r1 X - -+ X ry and rg42 X -+ - X rp, we look up
the values of best[1, k|, type[1, k], and best[k + 2, p], typelk + 2, p|, respectively. 0O

6.4.2 Cost comparison of differential re-evaluation with no
sharing of common subexpressions and complete re-
evaluation

This section contains a simplistic cost comparison of the differential approach to
updating materialized views against complete re-evaluation of the query defining
the view when transactions involve insertions only.

For simplicity we assume that all relations r; have size N; all relations #; have
size n; that is, |r; U#;| = N + n; and all selectivities selg 41 =3, 1 < k< p—1,
0 < s < 1. We focus only on the cost of performing p joins. The costs of selections
on single relations along with the costs of performing the union of the results are
not considered. Joins are computed using the nested loops method.

Let Ceomp and Caiy denote the cost of complete re-evaluation and the cost of
differential re-evaluation, respectively. Cg;y corresponds to the sum of minimal
costs (i.e., optimal nestings) for each of the queries in the differential re-evaluation.
First, we derive an approximation for Ccomp as follows:

Ceomp = N+sN24...4+ P 9"1NP-7 4
sPTINP~YN +n)+ -+ P NP"UN + n)? + Scomyp
p_q_l - » q_l . .
= Y &NF 4 PTINPTIS " SN + 0t + Seomp,

=0 =0

where Scomp = 2(p — ¢ — 1)Nlog, N + 2¢(N + n)log,(N + n) is an approxima-
tion to the cost of sorting all relations, except the one scanned in the outermost
loop, on the appropriate attributes before the execution of the nested loops method
as in [[BARA84]. The cost of sorting each relation using s-way merge sort is
2[M log, M|, where M is the size of the relation [BLASG76].

To derive Cap, notice that the cost of evaluating an arbitrary expression from
the set of expressions to be optimized having ! relations of the type is given by:

c

I

ﬂ+8n2 + "'+s"1n' +s'n'N+ ”'+8P_1n‘Np_,+Sd:‘ﬂ‘
= n(l +sn+---+ Sl-ln'—l) + s’n’N(l +sN+---+ 3P—'—1N1r—l—1)
+S¢,'3'

6.4. ALTERNATIVE SOLUTIONS 73

-1 p—1-1
Zstns+1 + dint z: o NI+ 4 Saig,
=0 =0

where S4ig = 2(1 — 1)nlog, n+ 2(p — {)N log, N is again an approximation to the
cost of sorting all relations, except the outermost, before the execution of the nested
loops method.

Since there are (‘,’) queries of this type in Av we have:

p—-i—~1
C = () Zstn|+1+slnl E gI NI+l +Sdtﬂ]

i=0 =0
The cost of differential re-evaluation Cg4;g is then given by:

q

Caug = E C

=1
q p—i-1
= Z () Es‘n""l +s'nt E SN 4 Sup
I=1 +=0 =0
If n < N, then taking the most significant terms in C.omp above we obtain
Ceomp = sP7INP + (s”'lqn + sp—Z)Np—l + O(Np_z),
and similarly for C4ig above we obtain
Cug = s 1gnNP~14 O(NP-2).
Thus,
Ccomp = Cdc'ﬂ + sP~INP + gP—2 NP1 + O(Np_z).

The costs S¢omp and Sgg are included within the term O(N"‘z) in each of the
expressions for Ceomp and Cyip, respectively.

From the above expressions it is clear that if n <« N, then differential re-
evaluation will be cheaper than complete re-evaluation.

We now look at the expressions Ceomp and Cgiy when n is comparable to the
value of N assuming insertions only. Let n = aN, 0 < a £ 1. Then we can express
Ceomp a8

p—q-1 q—-1
Coomp = 9 &N*14 P INP"93 " 5I(N +aNV* + Scomp
=0 3=0
p-q_l a - q—l - - .
= Z S Nitl 4 gp—ayP—e E SNV (1 4+ a) + Seomp
=0 =0

s P71+ a@)INP + 527 2(1+)? 'NP~1 + O(NP73),

74 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

and Cug as
q q -1 q q p—i-1
_ i itlpri+l TRy, y N7T
Cug = Z(JZsa N +Z(l)saN E SN} Sup
I=1 =0 =1 7=0
7
'Y Z (g) ofst Nt [s”_"lNP_' + sPi-2Ne-i-L O(Np—l_z)]
=1
= 7 1(1+a)? - 1)N? + s#"2((1+ a)? — 1)NP~1 4+ O(NP~2).
Thus,
Ceomp = Caig+ P IN? —sP72NP"1a(1+a)?"! 4 P2 NP1

+O(NP~2),

When the value of n is comparable to the value of N, then both alternatives
have similar costs, but Cyp is still smaller than Ciomp.

The main reason for the difference is that differential re-evaluation avoids com-
puting the expression representing the set of tuples already in the view. It must
be stressed that, because all the expressions that compose Av compute disjoint
sets of tuples, the amount of work required by differential re-evaluation will not be
larger than the amount of work required by complete re-evaluation when tuples are
inserted only.

Figure 6.1 depicts a comparison between Cg4ig and Ciomp for the case when
n < N. The values of the parameters are: N = 10,000, s = 0.01, and p = 10
and the relations have been updated by inserting n = 100 tuples and n = 1,000
tuples. Dashed lines and solid lines represent the cost of differential and complete
re-evaluation, respectively.

Figure 6.2 depicts a comparison between Cgig and Ccomp for the case when n
is comparable to N. The values of the parameters are: N = 10,000, s = 0.01,
and p = 10 and the relations have been updated by inserting n = 8,000 tuples and
n = 10,000 tuples. In this case, dashed and solid lines overlap.

It should be clear from the discussion in this section that even with no sharing
of common subexpressions, differential re-evaluation is an advantageous alternative
against complete re-evaluation provided that the updated tuples can be “separated”
easily. For the case in which relations are modified by inserting a large number of
tuples, differential re-evaluation is not worse than complete re-evaluation.

Differential re-evaluation can provide even more savings if we allow sharing of
common subexpressions among the queries being optimized. But in order to do this
we need to adopt some query representation that will allow us to identify and take
advantage of such common subexpressions. Section 6.5 presents such representation,
Section 6.6 presents an approach for solving our problem using query decomposition,
and finally Section 6.7 presents an approach for solving our problem using space
search methods.

6.5. QUERY REPRESENTATION 75

22 - Size of relations (N) : 10,000
Selectivity (s) : 0.01
20 4 No.of relations (p) : 10 comf 000
Cost represents number
18 - of tuples accessed
Ccornp,
o ° pn =100

Cq
- * n¥q 000

4 5 6 7 8 9 10
No. of relations updated (q)

Figure 6.1: Comparison between complete and differential re-evaluation

6.5 Query representation

Researchers in query optimization have used a number of different representations
for queries to facilitate their study. Examples of such representations are expressions
in terms of tuple and domain relational calculus, parse trees, tableaux [AHO79], qual
graphs [FINKE82|, connection graphs (e.g., Ch.8 [ULLMAS82]), and multi-query
graphs [CHAKR386].

Some of the problems detected in the representations previously used are briefly
summarized below.

o Finkelstein’s approach is based on the use of temporary results which can
potentially be used in later queries. Each temporary result represents a selec-

76 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

120
Cioomp, 1 = 10,000
Cuaig, n = 10,000
100 -
80 S
C
o
S 60 - . .
t Size of relations {N) : 10,000
Selectivity (s) : 0.01
x 1023 No.of relations (p) : 10
40 Cost represents number Ceomp, 1 = 8,000
of tuples accessed Caig, n = 8,000
20
0 j

0 1 2 3 4 5 6 7 8 9 10
No. of relations updated (g)

Figure 6.2: Comparison between complete and differential re-evaluation

tion and a projection on a single relation. Thus, his approach does not take
advantage of temporary results involving joins.

e Sellis’ approach [SELL86a] is based on a slight variation of Finkelstein’s qual
graphs. Each task involved in the execution of the query (e.g., a selection
or a join) is represented by a node in the graph. Edges impose an order on
the execution of the tasks represented by the nodes they connect. This repre-
sentation can be seen as an operator graph, since all information relevant for
sharing is encoded in the nodes, thus allowing the sharing of join operations.

e The tableau is a query modification tool which has been used for the optimiza-
tion of single queries to derive an equivalent expression requiring a minimal
number of joins. We can make use of this tool at view definition time to
obtain an equivalent view expression with a minimal number of joins.

6.5. QUERY REPRESENTATION 77

e Parse trees are not well suited for multiple query optimization because
common subexpressions are hard to detect in that representation. Jarke
[JARKESS] provides examples.

We choose Chakravarthy and Minker’s representation [CHAKR86] called the mult:-

query graph, which is actually an extension of the connection graph of Ullman
[ULLMAS2].

Algorithm 6.2. Construction of an undirected multi-query graph G = (V, E) for
the set of queries {v1,v2,...,v2¢—1}-

Input: the set of queries {vy,v2,...,v2¢~1}, where each v; is of the form
Wx(ac(y)(rl XregX- ---X rp)).

Output: an undirected multi-query graph G = (V, E).

1. Initialize the sets V and E to be the empty set.

2. Decompose the conjunctive condition C(Y) into disjoint predicates Cx(Y%),
1 £ k £ m. Each predicate Cix(Y%) contains either the conjunction of atomic
formulae that use attributes of the same relation, or a single atomic formula’
representing a join condition. Also, each predicate Cx(Yx) = (r;,.z 6 ri;.y +¢c)
is transformed into an equivalent predicate for which #; < 1,.

3. For each query v; do steps 3.1 and 3.2.

3.1. For each relation r; (#;), 1 < i < p, mentioned in the query v; insert a
node r; (#;) into the set V.

3.2. For each predicate Cx(Yx) in C(Y) create an edge e and insert it into the
set E. Each edge is a four-tuple (21, 22, 23, 24) where, 2z; and 2; represent
the two nodes connected by the edge, z3 (called the color of the edge) is
a number that identifies the query to which the edges belong, and z; is
a label representing the predicate associated with the nodes connected by
the edge. Each edge is constructed as follows:

o if Cj is of the form (r;,.z 0 r;,.y + c), then e = (r;,, 7y, 7, Ck)-

o if C is of the form (#;,.z 0 ri,.y + c), then e = (fi,,ry,, 7, Ci)-

o if Cy is of the form (r;,.z 0 #;,.y + ¢), then e = (r;,, #i,, 7, Ck)-

o if Cy is of the form (r.zy 0 ¢1) A--- A (r.zy 0 cy), then e = (r, 1,7, Ck).

o if Cy is of the form (f.z, 0 ¢;) A--- A (f.zy 0 cy), then ignore it since the

relation # contains only relevant tuples. a

At the end of this process, we will have an undirected multi-query graph G = (V, E)
with |V| = p+q and |E| < m(29 — 1), where m is the number of disjoint predicates
in C(Y).

78 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

(H =5) A (I < 10)

(N = 20)
Figure 6.3: Multi-query graph for Av

Example 6.8 Let By = mx N (0(s=K)A(L=M)A(H=5)A(I<10)A(N=20)(R1 X Rz X R3))
be a view defined on relation schemes R;(H, I, J), R2(K, L), R3(M, N,0), and v
be the latest materialization of the view. If relations r; and r3 are updated, then
Av will be given by

Av = wN(ou=K)A(L=M)A(H=5)A(I<10)A(N=20)(r1 X r2 X 3)) U
TN (O(I=K)A(L=M)A(H=5)A(I<10)A(N=20)(F1 X T2 X r3)) U
e N (O(I=K)A(L=M)A(H=5)A(I<10)A(N=20)(F1 X r2 X 73))

The corresponding multi-query graph for Av is shown in Figure 6.3. The condition
C(Y), where Y = {H,I,J,K,L, M, N}, contains four disjoint predicates: C; =
(J=K),Co=(L=M),Cs=(H=5)A(I <10), and C4 = (N = 20). Notice
that the edges representing predicates over relations #; and 3 need not be shown
in the graph.]

Having decided on a query representation, the next step is to state the prob-
lem more precisely in terms of this representation. Ideally, we are interested
on finding the optimum sequence of operations that computes the set of queries

6.6. A SOLUTION USING QUERY DECOMPOSITION 79

{v1,v2,...,v2¢—1}. If we regard an operation to be performed as an edge that ex-
ists in the multi-query graph and the removal of the edge as the execution of the
operation it represents, then our objective is to find the sequence of removal of edges
that computes the set of queries of interest with the minimum cost.

We could associate a cost with each of the operations represented by the edges
in the graph. The cost function could incorporate I/O cost as well as CPU cost.

Finding the order of operations with minimum cost seems to be hard. We could
enumerate all possible orders of execution and pick the one of minimal cost. We
could also use some heuristic algorithms to avoid the combinatorial growth of ex-
haustive search. In the next two sections we propose two alternatives which are
aimed at finding sequences for computing our multiple queries at a cost which is
less than computing the optimal sequence of operations of each query independently.
Section 6.6 presents an alternative based on the query decomposition idea by Wong
and Youssefi [WONG76] extended to handle multiple queries by Chakravarthy and
Minker [CHAKR86]. The algorithm presented in Section 6.8 uses the multi-query
graph to help detect common subexpressions among the queries to be optimized;
when the multi-query graph evolves to a graph containing only disconnected com-
ponents with single edges, the decomposition is carried out according to the optimal
nesting order for each of the subexpressions represented by the disconnected com-
ponents.

Section 6.7 presents an alternative form of query optimization based on the
space search methods originally proposed by Grant and Minker [GRANTS82]. The
efforts in this approach have been focused on trying to improve the algorithms that
search the solution space. In their paper, Grant and Minker propose a branch and
bound type of algorithm and suggest that the search time can be improved using the
Algorithm A*. Sellis [SELL86a,SELL86b] explores the idea of using the Algorithm
A* to search the solution space and proposes a cost estimate that helps the algorithm
to find (on average) an optimal solution faster than Grant and Minker’s. However,
both papers ignore the problem of actually generating the set of plans to execute
each of the queries to be optimized. In Section 6.7 we present an idea on how to
generate promising query plans and then give a generalized algorithm that searches
the solution space using any desired search space method.

Although the ideas presented in Sections 6.6 and 6.7 are given in the context of
the multiple query optimization problem obtained from our differential approach to
updating materialized views, they can be used to improve the execution of multiple
queries in a more general setting.

6.6 A solution using query decomposition

Query decomposition was originally proposed by Wong and Youssefi [WONG?76]
as the query processing strategy for the relational language QUEL [STONE76).
In this method, the query to be optimized is represented by a connection graph

80 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

[ULLMAS82]. The execution of the query can be seen as a series of operations on the
connection graph. Each operation has the effect of constructing a new relation used
as an intermediate result in the evaluation of the query, as well as simplifying the
graph itself. At each step during the decomposition there are two operations that
can be applied to the connection graph called instantiation and (tuple) substitution
or steration. These operations on the graph correspond to edge removal and node
removal and the goal is to transform the connection graph into a graph with no
edges.

o Instantiation is analogous to pushing the selections and projections towards
the leaves of the query’s parse tree. It actually forces the application of a
selection and a projection on a single relation early in the evaluation of the
query. The purpose of this operation is to reduce the size of an operand
relation to be used later in a Cartesian product.

o Tuple substitution corresponds to performing a Cartesian product. The effect
of this operation is to dissect the graph by eliminating a node from the con-
nection graph and replacing it by each of the tuples in the relation represented
by that node.

Query decomposition actually produces a family of algorithms to process a query.
Each algorithm results from different orders in which instantiation and tuple substi-
tution are applied to the connection graph. (Several heuristics have been proposed
to decide at each step whether to instantiate or to substitute. Youssefi and Wong
[YOUSS79] present an empirical study of different heuristics and conclude that
instantiation is usually better than iteration as a first move in the decomposition.)

Chakravarthy and Minker [CHAKR86] have extended the query decomposition
method to the case of a multi-query graph.

When we apply query decomposition to a multi-query graph, we may reach a
point in which the graph consists of several disconnected components all having
single edges between pairs of nodes. When that occurs, the decomposition can be
carried through in the same way as in single query optimization for each of the
disconnected components of the graph. Since we assume that all the queries to be
optimized are represented by chains, we can make use of the single query optimizer
to provide us with an optimal nesting order for the portion of the queries still to be
evaluated within each component. In this section we propose a hybrid algorithm
which involves this form of mixture of query decomposition and Algorithm 6.1.
Before we describe the algorithm we need a few definitions.

Given the undirected multi-query graph G = (V, E). Let adjacent(r) be the
set of vertices adjacent to node r, that is, adjacent(r) = {r' | 3 j,p (r,7',5,p) €
Ev(r,r3,0) € E,1< 5 <29—1}. Let edges(r,r’) be the set of all edges between
nodes r and r', that is, edges(r,r') = {e|3j,pe=(r,r,5,p)) €E,1<j <271}
Let v(r,r') be a function defined as follows:

. if |edges(r,r')| =0
v(r,r) = { |edges(r,)| — 1 if |edges(r,r')| > 1

6.6. A SOLUTION USING QUERY DECOMPOSITION 81

We define a function savings(r) to be the savings in cost provided by iterating
on relation r as follows:

savings(r) = z cost(r,r') * v(r,r'),
Vr!E€adjacent(r)

where again, cost(r,r') = |r|*|r'| is the estimated cost of performing a join between
relations r and r'. The estimated size of the result of a join between relations r and
r’ according to the predicate p is given by est_size(r, ', p) = |r| * |r'] * sel(p).

Briefly, what the function savings is trying to capture is the following. Suppose
that there is a pair of nodes connected by three edges representing the same pred-
icate, meaning that there are three queries sharing the same subexpression. If the
system computes the expression defined by one of the edges, then the system will
not need to compute the same expression for the other two queries again (provided
the result is stored for later use), which basically saves twice the cost of computing
the expression. Savings are obtained when there are at least two edges representing
the same predicate between two nodes.

Algorithm 6.3. A hybrid algorithm between query decomposition and optimal
nesting order for joins to solve a multiple query optimization problem.

Input: a set of queries {vy,va,...,v2¢—1} and its corresponding multi-query graph
G = (V,E).

Output: a program that computes the expressions represented by the multi-query
graph.

Repeat choosing the lowest numbered option among the following set of options.

1. Instantiate whenever possible.

2. Iterate on the relation that provides the highest cost saving. That is, iterate on
the relation represented by node r such that savings(r) = maz(savings(r;)) >
0,1<:<p.

If there is a tie between nodes r and ¢/, then iterate on node r if

Z v(r,s) 2 Z v(r',t),

Vs€adjacent(r) VtEadjacent(r')

otherwise iterate on r’. Notice that with this tie breaker we are favoring the
node that will lead to a faster dissection of the multi-query graph.

3. The algorithm reaches this point when savings(r) = 0, Vr € V. However, a
node may still be connected to other nodes through single edges of several
colors. Iterate on the node connected to the largest number of edges of differ-
ent colors. If there are ties, then iterate on the node representing the relation
with smallest cardinality.

82 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

4. When the algorithm reaches this point, the remaining portion of the graph
consists of a number of disconnected components where each component con-
tains edges of only one color. That means there are no more common subex-
pressions to be shared. Therefore, for j = 1 to j = 27 — 1: Use Algorithm 6.1
to find an optimal nesting order for computing the joins represented by the re-
maining edges in query 7 which are defined by the set {e | e = (r, 7,7, p) € E}
and then iterate on the relations for the component 3 according to the optimal
nesting order.

Until the multi-query graph has no edges. O

It should be noted that Algorithm 6.3, provides a more precise set of heuris-
tics than other query decomposition algorithms for single queries presented in
[MAIER83a,ULLMAB82], and for multiple queries in [CHAKR86]. In particular,
by making use of the selectivities in the predicates as well as the cardinalities of the
relations, we are able to eliminate the nondeterminism present in the other decom-
position algorithms mentioned. To confirm what was said in the last paragraph of
the previous section, we are using decomposition to take advantage of the common
subexpressions among the queries and when there are no more common subexpres-
sions we rely on a more accurate optimization of the individual queries still to be
computed.

The following example uses the description of instantiation and iteration for
multi-query graphs introduced in [CHAKR86]. They are shown in detail here in
order to illustrate each of the steps of Algorithm 6.3.

Example 6.4 Consider four relation schemes R,(H, I), Rz(J, K), R3(L, M), and
R4(N, O) and the following set of expressions:

vy = a'(H<10)A(I=.I)A(K=L)A(M=N)("1 X ry X f3 X r4)
va = O=naK=L)a(M=N)(F1 X r3 X r3 X 14)
v3 = Oou=nA(K=L)A(M=N)(F1 X rz X f3 X ry)

with its corresponding multi-query graph:

6.6. A SOLUTION USING QUERY DECOMPOSITION 83

where the expression v, is represented by solid edges, expression v, by dashed edges,
and expression vs by dotted edges. The expressions v;, vy, and vs are generated
by the differential re-evaluation algorithm for the case in which relations r;, and r3
have been updated since the latest materialization of the view. As always, relations
#1 and f3 represent the set of net changes on relations r; and rs, respectively.

Assume that |r;| = 1000 pages, |r2| = 80 pages, |[rs| = 90 pages, |rq] = 200
pages, |f1| = 1 page, |f3| = 2 pages, sely; = 0.1, sel;3 = 0.1, selps = 0.15, and
86134 = 0.03.

In the first iteration of the algorithm, the action taken is to instantiate relation
r1. This action removes the edge (ry,ry, 1, (H < 10)) producing a new node r}.
The resulting graph is:

and the statement generated in this step is:

ry— U(H<1o)("1);

v~ o(1=J)(K=L)(M=N)(r] X r2 X f3 X r4);
vg — O(1=J)(K=L)(M=N)(F1 X r2 X r3 X r¢);
U3 +— o(1=J)(K=L)(M=N)(F1 X r2 X f3 X r4);

The size of relation r} is estimated to be sel;; * |r;| = (0.1)(1000) = 100 pages.

In the second iteration of the algorithm no more instantiations are possible,
therefore Step 2 is performed. In this step, the function savings is computed for
each of the nodes of the graph. The values of this function for each of the relations
is:

savings(r}) = O
savings(f,) = 80
savings(rz) = 240
savings(rs) = O
savings(fs) = 560

savings(ry) = 400

84 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

Thus, the next action taken by the algorithm is to iterate over relation 3. This
action removes the edges (rz,fs, 1, (K = L)), (r2,fs,3, (K = L)), (fs, 74,1, (M =
N)), and (#3, 14,3, (M = N)), and the resulting graph is:

The statement generated by this step is:

ry— O'(H<10)("1);

v + 0; v3 — §;

for each tin 73 do

- G(J-J)gzx t[L])(t[M] Ny (r] X rz X rq);

vl ~— Uy U
v3 —o(=1) K=t[L])(t|M]=N)(?1 X r2 X r4);
vs — v3 U (v3 x {t});

od;

v2 — o(1=J)(Kk=L)(M=N)(F1 X r2 X r3 X r4);

In the third and fourth iterations of the algorithm relations r, and r4 are in-
stantiated. The resulting graph is:

o

~
~
~
rd ~

©

and the resulting program is:

6.6. A SOLUTION USING QUERY DECOMPOSITION 85

ry — o <10)(r1);
vy — 05 v3 — §;
for each t in 73 do
r2 < o(x=t|z))(r2);
ry — ot iM|=N) (T4);
v} — oy=a)(rl X 5 x r4);
v — v U (v? x {t}),
vi — 0'(1_;)(1-1 X rh X ry);
03 — vz U (v2 x {t});
od; v
v2 < o(r=1)(k=L)(M=N)(F1 X 12 X r3 X 14);

In the fifth iteration of the algorithm, step 3 is performed and the action taken
is to iterate on relation r5. The resulting graph is:

o

and the corresponding generated program is:

ry — O'(H<1o)("1);
vy — §; vs — 6;
for each ¢t in #5 do
rh +— o(k=¢jL])(ra);
ry — U(t[Ml—N)(n);
1 <P v3 —
for each sin r’ do
vl o(1=s Jp(f’x X re);
v — iU J”x x {s});
v o=y (P X ri);
va — v3 U (v§ x {s});
od;
vy +— vy U (v? x {t});
vs +— v U (v3 x {t});
od;
Vg — O(1=J)(K=L)(M=N)(F1 X r2 X r3 X r4);

86 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

In the sixth iteration of the algorithm relations r} and #; are instantiated. The
resulting graph is:

and the corresponding program is:

"'1 A 0’(H<10)("1);
vy — B vz — §;
for each t in #3 do
ry — ok =z} (r2);
r4 < O(elm)=N) (re);
v} — 0; v — 0;
for each s in r} do
ry — o(r=47])(r1);
#) = o= (F1);
o = (X)
v} — v U (v} x {s});
vg (] X r3);
vi — v3 U (v§ x {s});
od;
vy« v U (v x {t});
vs — v3 U (v3 x {t});
od;
vz — O(1=J)(K=L)(M=N)(F1 X r3 X r3 X r4);

[

[MoT

At the seventh iteration of the algorithm, we are left with a component con-
sisting of single edges all of the same color. At this point, we can make use of the
optimal nesting order for the expression represented by this component to guide the
instantiation and iteration processes. Now, since the estimated size of the subex-
pression f1 X rg is given by |#1|* |r2| * sely2 = (80)(1)(0.1) = 8 which is not greater
than both of |#;| and |rz| then the appropriate action is to iterate on either of these
two relations and then save the result for the rest of the computation. We iterate
over relation #; and then at the eighth iteration of the algorithm we instantiate
relation r3. The resulting graph of this step is:

and the corresponding generated code (replacing the last line of the previous code)
is:

6.6. A SOLUTION USING QUERY DECOMPOSITION 87

vy — §;

for each u in #; do
"2 — o(ulrj=J)(ra);
v — 0'(K=L)7(M—N) (rz x rs X re);
vg +— w3 U (v7 x {u});

od;

At the ninth iteration of the algorithm, the alternative iz again to iterate on
either r] or rs and proceed exactly as in the previous stage. However, in this case
the sise of the result rf x rg is greater than the size of both r§ and r3, namely

4] * |rs| » selzs = (8)(90){.15) = 108; therefore, it is better to iterate over r3 and
dissect the gra.ph Finally, at the tenth iteration of the algorithm we instantiate
relations r§ and rq.

The code generated for computing the expression

va = o(r=J)(K=L)(M=N){(F1 X ra X rs X ry)

vy — 8§
for each uin :ﬂdo
3 Oin=n{ra);
”3 -
for each w in rs do'
75’ — o =wir)){r3);
74— Oguini=n{re);
,,,;1 - %%f? e :';3);
vg o3 U (v3! x {w});

v+ 2 U] x (u});

¥ —omann); cost = 1000 |r}|=1000+0.1 = 100
v~ B8
for each t in #3 do
r’, — ogr=gplra); cost = 80 |y =80%0.15=12
A "‘U‘g[ﬂ}‘wj,ﬁ‘)’, ‘cost = 200 |ri|=200+0.03 =8
’, 113
for each s in r’ do

Y — ’U(kal%})éﬁff); cost = 100 Y| =100+0.1=19

88 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

7 — or=s1a)) (F1); cost =1 7] =1
v} — (ry x ry); cost = 60 jvi| =60
ui — E)f'u (v;l‘)x {s}); ignored o
vy « (F} X rg); cost =6 vz| =6
vi —viU(v] x{s}); dgnored
od; cost = (100 + 1+ 60 + 6) * 12 = 2004

v — vy U (v x {t});
vs «— vz U (v3 x {t});

od; cost = (80 + 200 + 2004) * 2 = 4568
vg — B;
for each u in #; do
rg + O(ult)=7)(r2); cost = 80 |r¥| =80%0.1=28
v — 6;
for each w in r3 do
' — o(k=wL)(ry); cost=38 [P =8%0.15 = 1.2~ 2
ry — o(w|M]=N)(re); cost = 200 |ry| = 200 0.03 =6
vil — (rd x r}); cost = 12 lvil| =12
v} — vl U (vi! x {w}); tgnored
od; cost = (8 + 200 + 12) * 90 = 19800
vg +— v U (v x {u}); ignored
od cost = (80 + 19800) * 1 = 19880;

The cost of the strategy for computing the set of queries v;, vz, and vs given
by Algorithm 6.3 is given by: cost = 1000 + 4568 + 19880 = 25448. In contrast,
the cost of performing each of the queries independently is 16760 for v,, 22400 for
vy and 576 for v for a total of 39736. Therefore, using decomposition we obtain a
36% saving for the set of queries in this example. 0

6.7 A solution using space search methods

The idea of using space search methods for multiple-query optimization was first
applied by Grant and Minker [GRANTS82] in the context of deductive databases.
In particular, they proposed a variant of a branch and bound algorithm in which
the initial approximation to the solution as well as the expansion of nodes proceeds

in a depth first fashion. Improvements on the cost estimation have been proposed
by Sellis [SELL86b|.

Using Grant and Minker’s notation, we are given a set of queries v;, 1 <1 <
n, whose evaluation is to be optimized globally; the plans FP;;, 1 < 5 < p;, for
evaluating each query v;; the distinct atomic tasks t{-‘j, 1 < k < gij, which comprise
each plan P,j; and the actual or estimated cost cost(t};) for each task. Equivalent
tasks among plans are assumed to be known. The objective is to find a sequence of
plans (Pik,, P2ky; - - - y Pnk,), Whose cost is minimal.

Good candidates for the plans P;; are the locally optimal plans and the ones
that use common subexpressions among the given queries. In our particular query

6.7. A SOLUTION USING SPACE SEARCH METHODS 89

optimization problem, finding all plans that share common subexpressions is an
exponential process. However, since all queries to be optimized are represented
by the same relational expression, a plan to execute one query can be used to
execute any other query provided that the appropriate operand relations are used.
Therefore, we propose to use all different locally optimal plans among the 27 — 1
queries as the set of alternative plans for each query and then use a search space
method such as Grant and Minker’s algorithm to find the set of plans whose cost
is minimal.

Consider a solution vector Sy = (Pik,, Pok,)-- -5 Pnk,)- The cost of the solution
vector S is given by

cost(Sxk) = 2 cost(t)
telJl_, Pix,
The coalesced cost on tasks [GRANTS?2] is given by
coalesced _cost(t) = cost(t)
Tq

where n, is the number of queries in which task ¢ occurs. Similarly, for plans we
have

L'{1]
coalesced _cost(P;;) = Z coalcsced-cost(t{-‘j
k=1

A description of the multiple query optimization algorithm using search space
methods can be given as follows.

Algorithm 6.4

Input:

i) a set of queries v;, 1 <t < n,

ii) the plans P;;, 1 < j < p;, for evaluating each query v;, and

iii) the tasks t¥; along with their costs cost(tf;, 1 < k < ¢;;, comprising each plan
P;;.

Output: a sequence of plans (Pik,, Pak,; - - - Pak,), whose cost is minimal.

1. For each query v;, 1 < { < n, find the optimal execution plan.

2. For each query v; generate the alternative plans P;; based on the different
plans generated in Step 1. At this step identify all equivalent tasks among the
different plans, and find the “actual” cost associated with each task.

90 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM

3. Compute the estimated costs for tasks and plans in the optimal solution vector
(e.g., coalesced costs).

4. Run a search space algorithm to find a solution vector of minimal cost (e.g.,
Grant and Minker’s algorithm). O

Let us apply the above algorithm to the queries in Example 6.4. We first have
to find the locally optimal access plans for each of the three queries repeatedly by
applying Algorithm 6.1. For the query

V1 = O(H<10)(I=J)(K=L)(M=N)(r1 X r2 X f3 X r4)
the optimal access plan is given by the sequence of tasks

81 «— 0(H<10)("1)

8g +— U(M=N)(f3 X 7'4)
83 a(K=L)(r2 X 82)
84 +— o(1=7)(81 X 83)

For the query

Uz = 0(1=J)(K=L)(M=N)(F1 X rg Xrzg X r4)
there are two optimal access plans given below. The first plan is:

81 +— 0’(1-_-])(?1 X 7‘2)
82 — 0‘(K=L)(81 X r3)
83 « o(M=N)(s2 X r4)

and the second plan is:

81 +— U(I:])(Fl X T2)
8o U(M:N) (r3 X r4)
83 0(K=L)(81 X 82)

An finally for the query

v3 = o(1=J)(k=L)(M=N)(F1 X r2 X #3 X r4)

the optimal access plan is:

8) — 0'(1=J) (;‘1 X 7'2)
82 +— O(M=N) (fs X 7“4)
83 — o(k=r)(81 % 32)

6.7. A SOLUTION USING SPACE SEARCH METHODS 91

Notice that apart from the selection on relation r, required in query v, the locally
optimal access plans provide three different sequences for performing the joins.
Since all the queries in our multiple query optimization problem share the same
join predicates, we propose to use these local optimal access plans as alternative
plans for each of the queries and then use a search space method to obtain the
globally optimal set of plans.

The plans to consider are given in Table 6.1 and the actual costs are given in
Table 6.2. The equivalent tasks are:

t]) = tiy = tis = o(m<10)(r1),

t%l = t%3 =E o(M=N (T3 X r4),

téz = t%a = téz =133 = o(I=J) (?1 X rg),

t%l = t?s = t:ln = t§3 = U(M:N)(?S X 1‘4),

t%z = t%S = 0(1=J) (t{z X 7'2) Eou=J) (ti3 X 1'2) =, and
t?l = tgl = a(K:L) (7‘2 X tél) = O'(K=L)(T2 X t%l)'

[Plans || Tasks |
Py th [t =om=mFsxrd | #], Sow=r)(ra xt]}) |8} =ou=0(t]; x#,)
P2 tia | tia=ou=n(tygxra) | 3= ox=r)(t{; X Fs) | t7; = om=n(t]; X re)
Py t1s | s =S 0r=s)(t]3 X r2) |t =om=n)(Fs X r4) t1a = ox=r(t]s X t13)
Py, [tz |8 =om=r)(raXty)) | 8, Sou=n(f1Xx13)

Pis |l te, :52 = a(x=n)((t§z x "8) :gz = 0(M=~)((t‘lgz Xt';))
Pas t S opm=nN)(ras X rg = o= %3
Por e T = oqmn(ra X P,) [= ouan (i X L)
Paa tay | U3z = o(ac=r)(t3g X F3) | t33 = o(m=n)(t3; X r4)
Pss || tg5 [55 Soou=n)(fa X r4) | t35 = o(r=r)(t3s X t55)
Table 6.1: Alternative plans for queries vy, vg, and vs.

| Plans || Tasks | Total |
Py || &, =1000 | &3, =400 | &3, =960 | ti, = 14400 | 16760
Piq t;, = 1000 | ¢%, =8000 | t7, = 1600 | ¢, = 48000 | 58600
Pys tis = 1000 | t{; = 8000 | tj; = 400 tis = 9600 | 19000
Py t3, = 18000 | t3, = 43200 | t3, = 6480 67680
P [23, =80 2, =720 | t3, = 21600 22400
Py |23, =80 t2, = 18000 | 3, = 4320 22400
Ps; tl, =400 |3, =960 |t3, =144 1504
Pso ta, = 80 t3, = 16 t3, = 600 696
Py t33 = 80 t3; = 400 t33 = 96 576

Table 6.2: Costs for tasks and plans.

The estimated costs for tasks and plans based on the coalesced costs are given

by Table 6.3.

92 CHAPTER 6. A MULTIPLE QUERY OPTIMIZATION PROBLEM
| Plans || Tasks Total |
Py ti; = 1000 | ¢%, =200 t37, = 480 t; = 14400 | 16080
P2 tl, = 1000 |3, =8000 |t},=1600 | t, =48000 | 58600
Py t1, = 1000 | t3, = 8000 | t3; = 200 tis = 9600 | 18800
Py t3, = 18000 | t3, = 43200 | t3, = 6480 67680
Pz t., = 40 t2, = 720 t3, = 21600 22360
Pps t33 = 40 t5; = 18000 | t35 = 4320 22360
P, t3; = 200 t5, = 480 t3, = 144 824
Py, t3, =40 t, =16 t3, = 600 656
Ps3 ti, = 40 t2, = 200 t35 = 96 336

Table 6.3: Coalesced costs for tasks and plans.

Using Grant and Minker’s algorithm, the solution vector for the above problem
is given by (Py,, P22, P33) with a cost of 39256 which provides savings of 1.2% over
the solution with no sharing of common subexpressions. For this particular prob-
lem, the solution using query decomposition is better than the solution using space
search methods. A reason for the difference in cost between the two methods is
the definition of tasks considered by each method. In query decomposition, a scan
of one relation may be shared for the computation of several joins simultaneously,
whereas the tasks defined for the space search involve only joins between two re-
lations. In order to make fair comparisons between the two methods, they should
consider the same type of tasks in the optimization.

6.8 Summary

In this chapter we have formally posed the problem of optimally finding the set
of tuples to update a view using differential re-evaluation. We have presented two
alternatives for this form of multiple query optimization. The first alternative is
based on query decomposition for multiple queries where we presented a new set of
heuristics for multi-query decomposition. The second alternative is based on space
search methods based on query decomposition where we proposed to use the locally
optimal access plans for the individual queries as the set of alternatives in each of
the queries.

Chapter 7

Updating Materialized
Views

7.1 Introduction

As explained early in this thesis, we can classify materialized views into two classes
according to the frequency with which they are updated. A materialized view
can be kept consistently updated with respect to its base relations; that is, ev-
ery time a base relation is updated all its associated materialized views are up-
dated as well. On the other hand, a materialized view can be updated pertodically
or on demand. The latter class of materialized view is usually called a snapshot
[MYLOP?75,TSICH77,ADIBA80|, and the operation of bringing the snapshot up to
date is referred to as a snapshot refresh.

The purpose of this chapter is twofold. First, we show how the results described
in Chapters 3 through 6 can be used to support consistently up-to-date materialized
views. Second, we analyze the issues involved in the support of snapshot refresh.
We do not claim to give a definitive answer to the question of how snapshot refresh
should be supported. Rather we want to summarize the main issues involved in the
support of such an operation. A more definitive answer requires further analysis of
the cost of the various alternatives.

There are three design objectives we want to keep in mind throughout this chap-
ter: (1) we want to support materialized views defined by arbitrary PSJ-expressions,
(2) we want to allow a single base relation to participate in the definition of multiple
materialized views, and (3) we want the materialized view update mechanisms to
be easily incorporated into a relational database management system. As in previ-
ous chapters, a materialized view is defined by a PSJ-expression represented by the
triple E = (A, R, C) or by the actual expression 7 (cc(R1 X Rz X - -- X Rp)).

93

94 CHAPTER 7. UPDATING MATERIALIZED VIEWS

7.2 Consistently up-to-date materialized views

The material presented in Chapters 3 through 6 describe the essential components
required to keep materialized views consistently up to date with respect to their
underlying base relations.

It is assumed that relations are updated through transactions, and that the
view update operation is performed as the last operation within the transaction.
Clearly, the requirement of keeping a set of materialized views consistently up to
date with the base relations will increase the update cost. Within a transaction we
have available the update expressions applied to the base relations, as well as, the
net effect of the update expression on the relations expressed as a set of inserted
and/or deleted tuples. Therefore, if we use the complete set of tools developed
in Chapters 3 through 6, a materialized view can be brought up to date by the
following procedure:

1. For each materialized view E; potentially affected by this transaction perform
steps 2 to 6.

2. For each of the update expressions potentially affecting FE;, test whether the
update is irrelevant or not. This step will partition the set of update ex-
pressions into two sets, one consisting of urrelevant updates and the other
consisting of relevant updates. Irrelevant updates can then be ignored.

3. For each relevant update expression, test whether the effect is autonomously
computable on E;.

4. Perform each antonomously computable update.

5. For each update which is not autonomously computable, obtain the set of net
changes on the base relations expressed as a set of tuples to be inserted into or
deleted from the relations and then apply the differential re-evaluation algo-
rithm. This will produce the set of (full) tuples that have to be inserted into
or deleted from the view. Notice that the differential re-evaluation algorithm
takes care of checking for irrelevant tuples as well.

6. Update the materialized view E; using the set of tuples obtained in the pre-
vious step. O

Notice that the procedure described above makes use of tools that are based on
the update expression, as well as tools that are based on the actual tuples resulting
from the update expression. This may not always be practical. A better alternative
may be to use the tools that are based on the update expression at the time the
transaction is compiled and to use the tools that are based on the tuples at the time
the transaction is executed.

Definition 7.1 Let E be a view definition and T a transaction consisting of a
sequence of update expressions Uy, Uz, ..., U,, where each {/; is of the form INSERT

7.3. SNAPSHOTS) 95

(R,T), DELETE (R,Cp), or MODIFY (R, Cu, Far). The transaction T is said to
be irrelevant to E if every update U;, 1 <t < n, is irrelevant to E.

Deflnition 7.2 Let T be a transaction consisting of a sequence of update ex-
pressions U1, Uz, ..., Un, where each l; is an update expression as before, and let
E = (A,R,(C) be a view definition. The effect of the transaction T on v(E,d)
is said to be unconditionally autonomously computable if (for every database in-
stance d) the effect of each update U;, 1 <+ < n, is unconditionally autonomously
computable or irrelevant to the view.

Based on the above definitions a transaction could at compile time be classified as
irrelevant or as autonomously computable. Irrelevant transactions will certainly re-
quire no extra effort to update materialized views defined on base relations which are
updated within the transaction. Unconditionally autonomously computable trans-
actions are especially useful in environments where a materialized view is stored at
a site different from the site containing the base relations. The system will only
have to send the transaction definition to the site where the materialized view is
stored, and its update can be carried through locally at that site. If a transaction
is not irrelevant or its effect is not autonomously computable, then we could still
be able to apply differential re-evaluation to obtain the changes that have to be
applied to the materialized view at the time the transaction is executed.

7.3 Snapshots

The main characteristic of a snapshot is that it is not updated immediately when
a relation participating in its definition is updated. Snapshots are used to store a
view of the database at some point in time, and therefore they may be out of date
with respect to the underlying relations in the database. This means that many
updates may have been applied to a relation in the database before a snapshot
refresh is requested. Conversely, a relation in the database may participate in the
definition of several snapshots, each of which may have been refreshed at a different
time. This implies that the set of updates applied to a relation, which is relevant
to the refresh of one snapshot, may not be the same set of updates relevant to the
refresh of some other snapshot.

Work directly related to the support of snapshot refresh has been done in the
context of System R* and is reported in a paper by Lindsay et al. [LINDS86]. They
propose a differential algorithm for snapshot refresh for a limited class of snapshots.
The class is restricted to snapshots defined by relational algebra expressions involv-
ing selection and projection. The main purpose of the algorithm is to reduce the
amount of data sent to the remote site where the snapshot is stored.

An important issue in the design of algorithms to carry out the snapshot re-
fresh operation consists of whether the “old values” of tuples from the underlying
relations are available to the snapshot refresh mechanism or not. If the old values

96 CHAPTER 7. UPDATING MATERIALIZED VIEWS

are available, then the snapshot refresh mechanism can be based on the differential

re-evaluation approach to updating materialized views as described in Chapters 5
and 6.

Recall that the information required to carry out a differential re-evaluation of
a materialized view consists of: (1) the view definition, (2) the state of the base
relations that is consistent with the current state of the view, and (3) the set of net
changes applied to the base relations since the latest materialization of the view.

A disadvantage of using a differential re-evaluation approach to perform a snap-
shot refresh is the possibility of incurring a high cost in setting up the information
required by such an approach. The high cost comes from having to construct the
state of the relations which is consistent with the latest snapshot refresh opera-
tion, as well as, having to collect the subsequent updates applied to the relation.
Obviously, in order for this approach to be of benefit, the cost of setting up the in-
formation required by the differential re-evaluation plus the cost of performing the
differential re-evaluation itself should not be higher than the complete re-evaluation
of the expression defining the snapshot.

There may be situations where old values are not available to the snapshot
refresh mechanism. In this case it is interesting to explore the support of the
snapshot refresh operation based only on the latest state of the base relations plus
some additional bookkeeping. The next subsections explore ways of supporting
snapshot refresh both for the case when old values are available and for the case
when they are not.

7.3.1 Snapshot refresh using old and new values

The main issue in this setting concerns the partitioning of each of the base relations
that participate in the snapshot definition into two sets; one containing the “old
tuples”, i.e., the tuples considered in the latest snapshot refresh, and the other
containing the “new tuples”, i.e., the set of changes.

Several alternatives can be used to achieve the above partitioning:
1. combination of base relations and differential files,
2. combination of base relations and recovery data,

3. combination of base relations and some minimal amount of bookkeeping on
the base relation itself, and

4. a database that fully supports the notion of time.

We now turn to discussing each of the above alternatives.

7.3. SNAPSHOTS 97

Base relations and differential files

Differential files [SEVER76] represent a potentially good mechanism for supporting
snapshot refresh. The idea is to associate a differential file with each relation in
the database. The differential file contains all recent changes to the relation. This
idea was suggested by Roussopoulos and Kang [ROUSS86] for the support of view
indices in a mainframe-workstation architecture. In their design, they propose a
“lazy update” of view indices. That means that the indices are not updated every
time the base relations are updated but rather every time the view is accessed. This
type of update policy for views corresponds to refresh on demand. A view index is
a special case of a materialized view and thus the issues discussed in this chapter
apply to the maintenance of view indices as well.

A differential file contains a list of tuples inserted into or deleted from a base
relation. To distinguish the inserted tuples from the deleted tuples within the dif-
ferential file we need only one bit per tuple. The main problem with the differential
file is how to identify the tuples in the differential file that have already been con-
sidered in a previous snapshot refresh. A simple way of solving this problem is by
maintaining a pointer into the differential file (a “water level mark”) per snapshot,
indicating the point up to which changes have been considered with respect to the
particular snapshot requesting the refresh [ROUSS86].

When a snapshot refresh request is made, the base relation along with all changes
recorded from the beginning of the differential file up to the tuple before the water
level mark represent the old state of the base relation. Tuples from the water level
mark to the last tuple in the differential file represent the changes made to the base
relation since the latest snapshot refresh.

If the size of the differential file is limited, then when the water level mark
reaches the end of the file we can either force all snapshots affected to be refreshed
immediately, or turn on an “invalid” indicator associated with each snapshot which
forces complete re-evaluation next time a refresh request is made. All changes
recorded in the differential file have to be made permanent into the base relation
before the water level mark wraps around to the beginning of the file.

A variation of the differential file described above may be obtained by allowing
subsequent modifications of the same tuple to be done in place within the differential
file. This variation may provide a way of controlling the growth of the differential
file but on the other hand it requires a full scan of the differential file every time
there is snapshot refresh request.

A differential file may contain update expressions rather than the explicit tuples.
This idea was suggested by Cammarata [CAMMAS81| as a way of logging the updates
applied to base relations and defer their application until the time the base relations
were accessed. This represents another example of lazy evaluation of updates for
base relations. Using this kind of differential files does not seem to be practical for
the support of snapshot refresh because of the overhead involved in computing the
updates to obtain the actual affected tuples every time a snapshot refresh request
is made.

98 CHAPTER 7. UPDATING MATERIALIZED VIEWS

Base relations and recovery data

Here, by recovery data we mean the complete hierarchy of storage where recovery
information is stored. According to Haerder and Reuter [HAERDS83], three storage
levels typically contain recovery data.

1. the log buffer is a designated area of main memory containing information
about the most recent update activity that has taken place within the trans-
action currently being executed.

2. the temporary log file is a direct access storage file containing information
useful for crash recovery. It contains information needed to reconstruct the
most recent database buffer. It supports transaction UNDO, global UNDO,
and partial REDO.

3. the archive log file is a sequential storage file containing information required
for the support of global REDO after a media failure. It contains all changes
committed to the database after the state reflected in the archive copy of the
database obtained by the latest backup.

From the above sources of data we can easily discard alternatives 1 and 3. Al-
ternative 1 is for a single transaction and therefore provides only the information
required to support materialized views that are kept consistently up to date with
the base relations and so the support of snapshots is not possible. Alternative 3
has the disadvantage of being available in sequential storage only, which can imply
slow access. Therefore, the only source of recovery data that seems attractive for
the support of snapshot refresh is the temporary log file.

There are two types of log information to support recovery actions as described
by Haerder and Reuter, namely, physical logging and logical logging. Physical
logging refers to the physical representation (bit pattern) written to the log. It may
contain physical pages or bit patterns representing the state transition of a physical
page. Logical logging refers to a higher level of log information representing the
operation applied to records or tuples in the database, along with their arguments
(values). The latter type of data is usually represented as a set of (transaction-id,
tuple-id, field, old value, new value) tuples, as described by Gray et al. [GRAY81].

Both physical logging and logical logging provide enough information to the sys-
tem to determine the changes that have been applied to the relations since the latest
refresh. However, because we are using the differential re-evaluation approach to
updating materialized views as the basic tool for the support of the snapshot refresh
operation, logical logging may provide a more straightforward way of obtaining the
changes to the base relations in the form of tuples.

The main problem faced when using recovery data as the source of information
is how to efficiently compute the state of the base relation corresponding to the
latest refresh of the snapshot, as well as the set of subsequent changes applied to the
relation. Not only do we need to access the base relation to achieve this, but also we

7.3. SNAPSHOTS 99

have to reconstruct the changed tuples from the data in the log. Since this may be
time consuming, the idea of using the recovery data appears impractical, unless we
impose some data structure on top of the log file which will allow efficient retrieval
of the log records that are relevant to a given snapshot. This will probably incur a
considerable overhead on the recovery management subsystem. The end result of
this idea, however, will be faster location of the most recent changes applied to the
base relations which is essentially a differential file for the whole database.

Base relations along with extra bookkeeping

In this alternative the idea is to use the base relations as the primary source of data
for the snapshot refresh operation. This means, we want to use neither recovery
data nor differential files but we still want to keep track of old values.

As the basis of this approach, a newly inserted tuple is appended to the relation,
a deleted tuple is only marked as “deleted” but it is retained within the relation, and
the modification of an already existing tuples is done by first deleting the old tuple
and then inserting the new one. Retaining deleted tuples within a relation may
be a feasible alternative when the base relations are updated only by insertion or
deletions of tuples and the number of deletions is “small” compared to the amount
of insertions. On the other hand, if the amount of deletions is comparable to
the amount of insertions (which is the case when modifications are allowed), then
keeping many deleted tuples in the relations may be impractical because of the
waste of storage space. In addition, some criterion for determining when to actually
eliminate deleted tuples is required.

To use differential re-evaluation for snapshot refresh, we must be able to identify
the state of a relation which is consistent with the current snapshot as well as be
able to identify the latest set of updates applied to the relation. If we were to
support only one snapshot per base relation, then we could do it by attaching an
extra bit of data to each tuple identifying whether the tuple was written after the
snapshot refresh or not. But because we want to allow a base relation to participate
in multiple snapshot definitions, and since snapshots may be refreshed at different
times, one bit is not enough.

This problem can be solved by maintaining an additional attribute for each
tuple in the database. This attribute contains a timestamp of latest write, an
idea originally described by Lindsay et al. to support snapshot refresh [LINDS86].
The approach requires the system to maintain a timestamp of latest refresh for
each snapshot. Whenever a snapshot refresh request is made, the tuples from the
relations having a timestamp greater than the timestamp of the snapshot represent
the set of changes to the relation since the latest refresh operation. Tuples from the
base relation having a timestamp less than the timestamp of the snapshot, represent
the state of the relation that is consistent with the current snapshot.

Under the scenario described, the procedure required to obtain the set of changes
to be applied to refresh a snapshot is given as follows:

100 CHAPTER 7. UPDATING MATERIALIZED VIEWS

1. Partition each relation r; that participates in the definition of the snapshot
being refreshed into three sets r;,, ri,, and r;,. Set r;, contains all tuples
inserted into or deleted from r; whose timestamp is greater than the timestamp
of the snapshot. Set r;, contains all non-deleted tuples whose timestamp is
less than the timestamp of the snapshot. Set r;, contains all deleted tuples
whose timestamp is less than the timestamp of the snapshot. Notice that by
detecting the set r;; we are able to avoid processing tuples marked as deleted
which must have already been deleted from the snapshot in the latest snapshot
refresh.

2. Use the differential re-evaluation algorithm using the set of tuples r;, as the
set of net changes and the set r;, as the old state of the relation.)

The tuples obtained in the previous stage represent the set of changes that must be
applied to the snapshot to refresh it.

In general, the support of the snapshot refresh operation can be easily imple-
mented in a database that supports the notion of time. Recently, several researches
have proposed extensions to relational database management systems to support
the notion of time |[CLIFF83,SNODG84].

In this environment we require the snapshot to contain the time of latest refresh
which is implicitly maintained by such historical database. The relations in the
database contain the historical evolution of their tuples. When a snapshot refresh
request is made, the state of the base relations consistent with the current state of
the snapshot can be easily obtained by querying for the state of the relations at
the time of the latest refresh. All changes that have occurred in the base relations
since the latest refresh can also be obtained by querying the database to obtain
the evolution of each relation from the time of the latest refresh operation was
performed to the present time. Thus, all information required by the differential
re-evaluation mechanism is readily available. However, the cost may be high.

7.3.2 Snapshot refresh using only new values

The scenario we have in mind in this subsection corresponds to the case when the
relations in the database are updated and the “old values” corresponding to tuples
that have been deleted from or modified in the relations are not available. In such
a situation, the primary source of information to carry out the snapshot refresh
operation consists of the latest state of the relations as well as the snapshot which
is presumably out of date with respect to its underlying relations. This again means
that we want to use neither recovery data nor differential files. However, we still
want the snapshot refresh operation to avoid complete re-evaluation.

We assume that a newly inserted tuple is appended to the relation, a deleted
tuple is deleted from the relation and its storage space is made available to subse-
quently inserted tuples, and the modification of an already existing tuple is done

7.3. SNAPSHOTS 101

“in place®. When a snapshot refresh request is made, the system only knows the
new state of the base relations.

We still need to be able to determine which tuples from the underlying rela-
tions have been updated since the latest snapshot refresh. Thus, we require that
each tuple from the relations contains a timestamp attribute indicating the time at
which the the tuple was last written. We also assume that the system maintains a
timestamp of latest refresh for each snapshot.

In this scenario we face two problems, namely, how to handle deleted and mod-
ified tuples. A deleted tuple frees storage space within the updated relation which
will be occupied as soon as a new tuple is inserted leaving no trace of the deleted
tuple. A modified tuple may in general produce insertions into, deletions from, and
modifications to a snapshot. This requires the snapshot refresh mechanism to be
able to identify which tuples in the snapshot should be deleted, inserted, or modified
as a result of the modification of a tuple in the base relation.

To illustrate the above problems, consider a database d consisting of a sin-
gle relation r on scheme R and a snapshot s defined by a select expression

= («(R),{R},C). Assume that: (1) the tuples from r are updated in place
and that the old values are not retained or are not available to the snapshot refresh
mechanism, and (2) the tuples from r have a special attribute containing a times-
tamp of latest write which allows the snapshot refresh mechanism to detect which
tuples have been updated and which ones have not since the latest refresh of the
snapshot. For a relation scheme R; € D, the attribute containing the timestamp is
denoted by TS;.

Let r' be an arbitrary instance of R such that it contains one tuple ¢’ that has
been modified since the latest refresh of s. Let r and ¢ be the old instances of the
relation and the tuple, respectively. Let s = v(E,r) and s’ = v(E,r'). Let P be a
procedure that, based solely on E and r’, determines a set of tuples T3 to be deleted
from s and a set of tuples T; to be inserted into s. In order for procedure P to
correctly refresh the snapshot s, we must have s’ = (s — Tg) U T;.

Recall that the set of old values are not available to procedure P. Also, since we
do not impose any constraints on the definition E, the identification of tuples to be
inserted into or deleted from the snapshot should be based on the *full contents”
of the affected tuples in the snapshot. Clearly, the set T; should contain the tuple
t' and the set Ty should contain the tuple ¢. The key problem is that ¢ = u, for
some tuple u € v(E,r), and the difficulty is that we cannot tell which tuple u to
delete. Unless old values that uniquely identify the set of tuples to be deleted from
the snapshot are available, we cannot identify the set T; correctly. Hence, to be
sure that the tuple ¢ is in fact deleted, we must delete every tuple in the snapshot
except, possibly, the tuples in v(E,r'). However, computing v(E, r') is equivalent
to a complete re-evaluation.

The above discussion implies that the system must be able to uniquely identify
the correspondence between a modified tuple ¢’ in v’ and its associated old tuple
u € v(E,r). Having an smmutable tuple-1d attribute associated with every relation

102 CHAPTER 7. UPDATING MATERIALIZED VIEWS

scheme R, as well as with the set of attributes available in the snapshot, permits
the unique identification of the set of tuples to be deleted from the snapshot. By
immutable tuple-id attributes we mean attributes that uniquely identify the tuples
and that cannot be changed by an update operation. If the key of R is visible in
E, this may serve as the immutable tuple-id attribute.

In summary, if the snapshot refresh mechanism does not have access to old
values, then differential update of materialized views based on the insertion and
deletion of full tuples does not work and must be changed. This implies that, some
additional information has to be maintained in the base relations as well as in the
snapshot to carry out snapshot refresh correctly. In addition to the timestamp
of latest refresh associated with each snapshot, denoted by 7, as well as a times-
tamp attribute T'S; incorporated within every relation scheme R; in the database
scheme D, the additional information that we propose be maintained consists of
the following:

e Every tuple from the underlying relations has a unique identifier called the
tuple-1d. For any relation scheme R; € D, its corresponding tuple-id attribute
will be denoted by TID;.

e A snapshot definition must include, as members of the set A, the tuple-id
attributes from all underlying relations mentioned in its definition. For exam-
ple, the snapshot definition E = ({H, K}, {Ry, R2}, (H = I)) will change to
E = ({H,K, TID,, TID;},{R,, Rz}, (H = I)) (assuming that attributes H
and K are not keys). The tuple-id attributes stored in the snapshot are not
necessarily accessible to users.

We still have to solve the problem of how to determine the set of tuples that have
been deleted from a base relation. There are two ways of solving the problem.

1. The system keeps a trace file associated with each base relation containing
(tuple-id, timestamp) pairs corresponding to the identifier of a deleted tuple
as well as the timestamp indicating the time at which the deletion took place.
This idea, in a way, goes against the main purpose of this subsection, namely,
old values are not available to the snapshot refresh mechanism. Nevertheless,
this idea suggests a limited amount of old values being kept by the system.

2. The system obtains the set of deleted tuples from the information available in
the snapshot and the new state of the base relations. This idea is still within
the spirit of the subsection.

The following example illustrates the the second approach.

Example Consider two relation schemes R;(H, I, TID,), Rz(J, K, TID;), a snap-
shot defined by the expression

E = ({H, K, TIDy, TID;}, {R1, Rz}, (I = J) A (H > 10)),

7.3. SNAPSHOTS 103

and their corresponding instances:

ri: H I TIDy TSy rp: J K TIDy TS.

10 20 1 81 20 500 8 83

11 30 3 82 30 550 9 85

12 40 4 96 30 552 10 90

13 50 7 84 40 570 11 91
U(E, d) H K TIDl TIDz

11 550 3 9

11 552 3 10

12 570 4 11

Suppose that relation r, is changed by deleting the tuples (10, 20, 1) and (11, 30, 3).
Both tuples will disappear leaving no trace in relation r; about their existence.
Using the information available in the current snapshot v(E,d) and the updated
instances of the base relations, the system can still obtain the tuple-ids of the
deleted tuples. The set of unique identifiers of deleted tuples Ty is obtained by the
expression Ty = nrip, (v(E,d)) — mrip,(r1) = {3,4} — {4,7} = {3}. Hence, the
appropriate tuples from the snapshot can be deleted by performing the operation
DELETE (E, TID, = 3). ' a

Given the above, consider a snapshot v(E, d) obtained by the expression
v(E,d) =mp (oc(r1 X rz X - X 1p)).

The snapshot refresh operation will involve the following two procedures.

Procedure 7.1: Required to compute the changes that have to be applied to the
snapshot to refresh it.

Input:

i) the timestamp of latest refresh of the snapshot v(E, d) denoted by r,
ii) the sets of tuple-id values nrp,(v(E,d)), 1 < ¢ < p, and

iii) the relations r;, 1 <: < p.
Output: a set of (attribute-name, value) pairs T4 and a set of tuples T;.

1. For each relation r;, 1 < ¢ < p, partition the set of tuples in r; into two sets
rs, = ors;<r(ri) and r;; = r; — r;;. The set r;, contains the set of tuples
inserted into or modified in relation r; since time 7.

2. For each relation r;,, 1 < 13 < p, extract only the tuples that have been
modified. Tuples can be identified as inserted, deleted, or modified by means
of a tag. Denote this set by mod;,. From the sets of modified tuples mod;,,
1 <13 < p, form the set T} of (attribute-name, value) pairs, as follows:

104 CHAPTER 7. UPDATING MATERIALIZED VIEWS

P
Ty = |J {(TID:,, 4 TIDy,)) | ¢ € mody, }.

ig:l

3. For each relation r;, 1 < 7 < p, form the set T, of (attribute-name, value)
pairs, as follows:

= O {(TID;,z) | z € 7r1p,(v(E, d)) — w71, (r:)}-

i=1
4. Form the set Ty = T1 U T3.

5. Apply Algorithm 5.1 with input relations r; replaced by relations r;, and
input relations f; replaced by relations r;;, 1 < 1,321,292 < p. The set of tuples
obtained from this evaluation will represent the new tuples T; to be inserted
into the snapshot. (m!

Procedure 7.2: Required to update the snapshot.
Input: the sets Ty and T; and the snapshot s.
Output: the refreshed snapshot &',

1. For each pair (TID, value) € Ty, perform the operation
DELETE(s, (TID = value)).
2. Perform the operation INSERT (s, T;). |

7.4 Amount of data required to update a mate-
rialized view

In this section we are interested in summarizing what is the minimum amount
of data required to update a materialized view. This is an important aspect to
be considered when a materialized view is stored at a site which is different from
the site containing the base relations because of the obvious implications on the
communication costs.

In general such an amount of data ranges from no data at all to the complete new
state of the snapshot. Table 7.1 describes the amount of data required to update
a materialized view depending on the characterization of updates given in this
thesis. Notice that when the effect of an update is relevant but not autonomously
computable on the view, the system may decide to send either the net changes to
the view or the new state of the view whichever is smaller.

One might still envision intermediate situations in which an update to a base
relation requires sending a combination of tuples plus autonomously computable ex-
pressions to bring the materialized view up to date. The detection of such situations
is a subject of further research and will not be discussed in this thesis.

7.5. SUMMARY 105

| Type of update [Amount of data

Irrelevant No data
Autonomously computable | Update expression
(intensional or extensional)
Relevant and not Net changes to the view or
autonomously computable | New state of the view

Table 7.1: Amount of data required to update a materialized view

7.5 Summary

In this chapter we have summarized the way in which the results from Chapters
3 to 6 can be used in the support of consistently up-to-date views. We have also
discussed the main issues involved in the support of snapshot refresh through dif-
ferential re-evaluation. The most important of which is the availability of old and
new values to the snapshot refresh mechanism. Several techniques to carry out
the snapshot refresh were discussed. The performance evaluation of the various
techniques discussed remains a subject of further research.

Chapter 8

Conclusions and Future
Research

8.1 Conclusions

The objective of this thesis has been to study the update problem for material-
ized views. We summarize the main contributions of the thesis in the following
subsections.

8.1.1 Irrelevant updates

In Chapter 3 we presented a characterization of irrelevant updates, that is, updates
to base relations that cannot cause any effect on their corresponding materialized
views. This characterization is important because when an update to a relation is
irrelevant to a view, no re-evaluation is required to bring the materialized view up
to date. Even when an update represented by an expression is not irrelevant, it
may still be the case that when the update is translated to a set of actual tuples,
some of those tuples may be irrelevant to the view. Here, the characterization of
tuple-wise irrelevant updates is important because the number of tuples considered
in the re-evaluation may potentially be reduced.

The detection of irrelevant updates is also important in the context of supporting
a database whose internal scheme is structured as a set of derived relations. Updates
to conceptual relations which are irrelevant to a derived relation do not need to be
performed.

The detection of irrelevant updates has applications also in the area of integrity
enforcement. Consider an integrity constraint defined by a PSJ-expression. If the
database is consistent with respect to such an integrity constraint, then the mate-
rialized view obtained by evaluating the expression represented by the complement

106

8.1. CONCLUSIONS 107

of the integrity constraint expression, called the integrity view, must be empty.
Updates to base relations which maintain the integrity of the database must be
irrelevant to the integrity view. A similar approach to integrity enforcement is
presented by Bernstein and Blaustein [BERNS81].

Buneman and Clemons [BUNEM79] also mentioned the detection of irrelevant
updates, which they called readily ignorable updates, as an important component
in the support of triggers and alerters. In their paper, they presented a syntactic
approach to detecting readily ignorable updates which represent a subset of the
irrelevant updates discussed here.

The detection of irrelevant updates is implicit in the work by Maier and Ullman
[MAIER83b] on updating fragments of relations. In their study, a fragment may be
a physical or virtual relation over a single relation scheme, defined by selection and
union operators on physical relations or other virtual relations. A fragment f; is
related to fragment fz through a transfer predicate f12. P12 is a Boolean expression
defining the tuples from f; that also belong to fo. When a set of tuples is (say)
inserted into f;, only those tuples satisfying 12 will be transferred to f2 Tuples
not satisfying §12 are irrelevant to f,.

Necessary and sufficient conditions for detecting when an update operation is
irrelevant to a view (or integrity constraint) have not previously been available for
any nontrivial class of updates and views.

8.1.2 Autonomously computable updates

In Chapter 4 we introduced the notion of autonomously computable updates, that
is, updates to relations that can be reflected in a materialized view by using only
the knowledge provided by the update operation, the expression deﬁnmg the view,
and the current contents of the view.

This characterization leads to savings in communication costs in situations where
a materialized view is stored at a remote site, that is, a site that is different from
the one housing the base relations. The communication cost savings come from not
requiring any data about the base relations to be sent to the site where the view is
stored when bringing it up to date. Instead, the materialized view can be updated
autonomously.

More importantly, this characterization can be used in the design of views in
such a way that updates to some or all the base relations participating in the
view definition are autonomously computable with respect to the view. The way
to achieve this is by allowing the appropriate attributes to be part of the set of
attributes that are visible in the view. As a direct consequence of this, the charac-
terization of autonomously computable updates is an important component towards
the support of databases where the internal scheme is structured as a set of derived
relations [LARSO85,LARSO86]. By designing the stored derived relations in such
a way that users’ updates are autonomously computable, the need of collecting
data from other derived relations to bring the affected derived relation up to date

108 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

is avoided. Preliminary results on the detection of autonomously computable up-
dates were presented in [BLAK86b] for unconditionally autonomously computable
updates. In this thesis, we have gone further by establishing the conditions for
conditionally autonomously computable updates.

Testing the conditions given in the theorems of Chapters 3 and Section 4.1
is efficieni in the sense that it does not require retrieval of any data from the
database. According to our defiritions, if an update is irrelevant or unconditionally
autonomously computable, then it is so for every instance of the base relations.
The fact that an update is not irrelevant does not mean that it will always affect
the view. Determining whether it will, requires checking the current instance. The
same applies for autonomously computable updates.

8.1.3 Differential re-evaluation of views

In Chapter 5 we presented an approach to differentially re-evaluating materialized
views defined by arbitrary PSJ-expressions. The method, based on query modifi-
cation, uses the state of the base relations and the net changes applied to the base
relations since the latest update of the view.

If an update to a relation is neither irrelevant nor autonomously computable
with respect to a view, then we propose to avoid whenever possible the need for a
complete re-evaluation of the expression defining the view to bring it up to date.
We propose instead, to update the view by differential re-evaluation.

The differential re-evalnation approach to updating materialized views is better
than complete re-evaluation whenever the relations are updated mainly by insertions
rather than by deletions.

To improve the performance of the differential re-evaluation approach, we pre-
sented in Chapter 8 the formulation of a new mulsiple query optimization problem.
Two alternative solutions to this problem were presented. The first is based on
auery decomposition of multiple-query graphs as in [CHAKRS86]. We improved
on the idea of multiple-query decomposition by presenting a better algorithm for
decomposing a multiple query graph. The algorithm incorporates some limited
knowledge about selection and join seleciivities as well as cardinalities of relations
to help make better decisions on the application of the various heuristics throughout
the decomposition. Although the algorithm was presented in terms of the partic-
ular multiple query optimizaiion problem induced by the differential re-evaluation
approach, the idea also has application to the general multiple query optimization
problem. The second solution proposed uses space search methods and is based
on the ideas of Grant and Minker {GRANTS2] and Sellis [SELL86a,SELL86b]. To
apply a space search method, one has to be able to generate all the promising plans
for executing each of the queries to be optimized. In our case, each of the queries
in the set has a large number of alternative plans and hence enumerating all possi-
bilities may not be practical. Since in our problem all the queries tc be optimized
share the same relational algebra expression, applied to a different set of operands,

8.2. FUTURE RESEARCH 109

we propose to use the set of individual locally optimal plans as alternative plans
for each of the queries in the multiple query optimization. Previous work in multi-
ple query optimization using space search methods do not address the problem of
generating the plans to be considered in the optimization.

Finally, in Chapter 7 we summarized the use of the tools developed in Chapters 3
to 6 to the support of consistently and periodically updated views. We presented in
that chapter a thorough discussion of the issues involved in the support of snapshot
refresh.

8.2 Future Research

There are several directions for future research that can be taken at this point.
This thesis presents a starting point to the update transformation problem for
databases whose internal scheme is structured as a set of derived relations. So
far, the methods presented in the thesis to update materialized views make the
assumption that the base relations are available. Therefore, the development of the
theory and methods for updating derived relations which are based on extracting
the necessary information from other derived relations rather than from the base
relations is an important direction for future research.

In Chapter 4, we have presented a characterization of conditionally au-
tonomously computable updates when the update operations are represented by
insertions and deletions. Conditionally autonomously computable updates can also
be extended to handle modifications. Clearly, the theorems on conditionally au-
tonomously computable deletions directly apply to the theorems required to eval-
nate the set of tuples in the view that should be modified, as well as to evaluate
the set of modified tuples in the view that should remain in the view after modifi-
cation. Unconditionally autonomously computable modifications require an update
to a base relation not to generate new insertions into the view. Conditionally au-
tonomously computable updates may be able to handle, in the same way as with
the insert operation, a limited amount of new insertions into the view as long as
they can be computed based on the information provided by the update, the view
definition, and the current contents of the view. The conditions under which this is
possible remain to be derived. Finally, the theorem that establishes the conditions
under which the update functions can be computed remains to be derived as well.

We have not imposed any restrictions on valid instances of base relations, for
example, constraints specified by functional dependencies or inclusion dependencies.
Any combination of attribute values drawn from their respective domains has been
assumed to represent a valid tuple, and any set of valid tuples is a valid instance
of a base relation. If relation instances are further restricted, then the conditions
given in Chapters 3 and 4 are still sufficient, but they may not be necessary.

The results presented in Chapters 3 and 4 on deletions and modifications assume
that the set of tuples to be updated is chosen by a select expression on attributes

110 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

from the updated base relation. Conditions for irrelevant and autonomously com-
putable updates for the case when the set of tuples to be updated is chosen by a
PSJ-expression remains an important extension to this work.

The results of this thesis apply to materialized views defined by PSJ-expressions.
Our results readily apply to the maintenance of views defined by the union of several
PSJ-expressions. The extension of the concepts of irrelevant and autonomously
computable updates as well as differential re-evaluation to the maintenance of views
containing aggregate data is another direction for future work.

When the effect of an update of a base relation on a materialized view is not
autonomously computable, there may still be intermediate cases where the update
can be decomposed into a portion that is autonomously computable and a portion
that requires differential re-evaluation. The detection of these cases is a direction
for future research.

The results on irrelevant and unconditionally autonomously computable updates
might be better realized when used as components of a tool for designing materi-
alized views that can be updated efficiently. The input to such tool would consist
of a view definition and a set of updates to base relations where the conditions
defining the tuples to be updated are parameterized. The tool will in turn find the
appropriate boundary values for the parameters in the (update) conditions beyond
which the update is irrelevant or autonomously computable. This boundary values
will then be kept stored along with the view definition so that at run time, the
system will only check the values of a given parameter against the already stored
values and determine whether the update is irrelevant or autonomously computable,
hence, avoiding the execution of the test for satisfiability at run time. The design
of this tool remains a problem for future research.

It should be emphasized that the theorems hold for any class of Boolean expres-
sions. However, actual testing of the conditions requires an algorithm for proving
the satisfiability of Boolean expressions. Currently, efficient algorithms exist only
for a restricted class of expressions, the main restriction being on the atomic con-
ditions allowed. An important open problem is to find efficient algorithms for more
general types of atomic conditions. The core of such an algorithm is a procedure for
testing whether a set of inequalities/equalities can all be simultaneously satisfied.
The complexity of such a procedure depends on the type of expressions (functions)
allowed and the domains of the variables. If linear functions with variables ranging
over the real numbers (integers) are allowed, the problem is equivalent to finding a
feasible solution to a linear programming (integer programming) problem.

Another important problem for future research is the study of better algorithms
for the solution of the multiple query optimization problem defined in Chapter 6.
The design of performance models under which the problem can be solved accurately
as well as a better quantification of the improvements in cost obtained when using
heuristics methods seem to be feasible directions for future work.

In Chapter 7 we presented a discussion of the issues involved in the support of
snapshot refresh. A performance study of the various techniques discussed in that

8.2. FUTURE RESEARCH 111

chapter is another direction for future work.

Bibliography

[ADIBASO]

[AHO74]

[AHO79]

[BERNS81]

[BLAKS6a]

[BLAKS86b]

[BLASGT6]

Michel Adiba and Bruce G. Lindsay. “Database Snapshots.” In
Proc. of the 6th. International Conference on Very Large Datcbases,
pages 86-91, Montreal, {1980).

Alfred V. Aho, John E. Hopceroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley Publishing
Company, (1974).

Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. “Efficient
Optimization of a Class of Relational Expressions.” ACM Transactions
on Database Systems, Vol. 4, No. 4, pages 435-454, (December 1979).

Philip A. Bernstein and Barbara Blaustein. “A Simplification Al-
gorithm for Integrity Assertions and Concrete Views.,” In Proc. of
COMPSAC 81, pages 90-99, Chicago, (November 1981).

José A. Blakeley, Per-Ake Larson, Frank Wm. Tompa. “Efficiently Up-
dating Materialized Views.” In Proc. of the ACM SIGMOD Interna-

tional Conference on Management of Data,, pages 61-71, Washington,
D.C., (May 1986).

José A. Blakeley, Neil Coburn, and Per-Ake Larson. “Updating De-
rived Relations: Detecting Irrelevant and Autonomously Computable
Updates.” Technical Report CS-86-17, Department of Computer Sci-
ence, University of Waterloo, (May 1988).

Michael W. Blasgen and Kapali P. Eswaran. “On the Evaluation of
Queries in a Relational Data Base System.” IBM Research Report
RJ 1745, (April 1976).

[BUNEMT79] Peter O. Buneman and Eric K. Clemons. “Efficiently Monitoring Re-

lational Databases.” ACM Transactions on Database Systems, Vol. 4,
No. 3, pages 368-382, (September 1979).

[CAMMAS81] Stephanie Cammarata. “Deferring Updates in a Relational Data Base

System.” In Proceedings of the 7th International Conference on Very
Large Data Bases, pages 286-292, Cannes, (1981).

112

BIBLIOGRAPHY 113

[CLIFF83] J. Clifford and D. S. Warren. “Formal Semantics of Time in
Databases.” ACM Transactions on Database Systems, Vol. 8, No. 2,
pages 214-254, (June 1983). :

[CHAKR86] Chakravarthy, Upen S. and Jack Minker, “Multiple Query Processing
in Deductive Databases.” In Proc. of the 12th. International Confer-
ence on Very Large Data Bases, pages 384-391, Kyoto, (August 1986).

[CHAMB76] D.D. Chamberlin et al. “SEQUEL2: A unified approach to data def-
inition, manipulation, and control.” In IBM Journal of Research and
Development, Vol. 11, pages 560-575, (November 1976).

[CHRIS81] Stavros Christodoulakis. “Estimating Selectivities in Data Bases.”
Technical Report CSRG-136, University of Toronto, (December 1981).

[CODD70] E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks.®” Communications of the ACM, Vol. 13, No. 6, pages 377-387,
(June 1970).

[COOK71] Stephen A. Cook. “The Complexity of Theorem-proving Procedures.”
In Proc. 8rd Annual ACM Symposium on Theory of Computing,
pages 151-158, (1971).

[DATES6] C. J. Date. An Introduction to Database Systems, Fourth Edition.
Addison-Wesley, (1986).

[FINKES82] Sheldon Finkelstein. “Common Expression Analysis in Database Ap-
plications.” In Proc. of the ACM SIGMOD International Conference
on Management of Data, pages 235-245, Orlando, FL., (June 1982).

[FLOYD62] Robert W. Floyd. “Algorithm 97: Shortest Path.” Communications
of the ACM, Vol. 5, No. 6, page 345. (June 1962).

[GARDAB84| G. Gardarin, E. Simon, and L. Verlaine. “Querying Real Time
Relational Data Bases.” In IEEE-ICC International Conference,
pages 757-761, Amsterdam, (May 1984).

[GRANTSI] John Grant and Jack Minker. “Optimisation in Deductive and Con-
ventional Relational Database Systems.” In Advances in Database
Theory, Vol. 1, pages 195-234, (1981).

[GRANTS82] John Grant and Jack Minker. “On Optimizing the Evaluation of a Set
of Expressions.” International Journal of Computer and Information
Sciences. Vol. 11, No. 3, pages 179-191, (June 1982).

[GRAYS81] Jack Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, and 1. L. Traiger. “The Recovery Manager of the System
R Database Manager.® ACM Computing Surveys, Vol. 13, No. 2,
pages 223-242, (June 1981).

114

[HAERDS3)

[HANSO86)

[HORWI85)

[IBARAS4|

[JARKES84]

[JARKESS)

[KELLES6)
[KLUGS0)

[KOENI81]

[KORTHS6]

[LARSOS85]

[LARSOS6]

[LINDS88]

BIBLIOGRAPHY

Theo Haerder and Andreas Reuter. “Principles of Transaction-
Oriented Database Recovery.” ACM Computing Surveys, Vol. 15,
No. 4, pages 287-317, (December 1983).

Eric Hanson. “A Performance Analysis of View Materialization Strate-
gies.” Memorandum No. UCB/ERL M86/98, University of California,
Berkeley, 12 December 1986.

Susan Horwitz and Tim Teitelbaum. “Relations and Attributes: A
Symbiotic Basis for Editing Environments.” In ACM SIGPLAN
85 Sympostum on Language Issues in Programming Environments,
pages 93-106, (July 1985).

Toshihide Ibaraki and Tiko Kameda. “On the Optimal Nesting Order
for Computing N-Relational Joins.” ACM Transactions on Database
Systems, Vol. 9, No. 3, pages 482-502, (September 1984).

Matthias Jarke and Jirgen Koch. “Query Optimization in Database
Systems.” ACM Computing Surveys, Vol. 16, No. 2, pages 111-152,
(June 1984).

Matthias Jarke. “Common Subexpression Isolation in Multiple Query
Optimization.” In Query Processing in Database Systems, W. Kim,
D. Reiner, D. Batory (eds.), Springer-Verlag, pages 191-205, (1985).

Arthur M. Keller. “The Role of Semantics in Translating View Up-
dates.” Computer, Vol. 19, No. 1, pages 63-73, (January 1986).

Anthony Klug. “On Inequality Tableaux.” CS Technical Report 403,
University of Wisconsin, Madison, WI, (November 1980).

Shaye Koenig and Robert Paige. “A Transformational Framework
for the Automatic Control of Derived Data.” In Proc. of the 7th.
International Conference on Very Large Data Bases, pages 306-318,
Cannes, (1981).

Henry F. Korth and Abraham Silberschatz. Database System Con-
cepts. McGraw-Hill, (1986).

Per-Ake Larson and H. Z. Yang. “Computing Queries from Derived
Relations.” In Proc. of the 11th International Conference on Very
Large Data Bases, pages 259-269, Stockholm, (1985).

Per-Ake Larson and H. Z. Yang. “Computing Queries from Derived
Relations.” Full manuscript submitted for publication, (1986).

Bruce Lindsay, Laura Hass, C. Mohan, Hamid Pirahesh, and Paul
Wilms. “A Snapshot Differential Refresh Algorithm.” In Proceedings
of the ACM SIGMOD International Conference on Management of
Data, pages 53—60, Washington, D.C., (1986).

BIBLIOGRAPHY 115

[MAIER83a] David Maier. The Theory of Relational Databases. Computer Science

Press, (1983).

[MAIER83b] David Maier and Jeffrey D. Ullman. “Fragments of Relations.” In

[MEDEIS6]

[MYLOP75)

[ROSENS0]

[ROUSSS2]

[ROUSS86]

[SCHMIT5]

[SCHOLS1]

[SELIN79)]

[SELL86a]

[SELL86b]

SIGMOD’ 83 Proceedings of Annual Meeting, Sigmod Record, Vol. 13,
No. 4, pages 15-22, San Jose, CA., (1983).

Claudia Bauzer Medeiros and Frank Wm. Tompa. “Understanding
the Implications of View Update Policies.” Algorithmica, Vol. 1, No. 1,
pages 337-360, (1986).

J. Mylopoulos, S. Schuster, and D. Tsichritzis. “A Multi-level Rela-
tional System.” In Proc. 1975 National Computer Conference, AFIPS
Press, Arlington, VA., pages 403-408.

Daniel J. Rosenkrantz and Harry B. Hunt III. “Processing Conjunctive
Predicates and Queries.” In Proc. of the 6th International Conference
on Very Large Data Bases, pages 6472, Montreal, (1980).

Nicholas Roussopoulos. “View Indexing in Relational Databases.”
ACM Transactions on Database Systems, Vol. 17, No. 2, pages 258
290, (June 1982).

Nicholas Roussopoulos and Hyunchul Kang. “Preliminary Design
of ADMS+: A Workstation-Mainframe Integrated Architecture for
Database Management Systems.” In Proceedings of the 12th Interna-
tional Conference on Very Large Data Bases, pages 355-364, Kyoto,
(August 1986).

Hans A. Schmid and Philip A. Bernstein. “A Multi-level Architecture
for Relational Data Base Systems.” In Proceedings of the International
Conference on Very Large Data Bases, pages 202-226, Framingham,
Massachusetts, (September 1975).

Mario Schkolnick and Paul Sorenson. The Effects of Denormalization
on Database Performance. RJ 3082, IBM, (April 1981).

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. “Access Path Selection in a Relational Database Man-
agement System.” In “Proc. of the ACM SIGMOD 1979 International
Conference on Management of Data,” pages 23-34, (1979).

Timos K. Sellis. “Global Query Optimization.” In Proc. of the
ACM SIGMOD International Conference on Management of Data,
pages 191-205, Washington, D.C., (May 1986).

Timos K. Sellis. Optimization of Extended Relational Database Sys-
tems. Ph.D. Thesis, University of California, Berkeley, (July 1986).

116

[SEVER?76]

[SHMUES4]

[SNODG84]

[STONE?76]

[TSICHT7]
[TSICHS2]
[ULLMA82]

[WONG76]

[YAO78)

[YAOT9]

[YOUSST9]

BIBLIOGRAPHY

Dennis G. Severance and Guy M. Lohman. “Differential Files: Their
Application to the Maintenance of Large Databases.” ACM Transac-
tions on Database Systems, Vol. 1, No. 3, pages 256-267, (Septem-
ber 1976).

Oded Shmueli and Alon Itai. “Maintenance of Views.” Sigmod Record,
Vol. 14, No. 2, pages 240-255, (1984).

Richard Snodgrass. “A Temporal Query Language TQUEL.” In Pro-
ceedings of the 8rd. ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems, pages 204-212, Waterloo, Ont., (April 1984).

M. Stonebraker, E. Wong, P. Kreps, and G.D. Held. “The Design
and Implementation of INGRES.” ACM Transactions on Database
Systems, Vol. 1, No. 3, pages 189-222, (September 1976).

Dionysios C. Tsichritzis and Frederick H. Lochovsky. Data Base Man-
agement Systems. Academic Press, (1977).

Dionysios C. Tsichritzis and Frederick H. Lochovsky. Data Models.
Prentice-Hall, (1982).

Jeffrey D. Ullman. Principles of Database Systems, Computer Science
Press, 2nd. edition, (1982).

Eugene Wong and Karel Youssefi. “Decomposition - A Strategy for
Query Processing.” ACM Transactions on Database Systems, Vol. 1,
No. 3, pages 223-241, (September 1976).

S. Bing Yao and David DeJong. “Evaluation of Database Access
Paths.” In Proc. of the ACM SIGMOD International Conference on
Management of Data, pages 6677, (1978).

S. Bing Yao. “Optimization of Query Evaluation Algorithms.” ACM
Transactions on Database Systems, Vol. 4, No. 2, pages 133155,
(June 1979).

Karel Youssefi and Eugene Wong. “Query Processing in a Relational
Database Management System.” In Proc. of the 5th. International
Conference on Very Large Data Bases, pages 409-417, Rio de Janeiro,
(October 1979).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

