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1. Introduction

As symbolic computation systems have evolved, one of the major factors in
their evolution has been the expansion of the domain of computation. Exact
computation with integers and rationals has been available since the advent of
symbolic computation, as well as computation with polynomials and rational
functions over these domains. Recently there has been a lot of work on
expanding the domain of computation of various symbolic computation systems
to include algebraic numbers. Algebraic numbers arise in the solutions of
equations and in integration problems, so it is quite natural to want to be able
to handle them in a consistent manner.

This thesis describes the principles behind, and the algorithms used in an
implementation of an algebraic number and algebraic function package in the
Maple algebra system (3).

The algorithms are presented in a pseudo-language similar to Maple. The
extension from algebraic numbers to algebraic functions is seen to be quite easy
and increases the usefulness considerably.
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Algebraic Numbers and Functions

An algebraic number is a root of a univariate polynomial over the rationals
(or integers). Examples are 212 313 £ 53/12/3) and o where
o+ B+ o + 5 = 0. Note that, in the last example, o cannot be expressed in
terms of radicals, and that the symbol, a, can be any of the five roots of the
polynomial, just as 21/2 can be 1.4142... or —1.4142....

An algebraic function is a root of a multivariate polynomial over the
rationals (or integers). Examples are x/2, (2x!/3 4 y/5)3/7 or o where
O+ Jc)afs +yo? +0?+y*+x=0. Note that, as in the example for
algebraic numbers, o cannot be expressed in terms of radicals and stands for
any one of the five roots of the equation.

Throughout this thesis, with the exception of Chapter Seven, no specific
value is associated with any algebraic number or function.

Previous Work

Before the advent of computer algebra systems, any work done concerning
computation in algebraic fields was purely theoretical. Because of the
complexity of even simple operations, it was essentially impossible to apply any
of the theory to solving concrete problems. In spite of this, algorithms were
developed for various operations involving algebraic numbers: in particular,
algebraic polynomial factorisation. Van der Waerden (15) and Kronecker (7)
are important references for this.

Since computer algebra systems have come into use, much emphasis has
been placed on developing efficient and easily implementable algorithms for
computation with algebraic numbers. Loos (11) gives one of the first
comprehensive presentations of algorithms for computation in algebraic number
fields. He assumes, however, that the algebraic number fields are represented
by simple algebraic extensions of the rationals, resorting to the use of primitive
elements in order to do calculations in multiple extensions. In Chapter Two a
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serious problem with this method is pointed out.

Abbott et al. (1) give a description of an algebraic number package which
has been implemented in REDUCE. The implementation is based on the use of
multiple algebraic extensions instead of primitive elements, and their tests
indicate that this is, in general, an efficient method. It seems that they have a
complete, functional implementation, although there is little mention of the
possibility of extending their system to algebraic functions, as is described in this
thesis. Also, they only give a description of the system, without any of the
details of the implementation. In particular, no algorithms are given.

Kronecker (7) is probably the first reference on factorisation of polynomials
" over an algebraic extension field. Van der Waerden (15) also discusses this,
and Trager (14) gives a complete algorithmic presentation. The algorithm
presented by Trager has been implemented in a number of computer algebra
systems, and has proven to be useful, although it is often quite slow due to the
difficult integer polynomial factorisations which have to be done. Landau (8)
presents a complexity analysis of Trager’s algorithm, with the conclusion that it
is a polynomial time algorithm. However, this analysis is based on the
assumption that algebraic polynomial greatest common divisors can be computed
in polynomial time, an assumption which is not substantiated anywhere in the
literature. This assumption is based on the fact that integer polynomial GCDs
can be calculated in polynomial time. However, since computing algebraic
polynomial GCDs involves the computation of algebraic number inverses, an
operation which is very expensive and normally results in large expression
growth, it is not clear that this assumption is true. Certainly more work is
needed on the analysis of algorithms using algebraic numbers. Smedley (13)
presents coefficient growth bounds for the standard operations on univariate
polynomials over a simple algebraic extension field, but he draws no conclusions
about the tightness of his bound for the norm of the result of an algebraic
polynomial GCD operation.
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The problem of efficient factorisation of polynomials over an algebraic
number field has attracted much attention. In particular, besides the algorithm
presented by Trager (14), Wang (16) and Weinberger & Rothschild (17) present
modular algorithms. This approach has difficulty, as mentioned in Abbott et al.
(1), when the minimal polynomial factors modulo every prime — as in the case
of x* — 1. Wang mentions that his algorithm resorts to Trager’s algorithm in
these cases.

Lenstra (9, 10) gives two versions of an algorithm based on short vectors in
lattices. A comparison of Lenstra’s and Trager’s algorithms in Abbott et al.
(1) is inconclusive as to which would perform better in general. It may be that a
hybrid algorithm would be best for this problem; but in any case much more
investigation is required.

Overview

Chapter Two includes most of the mathematical background needed for an
understanding of the thesis. References are given where a more detailed
discussion of some of the more complicated concepts can be found.

Chapter Three gives definitions for canonical forms for algebraic numbers
and functions, and an algorithm to put an algebraic number or function in
canonical form.

In Chapter Four the algorithms for the basic operations on elements of an
algebraic field are presented.

The algorithms for the basic polynomial operations — quotient, remainder
and greatest common denominator — are given in Chapter Five, and
polynomial factorisation is discussed in Chapter Six. Both of these chapters
discuss the case of univariate polynomials in detail, and indicate how this can be
extended to the multivariate case.
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Chapter Seven presents and application of computation in algebraic fields.
An algorithm for simplification of expressions involving radicals is given which
makes extensive use of the algorithms for computation in algebraic fields.

Chapter Eight has some concluding remarks and suggestions for future
work.



2. Mathematical Background

This chapter gives most of the mathematical background necessary for an
understanding of the thesis, with references given for more detail on certain
subjects. The notation and definitions used throughout the thesis are presented
here. A basic knowledge of algebra is assumed, including rings and fields.

Basic Definitions

The following definitions can be found in Hungerford (5), or van der
Waerden (15).
Polynomial Rings

The ring of polynomials over the field, K, in the variables xq, - - -, x,,, is
denoted by K{x;, * - -, x,].
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Rational Function Fields

The field of rational functions over the field, K, in the variables
X1, * * ° » X, is denoted by K(xy, * -+, x,).

Extension Fields

If F and G are fields, and F C G as a subfield, then G is called an
extension field of F.

Algebraic

If G is an extension field of F, and a ¢ G, then « is algebraic over F if

there exists a polynomial f(x) € F[x] such that f(a) = 0. Note that elements of
F are also algebraic over F.

Minimal Polynomial

If « is algebraic over a field, F, then f(x) € F[x] is the minimal polynomial
of o over F if f(a) = 0; f is monic; and if, V g(x) € F[x] such that g(a) = 0,
f divides g. Under this definition the minimal polynomial is unique. See
Hungerford (5) for a proof.

Note that in this definition the requirement that a minimal polynomial be
monic is only there to ensure uniqueness. All of the theory is also valid with
non-monic minimal polynomials. We will see, however, that it is also beneficial
from an efficiency standpoint to have minimal polynomials monic.
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Simple Algebraic Extension Field

If « is algebraic over a field, F, then F(a) is a simple algebraic extension
of F. It is the smallest field containing both F and o

Multiple Algebraic Extension Field

I o, ,aq, are algebraic over F, then F(qy, * - * , ¢,) is a multiple
algebraic extension of F. It is the smallest field containing F and oy, * - - , o,.
Algebraic Number

If « is algebraic over the rationals then it is an algebraic number. Note
that rationals are also algebraic numbers.

Algebraic Function

If « is algebraic over Q(xy, * * * , x,,), for some variables xq, - * * , x,,, then
o is an algebraic function in the variables xy, - - - , x,,. Note that algebraic

numbers and rationals are also algebraic functions.

Algebraic Number Field

A field extension of the rationals which contains only algebraic numbers is
called an algebraic number field. ‘

Algebraic Function Field

A field extension of Q(x;, ' - -, x,) which contains only algebraic
functions in the variables x;, - - - , x,, is called an algebraic function field in the

variables X1, * * * 5 Xpy-
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Algebraic Field

The term Algebraic Field is used to refer to either an algebraic number
field or an algebraic function field.

Multiple Extensions vs. Primitive Elements

When it is desired to compute in a multiple algebraic extension field,
Q(oq, - * * , ), one has the choice of doing the computations in the multiple
extension directly (as presented in this thesis and in Abbott et al. (1) ) or
computing a primitive element, ~YeQ(xy, ‘', o), such that
() =0(», - -,o) and then doing the computations in the simple

algebraic extension Q(v). This is the approach advocated in Loos (11), and
there has been considerable discussion as to which method is better. We present
here an argument for the use of multiple extensions.

Suppose we want to compute in Q(\/E, \/2-3-, \/g, '\/’7). Under the
multiple  extension approach, the field would be defined by
[x —2,x% —3,x% —5,x¢ — 7], and /2 would be represented by x;, '\/gby
X7, Vs by x3, and V7 by x4. Under the primitive element approach, a

primitive element would be found such that Q(v) = 2(V2, V3, V5, V7).
One such element is:

~ where 46225~5596840+%+ 13950764~4—7453176~5+1513334~8
—14191241946476~12-136~144+~16 = 0

In this representation:

\/7 1000302037y _ 476300150947 | 1547095997y° _ 15723601917
~ 7 63406080 105676800 63406080 317030400
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5894795+° 67209014 4 62792 10374
12681216 ~ 317030400 ' 1409024 317030400

\/5 _ 48197780729 2314485927131° _ 385742234501y | 796431711797
T 2493972480 4156620800 12469862400 12469862400

_ 7531157647° | 3452352414 24229174 53521410
12469862400 12469862400 ~ 4156620800 © 12469862400

/5 _ _ 37112819933y 135356339947y°  41565980041y° | 41545500733+’
T 1496383488 2493972480 1496383488 7481917440

_ 774253511%° 4 176168243~ 82107+ 2715141
1496383488 ' 7481917440 166264832 ' 7481917440

and

\/7 _ 12200206607y _ 67424441651 | 713105314617 _ 3626646037+
~ 7 415662080 1039155200 2078310400 519577600

136445363777 6241559411

_ 131297142 15141
2078310400 207831040

2078310400 32473600

+

Under the multiple extension method, if we have expressions involving the
square roots and perform operations with them within the field, then the
structure of the results in terms of '\/5, '\/2-5-, \/5_, and \/'_7- is immediately
obvious. However, when using a primitive element, it is impossible, for
example, to tell that an expression such as:

46886083 12790042172  20661441531*  1127914157+°
4349952 28999680 217497600 434995200

1169038  5815669~10

_ 21071~12 947~14
424800 434995200

72499200 434995200

+ +

is, in fact, 2V2 V3 + V5 V7. Under the multiple extension approach, this
would be represented by 2x1x; + x3x4.
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Thus we see that, when using primitive elements, much useful information
is lost, and, in general, the results of computations are essentially useless.
Because of this the primitive element approach was abandoned in favour of the
use of multiple extensions. It is still uncertain which method is more efficient,
but the multiple extension method is certainly more useful, and it is doubtful
that there is an appreciable difference in the efficiency of the two methods. We
have have implemented both methods, and no large differences in efficiency
have been noticed.

Representation of Algebraic Fields

Polynomial Quotient Field

If K is a field and f e K[x], then K[x]/(f) denotes the ring of
polynomials, K[x], modulo the polynomial f. If f is irreducible over X then
K[x]/ (f) is a field.

Isomorphism Theorem

If K is a field; o is algebraic over K; and f(x) € K[x] is the minimal
polynomial for « over K, then:

K(o) =K[x]/(f)
and each element of K(¢) can be uniquely represented in the form
ag+ax + -+ a,,_lx"“1 where n = degree(f, x) and

g ekK,i=0,...,n-1

For a proof of the above and a more detailed discussion of algebraic field
theory see Hungerford (5).
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Extended Isomorphism Theorem

The previous isomorphism theorem tells us that the elements of a simple
algebraic extension field can be represented by univariate polynomials over the
field modulo the minimal polynomial. However, we would like to do
computations in multiple extensions, so we must extend the above theorem.

Suppose K is a field; o is algebraic over K; G = K(); and § is algebraic
over G. Then G(8) = K(c, B). Also suppose that f,(x) € K[x] is the minimal
polynomial for a over K, and f4(y) € G[y] is the minimal polynomial for # over

G. Then, from the previous isomorphism theorem, we know that
G =K|[x]/(f,) and G(B) = G[y] / (f5)- Thus we have:

K(a, B) = G(B) =K(9)y]/ (fp)
or equivalently:

K(a, B) = (KIx1/ (D D1/ (Fp)

We write this:
K[x, y]/[fa’fﬂ]

In general, if X is a field; oy, -+ -, o, are algebraic -over K; and
fi(x) e K(eq, * * +, o5_p[x;] is the minimal polynomial for o; over
K(CZI, c vt Ol‘-_l), then:

K(aq, "+, o) =K[xg, - - ’xn]/[fl’ “ s ful

Note that the right hand side is just a shorthand notation and can be
expanded as in the above example for a double extension.
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We also know that each element of K(oy, - -, o) can be uniquely

represented by p(x, =5 xp) €K[xg, - 0, ] where
degree(p, x;) < degree(f;, x;), i=1, - - - |n.

Representation

From the preceding sections we see that the elements of a simple algebraic
extension of a field can be represented by univariate polynomials over the field,
and that extending this to multiple field extensions is a simple matter of
applying the above concept recursively. Thus we can represent the elements of
a multiple algebraic extension by multivariate polynomials over the base field.

In order to do computations in an algebraic field, we need information
about the structure of the field. This information is carried in the minimal
polynomials. Thus a simple algebraic extension field is given by the minimal
polynomial, and a multiple extension is defined by a list of minimal
polynomials, ordered so that f; is the minimal polynomial for o; over

K(al’ Tt T ai—l)'

All of the algorithms presented in this thesis use the same representation for
an algebraic extension field. There is a single parameter — usually called
Extension — which defines the extension. It is a list of three items: the first is
the number of algebraics in the extension; the second is the names of the
variables used; and the third gives the minimal polynomials. Thus if the
following assignments are made:
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n := Extension[1];
alg := Extemsion[2];
f := Extension{3];

Then f;(alg;) for i=1, - - + ,n are the minimal polynomials for the extension.

Example 1

033, 517 (31/3 4 $3/T)1/3)
is defined by

[ —3,%] =5, % —x —x3]

and

32/3 _ 55/7 + (31/3 + 53/7)2/3
is represented by

x12 -fxzs +x32

Example 2

QY3 215, (213 4 3517y
is defined by
[’xl3 _y’xZS —Z,X37 —211 —X23]

and
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Y13 4 25 4 (2y1/3 4 3/5)3/7
is represented by

x1+x22+x3?

Efficiency Considerations

If o is algebraic over a field K, its minimal polynomial over X is unique;
however, the actual field K(o) does not have a unique representation. For
example, Q('\/z) = Q(S\/E). We can take advantage of this fact to try to
improve the efficiency of algebraic computations by choosing a representation
for the field (that is, a list of minimal polynomials) which leads to efficient
computation.

A minimal polynomial for an algebraic number is a polynomial over the
rationals. Since computation with integers is typically faster than with rationals,
it would be desirable to have a minimal polynomial with integer coefficients.
Thus, if we want to compute with o where the minimal polynomial is f(x),
which is monic in x and has non-integer coefficients, we do the following:

i) Choose r € Z such that rf(x) has only integer coefficients.
ii) Let g(x) = r"f(x/r) where n = degree(f, x).

Then g(ra) = 0, g has only integer coefficients, and g is monic in x. Thus
we use g as the minimal polynomial and do the computation in Q(ra) instead

of 0(a).

Note that we could have used r-f(x) as thé minimal polynomial even
though it is not monic.t However, since the main computation done with a

+ Recall that the requirement in the definition that the minimal polynomial be monic is only
there to ensure that it is unique.
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minimal polynomial is remaindering modulo this polynomial, it is extremely
advantageous to ensure that minimal polynomials are monic.

If we are dealing with algebraic functions, the minimal polynomials are
multivariate polynomials with multivariate rational function coefficients. As
before it is desirable to have minimal polynomials which are monic integer
polynomials; in this case we can perform a transformation similar to those done
with algebraic numbers to improve the efficiency of the computations.

Synopsis

Algebraic numbers are represented by multivariate polynomials over the
rationals. Algebraic functions are represented by multivariate polynomials
whose coefficients are rational functions in the variables of the algebraic
functions. An algebraic field is given by a list of multivariate polynomials over
the integers, ordered so that f; is the minimal polynomial for o; over

K(oq, * -+, 1), where K is the base field — either the rationals, or a

rational function field over the rationals.
Norms

Definitions

Let o be algebraic over a field K; f(x) € K[x] be the minimal polynomial
for o over K; and G D K(«) be a field containing all the roots of f. Let
n = degree(f, x); o=oq, * * * , a, € G be all of the roots of f; and § € K (o),
which is represented by a polynomial p(x) € K[x]. Then define

Normy .y x(B) = _ﬁlp (o)
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If 801 ) e K@y, - v -, il is represented by
g'(x,y1> * s ) € Kixlyy, - - 5 yi), then also define,

n
Normgoy/k(8) = I18'(e%, y1, = = * > m)
=1

If it is clear which extension field is implied, the subscript K(a)/K may be
omitted from the notation.

Important Properties

Norm(A-B) = Norm(A) Norm(B)

B € K(a) = Normg(,)/k(B) € K

g €K(a)yy, -+ 5yl = Normg(ay/k(8) € Ky1, - - -, ]
Under the definitions above,

Normg,)/x(B) = resultant,(f(x), p(x))

Normgo)/x(8) = resultanty(f(x), 8'(x, 1, * * * 5 ¥&))

where resultant, (f1(x), f2(x)) is the resultant of f; and f, taken with respect to

X.
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Some Theorems

The following theorems are from Trager (14). They are also discussed in
detail in Kronecker (7) and in van der Waerden (15).

Let a be algebraic over a field K, with minimal polynomial f(x) € K[x].
Let p(y) € K(a)[y] be represented by the polynomial p’(x, y) € K[x, y]. Let
P(y) = Normgy/x(p(»)) € K[y].

1) If p(y) is square-free, there exist only a finite number of s¢ K such that
Normgqy/k(P(y — sa)) is not square-free, and a bound on the number of

s € K such that the norm is not square-free can be calculated.

k
2) 1If P(y) is square-free, and [[P;(y) is a complete factorisation of P over K,

a1
then:

k

Hng(p(y)9 Pt(y))

im1

is a complete factorisation of p(y) over K(a), where the GCD is done in

k(o))

Use in Algebraic Polynomial Factorisation

Using the two theorems from the previous subsection, it is possible to
develop an algorithm for factorisation of square-free polynomials over a simple
algebraic extension of the rationals: first a transformation is found which makes
the norm of the polynomial to be factored square-free; then this norm is
factored over the base field (the rationals); the factors are lifted back to the
algebraic extension field using algebraic polynomial greatest common divisors;
and finally the transformation is undone to get the factors of the original
polynomial.
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This algorithm, along with an extension to deal with multiple algebraic
extensions and algebraic functions, are discussed in detail in Chapter Six.



3. Canonical Forms

Before we can even discuss computation with elements of an algebraic field,
we should have some concept of a canonical form for elements of the field.
This allows us to recognise zero, elements of the base field, and makes it easy to
determine equivalence of two field elements.

Algebraic Numbers

If we are dealing only with algebraic numbers, and not with algebraic
functions, then the definition of canonical form is as follows:

If oq, -, ®, are algebraic numbers; ve Q(, * -, a,), which is
represented in Q[y;, * -+, yu]; and fi(y1, - * * , y;) is the minimal polynomial
for o over Q(oq, -, ai__l);' then ~ 1is in canonical form if
degree(7, y;) < degree(fi, y;), i=1, + - - ,n, and the coefficients of the y; in ~,

rational numbers, are in lowest terms.

In Chapter Two we saw that every element of an algebraic number field has
as a unique representation as above, so this is a canonical form.

20
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Algebraic Functions

The definition for the canonical form in an algebraic function field is
essentially the same as for algebraic numbers, except that the ground field is

Q(xy, * * * , xy) instead of Q, where the x; are the variables in the algebraic
functions.
If o, ", o, are algebraic functions in the varables xj, : * -, xp,;

K=0(x1, " »xp); "Ye¢K(vyq, - ',a), which 1is represented in
K[y1, * * ' »¥a)s and fi(yy, * -+, y;) is the minimal polynomial for o; over
K(aq, * ** 5 %_1); then ~ is in canonical form if
degree (7, y;) < degree(f;, y;), i=1, - - - ,n, and the coefficients of the y; in ~
(elements of K) are in canonical form.

As in the case of algebraic numbers, we saw in Chapter Two that this is a
canonical form.

Canonical Form Algorithm

Given an arbitrary rational function v e Q(xy, - - * , xp)(0q, * * 5, ),
and the minimal polynomials defining an algebraic field, [fy, * - -, f,], we

want to be able to put v in canonical form in the algebraic field. The following
is an algorithm to do this:
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alg canonical(g, Extension)
g := normal(g);

numer := numerator(g);

denom := denominator(g);

numer := reduce_degree(numer, Extension);

denom := reduce_degree(denom, Extension);

denom_inv := alg inverse(denom, Extension);

result := reduce_degree(numer*denom_inv, Extension);
return(result);

First the expression is put in normal form as a rational function in the x;
and o;. Then the algorithm simply splits the input into its numerator and

denominator, which are polynomials; puts them in canonical form in the
extension with the algorithm reduce_degree; computes the inverse of the
denominator; and then returns the product of the numerator and the inverse of
the denominator in canonical form. An algorithm for computing the inverse is
presented in Chapter Four.

The following algorithm, reduce_degree, puts an expression which is a
polynomial in the algebraic elements in canonical form. In this case all that is
required is reduction of the expression modulo the minimal polynomials, and
putting the coefficients in canonical form in the base field. This algorithm is
used instead of alg_canonical whenever it is known that the expression to be put
in canonical form is a polynomial in the variables representing the algebraics.
That is, when it is known that the denominator of the expression contains no
algebraics.
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reduce_degree(p, Extension)
n := Extension[1];
alg := Extension[2];
f := Extension[3];
result = p;
for 1 from n by -1 to 1 do

result := remainder(result, f,, alg,)
enddo;
result := canonical _coeffs(result, alg);
return(result);

The function canonical_coeffs puts the coefficients of result, taken as a
polynomial in the alg;, in canonical form.

The algorithm iteratively reduces the degree of the expression with respect
to each of the minimal polynomials by taking remainders. Although the
expressions are multivariate polynomials, the remainders are true remainders,
and not just pseudo-remainders, because the minimal polynomials are monic
with respect to the variable of division. Also, since f; does not involve alg; for

any j > i, division by f; does not increase the degree of the expression in alg;

for any j >i. Thus at the end of the algorithm we have the following two
properties:

degree(result, alg ;) < degree(f,, alg,), i=1, - - - ,n

n
p =result + 3¥,q;'f;  as multivariate polynomials
i=1
for some q;. We also know that the coefficients of result with respect to the
alg; are in canonical form. From this we see that result is in canonical form,

and result = p in the algebraic field, since f; = 0, i=1, * - - ,n in the field.
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Efficiency Considerations

In Chapter Four it is noted that the calculation of inverses is very slow, and
often leads to large expression swell. Because of this it is often desirable to use
an algorithm which does not give a canonical form, but does guarantee the
recognition of zero. The following algorithm, alg_normal, basically puts the
numerator and denominator in canonical form, but does not take the inverse of
the denominator. This results in a normal form, which guarantees zero
recognition.

alg_normal{(g, Extension)
g := normal(g);

numer := numerator(g);

denom := denominator(g);

numer := reduce_degree(numer, Extension);

denom := reduce_degree(denom, Extemnsion);

result := normal (numer/denom) ;
return(result);

The procedure normal in the above algorithm is a multivariate rational
function normalisation routine. It removes the greatest common divisor of the
numerator and denominator (as multivariate polynomials).

Use in Other Algorithms

Throughout this thesis, whenever the algorithm alg_canonical is mentioned,
it is implied that the algorithm of those mentioned in this section which is most
suited to the desired purpose is used. Also, whenever the algorithm is applied
to a polynomial over an algebraic field, it is implied that it is to be applied to
each of the coefficients individually.



4. Basic Operations

The basic arithmetic operations needed for computations in an algebraic
field are addition, subtraction, multiplication and division. Using the canonical
form algorithm of the previous chapter, we can assure that the operands are in
canonical form before the computation is done, so we only need worry about
doing the operations on algebraics which are in canonical form.

Addition and Subtraction

Addition and subtraction are done by performing the operation with the
multivariate polynomial representations and putting the coefficients in the result
in canonical form. In the case of algebraic numbers, the coefficients are just
rational numbers, and they are put in lowest terms. However, in an algebraic
function field the coefficients are rational functions, and putting them in
canonical from involves taking polynomial greatest common divisors. Since
adding or subtracting polynomials over a field cannot increase the degree of the
polynomials there is no need to reduce the degree.

25



4. Basic Operations 26

Multiplication

Multiplication of two algebraics is essentially the same as addition and
subtraction. The operation is performed on the multivariate polynomial
representations and then the result is put in canonical form. Since multiplication
can increase the degree, it may be necessary to reduce the result modulo the
minimal polynomials. Thus multiplication is achieved by multiplying the
polynomial representations and then using the algorithm, reduce_degree, of
Chapter Three to put the result in canonical form.

Inverses

Division of two algebraic field elements is achieved by computing the
inverse of the divisor, and then multiplying. Thus it is necessary that we be
able to compute inverses. The algorithm implemented in Maple is as follows:

alg inverse(a, Extension)
n := Extension[1];
alg := Extension[2];
f := Extension[3];
inverse = 1;
denom := a;
for i from n by -1 to 1 do
s := gedex(denom, f,, algi)[z];

numer := numerator(s);
denom := reduce_degree(denominator(s), Extension);
inverse := reduce_degree(inversexnumer, Extension);
enddo;
inverse := canonical_coeffs(inverse/denom, alg);

return(inverse);
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The inverse algorithm can also be implemented recursively, and this
presentation makes the method clearer.

recursive_alg inverse(a, Extension)
n := Extension{1];
if n=0 then
inverse := 1/a;
else
alg := Extension[2];
f := Extension[3];

new_Extension{1] := n-1;
new_Extension[2] := algi, i=1..n-1;
new_Extension[3] := £y, 1=1..0-1;
s := gedex(a, S algn)[z];
numer := numerator(s);
denom := reduce_degree(denominator(s), new_Extension);
denom_inverse = recursive_alg inverse(denom, new_Extension);
inverse := reduce_degree(numer*denom_inverse, Extension);
endif;
return(inverse);

The function gcdex(u, v, x) returns a list of length three, where the first
element is the greatest common divisor of ¥ and v, and the other two are the s
and r satisfying s‘u + tv = ged(u, v), such that degree(s, x) < degree(v, x)
and degree(t, x) < degree(u, x). Thus the s in the algorithm is a polynomial in

alg,, where the coefficients are rational functions in alg;, j=1, - - - ,n—1, such
that degree(s, alg,) < degree(f,, alg,) and s-a mod f, = 1. If this s is taken
as a rational function, the denominator involves only alg;, j=1, - - - ,n—1, and

not alg,, so the algorithm calls itself recursively to calculate the inverse of this

denominator in the smaller extension. When it is finally called with a trivial
extension, we know that the argument is an element of the base field, either
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the rationals, or a rational function field over the rationals. Then 1/a is
returned as the inverse. The result returned is a polynomial which is the product
of the inverses of the denominators, put in canonical form. It satisfies the
following property:

n
inverse:a = 1 + Y q;'f;

i=]1

for some g;, as multivariate polynomials. Since f; =0, i=1, - - - ,n in the
extension, inverse-a = 1, so inverse is the inverse of a in the algebraic field.

The iterative version does essentially the same thing, except that it is
inherently more efficient because it avoids the overhead involved in recursive
function calls.

Problems With Inverses

From the analysis by Smedley (13), we see that even in the case of a simple
algebraic extension of the rationals, the coefficient growth when computing
inverses can be quite unacceptable (exponential in the degree of the minimal
polynomial). Empirical observations show that the bound given is, in fact,
tight. When computing in multiple extensions, and in algebraic function fields,
the problem is even worse. Because of this it is often advantageous not to
compute inverses, and just use the symbolic expression 1/~ where we need the
inverse of 4. When doing this we get expressions of the form:

numer
denom

where numer and denom are elements of the algebraic field. As long as we keep
both numer and denom in canonical form, we are assured that we can detect
zero, although we do not have a unique representation for each element of the
field. This is a normal form.
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Some of the higher level algorithms use this approach, computing inverses
only when all other calculations have been completed. In many cases this
speeds up the computations considerably.



5. Basic Polynomial Operations

Once we can do the basic operations in an algebraic field, the natural thing
to want to do next are the basic operations on univariate polynomials: addition,
multiplication, quotient, remainder and greatest common divisor.

Addition and Multiplication

The only operations required to do addition or multiplication of
polynomials over an algebraic field are addition and multiplication of the field
elements. It would be possible to implement the algorithms the same as those
for polynomials over any field, with the arithmetic done in the algebraic field.
However, it is usually more efficient to from the sum or product completely, as
multivariate polynomials, before putting any of the algebraic field elements in
canonical form. This usually reduces the number of calls to the canonical form
algorithm required, resulting in a more efficient algorithm.
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Quotient-Remainder

Given two polynomials u, v € K[y], where K is a field, the quotient, g,
and the remainder, r, of u divided by v are defined by:

u=gq'v+r where degree(r,y) <degree(v,y)

The most natural way to implement a quotient-remainder algorithm over an
algebraic field would be to take the standard algorithm for division of
polynomials over the rationals from Knuth (6), and implement it with the
coefficient arithmetic done in the algebraic field. This, however, involves
repeated use of the canonical form algorithm given in Chapter Three, and is
very slow. It is possible to delay the reductions modulo the minimal
polynomials until the very end, speeding things up considerably, since there is
little difference in the size of the expressions involved in the two methods, and
the canonical form algorithm can be quite expensive. Thus we have the
following algorithm:

alg division(u, v, y, Extension)

lc_inverse := alg inverse(lcoeff(v, y), Extension);
v_monic := alg canonical(vxlc_inverse, Extension);
remainder := pseudo_remainder(u, v_monic, y);

quotient := pseudo_quotient(u, v.monic, )

remainder := alg canonical(remainder, Extension);

quotient := alg canonical(quotient*lc_inverse, Extension);

return([quotient, remainder]);
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Since v_monic is monic in the variable of division, the pseudo-remainder
and pseudo-quotient in the algorithm are, in fact, a real remainder and
quotient. Thus, before the final two statements of the algorithm, we have:

= quotient v lc_jnverse + remainder

as multivariate polynomials, with degree(remainder, y) < degree(v, y). Putting
the remainder in canonical form cannot increase its degree in y, so this degree
relationship still holds. Also, since the expressions for the quotient and
remainder represent the same polynomials whether they are in canonical form or
not, the equation above also remains true in the algebraic field after they are
put in canonical form. Thus the results returned are the true quotient and
remainder, in canonical form.

Greatest Common Divisor

The algorithm implemented for calculating the greatest common divisor of
two polynomials over an algebraic field is a version of the standard algorithm
for computing greatest common divisors in an Euclidean domain given in Knuth

(6).

alg ged(u, v, y, Extension)
if degree(u, y) < degree(v, y) then
swap(u, v)
endif;
r := alg canonical(pseudo_remainder(u, v, y), Extension);
while r <> O do
u = v;
v :=T;

r := alg canonical(pseudo_remainder(u, v, y), Extension);
enddo;

return(alg monic(v, y, Extension));
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The algorithm is the standard Euclidean algorithm, except that pseudo-
remainders are used instead of true remainders to avoid calculation of algebraic
inverses. Thus, the v computed at the end of the while loop is a constant in the
algebraic field times the true GCD. By making v monic we get the desired
result. This involves only one algebraic inverse calculation, which occurs when
making v monic. Hence it is much more efficient than calculating true
remainders at every stage, which involves O(n) inverse calculations, where n is
a bound on the degree of the polynomials. The savings are even larger since
the inverse calculations involved in calculating true remainders at every stage
tend to result in large intermediate expressions.

In certain cases it may not be necessary to make the GCD monic; for
example, when doing a square-free test, all that is required is the degree of the
GCD. In these cases a great saving can be realised by returning v without
making it monic.

Extension to Multivariate Polynomials

The preceding algorithms were given for univariate polynomials. Extensions
to multivariate polynomials are parallel to the extensions of the algorithms for
univariate rational polynomials to multivariate ones.

Addition and Multiplication

These algorithms are essentially the same for both univariate and
multivariate polynomials: form the sum or product and then put the coefficients
in canonical form.
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Quotient-Remainder

Since a true quotient-remainder operation cannot be performed in
K[x1, -, x,), where K is a field, a pseudo-division algorithm is needed. It

could be implemented essentially the same as for the univariate case, with only
minor changes needed to make it a pseudo-division. In particular, we cannot
calculate the inverse of the leading coefficient, as it is, in general, a polynomial,
and not an element of the base field.

Greatest Common Divisor

As in the case of division, only minor changes would be required to adapt
this algorithm from univariate polynomials to multivariate. The algorithm
would be the same as for multivariate polynomials over the rationals, with any
inverse calculations postponed for efficiency reasons.



6. Polynomial Factorisation

After the basic polynomial operations, one would like to be able to factor
polynomials over an algebraic field. This is, however, somewhat more
complicated, as we cannot simply adapt the algorithms for polynomials over the
integers or rationals as we could with the basic operations. We can use the
standard technique of transforming the problem to one we already know how to
do (in this case integer polynomial factorisation) and then lifting the results to
the required domain.

Square-Free Factorisation

The algorithm which is presented for factoring polynomials over an
algebraic field assumes that the polynomial to be factored is square-free. Thus
we require an algorithm for square-free factorisation of polynomials over an
algebraic field. The simplest way to implement such an algorithm is to modify
one of the standard algorithms for square-free factorisation of polynomials over
the rationals. For example, one of the algorithms from Yun (18) can be
adapted so that the polynomial operations are done using the algorithms from
the previous chapter for polynomials over an algebraic field.
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Algorithm

The following algorithm, which factors a square-free univariate polynomial
over an algebraic extension, is based on the theorems involving norms presented
in the section on mathematical background. It works for both simple and
multiple algebraic extension fields, with the only differences being in the routine
map_to_Q. This routine is discussed later. Also, when factoring over an
algebraic function field, after the polynomial is mapped to the base field, the
polynomial to be factored has coefficients which are rational functions in the
variables of the algebraic functions. In order to factor this polynomial we first
multiply it by the least common multiple of the denominators of the coefficients,
resulting in a polynomial over the rationals. This polynomial can be factored
with any standard algorithm. At the end we divide by this factor to get the
required factorisation.

alg factor(p, x, Extemsion)

[P, transformation] := map_to.Q(p, x, Extension);

L := factor(P) #over the rationals

if no_of_factors(L) = 1 then
return(p)

else
p-trans := alg_canonical(subs(transformation, p), Extension);
for i from 1 to no_of_factors(L) do

f[1] := alg ged(p_trans, L[1], x, Extension);

f{1] := undo(transformation, f[i]);

f[1] := alg canonical(f[i], Extension);
enddo;

endif;
return(f);
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The algorithm is quite simple. First, a transformation is found which
makes the norm of the polynomial to be factored square-free, and the norm, P,
is calculated; then this norm is factored over the base field (the rationals or a
rational function field over the rationals); the factors, L[i], are lifted back to
the algebraic extension field using algebraic polynomial greatest common
divisors; and finally the transformation is undone to get the factors, f[i], of the
original polynomial. Note that, whenever a substitution is done with an
algebraic quantity, the result must be put in canonical form in the extension
field, since the result of the substitution may no longer be in canonical form.

Simple Extension Fields

In the case of a simple algebraic extension, the routine map_to_Q is exactly
the routine sqfr_norm presented in Trager (14).

map_to_Q(p, x, Extension)
#We know that Extemsion[1]=1 since this is a simple extension
alg := Extension[2];
f := Extension[3];

8 = -1;
repeat
g8 ;=8 + 1;
trans = X - s*alg;
g := alg canonical(subs(x=trans, p), Extension);

r := resultant(g, 1, algl);
until ged(r, diff(r, x) = 1;
return([r, x = transl);
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Multiple Extension Fields

The most obvious way to implement the map_to_Q algorithm for multiple
algebraic extension fields would be to use the method for simple extensions
iteratively. That is, if we want to map g(y) e Q(oq, - ', a,)[y] to a

polynomial over the rationals, we let K = Q(oy, * -+, o,_1) and use the same
method as for simple extensions to map g(y) € K(o,)[y] to K[y]. Then we

repeat this for each of the other algebraics in the multiple extension. The
algorithm would be as follows:

map_to_Q(p, x, Extension)
n := Extension{i];
alg := Extension[2];
f := Extension[3];

r = f;
transformation := Xx;
for 1 from n by -1 to 1 do
s.extension[1] := i;
s_extension[2] := algj, j=1..1;
s_extension[3] := fJ, j=1..1;
[r, ntrans] := square_free_norm(r, x, s_extensiomn);
transformation := subs(x=ntrans, transformation);

enddo;
return{[r, x = transformation]);

Where square_free_norm is;
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square_free_norm(p, x, Extension)
n := Extension[1];
alg := Extension[2];
f := Extension[3];
s = -1;

Tepeat
g8 =8 + 1;
trans := X - s*alg,;
g :
T

alg canonical (subs(x=trans, p), Extension);
resultant(g, £, alg)):

until alg gecd(r, diff(r, x), x, Extension) = 1;
return([r, trans]);

4

Because the square-free test involves polynomials over an algebraic
extension, it must do an algebraic polynomial greatest common divisor. The
polynomials are, in general, dense, of high degree, and have large coefficients.
The repeated computation of these greatest common divisors leads to an
extremely slow algorithm.

The following algorithm avoids calculation of algebraic polynomial greatest
common divisors completely. It picks a complete transformation; does all of the
resultant calculations necessary to get a polynomial over the rationals; and then
does the square-free test. If this test fails, a new transformation is chosen, and
the process is repeated until a transformation is found which yields a square-free
result. This almost always leads to more resultant calculations, but the savings
realised by avoiding the algebraic polynomial greatest common divisor
calculations usually outweighs this increased cost.
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map_to_Q(p, x, Extension)

transformation := Xx;

repeat
transformation := mext_trans(transformation, x, Extension);
g := alg_canonical(subs(x=transformation, p), Extension);
r := multi_norm(g, Extension);

until gecd(r, diff(r, x)) = 1;

return([r, x = transformation]);

The subroutine multi_norm computes all the resultants necessary to map the
polynomials to the base field.

multi_norm(p, Extension)
n := Extension[1];
alg := Extemsion[2];
f := Extension[3];
T =P
for 1 from n by -1 to 1 do
r := resultant(r, f;, alg;);
enddo;
return(r);

In the above algorithm, map_so_Q, the function next_trans selects a
transformation to try next. That is, it picks the s; used in the substitution

X =x—5804 —" " —S,a,. Since we can compute a bound for each of the s;,
there are only a finite number of transformations which must be tried. The
algorithm is designed to go through all of the combinations, without repetitions,
ensuring that a transformation which works is found. In most cases only a small
number of transformations must be tried before finding one which works.
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Efficiency Problems

Unfortunately, the mapping to integer polynomials used in the algebraic
polynomial factorisation algorithm involves extremely large coefficient and
degree growth, and it is often the case that the resulting problem is
unmanageable. For example, if we want to factor x* — 2 over Q(\/Z '\/:)
then we must factor the following polynomial over the integers:

127694+8968x2—6668x%—5112x643078x8—264x104-52x12—8x 144 16

This is a relatively simple example, and making the problem even slightly more
difficult makes the integer polynomial factorisation problem much more
difficult.

Wang (16) and Weinberger & Rothschild (17) give algorithms based on
modular techniques for factoring polynomials over an algebraic field. However,
they have problems when the minimal polynomial is reducible modulo every
prime, as in the case of x4+ 1, and must use a different algorithm in these
cases.

Lenstra (9, 10) gives another algorithm based on lattices. The observations
by Abbott et al. (1), comparing this algorithm with Trager’s, give no definite
conclusions as to which algorithm would be more efficient in general, and since
the resultant based algorithm is well known and easy to implement, it was
chosen to be included in the Maple algebraic field package, as was the case in
Abbott et al. (1). It is possible that some sort of a hybrid algorithm would be
best for this problem, but more investigation is required before any conclusions
can be reached.
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Extension to Multivariate Polynomials

The algorithm given above is for factorisation of univariate polynomials
over an algebraic field, but extending it to multivariate polynomials should be
fairly straightforward. Although this has not yet been implemented in Maple, it
would appear that extending the previous algorithm for use with multivariate
polynomials would involve only two relatively minor changes: choosing a
variable to use in the transformation used to get a square-free norm; and using
a multivariate version of the alg_gcd algorithm.



7. Simplification of Radical Expressions

One of the most obvious applications of the preceding algorithms for
computation with elements of an algebraic field is simplification of expressions
involving radicals. A radical is something of the form expr” where r is a
rational number which is not an integer. As long as expr involves only algebraic
expressions — that is, no logarithms, trigonometric functions, exponentials or
transcendental constants such as m or e — then expr” is an algebraic quantity
and the algorithms of this thesis are applicable for the computations.

We present a method for simplifying radicals which are algebraic numbers
— i.e. do not contain variables. We also discuss how this can be extended to
handle algebraic functions.

The Algorithm

The following is an algorithm which puts an expression involving radicals,
nested to any depth, in a normal or canonical form.
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radical_simplify(expr)
rads_left := get_list_of_radicals(expr);
Extension[1] := O;
Extension{2] := alg;
Extension[3] := f;
i:=0;
substitutions := {};
while rads_left <> [] do
rad := head(rads_left);
rads_left := tall(rads_left);
if not_in_extension(rad, Extension, substitutions) then
i:=1+1;
Extension[l] = i;
f1 := minimal_polynomial(rad, Extension, algi, substitutions) ;
substitutions := substitutions union {a1g1=rad};

expr := subs(rad=a1gi, expr) ;
rads_left := subs(rad=a1g1, rads_left);
else
s := express_in_extension(rad, Extension, substitutionmns);
expr .= subs(rad=s, expr);
rads_left := subs(rad=s, rads_left);
endif;
enddo;
expr := alg normal(expr, Extension);

# use alg canonical for a canonical form
expr := full_subs(substitutions, expr);
return(expr) ;
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The above algorithm works as follows: It gets all of the radicals in the
expression in order of their dependencies (i.e. 52 would come before
(51/ 2 4 1)1/ 3); then it goes through the liSt, checking if each radical is already
in the extension; if it is not, then it is added to the extension by calculating its
minimal polynomial; if it is then its representation in the extension is calculated,
and a substitution is made; when this is done, the resulting expression is
simplified in the extension, and then a substitution is made to put the expression
back in terms of the original radicals.

Note that the presentation given here is not an exact description of how the
algorithm is implemented. In the implementation transformations are
performed, as described in Chapter Two, to ensure that all the minimal
polynomials are monic and have only integer coefficients. These
transformations are not necessary to the correct operation of the algorithm, but
are done to increase efficiency. Thus these details have been omitted from this
description in order to make the algorithm easier to understand.

The subroutine full_subs performs full substitution of a set of substitutions
in the expression. That is, the substitutions are performed repeatedly until there
are no further changes in the expression: full_subs({x=y, y=z}, x + y%) would
yield z + z2.

Subroutine get_list_of_radicals(expr)

This routine returns a list of the radicals contained in expr, ordered by their
dependencies. That is, if two radicals, expr{' and expry®, appear in expr, and

expry involves expry®, then expry* comes before expry® in the returned list.

The list returned has no repetitions, and some intelligent processing is done.
For example, both 21/3 and 22/3 will not appear in the list, as 22/3 js simply
(21/ 3)2 and thus occurs in any algebraic field containing 21/3, This processing is
not necessary, but does increase the efficiency of the radical_simplify algorithm.
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The exact implementation of the algorithm is not given here as it is totally
dependent on the way in which expressions are represented in Maple, and would
be implemented differently in another language for symbolic computation.

Subroutine not_in_extension(expr, Extension, substitutions)

This subroutine returns true if expr is not in the algebraic extension
Extension, and false if it is. The algorithm is as follows:

algorithm not_in_extension(expr, Extension, substitutions)
P := zero_polynomial(expr, Xx);
fac_list := alg _factor(p, x, Extension);

m := get.minimal polynomial(expr, x, fac_list, substitutions);
return(degree(m, x) > 1);

The subroutine zero_polynomial returns a polynomial which has expr as a
zero. E.g. x> — 5 is returned for expr = 5/2. Then the polynomial is factored
over the algebraic extension. Get_minimal_polynomial returns the factor from
fac_list which has expr as a root. Finally the routine returns true if the
minimal polynomial for expr over Extension has degree greater than one (i.e. if
expr is not in Extension). The information from alg_factor and
get_minimal_polynomial is remembered for use in other subroutines with Maple’s
option remember .t

+ When a Maple routine has option remember, each time it is called the value returned is
saved, so that, if it is called again with the same arguments, no recomputation is required.
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Subroutine get_minimal_polynomial(expr, x, fac_list, substitutions)

The routine get_minimal_polynomial returns the factor from fac_list which
has expr as a zero under assumptions on how to evaluate radicals. This factor
will be the minimal polynomial for the expression expr.

get_minimal_polynomial(expr, x, fac_list, substitutions)
subs_fac_list := subs(x=expr, fac_list);
subs_fac_list := full_subs(substitutions, subs_fac_list);
index := zero_factor(subs_fac_list);
min_poly := fac_list[index];

return(min_poly);

Substitutions are made on the list of factors so that it is once again in terms
of radicals. The routine zero_factor returns the index of substituted factor
which evaluates to zero under certain assumptions about how to evaluate
radicals. The factor in fac_list which corresponds to this factor is the required
minimal polynomial.

The routine zero_factor assumes that, when a radical is given, the branch
containing the positive real axis is implied. Thus, to get the negative square
root of 2, —2!/2 must be stated. This assumption is made to make radicals
single valued functions. It would also be possible to implement the radical
simplification algorithm so that it took each of the branches of each of the
radicals in the expression, and returned all possible simplifications resulting from
the different choices of branches. This would result in an algorithm which takes
exponentially more time than choosing just one branch consistently, and so the
above assumption was made. It is still possible to get simplifications

corresponding to other branches by specifying the branch explicitly (as in the
case of —21/2).
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This routine is currently under development. Two different approaches are
being tried. The first involves probabilistic algorithms for determination of
equivalence of expressions, as in Gonnet (4). Using this method we get a
probabilistic algorithm for simplification of radicals. However, since the zero
testing algorithm will never answer not—equal zero when the factor is zero, but
may return equal zero when the factor is not zero, we can reapply the test until
only one factor tests as being equal to zero, and we will know that this is the
desired factor. This makes it no longer a deterministic algorithm, but the
probability of it looping forever is extremely small. The only remaining problem
to solve, is adapting the testing algorithm to test for equivalence under the
assumption the radicals imply the branch which includes the positive real axis.
In Gonnet he states that the test returns equal only if the relation is true for all
possible branches of the radical. A solution to this is still under development.

Another approach to the problem involves interval arithmetic (12). By
calculating intervals containing each of the substituted factors, and refining
them until only one contains zero, the correct factor can be determined easily.
This is also under development.

Subroutine minimal_polynomial(expr, Extension, substitutions)

This subroutine does essentially the same as not_in_extension, except that,
instead of returning true or false, it returns the minimal polynomial. The
routines all remember the results of their computations with Maple’s
option remember facility.
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Subroutine express_in_extension(expr, Extension, substitutions)

This subroutine is called when it is known that expr can be expressed in
Extension. It returns the representation of expr.

algorithm express_in_extension(expr, Extension, substitutions)
P := zero_polynomial (expr, x);
fac_list := alg factor(p, x, Extension);
m := get_minimal_polynomial(expr, x, fac_list, substitutions);
e := alg_canonical(solve(m, x), Extension);

return(e);

Before calling this routine it is known that expr can be represented in
Extension, and so the m calculated by ger_minimal_polynomial is linear in x.
Thus e is the expression of expr in Extension.

Subroutine alg_normal(expr, Extension)

This is the algebraic normalisation algorithm from Chapter Three. It
returns the result in the form:

numer
denom

where numer and denom are elements of the algebraic field in canonical form,
but the inverse of denom is not computed. In most cases this gives a "simpler"
result than putting it in a canonical form, as computation of an algebraic
inverse usually results in large expression swell. If a canonical form is required,
the algorithm alg_canonical can be used instead of alg_normal.
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Example

The following example shows how the radical_simplify algorithm would
simplify the following expression:

1/2 =12V =3 + (-1/2 = 1/2V-=3)1/2
The list of radicals returned would be:
V=3, (-1/2 —1/2V=3)Y?

The extension would first be Q(oy) where oy ="V-3, and then
x% + 1/2 + 1/204 would be factored over the extension, giving:

24+1/241/20q = (x —1/2 + 1/209)(x + 1/2 — 1/2%)
Each factor would be substituted and tested for zero equivalence, resulting in:
factor; = 0.0

Sactor, = 1.0—1.732i

The first factor is chosen, and since it is linear, we know that the expression is
in the current extension. Solving tells us that:

(-1/2 -1/2V-3)2=1/2 -1/2V-3
Finally the substitution and simplification is performed to get:

1/2-1/2V3 + (=12 - 1/2V3)2 =1 -V=3
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Extension to Handle Variables

The previous algorithm was designed to work with algebraic numbers only.
When the radicals involve variables we are dealing with algebraic functions. To
adapt the algorithm to handle these cases, all that must be changed is the
routine which determines the minimal polynomial. The test to determine which
substituted factor is zero must be modified, as they now involve variables. It is
also not obvious which factor should be chosen. For example, should V52 be x
or —x? A discussion of this problem is beyond the scope of this thesis, and can
be found in Caviness & Fateman (2).

Once these problems have been resolved, the routine zero_factor can be
implemented using concepts similar to those in Gonnet (4), concerning
determination of equivalence of expressions, or possibly these concepts
combined with interval arithmetic as mentioned previously.

Comments and Improvements

For expressions with only a few radicals the simplifications are carried out
quickly. However, if there are many radicals the algorithm has trouble in the
algebraic factorisation. It is possible to greatly improve the efficiency by
avoiding as many factorisations as possible.

To avoid doing a factorisation you must know either that an expression is
independent of the current extension, or that it is in the extension, and you are
able to calculate its representation. An example of the first method is to add all
the prime roots of prime numbers first, since it is known that none of these can
depend on the others. An example of the second method involves noting that
expressions resulting from solving a cubic equation have certain algebraic
numbers in them which can be expressed in terms of others also appearing in
the expression. It is a simple matter of checking if an expression matches a
certain format, and if the other required algebraic numbers are already in the
extension, and then the representation of the expression in the extension can be
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calculated directly. This method has been implemented, and makes
simplification of expressions which involve roots of a cubic quite efficient.

Caviness & Fateman (2) give other methods for avoiding factorisations, but
these apply only to radicals which are not nested.

When attempting to simplify an expression which involves many different
radicals, there comes a point when the algebraic factorisations which would
have to be done become essentially impossible. At this point it would be wise
to issue a warning to the effect that not all algebraic dependencies may be
noted, and carry on without further factorisations. If the order of adding the
radicals to the extension is chosen intelligently, it may be possible to do this
without missing many algebraic dependencies.



8. Concluding Remarks

We have described the theory and design behind a system for computation
with elements of algebraic number and function fields as it is implemented in
the Maple computer algebra system. We have also given an application of the
system: namely, a method for simplification of expressions involving radicals.
The system is still under development and we hope to achieve gains in efficiency
through improvements in current algorithms and the development of new ones.

This thesis presents the necessary information to get started with computing
in algebraic fields. There is certainly much work still to be done, and it is
hoped that this thesis, by organising the background information, will assist in
the development of the field.

Future Work

One stumbling block in the development of algorithms for algebraic fields is
the large expression swell often encountered. This is a problem especially when
computing inverses. Although this growth is unavoidable when computing an
inverse, it is hoped that algorithms can be developed which avoid the explicit
computation of inverses as much as possible.
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The area where most development is hoped for and expected is in factoring
algebraic polynomials. We currently have three different types of algorithms
and it is hoped that improvements to these, or entirely new algorithms, will be
discovered. In particular, extensions of the algorithms by Wang (16),
Weinberger & Rothschild (17) and Lenstra (9, 10) for use in multiple algebraic
extensions could be developed. Perhaps heuristics or hybrid algorithms will
prove useful for this problem.

There is also much work to be done on the use of computation in algebraic
fields for simplification of expressions involving radicals. There are undoubtedly
many methods which can be used to avoid expensive factorisations, which have
yet to be developed. Also, it would be helpful to develop ways to determine
which factorisations to do when it is obvious that it will be too expensive to do
all those which would be necessary to be certain that the expression is put in
normal or canonical form.
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The following is the Maple code for the implementation of the algorithms
presented in this thesis. Some of the algorithms are not implemented exactly as
presented, and all are still under development. The current versions of the code
are available from the author. There are know bugs in the code, and the
comments do not always agree with the state of the code.

Canonical Form

#
# this will normalise multivariate polynomials over an algebraic
# function field
#
anormal := proc(in_f,F,X)
local f, ¢, 4, nf, x, ind;
f := expand(in_f);
ind := indets{(f) minus get_indets(F);
if ind = {} then RETURN(base_anormal(f,F,X)) fi;
X := op(1,ind);
nf = 0;
while f <> 0 do
d := degree(f,x);
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c = coeff(f,x,d);
f := expand(f - cxx~d);
nf := nf + anormal(c,F,X)*x"d
od;
nf;
end:

this will normalise elements of algebraic function fields
the input must be the result of additions or multiplications
of elements of the field. in particular, to do a division,
you must first calculate an inverse with ainv.

this means that the denominator must be a polynomial in the
variables for the algebraic functions, over the rationals.

# H O# O # O O O K N

base_anormal := proc(aa,G,X)
local a,i,nalgs,d;
option remember;
nalgs := nops(G);
nornal(aa);
if a = O then RETURN(O) fi;

numer (aa) ;

a :

d

for i from nalgs by -1 to 1 do
a := prem(a,G[1],X[1])

od;

normal(a/d);

denom(aa) ;

end;
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Inverses

#

#--> ainv: inverse of an algebraic number
Calling sequence: ainv(a, G, X)

Purpose: Computes the inverse of a in the extension field
defined by the grobner basis given by G and X

Input: G, X — The grobner basis and list of variables defining
the algebraic extension

a - algebraic number

Output: function value - inverse of a over the extension

# O#H O OH O OH ¥ OB OH OH OH KR K

TJS (Jun. 1986)

ainv := proc(b,F.,X)
local 1, imnv, p, pi;
option remember;
P = b;
inv = 1;
for 1 from nops(X) by -1 to 1 do
gedex(p,F[1] ,X[1], 'pi");
inv := anormal(inv * numer(pi), F, X);
p := anormal(denom(pi), F, X);
od;
normal (inv/p);
end;
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Quotient and Remainder

#

#--> aquo: quotient of polynomials over an algebraic extension field

# O ¥ # # # # #H O# H OB ¥ O o W O R K OH B

aquo

end:
#

Calling sequence: aquo(a, b, x, G, X, 'r’)

Purpose: Computes the quotient of a and b over the extension fileld

defined by the grobner basis given by G and X.

Input: G, X - The 1list of polynomials and list of variables
defining the grobner basis for the extension

a, b - univariate polynomials over the algebraic
extension field. Represented by bivariate polynomials.

X - an indeterminate with respect to which the division
is done.

Output: function value - remainder of a and b over the extension
'r’ - (call-by-name) the remainder (optional)

TJS (Jun. 1986)

:= proc(a,b,x,G,X,remai)

local r, q;

r := arem(a,b,x,G,X,q);

if nargs > 5 then remai :=rT; fi;
q.

#--> arem: remainder of polynomials over an algebraic extension field
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Calling sequence: arem(a, b, x, G, X, °q’")

Purpose: Computes the remainder of a and b over the extension field
defined by the grobner basis given by G and X.

Input: G, X ~ The 1list of polynomials and list of variables
defining the grobner basis for the extension

a, b — univariate polynomials over the algebraic
extension field. Represented by bivariate polynomials.

X - an indeterminate with respect to which the division
is done.

Output: function value - remainder of a and b over the extension
'q" - (call-by-name) the quotient (optional)

TJS (Dec. 1985)

# B O# O# #H O# # # #H OH O#H O H OF OH OH K OB X ¥ R R

arem := proc(ia,ib,x,G,X,quoa)
local r, m, mi, q, 1, a, b, lci;
b := ib;
a := 1a;

if degree(b,x)=0 then
if nargs > & then
quoa := anormal( ainv(b,G,X) * a,G,X)

f1,;
r := 0;

else
b := mon(b,x,G,X, 1ci’);
1 := denom(a)*denom(b);
a := numer(a)*denom(b) ;
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numer (b) *denom(a) ;

H
i

prem(a,b,x,'m”,’q’);
normal (r/1);
mi := ainv(m,G,X);
if nargs > 5 then

quoa := anormal{(g*lci#*mi,G,X)
r := anormal(mi*r,G,X);
fi,;

collect(r,x);

end:

Greatest Common Divisor

#

#--> aged: gecd of polynomials over an algebraic extension field
Calling sequence: gcda(a, b, G, X)

Purpose: Computes the gcd of a and b over the extension field
defined by the polynomial m.

Input: G, X — The 1ist of polynomials and 1list of variables
defining the grobmer basis for the extension

a, b — univariate polynomials over the algebraic

Output: function value - gcd of a and b over the extension

#* O O OH O OH OH H OH OH OB R K R H

TJS (Jun. 1986)
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extension field. Represented by bivariate polynomials.
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#
aged

end:

:= proc(a,b,G,X)

local ind, x, u, v, r, t;
ind := indets(a) minus get_indets(G);
if ind = {} then

v =1,
else
= op(1,ind);
= collect(b,x);

v := collect(a,x);

if degree(u,x) < degree(v,x) then
t = u;
u = v;
vV = %,

fi,;

r := prem(u,v,X);

T := anormal(r,G,X);

content(r,x,’'r’);

while T <> 0 do
u = v;
Vv =T,
r := prem(u,v,Xx);
T := collect(anormal(r,G,X),x);
content(r,x,’'r’);

od;

fi;

mon(v,x,G,X);
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Factorisation

#

#--> factora: Factor a polynomial over an algebraic extension
Calling sequence: factora(f, G, X)

Purpose: Factors the polynomial f over the algebralc extension
defined by G and X.

Input: G, X - The 1list of polynomials and 1list of variables
defining the grobner basis for the extension

f ~ univariate polynomial over the algebraic extension
field. Represented by a bivariate polynomlal.

Qutput: function value - f, factored over the extansion

TJS (Jun. 1986)

£ Of# # # B O# B O OH F K K ¥ K R K

afactor := proc(inf, G, X)
local x, r, s, 1, i, g, h, hi, £, 1f, fs, j, mf;
x := op(1,indets(inf) minus get_indets(G));

mf := mon(inf,x,G,X,’1f"’);
mf := expand(mf/icontent(mf));
f := factor(mf);
if £ = mf then
fs = {f}
else
fs := {op(£)}
fi,;
h =1,

for j from 1 to nops(fs) do
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op(j.fs);
collect(f,x);
if degree(f,x) > 1 then
r := map_to_Q(f,x,G,X,’'g’,’s’);
T := r/icontent(r);
1 := factor(r);
if 1 = r then
hi := mon(f,x,G,X);

h := h*hi
else
g := collect(g,x);
for 1 from 1 to nops(l) do
hi := collect(op(i,1),x);
hi := aged(hi,g,G,X);
hi := subs(x = s,hi);
hi := anormal(hi,G,X);
hi := mon(hi,x,G,X);
h :=h % hi
od
fi;
else
hi := mon(f,x,G,X);
h := hxhi
f1,
od;
1f*h;

end:
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Norm Subroutine

map_to_Q := proc(f, x, G, X, go, so)
local n_algs, sl, sf, subn, r, i, s, rp,gli, xi;
n_algs := nops(X);
s1 := [[0,1$°1’=2..n_algs],{},3.,3];
sf = Xx;
while degree(sf,x) > O do
sl := next_subs(sl);
subn := s1[1];
s := x =x - sun(’subnf{i}*xX[i]’,’1’=1..n_algs);
subs(s,f);
for i from n_algs by -1 to 1 do

r

Tp = T;
gi := G[1];
xi = X[i];
r := resultant(rp,G[i],X[1])
od;
sf := ged(r,diff(r,x));
od;
go := anormal(subs(s,f),G.,X);
so := X + sum(’subn[i]*X[1]’,"1i’=1..n_algs);
T,

end:
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Next Substitution Subroutine

next_subs := proc(is_list)

local 11, inc, 1im, counted, s_list, finished, incremented, i;

inc is_list[4];
lim is_1ist[3];
counted := is_ list[2];
s_1list := is_list[1];
11 := nops(s_list);
finished := false;
wvhile not finished do

incremented := false;

1

for 1 to 11 while not incremented do
if s_1ist[i] < 1im then
s_1list := subsop(i=s_list[i]+1,s_list);

finished := counted intersect {s_list} = {};

incremented := true
else
s.list := subsop(i=1i,s_list)

fi
od;
if not incremented then
1im := 1lim + inc;
s_list := subsop((’i’=1)$°i’=1..11,s_list);
fi,
od;
counted := counted union {s_list};
[s_list,counted,lim,inc];
end;
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Radical Simplification

The implementation does not correspond to the presentation. It is doubtful
that the following will be useful, but it is presented for completeness. There are
known bugs, and there is still much developmental work to be done to
implement all of the concepts presented in the thesis.

Top Level Routine

rsimp := proc(x)
local a, alg, i, 1, sseq, Xs;
1 := mkextn(x, "alg’,’a’,’'xs’);
xs := anormal(expand(xs),1[1],1[2]);
sseq := NULL;
for 1 to nops(convert(alg,list)) do
sseq := a.1 = alg[i], sseq;
od;
subs (sseq,Xxs) ;
end:

Rearrange Structure of Radicals
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normrads := proc(iexpr)
#
# This will put the radicals in an expression in a "normal® form. A
# radical of the form 2a~(p/q) will be returned in the form
# [2,q9]1°p.
#
local expr, r, q, pow,
options remember;
expr := expand(iexpr);
i1f type(expr,rational) then
expr
elif type(expr,‘+°) then
map (normrads, expr)
elif type(expr, ~°) then
pow := op(2,expr);
if type(pow,integer) then
normrads (op(1,expr)) “pow
elif type(pow,fraction) then
q := op{(1,pow);
r := op(2,pow);
powlist([normrads(op(1,expr)),r],q)
else
ERROR(‘invalid arguments®)
fi
elif type(expr,‘*‘) then

map (normrads, expT) ;
else
expr
fi;
end:
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Get a List of the Radicals

getrads := proc(expr)
#
# This will take an expression which has had the radicals put in a
# "normal” form with normrads, and return a list of the radicals
# contalned in the expression
#
1f type(expr,‘+‘) or type(expr, ‘*‘) then

op(map(getrads, [op(expr)]))
elif type(expr,‘~*) then

getrads(op(1,expr))
elif type(expr,list) then

(getrads(expr(1])), expr
else

NULL

fi;
end:

Remove Multiple Occurrences
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#
# This takes a 1list of radicals and removes multiple occurrences
# without disturbing the order
#
radlist := proc(expr)
local rads, newrads, rad;
rads := [getrads(expr)];
map (proc(x) if type(x[1],rational) then x else NULL fi end, rads);
rads := [op("),op(rads)];
newrads := [];
while rads <> [] do
rad := rads{1];
newrads := [op(newrads),rad];
rads := map(proc(x,T) if X = r then NULL else x fi end, rads, rad)
od;
newrads;

end:

Miscellaneous Subroutines

nirads := proc(iexpr)
#
# This will put products of roots of rational numbers in a reasonable
# form
#
local expr, r, q, pow, b;
option remember;
expr := subs (I=(-1)~(1/2) ,expand(iexpr));
if type(expr,rational) then
expr
elif type(expr, ‘+‘) then
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map(nirads, expr)
elif type(expr, ~°‘) then
povw := op(2,expr);
b := op(1,expr);
if type(pow,integer) then
nirads(op(1,expr))~pow
elif type(pow,fraction) then
q := op(1,pow);
T := op(2,pow);
if type(b,rational) then
(b~sign(q))~(abs(q) /1)
else
nirads(op(1,expr))~(q/T)
fi
else
ERROR(“invalid arguments‘)
fi
elif type(expr, ‘*‘) then
map(nirads, expr) ;
else
expr
fi;
end:

powlist := proc(l,p)

#

# this raises a list to a power because maple is too stupid to realise
# that it knows how to do it

#

local t;

subs (t=1,t"p)

end:

rsimplify := proc(x)
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local n;
n := expand((ifactor(numer(op(1,x)))/ifactor(denom(op(1,x)))) op(2,x));
d := op{(2,0p(2,x));
if irem(d,2) = 1 then
n := subs((-1)~(1/d) = -1, n)
f1,;
n;
end:

Construct the Algebraic Extension

mkextn := proc(e,alg,a,oes)
#

# this will take an expression and figure out an algebraic extension
# for 1t.

#

local talg, G, X, es, expon, 1, mpoly, nalg, numpolys, rl, alist;
es := nirads(e);

es := normrads(es);

rl := radlist(es);

X := [a.1];

alist := rlfi};
alg[1] := alist[1]~(1/alist[2]);
expon := alist[2];
es := subs(alist=a.1,es);
rl := subs(alist=a.1,rl);
G := [a.1"expon -~ alist([1]];
numpolys := 1;
for 1 from 2 to nops(rl) do
alist := r1[i];
rl := subs(alist=a.(numpolys+1),rl);
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es := subs(alist=a.(numpolys+1),es);

expon := alist[2];

nalg := anormal(alist[1],G.,X);

if expon = 3 and rcubic(nalg,G,X,alg, “talg‘) then

mpoly := a.(numpolys+l) - talg
else

mpoly := a.(numpolys+l)~expon - nalg;

mpoly := afactor(mpoly,G,X);

mpoly := mdegfac(mpoly,a. (numpolys+1),nalg~(1/expon),X,alg);
fi;

if degree(mpoly,a.(numpolys+1))=1 then
solve(mpoly,a. (numpolys+1)) ;

es := subs(a.(numpolys+1)=",es);
rl := subs(a.(numpolys+1)=*",rl)
else
G := [op(G),mpoly];
X = [op(X),a.(numpolys+1)];
alg[numpolys+1] := nalg~(1/expon);
numpolys := numpolys+1
fi
od;
oes := es;
(¢,X];

end:
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First Attempt at the Routine "zero_factor"

#
mdegfac := proc(f,x,rad,vars,rads)
local mval, mdop, 1, opi, sseq, val, len, mlen;
if type(f, *") then
sseq := NULL;
for i1 to nops(vars) do
sseq = vars[il=rads[i],sseq;
od;
mval := -1;
for 1 to nops(f) do
opl := op(i,f);
if type(opi,‘~*) then opi := op(1,opi) fi;
evalf (evalc(subs(x=rad,sseq,opi)));
val := max(abs(coeff(",I,0)),abs(coeff(",I,1)));
len := length(val);
if mval = -1 then

mval := val,
mlen := len;
mdop := opi;
elif val < mval and len < mlen then
mval := val;
mlen := len;
mdop := opi;

elif val < mval or len < mlen then
ERROR(cannot figure out minimal polynomial‘,val,mval)

fi;
od
elif type(f, ") then
mdop := op(1,f)
else
mdop = f
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fi,;
mdop;
end:

Special Processing For Roots of Cubics

rcubic := proc(x,G,X,alg,expr)
local a, b, found, i, ind, indx, k, tr, var;
ind := indets(x);
1f pops(ind) <> 1 then RETURN(false) fi;
var := op(1,1ind);
if not(type(x,linear,var) and type(x,polynom,var,rational)) then
RETURN(false)
fi;
for i to nops(X) do
if X[il=var then indx := i; break fi
od;
b := alglindx];
if not(op(2,b)=1/2 and type(op(1l,b),rational))
then RETURN(false)
fi;
#
# we now know that x is of the form a + k*var where a and k are
# rational, and var is an algebraic number which is a square root.
#

a := coeff(x,var,0);
k := coeff(x,var,1);
found := false;

#
# now check if (a - k*var)~(1/3) occurs already
#
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for 1 to nops(G) do
if degree(G{1]1)=3 and normal(X[i]~3-a+k*var-G{i])=0 then

indx := 1;
found := true;
break
fi
od;
if not found then RETURN(false) fi;
#
# now check that a~2 - k™2 * var™2 has a rational third root
#
tr := rsimplify((a~2 - k™2 * op(1,b))~(1/3));
if not(type(tr,rational)) then RETURN(false) fi;
#
# we now know that x~(1/3) is already in the extension, and its
# representation is; tr / (a - k*var)~(1/3), where the denominator
# is in fact X[indx].
#

expr := tr*ainv(X[indx],G,X);
true;
end:
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