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ABSTRACT

Reasoning may be separated into two kinds: analytic and synthetic. Analytic
reasoning deduces incontestable consequences from prior hypotheses. Synthetic
reasoning invents hypotheses. | advance the thesis that the probabilistic logic outlined
here accurately describes the standards of inference for analytic propositional logic as it is
found in ordinary English. The value of probabilistic logic as a normative prescription for
reasoning is not considered in this paper.

There are, in fact, an infinite number of probabilistic logics, each one differing in
its choice of a set of probabilities. We offer an axiomatization of the inference and
consistency rules for such a family of probabilistic logics. Many of these logics use
non-numerical probabilities, but each one retains the capabilities of the classical binary
propositional logic.

How probabilities get assigned to complex propositions cannot be "too
simple"—probabilistic logic cannot be compositional in Frege's sense. On the other hand,
probabilities cannot be "too complex" as values—the "set of all possible worlds in which A
is true" cannot be used as a probability value for the proposition A.

The relationships between probabilistic logic and Johnson-Laird's theory of
"mental models", Barwise and Perry's theory of "situation semantics", and Montague's
approach to the logic of propositions in English are explored.

Cox's Theorem has been used to support the claim that classical real-valued
probability theory is somehow inevitable. The examples of non-numerical probabilistic
logics given in this paper show that this is not so. Nevertheless, | show that Cox's Theorem
can be strengthened—this new version shows why it is very difficult indeed to avoid
re-inventing ordinary probability theory.

Even if we set our empirical motivations aside, it is difficult to conceive of any
theory of analytic reasoning that uses "probabilities” and that does not satisfy the axioms
presented in this paper. Many proposed theories for reasoning with "probabilities”,
besides confusing analysis with synthesis, have fallen victim to Cox's Theorem. They are
either not suited for propositional logic (Zadeh's “fuzzy logic"}, or unwittingly re-invent
ordinary probability theory (the Dempster-Shafer theory), or else have mathematical
shortcomings (MYCIN).
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I INTRODUCTION

This paper's primary aim is to describe (by presenting a set of
axioms for a probabilistic logic) the standards of deductive inference for
the logic of propositions as it is found in eveyday English. | feel that we
have given too little credit to people's ability to recognise sound
arguments. | am, therefore, mainly empirically motivated. As a corollary to
this aim, we will exhibit non-numerical forms of probabilistic logic that are
also mathematically cogent. We will also examine the impact of the claim
that there is no psychological validity to the distinction between deductive
and non-deductive inference.

A normative theory of reasoning is one that prescribes standards
to which any being must adhere for its own good, according to
philosophers. A descriptive theory of reasoning, on the other hand, is a
scientific (psychological) model of how people reason in daily life.
Borrowing CHOMSKY's terms, a descriptive theory can be divided into two
parts:

(1) a competence theory — an idealised set of standards to which
human reasoning adheres, and

(2) a performance theory — a description of how the competence
theory is implemented.

The exact placement of the boundary between competence and
performance is a matter of scientific intuition—roughly, it is between what
is being implemented and how it's being implemented. What is crucial,
however, is that the combined descriptive theory must account for actual
observations. The performance theory introduces auxiliary assumptions,
about resource limitations for example, that modify the predictions of the
competence theory so that they come into line with empirical fact.

Consider an electronic pocket calculator that can only add.
PEANO's theory of arithmetic is an example of a competence theory—it is
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the ultimate standard calculator designers adhere to. But pocket
calculators, we all know, only implement finite-precision arithmetic.
Auxiliary assumptions are therefore needed to explain our observations
when large numbers are added. Even further implementation details are
needed to account for the calculator's behaviour when the power supply
runs low. These auxiliary assumptions may be included as part of the
competence theory, or as part of the performance theory. This choice
depends on the purposes for which the theory is being formulated and is
usually a matter of scientific judgement.

It is easy to argue, therefore, that the phrase "I have a competence
theory for X" is just an embellished way of saying "l have an incomplete
theory for X". But | feel this criticism is ungenerous. There is merit to
making competence theories of complex phenomena simple by ignoring
the "inessential" elements, even if this means a loss of empirical accuracy.
GALILEO's theory of free falling objects, d = at?/2, was suggestive and
useful because it was simple. But this equation completely ignored air
friction, an empirical fact that DA VINCI had already used to design
parachutes.

G. FREGE believed mathematical logic to be a normative theory —
that it was a universal prescription for doing mathematics [MACNAMARA
1986, pp.14-17]. He attacked Psychologism (an idea advanced by J.S.
MILL, among others) which asserted that logic was merely a description of
how people reasoned, when they were careful. FREGE's view has
predominated.

[J. MACNAMARA 1986], however, resurrects the view that logic may
be a competence theory for human reasoning. But MACNAMARA is careful
to reconcile his view with FREGE's by pointing out that logic may still enjoy
normative status—"logic is a normative prescription" and "logic is a

scientific description™ are not mutually exclusive opinions. | am indebted
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to [MACNAMARA 1986] for raising and explaining this point.

[MACNAMARA 1986] is primarily concerned with the logic of terms
and how this helps us understand children's acquisition of language. We,
on the other hand, present a competence theory for the deductive logic of
propositions as it is found in English, and go on to show how this is
related to theories of non-deductive reasoning (induction in the widest
sense).

A competence theory for reasoning can be split into two parts: an
analytic theory and a synthetic theory. The terms analytic and synthetic
are taken from [POLYA 1957]. (Later on we will subdivide synthetic
reasoning into two varieties, one of which is very closely related to
analytic reasoning.) Analysis derives necessary consequences from an
initial set of hypotheses. Synthetic reasoning, on the contrary, is satisified
with inferences which are consistent with some collection of hypotheses
and facts. For example, synthetic reasoning as practised by scientists is
concerned with finding a useful language, and a set of hypotheses (a
scientific model) in this language that is consistent with the known facts
and with currently favored general scientific principles. Synthesis,
therefore, is a goal- and value-driven process.

Two commonly held opinions are that mathematical logic is "the
only" philosophically defensible theory of analytic reasoning, and that
probability and statistics are, on the other hand, tools for synthetic
reasoning. [FINE 1973], an extensive survey of theories of probability,
does little to dispel these opinions. R. CARNAP is well known for his
attempt to develop a normative theory of inductive logic or a theory of
confirmation based on some calculus of probabilities.

| find these opinions unhelpful for understanding how speakers of
English reason. | will treat probabilistic logic strictly as a way of describing
what conclusions are taken as being beyond dispute by speakers of



R. Aleliunas 5 Models of Reasoning

English. A general descriptive theory of analytic reasoning as it is found in
English must, | believe, subsume ordinary logic, and possibly classical
probability theory. This, of course, forces a reconsideration of some of the
conventions associated with the hypothetico-deductive method and with
Bayesian statistics. (Is the language in which hypotheses are stated
compositional in FREGE's sense? Are probabilities necessarily
numerical?)

Some further points must be made at the outset—
(1) I am not concerned with defending probabilistic logic as a
normative theory of reasoning in this paper. But, following MACNAMARA,
this remains an open possibility.
2) Though they must be related, a description of the logic of English
is not necessarily the same thing as a description of the internal process
of the reasoning—the first is just a surface manifestation of the second.
(3) I am willing to speculate only a very little about how the internal
process of reasoning may actually be implemented—I rely on P. N.
JOHNSON-LAIRD's theory of mental models for insights into this subject. In
people, all kinds of inference, both synthetic and analytic, may be the
product of a single process, even though it is convenient to make certain
distinctions. Such distinctions are justifiable as long as we are only
describing the standards that reasoning adheres to.
(4) Since | am concerned with descriptive theories, | accept that
revisons are inevitable. My primary goal in this paper is to give a clear
description of one such theory—it is easier to modify a theory when you
understand what it is saying.
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II THE EVIDENCE FOR PROBABILISTIC LOGIC

This section and the next one develop a competence theory for
analytic reasoning. Such a theory describes what people believe is the
set of necessary consequences obtainable from a collection of initial
hypotheses. The first step, undertaken in this section, is to describe and
defend the choice of a suitable object language for this logic. | claim that
this is the language of probabilistic logic.

A probabilistic logic is a calculus for manipulating the class of
propositional attitudes exemplified by statements such as "If Q then P is
likely." We are modelling a reasoner's attitudes towards propositions and
how these attitudes depend on each other; we are not concerned with
their objective truth. Ordinary binary logic uses only two propositional
attitudes: "P is true" and "P is false". (These two attitudes are further
collapsed, by classical logicians, into one by using the equation "P is
false" = "not P is true.")

| adopt the following conventions:

(C1) [P|Q] denotes the conditional probability of P given that Q is true,
Q is called the antecedent and P is called the consequent,
(C2) Q can never be an absurdity in the expression [P|Q],
(C3) [P]is shorthand for [P|1], and both denote the probability of P,
(C4) the symbol 1 denotes any tautology, and 0 denotes any absurdity,
(C5) logical truth is equated to probability 1, and logical falsehood is
equated to probability O,
(C6) &, v, and ~ denote the connectives "and", "or", and "not" respectively.
| begin first by showing that any kind of logic which accepts
FREGE's simple notion of compositionality is inconsistent with the
linguistic evidence. Compositionality in FREGE's sense says that the
truth-value of a complex sentence such as A&B is some function of the
truth-values of its two syntactic components: A, and B. | consider
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implication first, and then extend this analysis to the connective "&". At the
same time | show that probabilistic logic agrees with the linguistic
evidence.

Implication is the fundamental notion in any logic. English
speakers believe the following conditionals all assert the same thing,
namely that P is true whenever Q is—

(1) IfQthenP.

(2) When Q, then P.

(3) P, giventhat Q.

(4) Assuming Q, P.

Probabilistic logic represents all of these by the formula "[P|Q]=1".
Whenever | ask unsuspecting English speakers about assertions of the
form "When ~P, then P", the overwhelming opinion is that this statement is
absurd, independent of the choice of proposition P.

Classical logic, however, since it models conditionals by material

implications, is inconsistent with this linguistic evidence. The material
implication "P o Q" is false precisely when P is false and Q is true. lt is a

compositional connective. Hence, the formula "(~P)>P" is not absurd, but
is true or false depending on whether P is true or false. Trained logicians
seem to be able to convince themselves that "If today isn't Friday, then
today is Friday" is true precisely on Fridays, and that "if 121, then 1=1"is
true on any day of the week.

This illustrates a profound difference between English on one
hand, and classical logic on the other. Classical logic obeys FREGE's
principle of compositionality, whereas neither English nor probabilistic
logic obey this principle. In classical logic, unlike English and probabilistic
logic, one may substitute any true statement by any other true statement
with impunity. Both English and probabilistic logic are concerned with
more general relationships between propositions than just relationships
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between their truth-values in the current world.

In addition to conditionals that denote certain entailment, it is easy
to represent other kinds of English conditionals in probabilistic logic. We
are familiar with such statements as "If it is cloudy then it will likely rain."
This states a relationship between one proposition ("it is cloudy") and
another ("it will rain") in terms of the probability "likely". Suppose the
antecedent is true, then our belief in this conditional compels us to adopt
the attitude that the consequent proposition is at least "likely". This
argument is also easy to represent using probabilistic logic. The
hypotheses are—

(H1) [it will rain | it is cloudy ] = likely,

(H2) [it is cloudy] = 1.

If we accept these two hypotheses, we must accept that "[it will rain & it is
cloudy]=likely". (This is the product rule for probabilities.) But since "[it will
rain] = [it will rain & it is cloudy]", we must further accept that "[it will rain] =
likely". Note that "[it will rain] = likeiy" is not a necessary conclusion given
(H1) and (H2), since there may be other, more compelling, reasons why it
may rain.

Since this form of implication is not truth-functional or
compositional in FREGE's sense, the expression "[ it will rain | it is cloudy ]"
may be assigned any probability as long as the constraint—

(H3) [it will rain & it is cloudy] = [it will rain | it is cloudy ] [it is cloudy]

is satisfied. The fact that the weather is sunny does not force us to
abandon equation (H1). For example, the sentence "If it were cloudy, it
would likely rain" manages to encode two statements of probabilistic
logic. The subjunctive mood of the verb suggests that "[it is cloudy]=0"
while the conditional information is encoded by (H1) as before. Thus,
using a single parsimonious notation, one can also represent the
probabilistic counterfactuals found in English.
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Representing counterfactuals, however, is only part of the problem
of explaining how people reason with them; we will return to this point
when we discuss synthetic reasoning. For now, as is appropriate to the
study of analytic logic, we will assume that all of the relevant hypotheses
have been given in advance. Once these are given, there is no distinction
between counterfactuals and other conditionals in probabilistic logic.

In classical multi-valued logics [N. RESCHER 1969], which are
invariably compositional in FREGE's sense, there are many examples
wildly at odds with linguistic evidence. Some of these logics do not even

recognise "P o P" to be a tautology. Compositionality, however, has not
been blamed as the source of these problems.

Compositionality is also inconsistent with the linguistic evidence
for other connectives: "&" and "v". | direct my attention next to "fuzzy logic",
but the analysis presented here applies with equal force to any
compositional logic that satisifes the two simple constraints mentioned
below.

L. ZADEH's "fuzzy set theory" has been used in various ways to
devise "fuzzy propositional logics". ("Fuzzy set theory" should not be
confused with "fuzzy logics.") "Fuzzy logics" are compositional in FREGE's
sense since they assume there is some function, say f(p,q), such that
(F1) [A&B] = f([A], [B])
where the symbols [A&B], [A] and [B] stand for "fuzzy truth-values". (The
interpretation of term "fuzzy truth-value" is unimportant for my argument.)
These logics also satisfy the further constraint —

(F2) if p£0 and g=0, then f(p,q)=0

This condition states that a conjunction cannot be assigned the
"truth-value" O if neither of its parts are assigned 0. ZADEH originally chose
real numbers in the interval [0,1] for "truth-values" and let f(p,q) = min(p,q).
J. GOGUEN generalised this to f(p,q) = glb(p,q) over some distributive
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lattice of "truth-values" with a 0 [GUPTA et al 1979, p. 53], but as long as
(F2) holds the following counter-example obtains.

The counter-example involves the simple experiment of tossing a fair
coin. Let A denote that it lands heads, and B denote its landing tails.
Clearly there is no justification for assigning either [A]=0 or [B]=0, and
therefore [A&B]=0 if we accept both (F1) and (F2) above. But A&B is a
logical absurdity and should be assigned "truth-value" 0; if this is done,
however, then 00, a contradiction. Hence, to accept "fuzzy logic" we must
reject the Law of Contradiction (which says A&~A is always false) or else,
equally absurdly, reject identifying O with impossibility.

No English speaker, on the other hand, after admitting that the
coin may possibly land heads or tails ([A]#0 and [~A]#0) could ever be
fooled into believing that both can be the outcome of one toss. Neither
"fuzzy logic", nor any other logic obeying (F1) and (F2), is consistent with
the interpretation of conjunction in English.

So how then, if FREGE's simple kind of compositionality is not at
work in the English language, are propositions to be convincingly
assigned probabilities based on their component parts? This can only be
possible through a knowledge of the dependencies between the
situations described by each proposition. In no situation when a coin
lands heads does it also land tails, and this establishes a connection
between the propositions A and B. These dependencies can be
represented as statements about conditional probabilties. Independence
statements are an important special class of such statements.

The notions of compositionality, probability and (statistical)
independence are all intertwined. Compositionality, for example, can be
"protected” as a scientific hypothesis by modifying other assumptions in
our theory of reasoning. (I. LAKATOS has explained how such maneuvers

are common in the history of science.) How then, if we wished to do so,
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could we make probabilistic logic compositional? One simple way is to
define the probability of A to be "the set of possible worlds in which A
holds". When "probabilities" are equal to such sets of possible worlds we

observe that [A&B] = [A] n [B], which also denys (F2). We have solved
one problem, but we have created others. It seems unintuitive that
probabilities be so intimately connected with the propositions they are
assigned to. In fact, for definitions of probability which deny (F2), the
connection so intimate that statistically independent events cannot be
assigned arbitrary probabilities by the builder of a statistical model.
Definitions which deny (F2) end up denying that probabilities are a
measure of belief that may be applied to arbitrary propositions.

English is equipped with expressions to denote (statistical)

independence. The statement, "It would be just coincidence if John and
Frank both went to Paris" is one example. This is easily represented in
probabilistic logic by the pair of equations:
[John went to Paris | Frank went to Paris] = [John went to Paris | Frank didn't go to Paris],
[Frank went to Paris | John went to Paris] = [Frank went to Paris | John didn't go to Paris].
This pair of equations does not identify any specific probabilities for these
events, and the English sentence doesn't either.

On the other hand, assertions of dependence and independence
between propositions are not possible in the object language of classical
logic.

So far, we have used counterexamples to eliminate all theories
which are based on FREGE's simple notion of compositionality. This also
includes R. MONTAGUE's semantic analysis of English [DOWTY et al 1985].
MONTAGUE semantics, in its current form, can only give a truth-functional
account of the sentence "When ~P, then P", and therefore cannot classify
this sentence as an absurdity. It is also not clear to me how the idea of
(statistical) independence is to be captured in MONTAGUE semantics. This
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is not to say, however, that some other intensional logic cannot be used to
accomplish these aims, but instead that MONTAGUE semantics gives too
simple an account of English propositional logic.

The psychologist P. N. JOHNSON-LAIRD has proposed a
far-reaching performance theory of how people reason [GARDNER 1985,
pp.361-370]. He explains that people test the validity of conclusions by
creating and examining "mental models" (or "situations" or "possible
worlds") in which the hypotheses hold. If the conclusion is not rejected in
any situation that is examined, it is taken to be valid. According to this
view, the assertion "If ~P then P" prompts us to imagine only situations
where ~P holds, and to test to see if P holds in them also; we do not
examine any other situations. Thus, in every situation we examine in this
case, we see that P cannot hold, and we therefore conclude the assertion
is absurd.

This process for testing validity is easy to understand and it is
certainly logical. Mathematical probability theory, which originated well
before mathematical logic, has implicitly accepted this view, and goes on
to define the probability of A to be some measure of the relative size of the
set of possible worlds in which A holds. JOHNSON-LAIRD's process uses
~P as a selection rule, and not as a truth-value—simple compositionality,
therefore, cannot be used to account for how meaning is assigned to "If
~P, then P". [BARWISE & PERRY 1983] have formulated, apparently
independently of JOHNSON-LAIRD, a related theory of "situation semantics”
for English; their theory, however, is not as concerned with the mechanics
of reasoning as JOHNSON-LAIRD's is.

| was originally dissatisfied by the requirement the Q cannot be an
absurdity in the conditional [P|Q] and | sought ways to eliminate it. But
without it, it was impossible to find a reasonable axiomatisation of
probabilistic logic that avoided the following inconsistency: assume Q=0,



R. Aleliunas 13 Models of Reasoning

then 1=[Q|Q]=[0&Q|Q]=[0|Q]=0. Therefore this requirement was a
mathematical necessity. It turns out, in fact, to be a necessity sanctioned
by the JOHNSON-LAIRD theory. If the antecedent is absurd, Q=0, then both
[P|Q]=1 and [P|Q]=0 are accepted as valid assertions, since in every
situation that Q holds (namely none), "P is true" is never rejected, and
neither is "P is false"—you can say anything you like about non-existent
situations. Notice, however, that if the antecedent Q is merely false, then
there are still situations in which it is true and therefore false propositions
remain meaningful and acceptable as antecedents of conditionals.

Consider again, for example, the sentence "If 1£1, then 1=1." If you
can imagine worlds in which 1#1 (which is what | assumed earlier), then
the consequent is false in each one of them and you judge this
conditional to be absurd. If, however, you cannot imagine any possible
world at all in which 121, then you cannot form any opinion whatsoever
about 1=1 according to the JOHNSON-LAIRD theory.

Though we have rejected many traditional theories as inadequate
accounts of the logic of English, we have not yet eliminated theories of
comparative probabilities. These theories use only statements of the form
"[A|B]=[P]|Q]" and avoid all mention of explicit probability values. But such
theories are inconsistent with the simple fact that English has many words
and phrases that denote probabilities: "likely", "very unlikely", "almost
certain", "negligible", "impossible", and so on. Moreover, it is conceivable
for any of these probabilities to be assigned to any (non-trivial)
proposition by a speaker of English.

Furthermore speakers of English recognize a crude algebra
involving these probabilties: if P is "likely" then ~P is "unlikely"; if P is
"possible” (i.e. [P]#0) then ~P is "impossible" (i.e. [~P]=0); if P and Q are
independent, P is "true", and Q is "almost impossible", then P&Q is "almost
impossible" = "true"-"almost impossible". There is some fragmentary
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recognition by English speakers of the inverse of a probability and of the
product of two probabilities. The algebra of probabilities also respects
condition (F2).

Furthermore, the work of KAHNEMAN & TVERSKY can be used to
support this claim that reasoning involves some sort of system of
probabilities that can be arbitrarily assigned to propositions. They have
shown that people make decisions based on the shapes of probability
distributions. Given two similar lotteries, people will regularly choose the
one which maximises their guaranteed winnings instead of their
mathematically expected winnings. But how can this be if there are no
notions of probabilities as autonomous elements of reasoning? This
concludes our list of arguments against a theory of purely comparative
probability.

JOHNSON-LAIRD went on to show how his performance theory
predicted where human subjects were most likely to make mistakes in
syllogistic reasoning. Such mistakes, when they are pointed out, however,
are quickly recognised as such. Thus, there is an intuitive grasp of the
logical standards of validity (the competence theory) which is different
from how these standards are tested (the performance theory).

Likewise KAHNEMAN & TVERSKY have pointed out many
predictable patterns of mistakes when people do probabilistic reasoning.
Most of these counter-examples to rationality, however, are flaws in
synthetic reasoning or decision-making. These include the use of
inappropriate prior probabilities, of "irrational” utility functions, and other
deviations from ordinary Bayesian decision theory. There are, also,
genuine lapses from the standards of analytic reasoning. For example,
KAHNEMAN & TVERSKY's observations suggest that patients are more
likely to choose surgery if it offered a 90% chance of living than if it offered
a 10% chance of dying. The predictable mistakes of analytic probabilistic
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reasoning, however, share the same characteristic as the deductive errors
studied by JOHNSON-LAIRD: namely, though people regularly make these
mistakes (performance), they can immediately recognise their mistake
once it is pointed out (competence). | do not believe, therefore, that
KAHNEMAN & TVERSKY's observations threaten our thesis that probabilistic
logic is a competence theory of analytic reasoning.

IIT AXIOMS OF ANALYTIC REASONING
I11.1 Axioms for a Probabilistic Logic

This subsection is concerned with axiomatizing the inference rules
and consistency properties of probabilistic logic in a way that takes into
account the foregoing discussion. Probabilities surely exist in English, but
what the precise set is—if it ever can be made precise—is a question we
will leave unanswered. Therefore the axiomatization presented here is
that of a "generic" probabilistic logic, one which is silent on the specific
choice of probabilities. Probabilities are just uninterpreted formal marks in
the theory. Notice that this axiomatization defines what the necessary
consequences obtainable from a set of hypotheses are—if this set is
incomplete, or inconsistent with linguistic evidence, then this
axiomatization will have to be modified. | am not concerned here with
devising an immutable normative theory of logic.

Probabilistic logic is not about synthetic reasoning, instead it sets
the standards of inference for analytic reasoning. From just the hypothesis
that ten coin tosses all landed heads, the outcome of the eleventh toss
cannot be determined by probability theory alone. The "facts" do not
speak for themselves. They must be interpreted and synthesized into a
collection of hypotheses (a hypothetical model) before an inference about
the eleventh toss can be made.

Probabilistic logic deals with a set, T, of subjective truth-values or
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probabilities, and, B, a collection of propositions (or events). Following the
example of [R.T. COX 1946], we assume probabilistic logics posses two
functions, h and i, named respectively product and inversion. We write
h(p,q)=p-q.

T is a partially ordered set (a poset) of values, ordered by the
relation "<". Furthermore T is equipped with an identity relation, "=", that is
related to "<" in the following way—

Forany p,qinT p=q if p<q and g<p.

Contrary to what may be familiar to many, we take a boolean
algebra, B, to be merely a set of expressions generated by finite
combinations of the symbols "&", "~", "v", and a countably infinite set of
propositional letters (called generators): P, Q, R, S, ... . These expressions
are partitioned into equivalence classes according an equivalence
relation, "=". The boolean equivalence relation is characterised by a finite
set of equations [BURRIS et al 1981] of which "~(P & Q) = (~P) v (~Q)" is
one example. An algebraist will recognise this as the description of the
free boolean algebra on a countable set of generators.

The first ten axioms below are first order axioms that capture
various rules of inference in probabilistic logic. The remaining three
axioms are not first order; they assert that certain kinds of statistical
models (collections of hypotheses framed in the language of probabilistic
logic) are guaranteed to be consistent. Axioms 5, 6, 8, and 9 are taken
from [COX 19486].

AXIOMS

¢ The set T of probabilities is partially ordered, with relations <, =.
The set B of propositions is a boolean algebra, with a relation =,
and B is closed under finite combinations of the operations &, v, ~.
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Conventions: Capital letters below stand for arbitrary propositions in B,
with the proviso that no antecedent part of any conditional probability
expression may be a logical absurdity. Greek letters stand for arbitrary
probabilities in T.  [P] =[P|1], 1=[1|1] and 0=[0|1] are abbreviations.

@ [P1I1Q4I=[P2lQp]  if P1=P2 and Qq=Qp

3)  [PIX]I=[X]X]

@  [P&X|X]=[PIX]

©) [P&Q]=h([P|QL, [Q])

(6) h(o,B) <h(,vy) if o<t and By (order preserving)
7  [Q]=0 or [P|Q]=0 if [P&Q]=0

®) [~PIX]=i([PIX])

©) i(y) <i@€) if E<y (order inverting)
(10)  [PIX]<[P]<[P|~X]  ff [PIX] < [P|~X] (sandwich)

Forany X, Y, and Z that are distinct generators of the boolean algebra, B,

and arbitrary probabilities &, v, {, the following sets of hypotheses are
always algebraically consistent (meaning that it is not possible to derive
two different probabilities for the same conditional expression and that it is
possible to assign the remaining probabilities in a consistent manner).

These are not, therefore, first order axioms.
(1) { [X=€, [YIXl=y, [ZIX&Y]=C } (chains)
(12)  { [XIYIIX|]~YI=E,  [YIX=[Y|~X]=y } (independence)

13)  { [X&Y]=E, [Yl=y } fif &=y
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Before explaining what the axioms do say, | will first point out what
they do not say. The product, h, is not assumed to be associative or
commutative: this turns out to be a logical consequence of these axioms.
The product need not be cancellative (i.e. p'q=p‘r and p0 together do not
imply g=r ). Neither product nor inversion are assumed to be continuous
in some topology. The probabilities 0 and 1 are, for the moment, merely
special abbreviations. That [P|P] =1 independently of the choice of P, is
another consequence of the axioms. | do not assume the existence of a
function g such that [A v (~A)&B] = g([A], [(~A)&B]); thus, finite additivity
is not assumed. (The possibility of additivity, continuity, cancellativity or
even divisibility for probabilities is not, however, precluded.)

Axiom 2 states that, if two propositions are boolean equivalent,
one may be substituted for the other. Thus [P| Q&R ] = [P| R&Q] is justified
because of the boolean equivalence Q&R = R&Q. Mere equality of
truth-values, however, is not sufficient to justify such a substitution. For
example

[bees get around|bees fly] = [bees get around|3>2]
is not true in general even when [bees fly] = [3>2] = 1. From axioms 3 and
4 we can establish that [P|P] = [Q]Q] independent of the choice of P and Q.
Axioms 5 and 6 are the product rule for probabilities. They posit the
existence of an order preserving function for calculating [P&Q] from [P|Q]
and [Q], a calculation which permits a generalisation of modus ponens.
From the first six axioms, we can derive the BAYES-LAPLACE RULE:

[AB][B] =[BIA][A]

Axiom 7, which is also condition (F2), says that if p-q=0 then p=0 or
g=0. Suppose the contrary, namely that p-g=0 for some p#0 and g=0. Now
consider a pair of (statistically) independent events assigned the
probabilities p and g. The probability of the joint occurrence of these two
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independent events is therefore p-q = 0, an absurd and unintuitive result.

Axioms 8 and 9 introduce a method for calculating [~P|X] from
[P|X]. This makes i an anti-isomorphism of the poset T. (T is therefore
self-dual.)

Axiom 10 deals with "~" symbols in the antecedent part of a
conditional probability. | call it the "sandwich rule". It specializes to the cut
rule of ordinary logic, and is also a theorem of ordinary numerical
probability theory since [P] is a convex linear combination of [P|X] and
[P|~X], which entails—

[PIX] < [P] = [PIX][X] + [P|~X][~X] < [P|~X].

Axiom 11 guarantees that assigning arbitrary probabilities to
chains of three events will not run afoul of the algebraic machinery of
probability theory. So, for example, given one had to choose probabilities
p, g, and r for—

[march winds] = p

[april showers | march winds] = g

[may flowers | march winds & april showers] =,
there is nothing inherent in the mathematics of probabilities that prevents
one from making arbitrary choices for p, q, and r as long as they are
elements of T. This is as it should be since probabilistic logic must be
capable of respresenting arbitrary situations.

Axiom 12 similarly guarantees that assigning arbitrary
probabilities to two statistically independent events will not run afoul of the
algebraic machinery. Axiom 13 says for any a<b, we are assured that
there is a ¢ such that a=bc. This property is called natural ordering in
[FUCHS 1963]. This axiom reflects the belief that any proposition or
conditional, must in principle, have a probability, given a reasonable
partial assignment of probabilities. If we knew, for example, that

[march winds] = p
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[march winds & april showers]=r where r<p

then we all believe that there exists some probability, g, for [april showers
| march winds], so that r = g-p, even though we may not know what it is.

Axioms 11, 12 and 13 are logically independent of each other and
of the previous axioms. From axioms 11 and 12 we can establish that the
product of probabilities is associative and commutative.

The logical independence of the axioms and their mathematical
consequences are more fully studied in [ALELIUNAS 1986, 1987], which
also contains detailed proofs of the assertions made above.

ITL2 Relationship to Classical Propositional Logic and Numerical Probability

These axioms are logically consistent because both classical
propositional logic and numerical probability theory are special instances
of this theory.

Classical Propositional Logic (with conditionals)
o €{ true, false 1}, h(a,pf) =a & B, i(a) = ~ou.

This system is identical to propositional logic except that we permit
conditional expressions, such as [P|Q]=1, as hypotheses. (Material
implication can of course be represented using expressions like
[Pv(~Q)}=1.)

Modus ponens does not require material implication for its
existence; this deduction rule works just as well with conditionals. For
example, from the two hypotheses {[P|Q]=1, [Q]=1} one can derive that
[P&Q]=1, and consequently that [P]>[P&Q]=1, from which it is obvious that
[P]=1. Similarly one can prove that when all probabilities are restricted to
being either O or 1, that the probabilities of conjunctions and disjunctions
satisfy the simple formulas: [P&Q]=min([P], [Q]), and [PvQ]=max([P], [Q]).
Compositionality therefore arises naturally in this situation; it is a
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combinatorial accident of two-valued logic, not an a priori requirement of
logic.

Every probabilistic logic that satisifies the above set of thirteen
axioms, therefore, retains the capabilities of classical binary logic. Thus,
when hypotheses are known with certainty, they can be used to obtain
conclusions consistent with classical propositional logic. English logic
doesn't lack the precision of mathematical logic, mathematical logic,
instead, lacks the richness of English.

Simple Numerical Probability Theory (excludes infinite events)
o €[0,1], h(a,f) =a x B, i(a) =1- o

This simple real-valued system does not mention any method for
adding probabilities—this feature can be added later.

The probability that an infinite sequence of tosses of a fair coin all
land heads is 0 according to the KOLMOGOROV probability calculus, a
conclusion which conflicts with my insistence that probability 0 is the
same as logical falsehood. The acceptance of only real-numbers as
probabilities, of infinite events as meaningful, and of the importance of
topological continuity for the product operation conspires to produce this
conflict. There are therefore several ways to resolve it. One way,
suggested by R. VON MISES and based on his analysis of the foundations
of probability, is to eliminate such inifinite events from consideration
entirely because they cannot be the subject of practical experiments [FINE
1973, p.64]. Another way to resolve this conflict is to enrich the set of real
numbers with infinitesimals so that the probability of an infinite series of
heads being observed is no longer 0, but an infinitesimally small value

instead.
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II1.3 Examples of Probability Algebras

The formal marks that stand for probabilities in the above set of
thirteen axioms admit many concrete interpretations. Each interpretation
of these formal marks will be called a probability algebra. Two familiar
ones have already been given in the previous section; several novel ones
are given below. In most cases the choice for an inversion function is
obvious, so that only the table of products is given.

My aim here is to illustrate the wide variety of systems of
probability that can appear in a probabilistic logic; no claims for the
superiority of any of them are advanced.

Example 1. T={0, m, 1}, ordered as in Figure 1(a), with mm=m. (In all
probability algebras we have 1-x=x:1=x and 0-x=x-0=0 for any x.) This is
the only 3-valued probability algebra.

Example2. T={0,0',1',1}, ordered as in Figure 1(b). There are two
possible probability algebras based on the total ordering of four
probabilities. The two multiplication tables are—
00 11 00 1 1
0 00 0O 0 00 0O

00 00 0O 0O 00 00 OO0
1 00 O T 1" 60 1 71
1 00 1 1 1 0 0 1 1

(There are 3 distinct algebras possible on total orderings of 5

probabilities, and 7 distinct algebras for total orderings of 6 probabilities.)

Example3. T={0,0',a,b,A,B,1',1}, ordered as in Figure 1(c). We let
AB=a, AA=BB=b, Aa=Ab=Ba=Bb=aa=ab=bb=0', x1'=x if x21, and x0'=0" if
x#0. This is not a lattice and yet it is the basis of a simple probabilistic
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logic.
1
T@ 117 m ©)
m ¢ 1 A B
¢ O
0 a b
e 0 0"
Figure 1 I 0

Example 4. This is an infinite algebra generated by one element, L.
The probabilities in this algebra are T = { LK | k is an integer, k=+oo, OF
k=-w0}, and they are totally ordered so that 0 < Lk+1 < LK < 1, for any
integer k. We define inversion by i(LK) = L'k, and product is simply Li LK =
min( U, LK).

Example 5. Let T be the set of nonstandard reals in the interval [0,1];
these include infinitesimals. We use the extension of real number

multiplication as the definition of the product h(p,q).

Example 6. Let T be the probability algebra generated by the formal
symbols likely and unlikely, subject to the following additional constraints:
(1) 0 < unlikely < likely < 1,
(2) i(likely) = unlikely.
Two randomly chosen terms are unlikely to be comparable —
(likely3)-i(unlikely?) is not comparable to (likely3)-(i(unlikely))2.
Axiom 13 guarantees that this algebra contains a solution, x, to the

following equation, even though x cannot be expressed as a combination
of products and inversions of the generators of this probability algebra—
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un]ikely2 = X'likelyz.
It is tempting to use a system like this one to model the probabilities that
appear in English. But even if we choose this system for example, there
are still questions such as whether "P is likely" is to be represented as
[P]=likely, or as [P]=likely.

Example 7. Let T be the set of real numbers in the interval [0,1] with the
product defined by p-g=min(p, q). This system, which contains Example 4
as a subalgebra, is reminiscent of the fuzzy logics derived from ZADEH's
"fuzzy set theory", except, in this case the connectives are treated in a

logically sound way.

The probability algebra with three values is equivalent to a
congruence algebra of the real numbers in [0,1] under multiplication. The
three congruence classes are {0}, the open interval (0,1), and {1}. This,
however, is the only probability algebra that is a nontrivial homomorphic
image of the simple real-valued probability calculus.

In general, there is no translation of the probabilities of one
probability algebra into those of another. There should be no surprise that
"likely" has no interpretation in terms of numerical probabilities—this is
typical.

This suggests why it is difficult to translate the knowledge in, say,
Harrison's Principles of Internal Medicine into statements involving only
real-valued probabilities [PETERSDORF et al 1983]. Physicians, like
everyone else, use probabilities such as "likely" to their express their
beliefs. Representing this sort of knowledge using a non-standard
probabilistic logic can be more natural and therefore less likely to cause
misunderstandings between humans and machines. (Certainly MYCIN has

already demonstrated that medical knowledge can be profitably coerced
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into a very ad hoc form, showing us that even an inconsistent normative
theory can enjoy some practical success.)

A catalog of probability algebras, and of their algebraic properties
is given in [ALELIUNAS 1986, 1987].

1.3 The Special Place of Ordinary Numerical Probability Theory

Of course this is far from being the first attempt to study probability
theory abstractly. The following theorem shows why many of these
attempts are doomed to re-invent nothing more than simple real-valued
probability theory. By "simple real probability theory" | mean the system
without infinite events or addition that was described in section 1IL.2.

A CHARACTERIZATION THEOREM for SIMPLE REAL PROBABILITY THEORY
Under the conditions established by Axioms 1 through 13 (actually,
Axioms 7 and 12 may be omitted), the following two statements are
equivalent:

(S1) T is a totally ordered set of probabilities and it is archimedean
ordered with respect to the product. (Archimedean ordering means
that a" becomes smaller than b for some n, for any a=1 and bz0.)
(S2) T is isomorphic to a subalgebra of simple real-valued
probability theory. In other words, besides T =[0,1], we could also
have T = all the rational numbers in [0,1] for instance.

PROOF SKETCH: The full proof is given in [ALELIUNAS 1986, 1987]. The only
interesting part is that (S1) implies (S2). This relies on the theorem that
states there are only three Archimedean totally ordered semigroups that
are also naturally ordered, a result is due to O. HOLDER at the turn of the
century [see FUCHS 1963, p.165]. Two of these semigroups can be ruled
out because they are not self-dual, leaving only the system isomorphic to
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the real numbers in the interval [0,1]. QED

This result substantially extends the theorem obtained by R. T.
CoX in 1946. COX's initial hypotheses included: probabilities are real
numbers, the product of probabilities is continuous, and finite additivity
holds for the probabilities of disjoint events. None of these assumptions
appear in this version of the theorem. Moreover, COX was only able to
provide sufficient conditions for (S2) to hold, even with his stronger
assumptions. The present theorem establishes both necessary and
sufficient conditions under weaker hypotheses. Some improvements to
Cox's original theorem are reported in [ACZEL 1966], but again
assumptions similar to COX's were made.

It is shown further in [ALELIUNAS 1986, 1987] that the ubiquitous
assumption that probabilities are finitely additive for disjoint events
precludes all the finite probability algebras. This dramatically increases
the chances that some additional assumption about probabilities,
apparently minor, will lead inevitably back to ordinary real-valued
probability again.

It is obvious now, however, that COX's theorem cannot be
interpreted as a definitive argument for the inevitability of simple
real-valued probability, as has been done by some.

In light of this theorem, it is also not surprising that simple
real-valued probability theory continues to be unwittingly re-invented by
writers wishing to develop novel theories for reasoning with
"probabilities". Consider, for example, the MYCIN system and the
DEMPSTER-SHAFER theory. Both, unfortunately, refuse to distinguish
between analytic and synthetic reasoning—the authors bury general
statistical hypotheses into the inference rules. This has delayed a
satisfactory understanding of the properties of these systems.

[D. HECKERMAN 1986] shows that the inference rules of MYCIN can
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be translated into the language of ordinary probability theory. Once this is
done, however, the hidden statistical assumptions become evident. Under
this translation, HECKERMAN shows that MYCIN has shortcomings as a
modelling language for diagnostic situations in which there are three or
more alternative diagnoses.

Recently the DEMPSTER-SHAFER theory of evidential reasoning
has been shown by [E. KYBURG 1985] to be mathematically isomorphic to
a fragment of ordinary probability theory, though this is certainly not
evident in its original form [BUCHANAN and SHORTLIFFE 1984, pp.272-294].
(More precisely, KYBURG shows that the DEMPSTER-SHAFER theory can be
simulated by the algebra of convex real-valued probability assignments.)

IV SYNTHETIC REASONING: JUDGING COMPETING HYPOTHESES
One form of synthetic reasoning is the process of inventing, and
judging hypothetical models against empirical fact. (Each model is, itself,
a collection of individual hypotheses.) Each hypothetical model must be
consistent with the facts and other firmly held beliefs. The set of possible
hypothetical models is, however, invariably a competitive one—they are
inconsistent among themselves.
Any hypothetical model is unavoidably the child of two parents: an
a priori set of modelling assumptions, and the relevant empirical
evidence. Synthetic reasoning, more so than analysis, is sensitive to a
reasoner's goals, and values. Some of these a priori components of this
kind of synthetic reasoning are—
(@) A language for analytic reasoning, a logic.
(b) A set of competitive models (perhaps with initial preferences).
(c) A method of using empirical evidence and a priori rules to assign
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preferences.

(d) A decision rule that turns preferences into commitments: either
actions or decisions to accept certain hypotheses ( [J. W. TUKEY
1960] is very clear about this distinction.)

Several normative recipes exist that flesh out this skeleton in very

convincing ways. Here are two broadly sketched recipes—

A Typical A Typical
Hypothetico-Deductive Bayesian Recipe
Recipe

{a) Logic Classical Logic Real-valued Probability

(b) Prior None, other than admitting Use the Maximum Entropy

Probabilities a hypothetical model as worthy Principle, if possible.
of consideration.

(c) Evaluation Reject models whose hypotheses Apply Bayes-Laplace Rule to
or predictions disagree with the obtain posterior probabilities.
data. Rank the remaining ones using
Occam's Razor, symmetry, or some
other rule-of-thumb—each one is
invariably imperfect.

(d) Decisions Often avoided, unless one model Choose a numerical subjective

has clearly ranked very highly utility function. Make the decision
according to some heuristic. that maximises subjective expected
utility.

The Bayesian recipe is normative, but it has been in vogue with
economists, for instance, as a description of individual economic

behaviour in society. Psychologists, however, now seriously question the
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wisdom of adopting untested normative theories as scientific models.
[KAHNEMAN & TVERSKY 1982], in particular, show that people do not
maximise a simple subjective expected utility; that they often ignore prior
distributions; that if a utility function exists it probably isn't representable
as a single number; that people seek to maximize certain gain and not
long-run mathematical expectation; and so on.

By why stop here at dismantling the normative theory of Bayesian
statistics? The existence of mathematically consistent non-numerical
probabilistic logics challenges even the choice of logic. In fact once you
strip away the a priori conventions about logic there is little left to
distinguish Bayesian statistics from the hypothetico-deductive method, as
the example below will demonstrate.

The remaining skeleton offers no normative guidance, nor does it
have any testable empirical content. But it is for this very reason that |
believe this skeleton suggests a disciplined and unprejudiced way of
presenting any competence theory of synthetic reasoning for judging
competing hypothetical models.

It is easy to see how different ways of fleshing it out can be used to
reduce both modelling effort and computational costs, at the expense of
reduced precision. The Bayesian apparatus can be still be operated, in
the main, with a foreign probabilistic logic. Consider, for example
modelling coin tossing as a Bernoulli process with the non-numerical
probabilities defined in Example 4, namely: 0, ..., L2, L1, 10 -1, . 1.
Assuming equal prior probabilities for the hypotheses (let's say they all
have prior probability p), we calculate the joint probability that "the
probability of heads is LX " & "we see m heads and n tails" to be—

(LM (LK) p = min( LK, L )-p for m=1 and n>1.
These results are (only infinitesimally) better than would be obtained by
the hypothetico-deductive method—there we could only rule out the
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hypothesis that heads were impossible as soon as we saw a head, and
the hypothesis that tails were impossible as soon as we saw a tail. In
exchange for the crudeness, however, we find nothing to stop us from
assigning equal prior probabilities (since they do not add)—a common
stumbling block in the traditional Bayesian approach. And we need not be
very concerned about reconciling observed numerical frequencies with
these probabilities since there is no correspondence; these probabilities
reflect a reasoner's propositional attitudes and not objectively measurable

quantities.

V SYNTHETIC REASONING: PLAUSIBLE INFERENCE

The approach to synthetic reasoning that | have just described
respects the conventional division between analysis and synthesis
established by philosophers. There is another kind of synthetic reasoning,
I will call it synthetic inference, that shares a lot in common with analytic
inference; both are concerned with making and justifying inferences from
a fixed set of beliefs (hypotheses). Unlike the previous kind of synthetic
reasoning, this kind is characterised by the fact that all inferences are
consistent with each other and with the fixed set of beliefs. We begin this
discussion by reviewing JOHNSON-LAIRD's theory of inference.

JOHNSON-LAIRD's work suggests that there is only one
psychological mechanism for doing inference, and that this mechanism
doesn't use symbolic-mechanical rules of inference such as modus
ponens. In short it is a theory of "inference without proof theory". We must
therefore also explain, what impact, if any, this has on our claims
concerning probabilistic logics.

JOHNSON-LAIRD's performance theory, you will recall, is a
description of how people convince themselves to accept a conclusion.
Though this theory was initially developed to account for the mistakes
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people regularly make when evaluating syllogisms (an analytic form of
reasoning), there is nothing to stop us, and in fact the law of parsimony
encourages us, to hypothesize that the same mechanism is used for
evaluating all kinds of inferences, both synthetic and analytic without
distinction.

Consider the counterfactual "If today were Sunday, then | couldn't
go to the bank". JOHNSON-LAIRD's theory explains how people form an
opinion about this statement—the process is the same as the one people
use to understand the more straighforward sentence: "If today were
Sunday, then it wouldn't be a weekday.”" Recall that the first step is to
consider "mental models" or situations in which "today is not Sunday",
and the next step is to check to see if "the bank is open" in any of these
situations. But of course the opinion formed as a result of these tests
depends critically on the set of situations which were considered.

If a mathematically exhaustive set of situations is examined then
one reaches an opinion about "If today were Sunday then | couldn't go to
the bank" that is sound according the standards of analytic logic. If, for
instance, | happened to be alert and in a contrary mood, it may cross my
mind to consider a situation where | am in China (where | assume some
banks are open on Sundays). The conclusion "l can't go to the bank" is,
therefore, not an incontestable consequence of the antecedent "If today
were Sunday."

If, however, only a set of familiar situations is examined then one
reaches an opinion that may not be incontestable. This opinion may,
however, be very useful. Suppose | only considered situations where |
found myself in Canada; | may have excluded situations involving other
countries as irrelevant, or | may have not even thought of such situations
in the first place. In this case | would conclude that the counterfactual "If

today were Sunday then | couldn't go to the bank" makes a lot of sense.
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To exclude situations consciously | must have had in mind an additional
unstated premise that | did not make explicit—so this is a case of
reasoning from further known, but unstated, premises. If challenged |
would mention them to justify my inference. On the other hand it is also
very likely that | unconsciously ignored some potentially relevant
situations.

Thus, according to the JOHNSON-LAIRD theory, the difference
between synthetic inference and analytic inference depends entirely on
the set of situations that are used to form an opinion about the conclusion.
A person's confidence in her opinion depends on her confidence that she
has thoroughly searched the appropriate set of possible situations. (Of
course, in everyday life, there is little demand for doing meticulous
searches.) Thus, according to the JOHNSON-LAIRD theory, there is only one
way that all inferences get judged, and only the collection of situations
that were used varies in each instance. Under this view there is no
difference between analytic and synthetic inference, only a difference in
the care with which conclusions are tested.

Logicians call this a "model-theoretic" approach to inference. It can
dispense with a rigid formal calculus for expressing hypotheses,
conclusions, and the proof theory that connects them. All that is required
is a mechanism for generating imaginary situations, and a procedure that
tests whether various "statements" hold in these situations. These
"statements" need not have a meticulously regulated internal structure; all
that is important is having the ability to judge if a "statement" holds in a
situation. This is "inference without proof theory".

"Inference without proof theory" is a very attractive psychological
theory of reasoning. This theory does not require a commitment to any
single formal symbolic calculus of logic—in fact it can test the inferences

of any formal calculus for which the collection of situations constitutes an
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appropriate set of "models" for this calculus (in the logician's sense). The
proof theoretic approach, on the other hand, demands careful attention to
specific rules of well-formedness for expressions (since their internal
structure will be examined and manipulated), and to specific mechanical
inference rules. This, compared to the requirements of "inference without
proof theory", seems to call for a lot of additional mental machinery—and
we still require all the machinery of the model-theoretic approach in order
to realise the semantic associations between our symbols and our
experiences of reality.

How does this affect the status of the claim that probabilistic logic
is a competence theory of analytic reasoning? First, observe that the set of
situations actually used to test an inference may be characterised by a
set of logical sentences; these sentences are may be called "implicit"
hypotheses. Hence, for the purposes of specifying a competence theory
of synthetic inference we can choose either the model-theoretic
description that uses a restricted set of models (JOHNSON-LAIRD), or a
proof-theoretic description that invokes "implicit" hypotheses. If all
situations are tested (no restrictions), then this is equivalent to no "implicit"
hypotheses, both of which represent the special case of analytic
inference. Thus there is no inconsistency between the two approaches as
long as we restrict ourselves to competence theory. We have, instead, two
different and valuable ways of looking at the same thing—one way
provides more details about the implementation in people (a performance
theory), the other way can help us understand the general principles used
to generate the test situations.
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VI CONCLUSIONS

This approach to probability theory is mathematically unusual
because it is non-additive. Probabilities are not merely numbers. These
appear to be necessary properties of any theory that attempts to account
for the probabilities that appear in English.

Is a knowledge of probabilities prewired? Or, if it is learned, are
there significant variations between people or cultures?

But merely observing uniformity in the use of probabilities by
different people still does not give conclusive evidence of their
psychological "reality” as part of a deeper language of thought. Though
probabilities are real features of English, perhaps they are just surface
reports on the results of some more quantitative estimates of the relative
sizes of sets of imaginary situations, estimates that are carried out in some
speechless corner of the mind.

Obviously an important motivation for describing people's
competence at analytic reasoning, aside from the scientific one, is to use
this understanding to build better, more natural, formal representations of
people's knowledge. If we do not try to build machines that reason like us,
aiming instead, | suppose, for "better" artificial intelligences, | do not see
how we can trust ourselves to understand what these machines will be
doing except in an idealistic sense.

Declarative descriptions of machines are usually better than
non-declarative ones. But what's the good of a declarative description (of
some machine) that is phrased in an unintuitive logic? Our natural habits
of mind determine how we will understand these descriptions. It is cold
comfort if they are only understood by logicians and philosophers—and
even they cannot avoid slipping into natural ways of reasoning and
thinking. Logics that do not conform to our natural mental habits make the
task of understanding and verifying declarative descriptions based on
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them all that much harder and error-prone.
| hope, finally, that | have succeeded in showing that even the

study of logic can benefit from empirical input sometimes.
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