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ABSTRACT

We consider the minimum cost network flow problem and describe how the
linear penalty function methods of Conn and Bartels can be specialized to a com-
binatorial algorithm for this problem, the network penalty method. Computational
experience indicates that this algorithm provides a significant improvement over the
network simplex method. The algorithm can be proven finite using a modification of
Cunningham’s strongly feasible basis pivoting rule.

1. Introduction

Minimum Cost Network Flow problems are special instances of linear pro-
grams. The Minimum Cost Network Flow problem (NFP) is

minimize cz
subject to Az =b
0<z< u,

where A is the vertex—edge incidence matrix of a directed graph G, and b, ¢,
and u are constant vectors. These problems have been successfully treated with
combinatorial primal, dual, and primal-dual algorithms [7,8,9]. The standard
Simplex method for linear programming can also be specialized to a combina-
torial algorithm for solving (NFP). The resulting Network Simplex method has
in practice compared favorably with the above mentioned combinatorial algo-
rithms [10], and has often been the preferred method of solving Minimum Cost
Network Flow problems. For a recent survey, see Grigoriadis [11].
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Another approach which has been taken to linear programming is that
of Penalty Function methods. These methods were developed originally for
non-linear programming (Conn [2]) but have been specialized to algorithms for
solving linear programs (1,3]. In particular, the algorithm presented by Bartels
[1], is in structure quite similar to the Simplex method.

The basic idea is that the upper and lower bound constraints will no longer
be required to be satisfied for each variable. Instead, if one of these bounds is
violated, a penalty will be incurred in the objective function. This penalty
will be based on some preset penalty parameter o, and will “encourage” the
variable back towards its feasible range. This new penalty objective function
®, () is minimized, subject to Az = b, for some initial value of a. If the optimal
solution to this new problem satisfies the upper and lower bound constraints for
every variable, then it must be optimal to the original problem. Otherwise a is
increased and we solve again. Computational results [1]have indicated that for
reasonable initial values of a, this Penalty Function algorithm uses an average
of 20 % fewer pivots than the Simplex method, on small, dense problems. Since
the amount of work each method does during one pivot is comparable, this
represents an improvement.

Our main objective is to show how these penalty function techniques can be
applied to minimum cost network flow problems. This involves specializing the
methods developed by Conn and Bartels to exploit the special structure present
in (NFP). The result is an algorithm which can be viewed as a variant of the
standard network simplex method. The main differences are the following:

i) When flow augmentations are performed, flow is not required to remain
feasible on all edges.

ii) A consequence of i) is that the bases encountered during the course of
the algorithm are not in general either primal or dual feasible. In fact,
the algorithm can begin with any basis. This removes the necessity of
adding artificial variables to the problem.

An important theoretical question regarding the Network Simplex method
is that of finiteness [5,6]. Flow problems are, in general, highly degenerate,
so even though instances of cycling are rare in practice, it is important to be
able to prove an algorithm finite. Cunningham’s method of strongly feasible
bases [4] provides a simple pivoting rule which guarantees finiteness for the
Network Simplex method. This rule restricts the set of bases which may be
selected to the so called sirongly feasible bases. One drawback of this method
is that it must start with a strongly feasible basis, and such a basis may not
be readily available. We present a modification of Cunningham’s rule, MCR
which also guarantees finiteness but has the added advantage that any starting
basis may be used. This rule also restricts the set of bases which may be
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selected. In this case, however, the permissible subset is determined by the
choice of starting basis. The new rule MCR is important for the Network
Penalty algorithm, since this algorithm precludes the possiblilty of maintaining
a strongly feasible basis. Another practical benefit of MC R is the following. If
we have a Network Simplex pivoting rule which performs very well in practice
but does not guarantee finiteness, then we can combine it with MC R to create
a finite pivoting rule by simply applying M C R anytime we reach a sequence of
pivots which we suspect to be cycling. Recently, strongly polynomial methods
for the minimum cost network flow problem have been obtained by Tardos [14
] and Orlin [13 ].

A final feature of our Network Penalty algorithm is that it does not always
require that we minimize ®,(z) for a fixed value of a. It is shown that it may
be possible, before this happens, to recognize that the £ minimizing ®,(z) will
not be feasible and hence a must be increased. Whenever this situation is
recognized, we immediately increase a.

In the remainder of this section we introduce some of the elementary graph
theoretic concepts and notation which will be used in this paper. In Section 2 we
provide details of the network simplex method and Cunningham’s pivoting rule.
We also introduce the M CR pivoting rule. In Section 3 the general penalty
method is reviewed and the added complication of degeneracy is considered.
Section 4 concerns the early termination condition mentioned above. In Section
5 the network penalty algorithm is presented. Also included in this section is
a proof, using M CR, that the network penalty algorithm is finite. Finally, the
results of some computational experimentation are contained in Section 6.

A directed graph is a graph G such that for every edge e € E(G), one end of
e is designated as the head of e (denoted by h(e)) and the other is designated as
the tail (denoted by ¢(e)). We say that e is directed away from ¢(e) and towards
h(e). The incidence matriz of a directed graph G is the matrix A = [a; ;] whose
rows are indexed by the vertices of G, and whose columns are indexed by the
edges of G, where

—1 , edge j is directed away from vertex ¢

1 ,if edge j is directed towards vertex ¢
@i = {
0 , otherwise.

If G is a directed graph, then the underlying undirected graph of G is the undi-
rected graph having the same vertex set, edge set, and incidence relation as
G. A directed tree is a directed graph whose underlying undirected graph is a
tree. In a directed tree an edge e is said to be directed towards a vertex v if
h(e) is on the path connecting v and #(e). Otherwise e is directed away from v.
(Note that a directed tree is different from an arborescence, in which all arcs
are directed away from some root node.) Given a directed graph G, a directed
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spanning subtree T, and an edge e not in T, the fundamental cycle C(e) is the
cycle in G consisting of ¢(e) and e followed by the unique path in T' from h(e)
to t(e). An edge e; on a cycle C = (v1,€1,...,€k—1,Vk) is a forward edge of C
if h(e;) = viy1. Otherwise it is a backward edge. Thus we have that e is always
a forward edge of C(e). The incidence vector of a cycle C is the vector p such
that

—1 ,if j is a backward edge of C

1 ,if j is a forward edge of C
-]
0 , otherwise.

If a cycle C has incidence vector p, then reverse C is the cycle having incidence
vector —p. Given a cycle C and two edges e, f € C, f is directed with e on C if
they are either both forward edges of C or both backward edges. Otherwise f
is directed against e on C. The graph G with the edge e deleted is denoted by
G — e, and likewise G + e denotes the graph G with the edge e added.

2. Network Simplex Method

All linear programming problems considered in this paper are of the fol-
lowing standard form:

minimize cx
(LP) subject to Az =1b
0<z<u.

A minimum cost network flow problem (NFP) is an instance of (LP) where
A is the incidence matrix of a directed graph G. For our purposes we will
assume, without loss of generality, that G is connected. (NFP) has the following
interpretation. We are given a demand b, for each vertex v, and an edge cost
ce and capacity u. for each edge of G. We wish to assign a number z. to each
edge e of G in such a way that,

i) for every v € V (@), the sum of numbers on edges directed towards v,
minus the sum of numbers on edges directed away from v, equals the

demand b, at v,

ii) the number assigned to each edge is non—negative and not greater than
the capacity of that edge,

iii) subject to i) and ii), we minimize the total cost, cz.
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The dual problem (DFP) also has a special interpretation. It is the problem
of assigning to each vertex, v, of G a number, y,, and to each edge a number
Ye, in such a way that,

i) for every e € E(G), Yn(e) — Ye(e) — Ye < Ce;
ii) for every e € E(G), 7. is non—negative,
iii) subject to i) and ii), we maximize yb — yu.

The sum of the rows of A is the zero vector, so unless Y, cy (g b» = 0, the
system Az = b will be inconsistent and will thus have no feasible solution.
Therefore we assume that ),y (g)bs = 0. It follows that any one of the rows
of Az = b is the negative of the sum of the others and thus can be deleted. We
will arbitrarily choose a vertex and call it the root, denoted r. We will delete
the constraint corresponding to r and equivalently, in the dual, set y, = 0.

We now summarize the main features of the Network Simplex Method (see
Kennington and Helgason [12]). A basis of an instance of (NFP) is a partition
B = (T,L,U) of the arcs of G such that T is the edge set of a spanning tree.
The elements of T" are called basic and those of LUU are called nonbasic. Given
a basis, the associated primal and dual basic solutions can be easily calculated
in the following manner.

Primal Basic Solution:

Let B = (E(T),L,U) be the given basis. Set z; = u; for all j € U. Adjust the
vertex demands to account for these values. Let v be a vertex (other than r),
which has degree 1 in T', and let e be the edge of T" which is incident with v. Set
z. to satisfy the demand at v. Adjust the demand at the other vertex incident
with e to account for this value of z.. Delete e and v from T. Repeat this until
r is the only vertex left in T'. Set z; = 0 for all edges j € L.

Dual Basic Solution:

Set y» = 0. Let v be a vertex which is adjacent to a vertex u in T' where y,, has
been set but y, has not. Let e be the edge of T' which joins them.

Yu + Ce , if e is directed towards v
Set y, = ,
Yu — Ce , Otherwise.

Repeat until all node numbers have been set. For all j € (E(T)UL) set y; = 0.
For all j € U set v; = yn(j) — Ye(5) + €5-

The Network Simplex Method is a specialization of the Simplex Method
for solving Network Flow Problems. The method pivots from primal feasible
basis to primal feasible basis attempting to find one which is also dual feasible.
This algorithm proceeds as follows.
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1. Start with a primal feasible basis, B = (E(T), L,U).
Calculate the associated primal solution, z.

Calculate the associated dual solution, y.

-~ W N

For each edge j, compute the reduced cost ¢; = ¢; — yn(y) + Ys(5)-

Ifc; > 0forall j€L,and¢; <0forall j €U, then B is dual feasible
and thus optimal.

Otherwise, find either ¢ € L such that ¢, < 0, or e € U such that ¢, > 0.

5. Adding e to T will create exactly one cycle C(e).

{C(e) ifeeL

Let C reverse C(e) ifeeU.

Let B; =4 % for all backward edges j of C

®Fi T uj—=z; for all forward edges j of C.
Let f be an edge in C(e), such that B is minimum. (*)
Let © = ,Bf.

Add © to the flow in all forward edges of C.

Subtract © from the flow in all backward edges of C.
6. Set T=T-f+e.

Delete e from L or U, whichever it was in.

Set L = LU {f},if f is a backward edge of C.

Set U =U U {f}, if f is a forward edge of C.

Go to Step 3.

Cunningham [4] presented a simple pivoting rule which ensured the Net-
work Simplex Method would terminate in finite time. For this he introduced
the concept of a strongly feasible basis.

Definition: A basis B(T, L,U) is strongly feasible if for every edge j € T,

z; = 0 implies j is directed away from r in T

and
z; = u; implies j is directed towards r in T

Now consider the following modifications to the Network Simplex algorithm:
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(1) Initiate the algorithm with a strongly feasible basis.

(2) In Step 5, let F be the set of edges which are candidates to become non—
basic. Let s be the first common vertex in the paths in T' from h(e) and
t(e) to r. Choose f to be the first member of F' encountered in traversing
C(e) in the direction of e beginning at s.

Cunningham’s theorem states that the Network Simplex algorithm with the
above modifications is finite. However, this proof of finiteness requires that the
initial basis be strongly feasible. For our application we require a rule which
will guarantee finiteness regardless of whether the starting basis is strongly
feasible. The following is a modification of Cunningham’s rule, MCR, which
does not require that we start with a strongly feasible basis. Therefore it has the
practical advantage that we can begin applying the rule at any time we suspect
cycling to be occurring. When the method makes a non—degenerate pivot, we
can “turn off” the rule and thereby avoid the extra “overhead” it involves. This
frees us from maintaining an anti—cycling mechanism throughout the algorithm,
yet still guarantees finiteness. To implement MCR we will need to maintain a
second vector of edge numbers w = (w; : § € E(Q)).

Definition: A basis B will be Semi-Strongly Feasible (SSF) when for every edge
Jj in the associated tree,

z; = 0 and w; = 0 implies j is directed away from r
and

z; = u; and w; = 0 implies j is directed towards .

Any time we wish to apply the finiteness procedure we make the following
changes:

(1) Initially, for any edge j in the spanning tree such that z; = 0 (z; = u;),
and j is directed towards (away from) r, set w; = 1 (w; = —1). Set
w; = 0 for all other edges.

(2) In Step 5, replace statement (*), in which the leaving variable is chosen,
with the following.

— Let F be the set of candidates to be non-basic, i.e. those e for which
Be is minimum.

- Let,@,-={

- LetA=nﬁn{Bj:j€F}.
- Let F={jeF:8;=2M}.

w;  for all backward edges j of C
—w; for all forward edges j of C
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—  Choose f from F' as in CR.
- Add )\ to w; for all § directed with e on C/(e).
—  Subtract A from wj; for all j directed against e on C/(e).

The w’s can be thought of as a secondary flow on the same network which
satisfies a different set of node demands. Notice that if F' contains only a single
element, f will be chosen to be that element. The above rule is performed until
a non—degenerate pivot is made, at which time the w’s are discarded. Notice
that in the special case where our starting basis is strongly feasible, the w’s will
all be initially set to 0, and this method will duplicate Cunningham’s rule.

Theorem 1 The Network Simplex algorithm with the above modifications is
finite.

Proof. The proof of this theorem is in two parts. Its structure is the same as
the proof of Cunningham’s theorem. First we show that the MCR pivoting rule
causes the Network Simplex algorithm to encounter only semi-strongly feasible
bases.

Let B® be a semi-strongly feasible basis. Let B! be a basis obtained from
B® by MCR. Let T° and T? be the associated spanning trees and let 2°,3° and
2!,y be the associated primal and dual basic solutions.

Note that edges of T which are not in C(e) are directed towards r in 77 if
and only if they are directed towards r in T°. Therefore we need only consider
edges of C(e). There are two cases.

1.O>00r A>0.

In this case the edges j € C(e) N T? such that w; = 0 and z} = 0, or w} = 0
and z} = uj, are precisely the edges of F — {f}. MCR ensures that each of
these is directed appropriately, either towards or away from r in T?.
2.0=0and A =0.

In this case z! = z° and w! = w?. Let z! = 0 (z! = u.). Since B is semi-
strongly feasible, every element of F' must lie on the path between h(e) and
s(t(e) and s) in T°. Therefore e will be directed away from (towards) r in T?.
Also, as in case 1, the members of F— {f} will be directed appropriately.

In both cases B! is semi-strongly feasible.

We now show that MCR will never permit a basis to be encountered more
than once during a sequence of degenerate pivots. That is, we need only concern
ourselves with pivots for which ® = 0. Again there are two cases.

1. A>0.
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In this case the pivot may be thought of as a non—degenerate pivot with respect
to the flow w. Therefore the function cw will be strictly decreasing.

2. 2=0.

Let R be the set of vertices in the component of 7° — f containing r. Notice
that by definition,

ifi € R, then y} =1,

0 0 0 0
oo - Yi +Ce — Up(e) T Vi) <% Hife€ L
ifi ¢ R, then y} = .

# R then {y?—ce+y?,(e)—y2(e)<y? ,ifecU.
Therefore 3°;cy ) ¥ < Licv(a)¥s- That is, the sum of the components of
y strictly decreases with each degenerate pivot. Both the w’s and the dual
variables are uniquely determined by the basis, so no basis may be repeated
and the theorem follows.

O

3. Penalty Function Methods

Consider an instance of (LP), our standard linear programming problem.
It is known that an optimal solution to (LP) may be found by minimizing an
unconstrained piecewise linear penalty function. Instead of explicitly requiring
that the constraints be satisfied, a penalty is incurred in the objective function
for each violated constraint. Conn [3] introduced an algorithm to minimize one
such penalty function. His approach proceeds by finding a direction of decrease
and incrementing along that direction until the penalty function is no longer
decreasing. If the solution thus obtained is feasible for (LP), then it must be
optimal for (LP). Otherwise the penalty for violated constraints is increased
and the process continued.

We may, of course, choose any subset of the constraints and require that
they be satisfied explicitly rather than representing them in the objective func-
tion. One possible approach is to impose the equality constraints (Az = b)
explicitly, while including penalties in the objective function for violated upper
and lower bound constraints. In this case the penalty function considered by
Conn will take the following form:

®.(z) =cz — az min(z;,0) — a Z min(u; — z;,0) ,
Jj=1 ij=1
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where a > 0 is some real constant. The penalty function problem we consider
is
(PP) Minimize ®,(z)

subject to Az =b.

This problem obviously is related to (LP), but (PP) and (LP) generally do
not have the same solutions. For example, if a is very small, (PP) simply
minimizes cz subject to Az = b effectively ignoring the upper and lower bound
constraints. Hence it is possible for (PP) to have an optimal solution which
is not even feasible for (LP). However, if an optimal solution of (PP) satisfies
0 < z < u, then it is also an optimal soution of (LP). Moreover, if (LP) has
a feasible optimal solution, then there exists @ such that a > a implies any
solution of (PP) will be optimal if and only if it is an optimal solution of (LP)
[1,3]. One well known bound on @ is that it is no greater than the largest
(in magnitude) dual variable in an optimal solution. Notice that the objective
function ®4(z) can be rewritten,

P.(z) = E ¢z + Z(cj—a)a:j—%— Z (c;j+a)z; —a Z uj .

0<z; <u; z; <0 zj>uj zj>uj

Thus once the current z is known, the current coefficients c;- of the objective
function can easily be obtained. That is,

, cj if0<z; <uy
c; =4 ¢—a Z:lf$j<0
c;+a ifz;>u;.

Bartels [1] presented an algorithm for solving (PP) which is a variation
on Conn’s approach. Unlike Conn’s method, this algorithm pivots from basis
to basis in a simplex-like manner, although it requires neither primal nor dual
feasibility to be maintained. However, just as in the case of the simplex method,
for every solution constructed by the algorithm, each nonbasic variable will
equal either its upper or lower bound. This means that infeasibilities can occur
only on basic variables. Bartels’ algorithm makes use of the assumption that
the linear program is non—-degenerate. That is, no basic variable can have its
value equal to either of its bounds. This assumption allows the assignment of
a single reduced cost ¢; to every nonbasic variable z;, so that ¢; reflects the
per unit effect on the objective function of either increasing or decreasing the
value of z;. In particular, if z; is at lower bound, then ¢; is the per unit effect
of increasing z; and —¢; + « is the per unit effect of decreasing z;. Similarly,
if z; is at upper bound, then —¢; is the per unit effect of decreasing z;, and
¢; + a is the per unit effect of increasing z;.
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As previously mentioned, minimum cost network flow problems are in gen-
eral highly degenerate. This means that some basic variables may be at either
upper or lower bound and will thus have different costs, depending on whether
they are increased or decreased. This, in turn, means that the reduced cost of
a nonbasic variable can no longer be represented easily as one number. Instead,
for each nonbasic variable, two seperate reduced costs must be calculated. To
calculate these numbers one must know the number of basic variables which will
violate their bounds immediately upon a change in the nonbasic variable. This
makes the degenerate case substantially more complicated. Care must be taken
or we may be left with an algorithm which could terminate with a suboptimal
solution. For an example of this, see Figure 1 which is presented within the
framework of network flow problems.

- <D . 6
b, = 0 for all vertices v = /'\\ g
ue = 1 for all edges e P
ce =1 for all edges e 4 1 \\2 7
T = {4,5,6,7} v \
U=1{1,23} / \
L=0 /____3__>_-\

Figure 1

The basic solution z' associated with the basis (T, L, U) assigns a value of one
to arcs 1,2 and 3, and a value of zero to all others. The reduced costs associated
with increasing (cj') and decreasing (c; ) each nonbasic arc, j, are listed below
in terms of the penalty parameter a.

cf =142 ¢ =-14a
g =1+2a g =-1+a
g =1+3a cg =-—142a

Thus, for @ > 1, all reduced costs will be positive and the algorithm will
terminate with the solution z'. It is clear, however, that when a > 1, the
zero flow is the unique optimum. The reason that the algorithm fails on this
example is that all non—degenerate pivots require the violation of a bound and
thus, for large a, these pivots do not look profitable.

A solution to this problem is to give each basic variable a single cost. If
the value is feasible (even if it is at bound) this cost is just the original. If it is
infeasible, the cost will include the penalty parameter a. This means that if a
basic variable at its bound is to become infeasible, the situation is treated as a
bound which is reached immediately. Thus the method may make degenerate
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pivots. If this method is used on the problem in Figure 1, then arcs 1,2 and 3 (in
that order) will be pivoted into the basis, the first two pivots being degenerate.
Thus we will obtain the optimal solution.

When applied to (NFP), the above approach also has a computational
advantage. Since each basic (tree) arc has a single cost, dual variables can be
calculated in the normal fashion and these can be used to calculate the reduced
costs of the nonbasic arcs.

This approach, however, creates a problem with cycling in that infinite
sequences of degenerate pivots become not only possible, but common. An
example of this situation is given in Figure 2.

b, = 0 for all vertices v J

ue = 1 for all edges e /

€1 =Cy = 2 c3 = 1 /

a=2 17‘ 2

T ={2,3} /,

L = {1}, U = w [,

z. =0V edgese < >
Figure 2

The reduced cost for lowering z; is —1, so arc 1 enters the basis and arc 2 leaves.
This is a degenerate pivot. Now the reduced cost for lowering z; is —1, so arc
2 enters the basis and arc 1 leaves. Thus we have cycled back to the original
basis. In general, this situation can arise any time the reduced cost for moving
a non basic variable away from its feasible region is negative but greater than
—a. If the associated fundamental cycle contains an arc at bound, then that
arc will leave the basis but will immediately become a candidate for re—entry.
More complicated situations, involving many variables, are also common.

The reason that cycling is so likely in this algorithm is that we allow non-
basic variables to move away from their feasible regions. However, the main
result of the next section is the following: In view of our overall goal of solving
(NFP) rather than (PP), those pivots which move nonbasic variables away from
the feasible region are not required. If these are the only pivots available, then
either the current solution is optimal for (NFP), or the penalty parameter a is
too small and should be increased.
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4. Early Termination Condition

One possible variant of the Penalty Function algorithm would permit the
flow on a non-basic edge to move only into its feasible region. That is, non—basic
edges at their upper bound could only be decreased and non-basic edges at thier
lower bound could only be increased. Thus the method would continue pivoting
until it encountered a basis which was dual feasible with respect to the penalty
objective function coefficients ¢' (as defined in § 3). This would restrict the
set of possible pivots and hence the method could terminate without actually
minimizing ®,(z). For example see Figure 3.

a=1
Cl=62=0
c3 =2

UL =uy =ug =1

b, = 0 for all vertices v
E(T)={1,2}
L={3},U=0

Figure 3

In Figure 3, consider the flow z°, which is zero in every edge, so that ®,(z°) = 0.
Increasing the flow on edge f would increase the value of ®,(z), so our Early
Termination form of the Penalty Function algorithm would terminate with this
flow. However, if we let ; = 2} =1 and 2} = —1, then all vertex demands are
satisfied by z!, and ®,(z') = —1, so z° obviously does not minimize ®,(z).
Recall, though, that our overall objective is to solve (NFP). If the dual feasible
basis we encounter happens to be primal feasible also, then it must be optimal
for (NFP). If not, then we can continue to minimize ®,(x), or we have the
option (as we do at any stage in the algorithm) of immediately increasing c.
Bartels takes the latter option in his algorithm, interpreting the existance of
a dual feasible, primal infeasible basis as an indication that the minimizers of
®,(z) are likely not primal feasible. In the remainder of this section we will
show that the existence of such a basis is in fact a guarantee that the minimizers
of ®,(z) are not primal feasible. For the remainder of this section, we call a
cycle, C, feasible with respect to a basis B, if for every edge e on C, e € L
implies that e is a forward edge of C and e € U, implies that e is a backward
edge of C.

Consider a basis B, with primal and dual solutions « and (y,7), which is
dual feasible with respect to ¢'. This means there are no negative cost feasible
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fundamental cycles. It is however possible for there to be negative cost funda-
mental cycles which are not feasible, in which case £ may not be a minimizer
for (PP). Now, if z satisfies 0 < ¢ < u, then ¢' = ¢, and thus B is an optimal
basis for (NFP). Theorem 2 takes care of the case where z does not satisfy
0 < z < u. It allows us to state that in this situation « is not large enough
since no optimal solution to this instance of (PP) can be a feasible solution to
our original problem (NFP). We first state some simple preliminary results.

(1) Let G be a directed graph with incidence matrix A and let C be a cycle
in G. If C has incidence vector p, then Ap = 0.

(2) Let z satisfy Az = 0, where A is the incidence matrix of a directed graph
G. Then, there exist cycles C; with incidence vectors p; for 1 =1,...,m

such that
m
=) wp;,
=1

where w; > 0 is a real number for ¢ = 1,...,m. Furthermore, for each
of the cycles all backward edges j satisfy £; < 0 and all forward edges j
satisfy z; > 0.

(3) Let G be the directed graph of a Min Cost Network Flow problem and
let B = (T,L,U) be a basis of the problem. If C is a feasible cycle in G
with incidence vector p, then, p = Y. 1o P° — D ccunc P°r Where p° is
the incidence vector of C(e).

Statements (1) and (2) are immediate. Statement (3) follows from the fact
that the set of fundamental cycles in any graph (with spanning tree T') spans
the cycle space.

Theorem 2 Let B! be a dual feasible basis whose basic solution z! does not
satisfy 0 < z! < u. Then there does not exist any basis B? having basic solution
z? such that 0 < 22 < u and ®4(2?) < Ba(z?).

Proof. Assume that there exist such bases B! and B? with associated primal
solutions z!, and z2. Consider a new flow z defined by

a2 1 .
z; = z; —z; for every edge j.

We have Az = 0 and therefore, by statement (2), z = Y7, w;p; , where the p;’s
are the incidence vectors of cycles satisfying the conditions of the statement.
Now define ¢! by,

c; if j:0< 2} <uj
1 . L 1
¢i=q¢—a ifj:z; >0

ci+a ifj:z;<u;.



A NETWORK PENALTY METHOD 15

Thus ¢! is the vector of cost coefficients for z! in the objective function ®.(z).
We now show that ¢!z < 0. We have

e = E c;z; + Z (cj — a)z; + Z (¢j + a)z;.

OSz}Suj z}<0 z}>u,~

=c:c——a2zj+a Z zj

1 S
z; <0 z; >uj
But we know that

d,(22)— B, (z))=cz+a - ¢ z} —u;), since 0<z%<u.
J j J

21<0 z”:>u,~
Therefore,
cle = 04(2?) — Bu(z') — Z (z; + :v}) +a E (z; + :c; —uj)
.'c;:<0 z;>u,'
= ®4(2%) — Bu(z') — a Z z; + a E (2% — uj)
2} <0 z}>u;
<0,

since ®4(2?) < ®4(z'), and 0 < 22 < u.

Therefore, since z is a sum of weighted cycles, at least one of those cycles
C must be a negative cost cycle with respect to the edge costs ¢!. Also, from

statement (2), C will have the property that z; = 22—z} < 0 for every backward
edge, and z; = &2 — 2} > 0 for every forward edge. Therefore every backward
edge j of C will satisfy z; > 0, and every forward edge j will satisfy «} < u;.

Thus C is a feasible cycle with respect to the flow «! and by statement (3),

p= >, - Y 15,
ecLNC ecUNC

where p is the incidence vector of C and p® is the incidence vector of C(e).

Therefore, either there exists e € L such that C(e) is a negative cost
feasible fundamental cycle with respect to #! and ¢!, or there exists e € U such
that reverse C(e) is such a cycle. But this contradicts the fact that B! is dual
feasible, and the Theorem follows.

O

This theorem tells us that it is not always necessary to actually minimize
®,(z). It is sufficient to solve the following problem:
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(PP*) Given an instance of (PP), find a basis which is dual feasible with respect
to the coeflicients ¢' of ®4(z).

We note here that analogous statements to (1), (2) and (3) are true for the
general linear programming case and thus Theorem 2 holds in this more general
setting. Therefore, when using the penalty method for general linear programs
it is also sufficient to solve (PP*) rather than (PP).

5. Network Penalty Algorithm

We now specialize Bartels’ algorithm to the case of Network Flow problems.
At any given time we will have a current basis B, an associated spanning tree T,
and corresponding primal solution . Once the current z is known, the current
coeflicients ¢' of the objective function can be easily obtained. Using these
values we can find the dual solution y associated with B as described in §2.

There are two basic steps in the algorithm. First we must find a suitable
cycle on which to increment the flow, and secondly we must decide how much
the flow should be incremented. As indicated above, we will consider only
fundamental cycles for possible incrementation. This is merely a matter of
preference. While it may be more in keeping with the philosophy of Conn’s
algorithm to consider all cycles, we will chose not to do so in order to maintain
the simplex-like structure of the algorithm. In a future paper we will explore
the effects of removing this restriction.

The choice of incrementing cycle is made exactly as in the Network Simplex
method. Since we are attempting to solve (PP*), we first check whether the
current basm is dual feasible. If it is not, then there is e1ther some e € L such
that c = c ~ Yh(e) + Y(e) < 0, or some e € U such that c > 0. Let C = C(e)
ifee L and let C = reverse C(e) if e € U.

Now let us consider how the step size ©, is chosen. Let e be an edge not
in T such that, ¢, <Oandee L (¢, >0and e € U). Adding e to T creates
C(e), and we increment the flow around C(e) by adding ©p(—0Op) to the flow
for some © > 0. In the Network Simplex method © is set to be the largest
value satisfying 0 < (z 4+ ©p) < u. In the penalty algorithm, though, we do not
necessarily stop increasing © at this point. We instead increment until we are
no longer improving the value of ®,(z). This will occur once €, is no longer less
than (greater than) zero. Let f be an edge on C(e) whose ﬂow, as we increase
O, reaches either £ = 0 or £ = uy. There are two possible cases:

i) =z is being decreased.
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In this case f must be directed against (with) e on C(e). If we continue
to increment the flow on C(e) past this bound, the coefficient of z; in
®,(z) will be decreased by a. To obtain equality at the dual constraint
for edge f, we must add a to y,(s) and likewise for every vertex around
the cycle up to and including yy() (¥n(e))- This has the effect of adding

a(—a) to . If this value is still less than (greater than) zero, then we
can continue to improve ®,(z) by moving past this bound. If not, then
we should stop increasing ©..

zs is being increased.

In this case f must be directed with (against) e on C(e). If we continue
to increment the flow on C(e) past this bound, the coefficient of z; in
®,(z) will be increased by a. To obtain equality at the dual constraint
for edge f we must add —a(a) to yys) and likewise for every vertex
around the cycle up to and including yp(e) (y4(e)). The effect of this is
the same as in case i).

In both of these cases a is added to (subtracted from) ¢, each time we pass

a bound. Therefore it remains worthwhile to increment the flow until [ c: -l

bounds have been reached. This is the point where we are no longer improving
®,(z), and thus it is the point to which we should increment the flow. Notice
that this method of determining ® does not depend on the equality constraints
(Az = b), and thus is applicable to the general linear programming penalty
algorithm.

We now present the Network Penalty Algorithm.

1.
2.
3.

Start with any basis, B = (T, L,U).
Calculate the primal solution, z.

Calculate the dual solution y using the penalty function coefficients ¢’
(§3.1).

For each edge j, let E;- = c',c — Yn(5) + Yi5)-

Find either e € L such that E; <0
or e € U such that ¢, > 0.

If no such e exists, then B is dual feasible with respect to ¢'. Stop.

—t

c

e

Otherwise, let N =

a
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5. Adding e to T creates the cycle C(e).

C(e) ifeeL
reverse C(e) ifeeU

Let gL = d %i for all backward edges of C
et By = —z; for all forward edges of C\e

LetC’={

Let U = z; —u; for all backward edges of C\e
Fi T u;—=z; for all forward edges of C

Order the non-negative §’s such that g <... < B} wherei € {L,U}.

If t < N, then the objective value will continue to improve even after the
last bound has been passed, and thus the problem is unbounded. Stop.

Let f = fn, and set © = zy.

Add O to the flow in all edges directed with e in C(e).

Subtract © from the flow in all edges directed against e in C(e).
6. SetT=(T—-f)+e

Go to Step 3.

This algorithm can now be used as part of an overall algorithm to solve
(NFP). Start with some value for a, and run the Network Penalty algorithm.
If it gives us a basis which is primal and dual feasible, then we have found an
optimal solution to (NFP). Otherwise, increase a and continue from step 3. As
is the case with the general penalty algorithm, a need not be increased beyond
the magnitude of the largest dual variable in an optimal solution. In the case
of (NFP), a particularly simple bound on this value is provided by the number
of vertices times the maximum edge cost. Thus if after a reaches this bound,
the optimal basis for (PP*) is still not primal feasible, then we know that no
primal feasible solution for that particular instance of (NFP) exists.

It is evident that the Network Penalty algorithm presented above is very
similar to the Network Simplex method as presented in §2. Converting exist-
ing computer code from one to the other is very easy since all the same data
structures can be used.

We now consider the question of finiteness of the penalty algorithm. The
overall algorithm will be finite if the Network Penalty algorithm to solve (PP*)
is finite. As with the Network Simplex method, the Network Penalty algorithm
moves from basis to basis. Thus if we can show that no basis is ever encountered
more than once, we have proven the algorithm to be finite.

Consider the following pivoting rule.
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- If there is more than one candidate to become non-basic, make the choice
arbitrarily if the pivot is non—degenerate.

- During a sequence of degenerate pivots, use the MCR pivoting rule. For
the purposes of the rule, treat all edges j such that z; < 0 as if at lower
bound and all edges j such that z; > u; as if at upper bound.

Thus once it is determined that a pivot will be degenerate, the w vector of MCR
must be determined and maintained until such time as a non-degenerate pivot
occurs.

Theorem 8 The Network Penalty algorithm with the above pivoting rule is
finite.

Proof. For any non—degenerate pivot the value of the penalty objective func-
tion ®,(z) is decreased and during a degenerate pivot its value does not change.
Since ®,(z) is determined by the basis, no sequence of pivots which cycles can
include any non-degenerate pivots. But during a sequence of degenerate pivots,
MCR will ensure that no basis is encountered more than once.

[

6. Computational Results

A computer program was written to implement the Network Penalty algo-
rithm, as presented in §5, and to compare it with the Network Simplex method.
When using the Network Penalty method, one immediately encounters the fol-
lowing two questions: What value should be initially assigned to a and by how
much should «a be increased if the algorithm does not terminate with a solution
satisfying 0 < z < u? Unfortunately, very little theory has been developed in
this area, so the values of o were chosen on the basis of experimentation.

If a is very small, i.e. a very small penalty is assigned to violated bounds,
then the resulting subproblem will almost invariably be unbounded. Even
though this may be detected very early, often even on the first pivot, it seems
that the solution of such a subproblem is of very little use in solving (NFP). It
appeared that, if o was large enough to avoid this trivial situation, the solu-
tion of each subproblem required a significant number of pivots. Consequently,
if several successive values of a were needed, the total number of pivots was
large. Thus we decided to increase a by a multiple of 10 after an infeasible
termination.
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To study the problem of selecting an initial value for a, we arbitrarily
chose a constant problem size, generated several random problems of that size,
and tested the algorithm with various starting values of a. The networks were
generated as follows. After the desired number of vertices (n), and edges (m)
were chosen, a random spanning tree was formed to ensure the graph was
connected. Since there are n(n — 1) edges in the complete directed graph on n
vertices, this left (n — 1)? possible places for the remaining m — (n — 1) edges.
Each of these was given probability %‘1—‘5— of being included in the network.

Thus, m was the expected number of edges in the network. The spanning tree
formed above was used as an initial basis by both methods with the flow in all
remaining edges being set to zero. The Simplex method added artificial edges
where necessary.

We investigated the effects of different a values on problems of size 100
nodes and 500 arcs. Arc costs were chosen as uniform random integers from
the range —100 to 100. Arc capacities were chosen similarly from the range 1
to 200 and node demands from the range —30 to 30.

The pivot rule used by the Simplex method was to choose the entering
variable as the one with the largest dual violation (as measured by the reduced
cost) and to choose the leaving variable, in case of ties, arbitrarily. The same
rule was used by the Penalty method.

Five problems with the above parameters were randomly generated and
tested. The results of these tests are shown in table 1. For each of the problems
there are three columns. The first (R1), is the number of iterations used in
the first run of the penalty method, the second (R2) is the number of iterations
needed in the second run (after increasing o) and the third is the total. For each
problem the best total obtained is indicated with an asterisk. A (u) appearing
in column R1 indicates that the initial problem had an unbounded solution.
The table shows results for initial values of a ranging from 40 to 300. In fact
values up to 500 were tested, but the results were generally about the same
as for a = 300. The results for a« = 10,000 are included to demonstrate the
performance of the Penalty method when a very large value of o is used. The
final row of the table shows the number of iterations required by the Simplex
method for each of the problems. It is interesting to note that, for large «, once
a primal feasible basis is obtained, no further primal violations will be incurred.
Therefore, if the algorithms had been initiated with primal feasible bases, the
number of iterations required when a = 10,000 would have been equal to the
number required by simplex.

From the table we can see that a value of o ~ 200 appears be the best.
More striking than this, however, is the fact that the best value of « is in all
cases approximately equal to the smallest value of a for which the problem is
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solved in one run. This suggests that it is best to solve (or very nearly solve)
the original (NFP) problem with the first run and subject to this make o as
small as possible. In problems of our “standard” size this means setting o to
be approximately 200.

Next, several of the problem parameters were varied. Varying the arc cost
range has a direct effect on what the best choice for o is. That is, if the cost
range is multiplied by some constant k, then o should also be multiplied by k.

Varying the range of arc capacities and node demands had a somewhat
surprising effect. While the best starting value of a remained unchanged, the
overall performance of the Network Penalty algorithm was greatly affected. The
penalty method performed much better on problems with large range of arc
capacities and node demands. On these problems, about a 20 % improvement
over the Simplex method (in terms of number of simplex pivots) was observed.
That is, the Simplex method took about 25 % more pivots to solve the problems
than did the Penalty method. The original five test problems were used for
these tests, varying only the range of arc capacities and node demands. For all
tests a starting value of @ = 200 was used. For each problem the percentage
improvement of the Penalty method over the Simplex method (in terms of
number of simplex pivots) was calculated and the highs, lows and medians of
these values are recorded in table 2.

As the range of possible arc capacity and node demand values was nar-
rowed, the percentage improvement of the Penalty method over the Simplex
method was sharply reduced (see table 2). Moreover, the Penalty method did
not perform as well on assignment problems, (where arc capacities are constant
and node demands have only two possible values). In testing on random assign-
ment problems, the Penalty method averaged only a 5 % improvement over
the Simplex method. One possible reason for this decrease in performance is
the following. While augmenting the flow of a cycle in such a problem, when
the point is reached where a primal violation must be incurred (or the augmen-
tation stopped), it is likely that several primal violations will be incurred at
the same point. Thus there is a strong disincentive for the Penalty method to
commit primal violations. Thus it will, to a certain degree, mimic the Simplex
method.

Finally, the effect of increasing the problem size was explored. Interestingly,
increasing the problem size had very little effect on the best starting value of c.
An initial value between 200 and 250 was found to be best for all problem sizes
tested. As can be seen in table 3, the percentage improvement of the Penalty
method over the Simplex method increased steadily with the problem size. On
the largest problems (700 nodes, 3500 arcs) an average of approximately 33 %
improvement was observed, that is the Simplex method took 50 % more pivots
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to complete the problems than did the Penalty method.



on problems of 100 nodes and 500 arcs.
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Comparison of initial o values

(u) : Unbounded Optimum

* : Fewest Iterations

Probl

bl 1 2 3
a R1 R2 TOT R1 R2 TOT R1 R2 TOT
40 | 8(u) 435 443 | 1(u) 369 370 | 1(u) 437 438
60 | 8(u) 451 459 | 1(u) 370 371 | 19(u) 445 464
80 [117(u) 338 445 |184(uw) 316 500 | 137(u) 300 437
100 | 341 109 450 316 124 440 360 82 442
120 | 362 64 426 314 145 459 363 34 397
140 | 344 18 362* | 339 107 446 388 5 393
160 | 367 19 386 343 17 360 380 0 380"
180 | 389 0 389 333 21 354 423 0 423
200 | 378 0 378 354 2 356 410 0 410
220 | 420 0 420 334 0 334* | 418 0 418
240 | 424 0 424 335 0 335 388 0 388
260 | 378 0 378 347 0 347 407 0 407
280 | 433 0 433 352 0 352 399 0 399
300 | 418 0 418 360 0 360 428 0 428

10000 | 429 0 429 391 0 391 424 0 424

Simplex 537 439 457

Table 1

23
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« R1 R2 TOT R1 R2 TOT

40 | 8(u) 405 413 | 1(u) 391 392
60 | 134(u) 318 452 | 4(u) 428 432
80 | 286 246 532 | 282 277 559
100 | 351 104 455 | 331 123 454
120 | 328 42 370 | 344 71 415
140 | 386 12 398 [ 372 72 444

160 | 402 3 405 | 365 11 376
180 | 378 12 390 | 369 10 379
200 | 355 0 355* | 360 9 369*
220 | 389 0 389 | 378 0 378
240 | 412 0 412 | 423 9 432
260 | 403 0 403 | 390 0 390
280 | 415 0 415 | 400 0 400
300 | 387 0 387 | 384 0 384
10000 | 433 0 433 | 456 0 456
Simplex 465 380

Table 1 (continued)

(u) : Unbounded Optimum
* : Fewest Iterations
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Effect of Varying b and u Ranges

Problem % improvement
parameters High Low Median
be[-3,3

22.3% 0.7% 13.1%
u € [1,20]
b € [—30,30]

29.6% 10.3% 22.3%
u € [1,200]

b € [—300,300]
23.0% 17.8% 21.5%
u € [1,2000]

b € [—3000,3000]
22.6% 9.9% 18.2%
u € [1,20000] ,

Table 2
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Effect of Increasing Problem Size

e =500

% difference

Problem number

1

2 3 4

5

High Low

Med.

Simplex
Penalty, o = 200
Penalty, a = 250

493 417 492 467 495
393 341 401 375 402
410 350 382 421 381

20.3
23.0

18.2 18.8
9.9 16.8

n = 300 e = 1500 % difference
Problem number 1 2 3 4 5 High Low Med.
Simplex 1697 1861 1770 1698 1736
Penalty, o = 200 | 1318 1362 1304 1228 1315 |27.7 22.3 26.3
Penalty, = 250 | 1305 1409 1279 1264 1292 |27.7 23.1 25.6
n = 500 e = 2500 % difference
Problem number 1 2 3 4 5 High Low Med.
Simplex 3453 3174 3434 3344 3230
Penalty, o = 200 | 2427 2294 2299 2376 2225 {33.1 27.7 29.7
Penalty, a = 250 | 2341 2291 2374 2287 2297 {32.2 27.8 30.9
n = 700 e = 3500 % difference
Problem number 1 2 3 High Low Med,
Simplex 5222 5132 5177
Penalty, « = 200 | 3434 3483 3561 |34.2 31.2 32.1
Penalty, « = 250 | 3416 3558 3440 |34.6 30.7 33.5

Table 3
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