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Abstract

Information system specification using the entity relationship approach is
widespread. However there are many variations in the methodology, and difficulties
in continuing the specification process through to the dynamics of the system. We
introduce the semantically adequate structure condition as a way of testing a
specification so that it can be successfully expanded and refined. The condition
requires we test the specification by its information and data semantics, respectively
against 1) the (user's perception of) the real world, and 2) satisfiability on the
computer.

Our objective is to demonstrate specification through refinement stages starting
with a base structure and then systematically adding constraints. The methodology
uses familiar diagrammatic E-R notation so the specification can be easily validated
as it proceeds. What each refinement stage must satisfy is that its constraints are
satisfiable on the model so far specified. In the process we succeed in characterising
entity subtypes in a way that satisfies both intuition and rigour. This enables us to
formulate the E-R model within a model theoretic framework and take advantage of
the mathematical tools that theory provides.. This ensuresthe correctness of the
specification process without becoming diverted by too much formality.

Finally an examination of the relational data model succeeds in gaining insight
into what multi-valued and cyclic join dependencies really mean. These insights are
a result of being able to a) disambiguate the semantics of a table, and b) properly
deal with cycles in E-R models.

C.N.G. Dampney
(Computing Discipline, Macquarie University, New South Wales 2109, AUSTRALIA)

1. Introduction

What constitutes a good specification for a databased information system and how does one
begin? This question is faced by the professional information system analyst, the database
engineer, the experienced database researcher, and neophyte alike. The question is important
because in creating a new database one must be assured that its foundations are sound. We, who
use the database, need to be sure that the data stored in it correctly reflects what is happenning in
the real world.

In general terms the answer to the question is that the specification for a databased information
system should begin by defining structure. The answer coincides with positive experience gained
and demonstrated by many practitioners using variants of the Entity-Relationship approach [1,2,3]
for information (systems) analysis over the last decade. By structure we mean mathematical
structure on which theories (formal expressions) can be satisfied [e.g.4] . The structure specified
must be able to satisfy the kinds of constraints that information sytems analysts use in practice.

The paper emphasizes structure and semantic notions. We show that the essential criterion that
must be satisfied by the structure is that it must be semantically adequate in a sense more fully

April 29, 1987



Specifying Information System Structure

described below. This criterion causes us to distinguish clearly between modelling a) real world
information, and b) data on the computer - a distinction long recognised and by many authors
[5,6,7].

Section 2 has self contained examples of specifying structure using a refinement of the E-R
approach. We show how a specification can be built while checking that it satisfies the
requirements of real world information needs. Thus specification and validation proceed hand in
hand. The connection constructor is introduced as a method for unambiguous specification of the
scope of the structure over which the constraints apply. We then provide a method for specifying
subtypes and show how subtypes define a base for transition constraints on which the dynamics
of an information system can be further specified. These specification methods form the structure
specification level on which the next level of refinement - behavioural specification can be applied.

In section 3 we provide a model theoretic framework for specifying this refined E-R structure.
The constraints that have long been used on the E-R model are functional (FDs) and inclusion (IDs)
constraints. We prove that constraint specification must also include the constarints’ scope of the
application, which is that part of the structure to which the constraint applies. We also derive
overall restrictions that an E-R model must have for satisfiability. In particular the issue of cycles
in the structure is examined.

In section 4 we consider the Relational DataBase (RDB) data model. The refined E-R model
sheads insight into the nature of relational data model constraints. We show that multi-valued
dependencies and cyclic join dependencies are characterised by IDs. The implication problem for
functional and inclusion constraints [7,8,9] specified on a refined E-R structure (that meets the
restrictions referred to in the above paragraph), turns out to be decidable.

There is an underlying assumption in this paper which should be made explicit. It is assumed
that we are dealing with information systems for which specification is possible. Such information
systems are those, for example, used for business and administration where the real world system
being simulated on the computer is sufficiently well understood that we know enough to specify it.
In contrast, Artificial Intelligence tackles problems with the objective of discovering their
specifications (knowledge) assisted by automated means.

1.1. Specification and Semantic Adequacy

We return to the question in the first paragraph of the paper and develop the definition for a
semantically adequate structure. For a database to be "well-specified” it would have to satisfy the
following condition -

The semantically adequate structure condition (version 1). That the data

in a "well specified” database must relate correctly to the real world
information it is meant to represent.

We note that the real world is as it is perceived as information in the mind of the user. Let us
accept that we perceive and are able to describe information about the real world in terms of things
(entities) and the relationships between them (figures 4 and 5).

We define correctness on the basis of the laws of (some) logic. Such laws are expressed as
rules of inference. This allows us to model 1) how the user deduces and checks the correctness
of information, and 2) how the database can check correctness by determining whether data being
stored satisfies the model.

There are thus two separable parts of the condition that respectively concern the database and
the perceived real world. The condition now becomes -
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The semantically adequate structure condition (version 2). That

(i) (information condition) the information about the real world is correct ,
and (ii) (data condition) the data stored and the deduction of derived data
on the computer is correct.

These conditions are made decidable if a model can be developed which 1) supports the
description of real world information, and 2) can be implemented on the computer.

The distinction between the information and data conditions is important because there are
semantic issues which respectively belong to 1) information analysis which aims to discover
satisfactory models for real world phenomena, and 2) database design which aims to approximate
and translate the information model to a computer based data model. In practice the approximation
may instead be accomplished during information analysis. Approximation is often necessary
because a computer based model must be countable. The processes of information analysis and
database design are illustrated in figure 1.

In the past we have confused information analysis and database design. Indeed papers on
Relational DataBase design used to assert that RDB structures (relations, operators and constraints)
are appropriate mathematical structures which can describe the real world. As is well documented
[101, and evident in recent success increasing the semantic power of data models, RDB structures
are semantically inadequate to the task. This issue is considered more carefully in section 4.

1.2 What is meant by semantics?

The word "semantics” takes on many shades of meaning according to the context in which it is
used. As semantics itself is concerned with meaning the notion is hard to capture generally. We
take as our informal definition for semantics (Montague[11]):-

Definition of Semantics. Semantics is the relation between expressions
and objects.

The philosophical starting point for this paper is illustrated in figure 1. We have two kinds of
semantic relations, viz:-

1) information semantics between the model and real world objects;
2) data semantics between the model and computer based objects.

Computer objects being man made are well understood - their general properties can be
formulated in terms of decidability. We thus have a final version for the semantically adequate
structure condition -

The semantically adequate structure condition (final version).  That

(1) (information) the model structure can support the information needs,
constraints, and behaviour of the real world system, and

(ii) (data) the model structure elements are countable and the finite
satisfiability of constraints on the model’s structure is (semi-)decidable.

The data condition is suggested by Bry and Mathey's recent result [12] that finite satisfiability is

semi-decidable on the computer. By definition of the discrete componentry in a computer the
number of model elements must be countable. The real world can not be so well formalised. We
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as perceivers of the real world are ourselves the means to test the information condition by judging
whether the information semantics of a model matches our perception. Providing we have suitable
methods to express constraints the data conditions can be decided formally and objectively whereas
the information condition must be subjectively judged by us.

The notable omission from the above condition is that it does not include the requirement that
behaviour be computable. We separate the issue of behaviour specification and look at it briefly at
the end of section 2.3.

1.3 The Thesis

The thesis in this paper is that a base entity-relationship structure refined by systematically
adding constraints through the stages outlined in section 2 is a good methodology for specifying an
information system.

2. Satisfaction of the Information Condition While Specifying Structure.

In this section we show how an information system specifcation can be constructed starting
with a base structure created using the E-R approach. From the base structure the specification is
refined by adding constraints until the possible states of the model match the possible states of the
real world counterpart. During the process the information component of the semantically adequate
structure condition can be checked. Thus specification and validation against the real world occur
together.

As Furtado and Neuhold [13] do, we identify structure as the first level of specification. We
call it the structure level of specification, rather than their term "information level", to prevent
confusion with the use of the terms "information model" and "information analysis".

The structure level of specification can be divided into three separate stages of refinement.

2.1 Stage 1 - Specification of a well formed base structure.

The base structure must be able to support information needs and the constraints which further
refine it. We now consider the information needs. The diagrammatic notation used to represent an
E-R model is given in figure 2.

Figure 3 presents an E-R model of a course information system. Experience has shown that
such a diagram, or its variants with other notation, are fairly easily understood by someone who
also understands the real world information system being described. The information semantics of
the model is thus tested and checked against that person's perception of the real world. The
advantage of the diagrammatic notation over the corresponding entity set, attribute and relationship
definitions in text form, is that the whole can be grasped at once.

There are considerable semantics even in the base structure. Figures 4 and 5 highlight that the
E-R model is dealing with real world things of interest (entities). Note especially that an entity set
is a set of the real world things themselves and is NOT the computer representation of those
entities. Because an identifying attribute is one to one and the ID's are unique each entity instance,
at least of a given type, should also be distinct. In contrast values sets have no semantic
significance in their own right. For example we see in figure 4 that Location (STD ADDRESS)
has been specified as a value set. The classification of sets into entity sets or value sets is an
information semantic issue and is therefore decided by the information analyst.
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All many to many to ... n-ary relationships are decomposed into n unary functions from a new
entity corrsponding to that relationship. Thus every relationship instance (connection ) between
entites is uniquely identifiable and their semantics can thus be fully explored. This is important
when determining whether or not a relationship can be formed by composing others, because if it
can, it is semantically redundant.

This base structure of entities, relationships and attributes defines a well formed structure [14].
It must be necessary (no redundant relationships or attributes) and sufficient to support the
information needs.

2.1.1 Definition of the base structure functions.

It will be shown that it is the functions which really govern the structure, and hence it is
important to carefully describe them.

Artribute functions map entity sets to values sets. Each entity set has a special identifying
attribute which is an injective (one-to-one) total function onto its identifying attribute value set.
The inverse of the identifying attribute function is therefore also a function. In database terms this
attribute acts as a surrogate for the entity. The descriptive attributes are used to record facts about
an entity. Attribute functions are not necessarily total functions, but if partial they are specifically
called optional attributes .

Relationship functions map entity sets to entity sets. Relationship functions are either partial
or total, injective (one-to-one) or non-injective, and surjective (onto) or non-surjective. The E-R
approach uses the terms:- a) mandatory participation of an entity in a relationship if an entity is the
domain (range) of a total (onto) function, and b) optional participation of an entity in arelationship
if an entity is the domain (range) of a partial (into) function.

Thus E-R structures consist of:-

1) two classes of sets - entity sets and value sets, and
2) two classes of functions - relationship functions and attribute functions.

2.2 Stage 2 - Constraint Specification.

Constraints must be discovered by the information analyst and then specified. Figures 6 and 7
respectively exemplify binary functional and binary inclusion constraints. The examples
demonstrate the following:-

When a constraint is specified, its scope of application over the structure must also
be specified.

While Maier [15] in particular makes this point, it is often not made clear in database design, and
yet it is crucial.

Consider the functional dependency (STUDENT,TIME) --> CLASS in figures 3 and 6. In
this case the constraint is over the derived structure defined by STUDENTS who have
ENROLMENTS in COURSESs with CLASSes on at given TIMEs. While in this case this is the
obvious structure, there are other possible, but semantically unlikely, structures that might include
CANGIVE and STAFF. In a cyclic structure in particular, and most E-R models contain cycles,
an implicit definition of constraint scope is ambiguous because there are alternative parts of the
structure over which the constraints between attribute values could apply.
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Inclusion constraints between (possibly composed) relationships are also important in
information analysis. Most cycles in the structure will contain at least one binary inclusion
dependency - see also section 3.4. Inclusion constraints also occur because, as we will see, an
entity instance may be a member of more than one entity set. For example, someone could be both
a STUDENT and a member of STAFF (figure 9). A constraint such as "No PERSON may be a
STUDENT in a CLASS that he Takes as a STAFF member" can be specified as an exclusion
constraint.

The information analyst must test and determine if the model structure can satisfy the functional
dependency, inclusion dependency and other constraints over their specified scope. An
unambiguous method for specifying the scope and constructing it using the connection operator
was exemplified in figures 6 and 7. We now describe the method

2.2.1 Specifying Constraint Scope Unambiguously

Constraint scope is specified by deriving the structure to which it applies from the base
structure. The heart of the specification method is the connection operator ("'*") which defines
connection (A)f *g analogous to (forward) composition (A)f;g. [Note that (A)f;g is

equivalentto g of (A)l.
Suppose f : A-->>Band g: B --> C, then

(A *g ={<ab;c; >, <ab,,c,>,..}
whereas (AY sg = {<a,c;>, <a,c,>,.. }.

Thus connection retains all intermediate elements. Tables of tuples are thus constructed
representing the derived structure so that the constraints can be tested

Connection produces, with one important exception, results similar to the join operator applied
between relations with only one matching attribute. The exception is that as, and if, cycles of
connections are completed attribute value sets are re-named to distinguish them from their previous
occurrence - see example in section 4.4. The table constructed by connection contains additional
columns which show the presence or absence of relationship instances between the entity sets (e.g.
figure 6). This is done rather than display entity instances which of course cannot exist in the
computer.

The advantage of the connection operator is that it produces semantically
unambiguous tables compared to the join when the entity sets involved are cyclically
connected.

2.3 Stage 3 - Subtype Specification.

Now consider the way an entity participates in its relationships. Figure 8 shows that some
participations may require other participations. Each subtype is defined by requiring mandatory
participation in all its attributes and relationships. We can then define the subtype membership
hierarchy and overlap membership structure from the real world information system's semantics as
further constraints on the system. Specifically subtypes are constrained by inclusion and exclusion
constraints. Figures 9 and 10 provide further examples. Figure 11 defines an entity's
substructure in set theoretic form.

So far the functions defined in the base structure have been allowed to be partial functions. We
now see that subtypes require all functions to be total and relationship functions to be surjective
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(onto). The subtypes specify in increasing detail a refined substructure consisting of subsets Enm
within each entity set E™.

Thus it is the functions that actually define entity (sub)types. It is also important to notice that
while within each (sub)type the entity instances must be distinct, an entity instance may be
(simultaniously) a member of more than one entity (sub)type.

Transitions between states simulate the behaviour of the real world system. Therefore the
model structure satisfies this aspect of the information condition,

Subtype specification provides a base for dynamic specification because an entity instance
changes subtypes as its relationships change. In a database such transitions are caused by
transactions. Independently the transitions between entity (sub)types may be constrained in another
specification refinement stage. This stage belongs to the next level of specification [13], that is
behavioural specification. We do not consider this further in this paper.

3 The Refined E-R Model.

We now provide a formal definition of the refined E-R model in model theoretic terms. This
definition will be used to test that as the structure level of information systems specification is built,
the specification satisfies the data part of the semantically adequate structure condition.

A model theoretic framework [e.g. 16,17] can be used to define the refined E-R structure. In
particular we use a many-sorted model theoretic language. _A_(sub)type is a sorz . Such a model
theoretic framework ensures that the specification is well defined providing the constraints can be
satisfied.

3.1 The model
‘We define:-

(1) A many sortedvocabulary .- VY =(1,x,...) where T ={s,...,R,....f,...c ,...}

where:-
Syene are sort symbols: one for each entity (sub)type and value type;
R.... are binary relation symbols (predicates) for each sort;
£ are unary function symbols such thatf : s; --> S for every pair of sorts
(not necessarily distinct),
C,... are constants of each sort, and
Xyee are variables over the constants of each sort;
and where:-

i) Each function symbol and constant is equipped with a sort symbol,

ii) The argument place in each unary function is equipped with a sort symbol,

iii) R,... = ({=,...,>,<,....},f'1 where there is a) a "=" for every sort; and b)
">""<", and other such predicates for the value type sorts. The sort
symbols in both the argument places of each predicate are the same.

The f -1 are relations defined by function inverses.
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(2) A (refined E-R) many-sorted structure :- S=(S,..R,...L....c,..}
where:- . _

S,... = (E,...,, V,...) are the entity (sub)type sets and value sets corresponding to
each sort,

R.... are (interpreted) binary relations - interpretations of the predicates R,

f = (Fupp oo frel,...) are the attribute and relationship (interpreted) functions
-interpretations of the functions f,

... = (e,..,v,...) are entity and value individuals - interpretations of the
constants c.

The class of 7T structures will be denoted by Structure [t] where Structure : {t-->8} is
also called in first order logic the (set of) interpretations. We let T be the vocabulary of S.

(3) An E-R theory :- T ={constraint,..}

where each constraint = (y,0)..., and where :-

v € {FD,ID,..} are well formed formulas expressing the complex functional ,
inclusion and other constraints.

oe {s,..}1L{f '1,...}) is a subset of the sorts and relations in the vocabulary T that
defines the scope of v. o characterises ©, a subset of the vocabulary
T D O, because only the following are retained:-

(i) those symbols of T that have all their sort symbols in ¢, and
(ii) the inverse function relations f -1 specified.

(y,0') means that y must be satisfied on Sl o, the o-reduct of S, which using [16] is
defined as the © structure obtained from S by "forgetting" S fors ¢ &, and
the R for ({=,...,>,<,..}Ff ) e o

3.2 Logic

This model is studied within the framework of a multi-sorted logic ( IL, |= ; ) which with its

quantifers (e.g. V, 3) and connectives (e.g. ~,A,v,—) defines the class IL(t) of well formed
formulas permitted. The satisfaction relation |=; is a relation between structures and well

formed formulas. We drop the subscript for |=, as it can be presumed by context.

Given a particular logic we consider y € IL(t) and its models Model (y) where
Model (y) = {S € Structure [t] suchthat § |=vy}

By the Reduct Property of logic [e.g.16] we have thatif y € IL(c) and Tg2 O, then
S l=y iff Sol=vy
The if and only if property is very important because it proves:-

Theorem: A constraint must always have its scope of application specified
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3.3 Satisfaction of an E-R theory

We now consider whether the connection constructor is a satisfactory method for defining a
Reduct on the base structure. Connection constructors are defined by their functions and their
inverse functions. Sorts are defined also by their functions. Thus a connection constructor does
characterise a set of sorts, and inverse functions as required. Therefore we have proved:-

Theoremm  All constraints that are satisfied on a derived structures are also satisfied
on the base structure.

We prove the satisfaction of FDs and IDs in section 4.

A proper cyclic structure on the refined E-R model is defined as a structure with a cycle of
(total ) functions between sorts. We call it proper to distinguish it from the looser definition often
used for cyclic structures on "unrefined" E-R models. Note that on an "unrefined" E-R model the
relationship functions are not necessarily, and indeed are generally not, total functions.

3.4 Restrictions on the E-R model satisfaction relation

Having provided the framework we now consider restrictions on the satisfaction relation |=
that is appropriate for E-R modelling.

3.4.1 Closed Connections

We would like to ensure that all the derived structures required for the constraints {(y,5),...}
of the E-R theory T can be represented by tables constructed by the connection constructor. In

some cases we are interested in derived structures that represent all distinct connections to an
element in a cyclic structure including multiple times around the cycle of sorts.

The problem is that these connections may be infinitely long and therefore cannot be captured
on a finite data structure. This problem can be overcome by ensuring that where all such
connections are required there are no infinite unclosed sequence of connections. This property
can be stated as:-

The Closed Connection Cycle Property requires that in a cycle of sorts in the

structure S:-
3 sorts s, such that V Xg,Xp Ry (x:xp) D R, (Xg:Xp)

where Ry and Ry respectively have their scopes defined so they cover
the cycle and only intersect on the sorts sg,sy, .

We see from the examples of section 2 and the analysis in section 4 that this property is met
in practice where we may have some interest in considering all connections.

3.4.2 Individual Distinctness

A particular interpretation (I: T-->8) e Structure must according to the methodology of
section 2 satisfy the following:-
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| Restriction on Individual Distinctness: Individuals from two different |
| entity (sub)type sets or two different value sets are not necessarily distinct, |
| but all individuals in a given sort are distinct. |
| |

3.5 An E-R Model is Theory and Structure

An E-R model is thus seen as being part specified by theory and part by structure. What we
have now done is confirm our philosophical starting point of figure 1. For those caught in the
nemesis of first order logic, recognise that models restricted by both countable sets of individuals
and axioms are very uninteresting. A major problem in specifying a system by its axioms is that
some structures are either not axiomatizable or the axioms are too hard to discover. An example of
such a structure is the natural numbers with arithmetic. Additional elements beyond the natural
numbers have to be added to satisfy the Peano axioms.

4. Satisfaction of the Data Condition

We now use Relational DataBase (RDB) theory to analyse data semantics of the refined E-R
model. The word "table" is used rather than "relation" to emphasize that we are dealing with
implemented data structures.

4.1 Expressing an E-R structure as RDB tables.

We first note that an E-R base structure and its derived structures can be readily translated to
RDB tables:-

1) A relationship function can be represented by a table consisting of binary tuples that
satisfy functional dependencies.

2) An entity with n attributes can be represented by a table consisting of n-tuples over the
attribute value sets. The tuples satisfy the (n-1) functional dependencies from the
identifying attribute's set to the decriptive attribute sets - see figure 4.

3) A derived structure formed by using the connection constructor can be represented as a
table as shown in figure 6.

This last table shows a set of tuples over columns of attribute values and relationship existences
with boolean values. The relationship existence columns show the presence or absence of a
connection (relationship instance) between the identifying attributes of each pair of entities in the
structure. These columns are needed in a cyclic structure because without them it is ambiguous
which connections are being represented. This ambiguity has confused RDB theory because it is
not clear from a table of attribute values what connections are being represented.

It is also evident that the constraints specified on the E-R model are in RDB terms either
functional dependencies (FDs) or inclusion dependencies (IDs). For example:-

1) Allrelationship functions R(A,B) from entity E{(A,...) to entity E5(B,...) must satisfy
E{.A2RA and E»2.BoRB

2) Mandatory participation of an entity E with identifying attribute A in a relationship
R(A,B) can be specified as R.A D E.A. Therefore, by 1) R.A = E.A. Sucha
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constraint we call a paired unary inclusion constraint.

3) The E-R model inclusion and functional dependency constraints are specified as IDs and
FDs on base or derived structures represented by tables.

4) Subtypes are specified by unary inclusion constraints between identifying attributes of
subtype entities and their supertype entities.

There are well documented definitions of the FD and ID constraints in terms of what they must
satisfy on a table to be certain the satisfiability of such constraints can be determied. We have thus

shown that:-

Result The refined E-R model satisfies the data condition part of the semantically adequate
structure condition.

We now further examine the E-R model to see what insight it provides into the RDB data
model.

4.2 Well-formed E-R models translate to well normalised RDBs.

We now show that a well formed E-R model happens to be in at least fourth normal form. We
also show that the "cyclic join dependencies” that are recognised when refining RDB relations to
fifth normal form are rather strange so far as information semantics are concerned

An E-R model structure is in fourth normal form by construction, because it assumes that all
attribute functions and relationship functions needed to describe the real world have been
recognised. Relationship function recognition requires that all n-aryrelationships have been
recognised, and then decomposed to relationship functions.

4.3 Enforcement of complex functional dependencies

More complex functional dependency constraints were shown in section 2 to be specified over
derived structures. These derived structures may contain multi-valued dependencies (MVDs), as in
figure 12. We have the following theorem:-

Theorem. Consider a bnary functional dependency FD specified on a derived
structure S constructed over a base of unary functions {f;} and sets. If

{f;} does not imply FD, then either :

a) the derived structure S necessarily will contain a MVD, or
b) if in addition the base functions are total, then FD and {f;} mplies

alternative, possibly composite, keys on one or more of the sets.

Proof.

Consider a binary functional dependency FD : (X,Y)--> Z over a structure defined by the
sets X, Y, Z and two base functions between those sets. Two base functions are necessary and
sufficient to connect the three sets together and to unambiguously define the scope of the constraint
over the entire structure.

The proof proceeds by considering the various pairs of base functions possible and eliminating
those that imply FD. The remaining cases satisfy the theorem.
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There are six possible base functions are X --> Y, Y-->X, X-->Z, Z-->X, Y-->Z, Z-->Y.
Each base function can only form pairs with 4 others to ensure the three sets are connected. This
produces 12 pairs. As the theorem is symmetric in X and Y we need only consider bases in the

following 7 cases:-

1) X-->Y, X-->Z 2) X-->Y,Z-->X 3) X-->Y,Y-->Z 4 X-->Y,Z-->Y
5) X-->Z,Y-->Z 6) X-->7Z,7Z-->Y 7 Z-->X,Z-->Y

In cases 1, 3, 5, and 6 the functional dependency (X,Y) -->Z is implied. Now consider the
remaining cases:-

Case2. Wehave (f]:Z-->X,fy: X-->Y, and (X,Y)-->Z). From (f;:X-->Y, and
X,Y)-->Z) we get Y-->Z, and from (f : Z-->X, fp : X-->Y) we get Z-->Y.
Both Y-->Z and Z-->Y are defined on the table with columns (Z, f1?, X, f52,Y)
representing the derived structure constructed from [Z]*f*[X]*fy*[Y], and therefore

only contain full tuples which satisfy all these functional dependencies. From Y-->Z,
Z-->X, and X-->Y we can infer that Y-->X and X-->Z. Therefore ( X<-->Y,
Y <-->Z, and Z<-->X) on these tuples. If f{ and fy are total functions then X,Y and Z

are alternative keys on the derived structure and, if null alternative keys are allowed,
then for X,Y and Z as well.

* Result - b) The structure can be reduced to one entity type with 3 alternative keys if null
keys are permitted.

Case 4 We have (X-->Y and Z-->Y) on the structure, which implies that (Y-->>X and
Y-->>Z) which describes an MVD on the derived structure.

* Result - a) If the base functions are partial, both the base and the derived structure and the
base structure are required for enforcing all dependencies

Case 7 We have (Z-->X, and Z-->Y) which implies Z --> (X,Y), and therefore Z<-->(X,Y)
so that if f; and f; are total then Z and (X,Y) are alternative keys on the derived

structure and for Z.

* Result - b). The derived structure is not required if a mechanism exists for identifying an
entity by a composite key from neighbour entitties. This result is exemplified with the
ENROLMENT entity in figure 6.

Therefore the table representing a derived structure may only be useful, so far as constraint
checking is concerned, for checking the FDs specified over all of it. The derived structure will
prove difficult to update when it contains an MVD.

The theorem can be generalised to include a larger base for specifying a binary FD. Three sets
only are appropriate but now it is possible that the binary relationships would be many to many so
that the derived structure would contain an embedded MVD. If the binary relationships are not
many to many, they would be functions and hence the same proof would be applicable. Itis
conjectured that derived structures for more complex FDs would have similar restrictions on their
usefulness for constraint checking.

What this means for the relational data model is that while it is possible to have tables on which
all FDs can be enforced, either all complex FDs required are implied, or alternative keys are
implied, or the table necessarily contains MVDs.

4.4 MVDs and CJDs are Characterised by Inclusion Dependencies

April 29, 1987



13
Specifying Information System Structure

MVDs

Consider the relation R4(A,B,C) as representing a ternary relationship between the entities
A,B, and C. Suppose that:-

R4=n &(R4) join n_B_C_(R4),

where T (R) represents the projection of R over the set of attributes X (See AppendixA.5). Ifitis

not true that 1) AB satisfies B-->A and BC satisfies B-->C, then 2) by definition R4 contains a
MVD that is not a FD because B-->>A or B-->>C,

This equation is interpreted as the E-R model in figure 12. R4 with connection columns added
is constructed by the connection construction:-

(A) *ldA *RA_B *ldB *RB_C *ldc -> T4 : (A ?RA_B B ?RB_C _C_ )

We also have:- Rd=x ABQ(T4)

In terms of E-R constraints we note that B mandatorily participate in the relationships RA g
and Rg (, which are expressed as inclusion dependencies. This gives the result. -

Theorem A MVD over three entities connected by two binary relationships is
characterised by two pairedunary inclusion constraints.

ClIDs

Now consider the relation R5(A,B,C) as representing a ternary relationship between the
entities A, B, and C, which have identifying attributes A, B, and C respectively. Suppose that:-

R5=mx AB(RS) join nE(RS) join ng_A_(RS).

This equation by definition satisfies a join dependency that is not a MVD. Because it is around a
cycle we call it a cyclic join dependency (CJD) constraint. The equation is interpreted as the E-R
model in figure 12. Now consider the connection construction which produces the table T5 :-

(A) *idy *Rp g *idg *Rp ¢ *do *Rg A *idy -->
B "~ T5:(A a3 B Mg C g p A)

In this case A = A' because the relationships satisfy a cyclic join dependency constraint and
therefore:-

This clearly illustrates the distinction between the join and connection constructors. By
symmetry on the problem R can also be constructed by any connection construction formed by a
permutation of A, B and C.

Aswell:- 7R ABA ?RB_C --> MRc a,and therefore Rc A © Ry g 5 Rp ¢
In terms of E-R constraints we note that A, B and C mandatorily participate in the relationships

Rp B,Rp ¢,and Rg A which we can express as a set of paired unary inclusion dependencies
between each of the three relationships and their two entities. The three different ways of
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constructing R5(A,B,C) with their conditions on the repeated column being identical, implies that
the following three binary inclusion constranits are satisfied:-

RAB ®Rpc s Rca
Rpc ®Rca ;R
RcaA PRaB 5 RBC
These can also be expressed as binary inclusion dependencies. This gives the result:-

Theorem A CJD over three entities connected in a cycle with three binary
relationships is characterised by six paired unary inclusion constraints and
three binary inclusion constraints.

Such cycles of paired unclusion constraints are rare in practice. In the case of CJDs it seems
best to maintain the entities and relationships involved in one table only because updates to the
components need to happen "all at once".

We now note that these binary inclusion constraints were given in section 3 as a required
property to prevent the possibility of an infinte unclosed cycle of connections through the entities
A,B and C. It gives us a way of understanding what SNF is trying to say:-

CJDs occur because a cycle of relationships can be represented in a (flat)
table. Fifth normal form is thus an artifact of the relational data structure
(table) representation.

4.5 The Implication problem for FDs and IDs

It has been shown that the implication problem for FDs and typed, acyclic IDs is decidable
[8,9]. Allinclusion dependencies used in the E-R model are typed. The condition of acyclicity can
now be weakened slightly to allow closed cycles of implication dependencies:-

Theorem (FD andID implication) Providing there is no unconstrained cycle of
inclusion dependencies, then the implication problem for the constraints
specified for the E-R model are decidable.

This is implied by Bry and Mathey's finite satisfiability is semi-decidable theorem [12].

What must be avoided in practice is a unary cycle of unconstrained inclusion dependencies,
which is possible if all entities in a cycle of relationships mandatorily participate in those
relationships. Such a situation is easily determined by inspection. The cost in this rare
circumstance is that the satisfiability of the implication problem might be checked before trying to
discover implied constraints.

6. Conclusions

The issue that has been recognised in the E-R approach to specification is that some problems
presume a structure on which they are specifiable and on which the specification's satisfiability can
be decided.. Unlike other areas, information analysts and database designers proceed from a base
defined in terms of structure rather than axiom.

The refined E-R Model has been shown to be specified using both theory and structure.

The term "model" is used in model theory to mean a structure that satisfies a particular theory
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mapped to it by a satisfaction relation of its logic. Thus the result of an adequate specification is a
model - that is a (countable) structure which satisfies the theory and is therefore consistent.
However, note that there is no requirement that the structure is completely defined by the theory it
satisfies, nor that the theory is a complete axiomatisation of the structure.

What we have also shown is that semantics as used in first order logic is not sufficiently
powerful. As obvious as it sounds, it is quite clear that we have two ways external to an E-R
model of understanding what it means. These two ways are to test its information semantics and its
data semantics according to the semantically adequate structure condition.

What now must be done is to pursue the question of specifying state transitions, that is the
behaviour of an E-R model. While there have been many proposals, it now seems that using the

complete structure of the model including its subtypes, we have a base on which further refinement
stages of the specification can proceed.
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Figures
Figure 1. The semantics of the Entity-Relationship Model
Figure 2. Summary of Entity-Relationshp Diagrammatic Notation
Figure 3 The E-R model of a Course Information System
Figure 4 The E-R model of an entity type showing its attribute functions and their value sets
Figure 5 The E-R model of a relationship function Takes : CLASS --> STAFF.
Figure 6 Examples of binary function constraints.
Figure 7 Examples of binary inclusion constraints.

Figure 8 The Subtypes of the COURSE entity

Figure 9 All the sub-types of the Course Information System inckuding STAFF and STUDENT
as subtypes of PERSON.

Figure 10 A Manufacturing Information System illustrating a more comples set of subtypes
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Fugure 12 E-R diagrams illustrating Relational Database Normal Forms
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Figure 8 The Subtypes of the COURSE entity

The Relationships for the

Figure 9 All the sub-types of the Course Information
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Figure 10 A Manufacturing Information System illustrating a more comples set of subtypes
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Figure 11 Set theoretic specification of subtypes

Example 1. Course Information System Entities Example 2. Product Sub-type Entities
COURSE subtypes -  COURSE_runs > COURSE_Crs-G PRODUCT o PRODUCT_ACQ
COURSE _Cr1s-G » COURSE_Crs-E
COURSE Crs-G > COURSE_Crs-C PRODUCT_ACQ = PRODUCT DISP
ENROL subtypes - ENROL_Crs-E = ENROL_Std-E PRODUCT_ACQ = (PURCHASE_PRODUCT u
MANU_PRODUCT)
SCHOOL subtypes -  SCHOOL_Runs = SCHOOL_Mem
(PURCHASE_PRODUCI‘nMANU_PRODUCT) = ¢
CANGIV subtypes- ~ CANGIV_Crs-G = CANGIV_Std-G PRODUCT DISP > (SALE_PRODUCT u
RENTAL_PRODUCT)
CLASS subtypes- CLASS_Crs-C&Takes > CLASS_Room
(SALE_PRODUCT ~ RENTAL_PRODUCT) = ¢
STAFF subtypes - STAFF_Mem o STAFF_Stf-G

STAFF_Stf-G > STAFF_Takes

PERSON subtypes-  PERSON > STAFF
PERSON o STUDENT



Fugure 12 E-R diagrams illustrating Relational Database Normal Forms
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