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ABSTRACT

A unified framework is developed for the study of asynchronous
circuits of both gate and MOS type. A basic network model consist-
ing of a directed graph and a set of vertex excitation functions is
introduced. A race analysis model, using three values (0, 1, and X),
is developed for studying state transitions in the network. It is shown
that the results obtained using this model are equivalent to those
using ternary simulation. It is also proved that the set of state vari-
ables can be reduced to a minimal set of feedback variables, and the
analysis still yields both the correct state transitions and output
hazard information. Finally, it is shown how the general results
above are applicable to both gate and MOS circuits.

1. Introduction

The theory of asynchronous networks had its beginning in the 1950’s with the
work of Huffman [12] and Muller and Bartky [16,17]. Huffman used what we
will call the feedback-delay model where a set of feedback variables represents the
state of a circuit. These variables correspond to a set of wires with the property
that cutting them would break all the loops in the circuit. With this set of state
variables Huffman used a binary race model to analyze state transitions. Muller
and Bartky used what we will call the gate-delay model, where the outputs of all
the gates constitute the state variables, and a binary model to analyze races.
Huffman’s race analysis is rather informal, whereas Muller’s is formally defined.
Both models use what has been later called the general multiple winner (GMW)
model, in the sense that the delays are arbitrary and any nonempty subset of the
set of unstable gates is allowed to change. Usually, the minimum number of feed-
back variables is much smaller than the number of gates; consequently, the feed-
back variable model has been, and continues to be, quite widely used.
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While the feedback-delay model gives the correct stable states, the state transi-
tions predicted by this model are not always correct. These observations were
made quite early [12,15], and various types of hazards were then used in an
attempt to explain these discrepancies. For a detailed discussion of this approach
the reader is referred to the book by Unger [19]. Roughly speaking, one first
obtains a flow table using the feedback variables. The stable entries in this table
are correct, but one has to perform a series of corrections to the unstable entries if
certain hazards are present — not a very attractive theory. An even stronger rea-
son for not using such a theory is Langdon’s example [13], which demonstrates
that different sets of feedback variables may lead to different flow tables, and these
differences cannot be accounted for by any known hazards. Thus the feedback
variable approach does not quite fit.

‘ In view of these difficulties with the feedback variable approach, a return to
Muller’s gate-delay model, using gate outputs as state variables, seemed necessary.
This approach was advocated, for example, by Langdon [13], but still with binary
race models. Precise mathematical formulations of such race models were
developed by Brzozowski and Yoeli [6,7]. In particular, they formalized the
GMW race model. We will return to binary race models shortly.

In the mid-1960’s ternary models were introduced for the analysis of races and
hazards in asynchronous gate circuits [10,20]. In particular, Eichelberger proposed
a ternary simulation of a circuit using a third value, X, denoting an intermediate
or unknown signal. His method can be used to predict state transitions and detect
static hazards. Since the algorithm is quite efficient, it has been widely used.
Unfortunately, some discrepancies were noted between the results predicted by ter-
nary simulation and those predicted by the binary analysis [1,7]. Again it seemed
that the theories do not quite fit. A detailed discussion of these problems was
presented by Brzozowski and Yoeli [7], who also conjectured that the theories
would fit if one used not only gate outputs but also wire signals as state variables
— the gate- and wire-delay model. This conjecture was finally proved by Brzo-
zowski and Seger [8]. Thus a fit has been found between temary simulation of a
network using the gate-delay model and the binary GMW analysis of the gate- and
wire-delay model. The proof of this result is quite involved.

In the last decade the digital circuit technology has undergone tremendous
changes and MOS circuits have become widespread as a result of the VLSI revolu-
tion. In some ways these circuits resemble relay contact circuits more than gate
circuits, and it has been recognized that the theory based on gates is no longer ade-
quate for some aspect of MOS circuits. To remedy this, switch-level models like
that of Bryant [3] have been developed. In the MOS technology it appears neces-
sary to introduce an intermediate X value in order to properly describe states in
which the output is neither O nor 1. Bryant [2] adapted Eichelberger’s ternary
simulation to switch-level MOS circuits, but justified the use of this technique only



A Unified Theory of Asynchronous Networks 3

by examples. Lengauer and Naher [14] defined a sort of race analysis model for
MOS circuits which uses the three values 0, 1, and X, and proved that this race
model corresponds exactly to ternary simulation, thus providing a mathematical
justification for its use. At this point it appeared that the theory of MOS circuits
was diverging from that of gate circuits, and that the latter would cease to have
much significance.

In this paper we develop a theory where everything fits. First, we abstract the
properties of both gate and MOS circuits, and each such circuit is represented as a
mathematical asynchronous network consisting of a directed graph with an associ-
ated set of vertex excitation functions. Second, we define a new race model, called
the extended multiple winner (XMW) model, which incorporates the multiple-
winner aspect of the GMW model and the third X-value used by Bryant, and Len-
gauer and Naher. Third, we show that the use of feedback variables is completely
correct in this race model, not only for predicting state transitions, but also for
static output hazards. Fourth, we prove that the results of the XMW analysis of an
asynchronous network correspond exactly to those of the ternary simulation of the
network. This proof is quite natural and substantially simpler than that relating
ternary simulation to the GMW analysis.

The results have the followmg applications to gate circuits. Let N be the
gate-delay model of a circuit, let N be the feedback-delay model, and N the gate-
and wire-delay model. The following theorem, proved in Section 7, summarizes
the theory:

Theorem 5 The following analysis techniques are all equivalent for gate circuits
from the point of view of nontransient state behavior and static output hazards:

1. GMW analysis of N.
2. XMW analysis of (a) N, (b) N, and (c) N.
3. Ternary simulation of (a) N, (b) N, and (c) N.

For MOS circuits we use a node-delay model, i.e. we associate state variables
with all internal nodes. We present several alternatives for calculating node excita-
tions; these representing different design philosophies for CMOS and NMOS cir-
cuits. Let N be such a model; let N be the same model reduced to feedback vari-
ables; and let N be the node- and transistor-delay model where state variables are
associated with both nodes and transistors. Our results are summarized in the fol-
lowing theorem proved in Section 9:

Theorem 6 The following analysis techniques are all equivalent for switch-level cir-
cuits, using any one of the node excitation models described in Section 8, from the
point of view of nontransient state behavior and static output hazards:
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1. XMW analysis of: (a) N, (B N, and (c) N. .
2. Temary simulation of: (a) N, (b) N, and (c) N.

Although this work settles many previously open problems, further work
remains to be done. One serious difficulty with both the XMW model and its effi-
cient ternary simulation is that the model permits arbitrary delays and is conse-
quently overly “pessimistic”, rejecting many designs which are acceptable in prac-
tice. Thus more realistic race models need to be developed. The results of the
present paper constitute a consistent framework in which such problems can be stu-
died. |

The paper is structured as follows. Section 2 contains the definition of the
graph-theoretic model of asynchronous networks and Section 3 describes the XMW
race model for these networks. Section 4 contains the description of the ternary
simulation algorithm for our network model and Theorems 1 and 2 which establish
the correspondence between the basic XMW analysis and ternary simulation. The
main result of Section 5 is Theorem 3 which establishes the correctness of the
feedback-delay approach. Output hazards are considered in Section 6, where it is
summarized in Theorem 4 how static hazards are detected by temary simulation.
The general unified theory of Sections 2-6 is specialized to gate circuits in Section
7. Section 8 contains a description of switch-level models and a detailed discussion
of various options available for the definition of excitation functions for MOS cir-
cuits. In Section 9 we specialize the results of Sections 2-6 to MOS circuits.
Finally, Section 10 concludes with a brief discussion of further work required.

2. Asynchronous Networks

A rather general concept of a network is introduced in this section. As will be
shown later, this model provides a common framework for representing both gate
networks and switch-level MOS networks.

A network N is a finite directed labeled graph N = <V,E,x,y,Y>, where

V={1, - - - ,m}is a set of vertices,
E C VXV is a set of edges,
X=Xy, """ X%, n<m,is a vector of input variables taking values from a set T,
Y=Y1, * * * »Ym is @ vector of vertex variables taking values from T,
Y=Y, --,Y, is a vector of excitation functions. ‘
Vertices 1, - - - ,n are all of indegree 0, and are called input vertices. Vertices
n+1, - - -  m are function vertices and are all of indegree >1. The excitation

function of a vertex { is a function Y;:7"*t" —T. The vertex variable y; is inter-
preted as the present state of a vertex, whereas the excitation function Y;(x,y)

computes the value to which the vertex is trying to change, when the present input
is x and the present state is y. The vector x,y is called the total state of N.
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While it is convenient to write ¥;(x,y) for the excitation of a general vertex i,
the functions are somewhat simpler in reality. In fact, for an input vertex i, the
excitation function is simply ¥; =x;. For function vertices, an edge (i, j) €E shows
that ¥; is a function of y;. Thus, for a function vertex, Y; depends only on some
subset of {y;, - - - , ¥}

In the examples throughout the paper we use three temary functions over the
set T={0,X,1}, as defined in Fig. 1. In fact, these functions are natural ternary
extensions of their Boolean counterparts: OR, AND, and complement. More will
be said about this later.

+ 10 X 1 - 10 X 1 alOXl
0/]0 x 1 0/0 0 O d |1 x 0
X | x- X 1 X |10 X X
11 1 1 1{0 x 1

Figure 1. Ternary OR, AND, and complement.

To illustrate the definition of a network consider Fig. 2. The excitation func-
tions are:
YZi=xy Yo=x Ys=(n+ys) Ya=0ntys).

Figure 2. Network N;.

If y;=Y;(x,y) then vertex i is stable; otherwise it is unstable. A given total
state x,y is stable if each vertex is stable. A network will remain in a stable total
state indefinitely, unless the input changes, in which case the state becomes
unstable. In general, there may be several possible successor states for a given
unstable state. This set of possible successor states depends on the transition model
used, as elaborated below. Any situation in which two or more vertices are
unstable is called a race.

Given a fixed input vector a €T" and an initial state b5°cT™, a binary relation
R on T™ is a transition relation iff
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(i) if b°R* b, then bR ¢ for some c €T™,
(Each state reachable from b° has at least one successor.)
(ii) if a,b is a stable total state then bR b,
(Every stable state has itself as a successor.)
(iii) if bR ¢ and b; = Y;(a, b), then ¢; = b;.
(If a vertex i is stable then it cannot change. Note that if all the vertices
are stable, i.e. if a, b is stable, then the only successor of b is b itself.)

In (i) above R* denotes the reflexive and transitive closure of R. A detailed exam-
ple of a transition relation is given in the next section.

3. The XMW Transition Relation

The main transition relation used in this paper is the Extended Multiple
‘Winner (XMW) relation described below. Let B={0,1} and T={0,1,X]}.
Define the partial order < on T as follows: ¢;<¢; for all €T, 0<X, and 1<X,
The partial order is extended to 7™ in the obvious way: s<r iff 5;<¢ for
1<i<m. Wewrite s<t when s<t and s#¢.

The value X is used to denote an unknown or intermediate value. Thus s <t

indicates that s has less uncertainty (more binary values) than . The following
fundamental assumption is made about the excitation function of any network N:

a,b <c,d implies Y(a,b) < Y(c,d).

This is a monotonicity property that is consistent with our use of the value X.
Basically, if the total state is more uncertain, the excitation cannot become less
uncertain.

For any a €T" and b €T™, define U(a, b) to be the set of unstable vertices in
b,i.e.

U(a,b) = {i : 1<i<m, and b;#Y;(a,b)}.

The XMW relation R, on the set 7™ defines the set of successors for any total state

beT™ as follows. If b is stable, i.e. if U(a,b)= ¢, then the only possible succes-
sor is b, i.e. bR, b. Otherwise, let S be any nonempty subset of the set U(a, b) of

unstable gate variables. Further, let §; be an arbitrary subset of the set
{ieS:beB and Y,(a,b)=b;}. Define b** as follows:

B _ x, ifies,
b5 _ v,(a,b), ifieS—S
bW b, ifigs.

)

Now every state of the form 5%"* is an immediate successor of b,i.e. bR, e
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No other pairs are related by R,. The reader can easily verify that R, is a transi-
tion relation.

There are three basic ideas behind the XMW model. First, it is assumed that
the input remains fixed after each change until the network has a chance to “sta-
bilize”. This corresponds to the fundamental-mode operation assumption of [15].
Second, the past history is completely ignored in the sense that all unstable vertices
have the same chance of “winning” a race no matter when they entered the race.
Third, any unstable vertex with a binary present value may take on the intermedi-
ate value X.

The XMW analysis of the network N; of Fig. 2 is shown in Fig. 3. It is

assumed that the network is started in the stable state a, b = 00,0010 and that the
input changes to a=10. Only those states that are reachable from 0010 are
shown. Unstable states are shown subscripted; the subscript denotes the value of
the excitation function for that vertex. For example, 0,010 indicate that vertices

2, 3 and 4 are stable and that vertex 1 is unstable with the excitation 1.

0,010

VA

10160 «——X;01,0

NS N

1000, <«——10Xq 0y <—X; 0X Oy

/\/\/\

Figure 3. XMW analysis of network M.

The following proposition about the XMW relation is used later and can be
easily verified.

Proposition 1 If b,c €T™ and bR, c, then c < lL.u.b.(b,Y(a,b)).
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For any input vector a €T" and any state b €T™, define the set cycl(R,, b) to
be the set of total states of N that appear in cycles in the relation R, and are reach-
able from b. Note that each stable state reachable from b is in cycl(R,,b). For-
mally,

cycl(R,,b) = {c€T™ : bR,c and cR,fc},

where R} is the transitive closure of R,. The notation R} (used later) denotes the
composition of # copies of R, for h>1, and R? is the identity relation.

The concept of a transient cycle is introduced in order to capture the fact that
delays cannot be infinite. This concept is very similar to the definition of a tran-
sient cycle in the GMW model [7] (which will also be considered later), except for

-one important difference. The basic idea is to call a cycle transient if there is some

vertex that is unstable in all the states of the cycle and has the same value in all
these states. However, this definition is slightly too restricted as the following
example shows. Suppose we have a cycle like 0; Xg — 19X; — 01X, etc. Note
that the vertex with the value X is unstable in all the states and has the same value
in all the states. However, since the excitation of that vertex oscillates between 0
and 1 it is reasonable to assume that such a cycle can persist indefinitely. Because
of this, the definition of a transient cycle in the XMW model is somewhat more
complicated than the corresponding idea in the GMW model.

A cycle is called transient if there exists a vertex v which is unstable in all of
the states in the cycle, has the same value in all these states, and either that value
is binary or the excitation of v is the same in all these states. If a cycle is not tran-
sient, it is called nontransient. Let

trans(R,,b) = {c ecycl(R,,b) : c appears only in transient cycles }
and
out(R,,b) = cycl(R,,b) — trans(R,,b).

The set out(R,,b) is the outcome of the XMW analysis of the behavior of N when
started in total state b, in the sense that it consists of all the states N can be in,
under nontransient conditions. '

To illustrate the concepts above consider Fig. 3. There is only one cyclic state,
namely 1001. Since this state is stable, the cycle is nontransient. Thus
out(Ryg, 0010) = {1001}. A more complicated example is provided by the network
N, specified by the following excitation functions:

Yi=x Yo=01+y) Ya=01+3).
Let d,b=1,100 be the initial stable state and let the new input be a=0. The
states reachable from 100 are shown in Fig. 4. There are the following cycles:
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(000, 011), (0x0,01X), (00x,0x1), (010), (0XX), (001)
None of these cycles are transient, and hence the outcome is
out(Rg, 100) = {000, 001, 010,011, 0x0, 00X, 01X, 0x1,0XxX}.

The XMW model permits us to predict the outcome of any input change under
very general assumptions about delays in a network: In fact each vertex may have
an arbitrary finite inertial delay. The model, though conceptually simple and rela-
tively natural, is computationally intractable; in the worst case the graph of the
relation R, may have O(3™) vertices. Fortunately, there exists an efficient algo-

rithm computing essentially the same information, as described in the next section.

4. Ternary Simulation

A temary simulation of binary networks has been proposed by Eichel-
berger [10]. Algorithms A and B described below are an adaptation of his work.
Let N be a network, @ €T" be an input vector, and b €T™ be such that 4,5 is a
stable total state. Furthermore, let a€7" be a new input vector and
a=lu.b.(a,a). Algorithm A is defined by:

Algorithm A
h:=0;
yhi=b;

repeat
h:=h+1,
fJori=1ltom
yih=Yi(a’yh—l);

until y*=y"1;

Proposition 2 Algorithm A produces a finite sequence y%,y!, - - - ,y* of states,
where A <m, and y* >y*! for 1<h <A.

Proof: We first prove by induction on k that y* >y"~!, for h >1. The basis h =1
follows because b = Y(d, b), by the stability requirement, a,b >4, b, by the defini-
tion of Lu.b., and y'=Y(a,y?) >Y(d,y®)=Y(4,b)= b=y by the monotonicity
of Y. Assuming that y*>y"*!, it follows by the monotonicity of Y that
y"*1=Y(a,y") >Y(a,y*))=y", and the induction goes through. In each step
either y* >y*~! or the algorithm terminates. At least one new vertex becomes X if
y* >y*1; therefore A<m. D

Algorithm B is defined next:
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1,00

X 0x 0x

Co10 | - oxx¥)

— 01y1o

Figure 4. XMW analysis of network N,.
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Algorithm B
h:=0;
2:=y*;
repeat
h:=h+1;
fori=1ltom
zih= Yi(a7zh_1);
“until '=7""1,
Proposition 3 Algorithm B produces a finite sequence 2%,2!, - - - |28 of states,
where B <m, and 7! <2*~! for 1<h <B. |
Proof: The proof is dual to the proof of Proposition 2, with < replaced by >, etc.
O
The following results are an adaptation of the work of Lengauer and
- Naher [14]. They used a somewhat different model, but the main ideas are the
same.

Theorem 1 The result y* of Algorithm A is the least upper bound of all the states
reachable from the initial state b in the XMW transition relation, i.e.

Y = Lub.{ceT":bR,c}.

Proof: Note that y*R,y**! for O<h<A; hence bR'y* and so
yi<lub.{ceT™:bR,c}. To prove the converse, i.e.  that
y*>lub.{ceT™:bR;c}, we show the following claim by induction on h:
YA >lub.{ce€T™: bR!c} for all h >0.
Basis:

h = 0. Trivially true since y* >y®=5.

Induction hypothesis:
Assume that y* > L.u.b.{ceT™: bR!c} for some h >0.

Induction step:
Assume ¢ €T™, and bR ¢c. There must exist a state d €T™ such that b R2d
and dR,c. By the induction hypothesis y* >d. Furthermore, d R, ¢ implies
c<lub.(d,Y(a,d)), by Proposition 1. Since Y is monotone and
y' =Y(a,y?), it follows that

c<lub.(d,Y(a,d) < lub.(d,Y(a,d) < lLub.(y*,Y(a,y*)) = y*.

Thus the induction goes through and the claim follows. O

As above, let 2%,2!, - - - |2% denote the intermediate values produced by
Algorithm B.
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Theorem 2 The result 2 of Algorithm B is the least upper bound of all the non-
transient cyclic states reachable from b in the XMW transition relation, i.e.

28 = Lu.b. (out(R,, b)).

Proof: Since b=y'R,)y* =2%, and 2°R,7?, 7% is reachable from b, i.e. bR 25.
Also a,7® is a stable total state; hence 22 cout(R,,b) and 2% < Lu.b.(out(R,, b)).
To prove that 28 >/lu.b.(out(R,,b)) we show that z*>Lu.b.(out(R,,b)) for
h >0, by induction on A.
Basis:
h=0. Since 2°=y*, y*=Llub.{ceT":bR,;c} (by Theorem 1), and
out(R,,b) C{c€e€T™: bR, c}, the result follows immediately.

- Induction hypothesis:
Assume 7* > l.u.b.(out(R,, b)) for some h >0.

Induction step:
Let ¢ be an arbitrary state in out(R,,b). By the induction hypothesis 2* >¢

and, by the monotonicity of Y, Y(a,2")>Y(a,c). Furthermore, since
2"t =Y(a,7"), we have |
21 >Y(a,c). @A)

Now study any binary value in z*+!, say z/*'=a€B. By (i) it follows
that Y;(a,c)=a. Since c is arbitrary, it follows that

Yi(a,c)=a forall ceout(R,,b),

i.e. the excitation of vertex j is o in all the states in out(R,,b). We claim
that this implies that ¢; = « for all ¢ eout(R,,b). To show this, suppose there
exists a ¢ €out(R,,b), such that {;=pg#a. Study any cycle in out(R,,b)
containing ¢. Since the excitation is the same in all states in out(R,, b), it fol-
lows that vertex j cannot have the value g in all the states in the cycle (other-
wise the cycle would be transient). Suppose it changes to ~ in the state ¢ in
the cycle. If v=«, vertex j would be stable from here on, and could never
change back to 8. Hence, 4 # . Altogether, both 8 and ~ can only have
values in {o’,X }. Since the excitation is « in all states in out(R,, b), the only
possible transition is from =o' to y=X. However, there cannot be any
transition between a state in which vertex j is X and a state in which it is o',
since such a transition would violate the definition of R,. Hence such a cycle
in out(R,, b) containing ¢ does not exist, and we can conclude that c; = o for
all c cout(R,,b). In summary, we have shown that for any binary value o in
Z'*1 the corresponding vertex will have the same value « in all the states in
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out(R,,b). Therefore the induction step goes through and the claim follows.
o

Note that the graph of R, may contain cycles with the following property: The
value of vertex j is a €B in all states of the cycle, but the excitation has the value
o' in some states of the cycle and X in the remaining states. Such cycles are tran-
sient according to the definition in Section 3. However, it is easy to verify that
Theorem 2 still holds if the definition of transient is changed in such a way that
these cycles belong to out(R,, b).

The results of this section will now be illustrated by examples. The ternary
simulations corresponding the XMW analyses of Fig. 3 and 4 are shown in Figs. 5
and 6 respectively. Note that in both cases we have that y* is equal to the Lu.b.
of all reachable states and that z® is equal to the Lu.b. of the outcome of the
XMW analysis.

y? = 0010 2 = XOXX
yl = X010 zt = 10XX
y? = X0x0 2 = 100X
Yy = XOXX =y £ = 1001 =2
() | (b)
Figure 5. Ternary simulation of N;: (a) Algorithm A; (b) Algorithm B.
y’= 100 2 = XXX
y! = X00 2! = OXX =28
Y = XXX =yA
(a (b)

Figure 6. Ternary simulation of N,: (a) Algorithm A; (b) Algorithm B.

5. Reduced Networks

It is proved in this section that the XMW and ternary analyses can be applied
to a much smaller network and can still give the same amount of race information.
It is first shown how to transform a network so that the dependence of a vertex on
another vertex can be removed in certain cases.

Let N=<V,E,x,y,Y> be any network. Assume that (p,q)€E, p>n,
p#4q, and that (p,p)¢E, i.e. that q is a function vertex whose excitation func-
tion depends on the value of another vertex p, where p is a function vertex and
does not have a self-loop. Now, let N be the network: N=(V,E, x,y,Y), where
E—=E U {(i’q):(i>p)EE} - {(p’Q)}' AlSO, Yj(x>y)=Yj(x’.Y) for all j;éq and
i’_q(x,y)=Yq(x,(yl, C Y1, Y (X, ), Ypi1s © 7 5¥m))-  The transformation is
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performed to remove the dependence of vertex g on the value of vertex p. Note
that only edges from function vertices can be removed — the reason for not remov-
ing edges from input vertices will become clear later. In Fig. 7 is shown a typical
transformation to remove vertex ¢’s dependence on the value of vertex p (i.e. we
want to remove the *-marked edge). Assume that in N we have ¥, = (y,5,y,)’

and Y, =Y,y.y,- Therefore vertex g depends on vertex p (hence the edge from p
to g). Moreover, vertex p does not have a self-loop and is also a function vertex.
In this case we get ¥, =y,y.(uypy,), which can be simplified to ¥, =y, y,y. +
YsYoYe + YoYc¥q- Note that, since the composition is perfohned for ternary func-
tions, the term y,y,y. in Yq cannot be removed. Note also that the vertex g gets a
self-loop by this transformation.

(P—9)

N ‘ N

Figure 7. Removal of vertex ¢’s dependency of vertex p.

We now prove, by a series of Lemmas, that the ternary simulation yields
identical results for N and N.

Lemma 1 The result y* of Algorithm A for network N is equal to the result ?Z of
Algorithm A for network N.

Proof: Assume N and N are started in the stable total state d,b and that the input
changes to a. Let a=Lu.b.{d,a}. Now, let 7°,7%,...,7* and y°,y',...,y* be the
results of Algorithm A for N and N respectively.

First, if the excitation of vertex p never differs from the state of vertex p, the
lemma holds trivially. Otherwise, assume that the excitation of vertex p differs

from the state of vertex p for the first time at step r, r >0. From the definition
and the monotonicity of Algorithm A, we can conclude that

. bp lf i<r .
Yp(a’y1)= X if izr’ (1)

and that
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P by if i<r+l .
Yo = |x if i>rel. (ii)

Qearly ' =¥ for 0<i<r. This together with (i) and the monotonicity of
Algorithm A implies that

— _ _ bp if i<r
Yp(aayl) = Yp(a7y’) = Ix if i>r. (lll)

From (ii), and (iii) it follows that
Vs < Y(a,7) <yt fori>0. (iv)

We now prove by induction on & that y* < ¥ < y**+!, for all A >0. By the
monotonicity of Algorithm A, the claim in the lemma then follows immediately.
Basis: |

h=0. Since N and N are started in the same state, y°=§°. By the monoton-

icity of Algorithm A, it follows that y’<y!, and the claim is true for the

basis.
Induction hypothesis:
Assume y* < 7 < y**1, for some h>0.
Induction step: '
By the monotonicity of Y, the definition of Algorithm A, and the induction
hypothesis we have for i # g:

yih+1 = Yx(aayh) < Yi(a)?) = }';'(a,-)-,h) = yi,'+1 < Yi(a,yh+1) = yih+2'

Finally, since y2<Y,(a,¥*) <y**1, by (iv), it follows that

y;+1 = Yq(a,(y{" T :Y:—lyy;’)':+b T ’y,:l))
< Yq(a’ (yfy e ’y:—l’Yp(a’—yh)7y:+1a Tt ’y:l)) = y;H-l
<Y (a, (3t - - -y yitLyi - yE) =y

Hence, y**1 <7+ < y**2 and the induction step goes through. O

In a similar way one can verify the following ‘‘dual’ version of Lemma 1.

Lemma 12 The result y? of Algorithm B for network N is equal to the result }"E of
Algorithm B for network N.

Note that the above procedure can be repeated until each function vertex has
either a self-loop or outdegree 0. The network N obtained by carrying out the
above reduction procedure until only vertices with self-loops remain and then
removing all vertices with outdegree 0 will be called a reduced network. Note that,
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in general, the reduced network is not unique. For the remaining part of this sec-
tion the following definition will be needed. A set of vertices F is called a feed-
back vertex set for a directed graph G iff removing the vertices in F and all their
incident edges gives an acyclic graph. The following proposition is easily verified.

Proposition 4 If N is a reduced version of N, then the function vertices of N' con-
stitutes a feedback vertex set of the original network N.

Proof: The reduction process can be viewed as a two step process. First, as many
edges as possible are removed by using the above reduction procedure. Secondly,
when no more edges can be removed, all vertices with outdegree 0 are removed,
yielding the network N. 1t is sufficient to show that, for any cycle in N, at least
one function vertex of the cycle will remain in N. This follows trivially from the
fact that removing an edge in a cycle using the reduction procedure will only shor-
ten the cycle. Eventually, one of the vertices of the cycle will have a self-loop and
no further reduction can be made. Since a vertex with a self-loop has outdegree
>1 it will not be removed. Hence, it follows that at least one function vertex of
every cycle of N remains in N, thus forming a feedback vertex set. O

The converse, i.e. that, for any feedback vertex set F of N, one can find a
reduced network N such that the set of function vertices is identical to F is treated
in the following proposition.

Proposition 5 GiYen any feedback vertex set F for a network N, there exists a
reduced network N such that the set of function vertices of N is equal to F.

Proof: The proof constructs the reduced network “around” the given vertices in F.
The idea is to remove edges leading into the vertices in F. More formally, we
define a sequence of reduced networks N* recursively as follows:

Basis:

N°=N.

Induction step:
Given N*, such that F is a proper subset of the function vertices of N*, find
an edge satisfying the following conditions: i) (i,j)€E", ii) i¢F, and iii)
J€F. Remove edge (i,j) using the procedure described above. If vertex i
now has outdegree 0, remove it too. Let N**! be the network so obtained.

The crucial observation for this algorithm is that the set of vertices in N* that have
self-loops is a subset of F. This follows from the fact that all vertices of N that
have self-loops must be in F (otherwise F would not be a feedback vertex set) and
that the application of the reduction procedure can only cause a vertex in F to get
a self-loop. From this it is easy to see that we will eventually get some N* such
that the set of function vertices in N* is equal to F. O
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We are now ready to state and prove the main result of this section. For sim-
plicity, a reduced version of N will be called a feedback vertex model of N. The
theorem states essentially that an XMW analysis of a feedback vertex model of N
is sufficient, i.e. that it is not necessary to include all the vertices of N in a race
analysis. This is a result that contrasts radically with the “classical” binary race
models, where a feedback variable analysis (even if augmented with a hazard
analysis) is not always correct (see for example Langdon [13]).

Theorem 3 The l.u.b. of the outcome of an XMW analysis of a feedback vertex
model of a network N is consistent with the L.u.b. of the outcome of an XMW
analysis of N, in the sense that both analyses produce the same values for the feed-
back vertices.

Proof: By Theorem 2 it follows that ternary simulation can be used instead of the
XMW analysis, since the result of ternary simulation corresponds exactly to the
" Lu.b. of the outcome of the XMW analysis. Furthermore, Lemma 1 and 1°
together show that ternary simulation yields the same result for N and N, when
only one edge has been removed. It now follows, by induction on the number of
times the reduction process is carried out, that ternary analysis yields identical
results for N and N, where N is the reduced network. (Cearly, the removal of
vertices with outdegree O does not change the result of ternary simulation.) Finally,
by Proposition 6 we know that, given a feedback vertex set, we can construct a
reduced network with exactly that set as the set of function vertices. O

In order to analyze a network as fast as possible it would appear desirable to
have the smallest number of vertices in the reduced network. It is well known [11]
that the problem of finding a minimal feedback vertex set is NP-complete; hence
the best we can hope for (assuming P % NP) is an approximation algorithm. How-
ever, it is not necessarily optimal to find a minimal feedback vertex set and reduce
the network down to this set. It is true that ternary simulation (in the worst case)
takes time O(n?), where n is the number of vertices, thus indicating the desirability
of having as few vertices in the network as possible. Unfortunately, this result is
valid under the assumption that each excitation function can be computed in con-
stant time — an assumption that may not be true in the reduced network. In fact,
with more realistic assumptions, it is not difficult to find examples in which the
cost of ternary simulation of the reduced network is higher than the cost of ternary
simulation of the original network. The opposite is also possible. For example, the
new excitation functions can be sometimes drastically simplified, leading to a
reduced network that is substantially more efficient to simulate than the original
network. Hence, the questions whether to reduce a network or not, and how much
reduction should be done, must unfortunately be decided according to some heuris-
tic. (The answer will also depend heavily on implementation details. )
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The ideas above will now be illustrated by examples. Consider network Ny of
Fig. 2. A possible feedback vertex set is {3}. Using the approach described above
we get the reduced network N; of Fig. 8 with excitation functions:

Yi=x Yy=x% Yi=QO+02t+ys)).
In Fig. 9 are shown both the XMW analysis and the ternary simulation for the
same transition as was analyzed in Fig. 3, i.e. with a,b=00,001 and new input
a=10.

Figure 8. Network N;.

0,01 _ 001 XOX
Yy ¥
101 «—X%;01x« xX01 10X
100 «=—— 10Xp =— X{0X XOX 100
5 3

Figure 9. (a) XMW analysis of N;; (b) ternary simulation of N;.

Next consider network N, of Section 3. The set {2} constitutes a feedback ver-
tex set of the network N,. Reducing N, yields network N, with excitation func-
tions:

Yi=x Yo=(Or+0r+3)) -
In Fig. 10 are shown the XMW analysis and the ternary simulation for the same
transition as was analyzed in Fig. 4, i.e. with @,b =1, 10 and new input a = 0.
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150 10 XX
]
00 <—— Xq0x X0 0%
/\ Y
0X —=——— XgX X X
(a) (b)

Figure 10. (a) XMW analysis of N,; (b) ternary simulation of N,.

) L)

| GWO )

Figure 11. Network N;.

The next example shows that a further reduction, below a minimal feedback
vertex set, may be possible in some cases. Consider network N3 of Fig. 11 with
excitation functions:

Yi=xy Y=y Y=y Ya=Yys+yDatyvs Ys=YystYs
If the edge (2, 4) is removed, we get N; with excitation functions:

Ni=xy Y=y Y=y Y=ypstyostyps Ys=ystys
Furthermore, if the edge (3,4) is also removed, we get N; with excitation func-
tions:

Y1=x1 I;'2=)’1 Y3=)’1 Y4=)’1)‘1+)'1)’4+)'1)’4 f’5=)’4+)’5
It is easy to see that we cannot remove any other edges and that vertices 4 and 5
constitute a minimal feedback vertex set. However, ¥, can be simplified to Yy=y;.

Here the edge (4,4), indicating that the excitation of vertex 4 depends on the
value of vertex 4, can simply be erased. Note that vertex 4 did depend on its own
value in the original network. After the edge (4,4) has been erased, the edge
(4,5) can also be removed. If we then remove the vertices with outdegree 0, we
obtain network N3, shown in Fig. 12, with excitation functions: -
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Yi=x Ys=y+ys

o—8

Figure 12. Network N;.

Reductions below the feedback vertex set, such as the one described above,
may be possible because some of the excitation functions may become degenerate.
On the other hand, the feedback vertex set reflects only the structure of the graph.
It can be easily verified that the reduction which uses functional degeneracies to
remove self-loops is also valid, in the sense of Theorem 3. Unfortunately, the
problem of determining whether a ternary function depends on a particular variable
is NP-complete in general (by transformation from Boolean satisfiability).

6. Output Hazards

In the previous sections we were concermed only with the nontransient
behavior of a given network. We concentrated on the detection of critical races
and oscillations, but did not consider hazards explicitly. In fact, the XMW
analysis does take into account implicitly all possible hazards associated with the
vertex variables, when determining the nontransient outcome of a transition.
Thus, if one is only interested in the nontransient behavior of a network, it is suffi-
cient to find the outcome using the XMW analysis, or preferably the equivalent
ternary simulation, and no further analysis is required. However, the network
being analyzed is often a part of a larger system. In such cases, some subset of the
vertices may be “‘visible” to the rest of the system. We will call such vertices our-
put vertices. When output vertices are present, there is a new problem. Consider,
for example, an output vertex that has the value O initially, and also in all the
states of out(R,,b). It is quite possible that the vertex has the value 1 or X in
some of the transient states during the transition. Such short glitches must be
detected, since they may cause unwanted state changes in the rest of the system
controlled by this output vertex. In this section we formally define the notion of
output hazards, and also give methods for detecting them. We also show that the
same information may be obtained from a reduced network.

Assume that a network N is started in the stable state a,b and that the input
changes to a. We say that there is a static I-hazard on an output vertex i for the
transition @ — a iff b;=1, ¢;=1 for every state ¢ eout(R,,b), and there exists a

state d such that b R,; d and d; ¢ 1. A static O-hazard is defined similarly.
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The following theorem shows how the results of ternary simulation can be used
to detect static output hazards [10, 20].

Theorem 4 Assume network N is started in the stable total state @, b and the input

changes to a. Let y* be the result of Algorithm A and z® be the result of Algo-

rithm B. Then output vertex i has a static 1(0)-hazard iff b;=zP=1(0) and
A

yi=X.

Proof Suppose there is a static output hazard on output vertex i. Without loss of
generality, assume it is a static 1-hazard. Then b; =1, and ¢; =1 for all states ¢ in

out(R,,b). Also, there must exists a state d, reachable from b, such that d; = 1.
Since 78 = Lu.b.(out(R,, b)), by Theorem 2, it follows that z?=1. Furthermore,
since bR,d and d;%1, we must have Lu.b.{¢;:bR,e}=X. However
" y*=1Lu.b.{e:bR, e}, by Theorem 1; hence y/ = X, and the claim follows.

Conversely, assume, without loss of generality, that zP=b,=1 and that
yf=X. By Theorem 2 it follows that ;=1 for any state ¢ in out(R,,b)). By
Theorem 1, there must exist a state d reachable from b, such that d; % 1; otherwise
y# would be 1. Hence the claim goes through and the theorem holds. ©

In connection with static hazards, one may ask whether all timing problems
can be detected by an XMW analysis of the network. In particular, can wire
delays, i.e. delays associated with the edges, create new timing problems? One can
account for wire delays in our model by simply inserting a ‘““delay vertex” in each
edge; the excitation function of such a vertex is the identity function. It is easily
verified that the network with wire delays yields the same results. First, by
Theorem 4, ternary simulation can be used instead of an XMW analysis for the
detection of static hazards. Furthermore, by Lemmas 1 and 1P in Section 5, the
dependence on a function vertex without a self-loop can be removed without affect-
ing the ternary simulation. In particular, the dependence on a delay vertex can be
so removed. By induction on the number of wire delays in the network, it follows
that a network without wire delays has the same static output hazards as a network
with any number of wire delays added.

As shown in Section 5, it is sometimes advantageous to reduce the original
network to a feedback vertex network. However, the reduction described in Sec-
tion 5 does not take care of output vertices. There are two solutions to this prob-
lem. The first alternative is to change the reduction procedure in such a way that
output vertices are never removed. Unfortunately, this may lead to a substantially
larger network. - The other alternative is to perform the analysis on a feedback ver-
tex model, and then recreate the output values and transitions using the results
obtained from the feedback vertex model. We are going to focus on this second
alternative. Note however that the first alterative can be viewed as a special case
of the second approach (the reduction is simply not carried out as far as possible
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and the output functions are trivial).

In the sequel, we will assume that N is a reduced version of some network N.
Without loss of generality assume vertices n+1 to n+o are output vertices in N.
The idea is to add a set of owtput functions, Oy, - - - ,0,, to the feedback vertex

network. In general, function O; is a function from T™ to T, and is computed as
follows:

0; = yi;
while O; depends on any y; such that k¢ V do
replace every occurrence of y; in O; with Y,

Since V is a feedback vertex set, the procedure is guaranteed to halt with an output
function that depends only on input nodes and feedback vertices. (As usual, the
final function O; can be simplified using the laws of the ternary algebra.) The fol-
lowing result, stating that the values of the feedback variables uniquely determine
the output values, is easily verified.

Proposition 6 Assume a, b is a stable total state in N. Let a, b be the correspond-
ing stable total state in N. Then the value of output vertex i, i.e. b,;, is equal to

Oi(a,b).

Proof: This follows from the fact that a, b is a stable total state, i.e. b;=Y;(a,b),
and from the construction of O;. O

Proposition 6 together with Theorem 4 gives us the following method of
analyzing a network N. First, reduce the network as much as desirable to N.
Also, compute the output functions. Use ternary simulation to get the two state
vectors ¥ and 7. Evaluate the output functions for b, ¥* and 2. The results
are interpreted as in Theorems 2 and 4. Hence, both the outcomes of the transi-
tions and potential static output hazards are correctly computed.

7. Gate Circuits

It is shown in this section how gate circuits can be analyzed using the frame-
work established in the previous sections. The correspondence between a gate cir-
cuit and the graph model is very natural, as described below.

Given a gate circuit with n external inputs, the graph N is formed in the fol-
lowing way: There is an input vertex for each input variable to the gate circuit and
a function vertex for every gate. There is an edge between vertex i and vertex j
- iff the gate j has at least one of its inputs connected to the output of gate i if
i >n, or to input x; if i <n. Note that there may be more than one wire between
two gates in a circuit, whereas in N we have at most one edge. This will affect the
function associated with each node. Given any Boolean function f:B"—B the
ternary extension f of f is defined as follows. For any ze€T",
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f(z) = Lub.{f(z):z€B", z<z}.

The ternary extensions of OR, AND and complement functions were shown in Fig.
1. Two steps have to be carried out to compute the ternary function associated
with the function node i. First, the ternary extension of the original Boolean gate
function must be computed. Second, the input variables are identified with the
output vertex feeding them. Consider, for example, the gate circuit G; of Fig. 13
consisting of a 2-input XOR (exclusive OR) gate, with both inputs fed by a single
inverter. The ternary extension of the XOR gate is cd + cd’, where ¢ and d
denote the two inputs. Identifying the inputs and simplifying according to the ter-
nary algebra gives the excitation functions:
YZi=xy Y=y Yi=yyp
Note that the last excitation function is not identical to O.

e >

Figure 13. Gate circuit G;.

In classical race models the basic assumption is that gates can only be in the
states 0 and 1, and that transitions from 0 to 1 or from 1 to 0 are instantaneous.
However, it is reasonable to assume that a transition takes a nonnegligible amount
of time, and may go through an intermediate voltage. Some gates connected to
the node with an intermediate voltage may interpret this voltage as a 1, whereas
others may interpret it as 0. The X value introduced in the XMW model, captures
this uncertainty. Also, the fact that all transitions in the XMW relation are
allowed to go through X handles slowly changing gates.

It is interesting to compare the results of the previous sections with earlier
results concemning gate circuits. The classical transition model, used when no
assumptions are made about the delays in the circuit, is the General Multiple
Winner (GMW) model [7]. The GMW transition relation is very similar to the
XMW relation, except that all the states are assumed to be binary. Otherwise, the
two models are identical, i.e. any nonempty subset of the unstable gates can
change to their excitation values.

Let N denote the network obtained from a network N by adding a delay ele-
ment in every wire. We have the following result for gate circuits.

Theorem 5 The following analysis techniques are all equivalent for gate circuits
from the point of view of nontransient state behavior and static output hazards:
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GMW analysis of N.

2. XMW arialysis of (a) N, (b) N, and (c) N, any feedback vertex model of
N.

3. Temary simulation of (a) N, (b) N, and (c) N.

Proof: The equivalence of 3(a), 3(b), and 1 for computing the nontransient
behavior was shown in [8, Theorem 1]. Furthermore, by similar arguments as in
Theorem 4, it is easy to show that this equivalence also holds for detecting static
hazards. (This was not shown in [§], but all the necessary results are there.) The
equivalence between 3b and 3c follows from Theorem 3. Also, by Theorems 1, 2
and 4, we immediately have the equivalence of 2a and 3a, 2b and 3b, and 2c¢ and
3c. O

8. Switch-level Circuits

Switch-level models are frequently used for simulating MOS VLSI circuits. In
switch-level models each transistor is viewed as a switch that can be turned on or
off by the signal on the gate of the transistor. A number of different switch-level
models are described in this section. We will focus on switch-level models for
CMOS circuits, although some of the models can be easily modified to handle
NMOS circuits as well. The notation used is modeled after [9].

An S-graph (S for switch) is a finite, undirected, labeled graph with:
1) Supply nodes shown as black dots and labeled by 0 or 1.
2) Internal nodes shown as white dots. '

3) Key nodes, which are special internal nodes, each of which is labeled by a dif-
ferent key letter O, 0.

4) Input letters Aq, - - - ,A,.

5) Edges, each of which is labeled with a label of the form OV or Qf, where Q is
either an input letter or a key letter. Each key letter appears as some edge
label.

The edges represent the transistors in the circuit, whereas the nodes represent
the connection points. A superscript P on an edge label indicates that the transis-
tor is P-type; a superscript N denotes an N-type transistor. Following [3], we
define a channel-connected subnetwork to be a subgraph § of the S-graph such that
there is at least one path that does not go through a supply node between any two
internal nodes in §. Except for the supply nodes, the channel-connected subnet-
works are disjoint.

A (ternary) input-key state is an assignment of 0, 1, or X to each input letter
and each key letter. Similarly, a rotal state is an assignment of 0, 1, or X to each
input letter and to each internal node. A path in the graph consisting of only
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P-transistors is called a P-path. An N-path is defined similarly. A path that con-
sists of both P and N transistors is called an M-parh (M for mixed). A path is said
to be definite if the values of the gates of all the P-transistors in the path are 0, and
the values of the gates of all N transistors in the path are 1. A path is said to be
indefinite if it is not definite, and the values of the gates of all the P-transistors in
the path are either 0 or X, and the values of the gates of all the N transistors in
the path are either 1 or X.

A property of CMOS circuits that many switch-level models fail to capture is
the fact that a P-transistor conducts a 1-signal well, but a 0-signal rather poorly.
Similarly, an N-transistor conducts a 0 well, and a 1 poorly. For this reason, we
must distinguish between P-, N-, and M-paths. We do this by introducing two sets
of path functions. For an internal node i we define the ternary path functions:

{

1 if there is a definite P-path to 1
g = { X if there is no definite P-path but there is an indefinite P-Path to 1
0 if there is no definite nor indefinite P-path to 1

\

1 if there is a definite M-path to 1
;1 = { X if there is no definite M-path but there is an indefinite M-Path to 1
0 if there is no definite nor indefinite M-path to 1

\

The corresponding path functions g;; and ¢,y are defined in a similar way. (Note
that certain types of paths, e.g. “self-dependent” paths [9], may be disregarded to
model the circuit behavior more accurately.)

The path functions can be computed in a number of different ways. One pos-
sibility is to enumerate all possible paths and then identify the different P-, N-,
and M-paths. However, a more efficient method is to use a “signal flow graph”
approach, similar to the procedure to convert a finite automaton to a regular
expression [5]. This approach can be viewed as solving a set of linear equations
with a somewhat modified version of Gaussian elimination. For more details, the
reader is referred to [4] where this approach is analyzed for different graphs and is
applied to switch-level simulation.

Consider the CMOS circuit C; of Fig. 14(a). In Fig. 14(b) is shown the
corresponding S-graph. (The input and key node naming convention has been
ignored in order to simplify notation.) Note that C; consists of two channel-
connected subnetworks. It is easy to verify that for the internal node a, we have:
ga=1ta=A",and g;o=1,0= A. (Note that we are using the ternary OR, AND
and complement as defined in Section 2.) Furthermore, the path functions for node
c are: ‘
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g1=0B" tq=281+AB" go=Q0+AB o= go+QB.
In general, #;; must always be of the form g;; + f;; for some function f;;. The same
holds for #;.

Vo 11
AP BF
B AW
A a B a q QO b ¢ c
»-I AN BN Q QN
. .
0 0 0
(a) (b)

Figure 14. (a) CMOS circuit Cy; (b) corresponding S-graph S;.

Let Y; denote the node excitation function of the internal node i. There are

four very natural ways to use the ternary path functions to compute this function.
However, before we describe these models, we prove the following proposition for
later use.

Proposition 7 If a €T and b €T then
a+ (a+b)X = a+b'X.

Proof: There are three cases. If a=1 both the IL.HS and the RHS are 1, since
1+0=14+1=1+X=1. Secondly, if a =X, both the LHS and the RHS are X,
since the second terms in the I.LHS and the RHS can only contribute an X or a 0,
and X4+X =X40=X. Fnally, if a=0 then the LHS is equal to
0+ (0+b)'X = b'X, which is equal to the RHS. O
All four node excitation models defined below use the same basic concept.
The node excitation function Y; will always be of the form: f1+ (fi+fo)'X. Intui-
tively, f; denotes the conditions under which Y; should be 1, and f; gives the con-
ditions under which Y; should be 0. In view of Proposition 7, we will immediately
simplify these expressions to the form f; + fo X. The four models are:
Model 1 Y; = gittio + (gio%i1) %
Model 2 Y; = gigio + (8i08i1) X
Model 3 Y; = titio + (tit1) ¥
Model 4 Y; = gugio + tiatio + (8i08i1 + tiofin)' ¥
Model 1, introduced in [9], yields a binary output iff there is a “good”, i.e.
definite, P(N)-path to 1(0) and no path whatsoever to 0(1). Furthermore, when-
ever there is a “fight”, i.e. both a path to 1 and a path to 0, whenever there is
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only a weak path to 0 or 1, or whenever the node is isolated, i.e. there is no path
to 1 and no path to 0, the node excitation is X. This is a very restrictive model
and captures stringent design rules for combinational static CMOS circuits. The
second model captures the fact that a P-path to 1 is “stronger” than a P-path to 0.
We get Y =1 (0) as long as there is at least one good path to 1 (0), but no good
path to 0 (1). Hence, a “fight” between a strong path and a weak path is resolved
in favor of the strong path. This is a more liberal rule, but seems to be necessary
in order to explain certain very “tricky” exclusive OR-gate designs [9]. The third
model is more traditional and corresponds to a special case of the model in [3].
Here there is no distinction at all between P- and N-transistors, and we have Y = 1
(0) iff there is some definite path to 1 (0) but no path to 0 (1). The final model is
a mixture of models 2 and 3. Here the rules are: strong paths override weak paths;
if there are no strong paths, the weak paths determine the output.

Consider the CMOS circuit C; of Fig. 14. Using the path functions for node

a derived earlier, it is easy to verify that all four models yield the node excitation
function Y,=A’. A more complicated example is node c. Model 1 and 2 yield

the following node excitation functions:

Model 1 Yc = gcltc'O + (gc()tc'l)'x =
= 0'B'(Q+AB + Q'B) +((Q + AB)(Q'B' + AB') )X =
= v = Q’B'+(Q’A'+AB')X
Model 2 Y. = gclgc,0 + (chgcll)'x =
= Q'B(Q+AB) + ((Q+AB)Q'B')YX =
= --- =0Q'B' +Q'A'X.
Note that a substantial amount of reduction has been performed above in order to
get the final expressions. However, all simplifications consist of sequences of fairly
simple steps, and can be carried out by a program. Also, even if the cost of doing
the simplification is substantial, this is a preprocessing step which is done only
once. Hopefully, the efficiency gained in the simulation phase will justify the
preprocessing.

One can question whether models 2-4 are necessary in “‘well-designed” CMOS
circuits. Unfortunately, model 1 is sometimes too restrictive to explain commonly
used circuits [9]. An interesting combination would be to use two different node
excitation functions: a rather liberal model for the transient analysis, and a more
restrictive model for a steady-state analysis. For example, model 2 could be used
for the transient analysis and model 1 for the steady state analysis.

The above node excitation functions all fail to capture the fact that there is a
certain amount of capacitance in MOS circuits. In particular, the key nodes can
have a fairly large capacitance associated with them; hence there is a certain
amount of “memory” in each key node. The case when there is only one key
node in every channel-connected subnetwork, can be handled in a very
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straightforward way. The basic assumption is that a 1 (0) stored on a key node
can only determine the excitation of that node, if the node is completely isolated
from 0 (1). One can verify that the following models do take this into account.

Model 1% Y; = (gi1+ ¥)tio + ((8io+ ¥/ Jti1) X
Model 2% Y; = gingio + Yitio + (8i08i1 + ¥i ti1) ¥
Model 3% Y; = titio + yitio + (tic%is + ¥i 1) X
Model 4 Y, = gugio + tatio + yitio + (8io8i1 + tiotin + i ti1)' X
For example, using model 1¥, we get Y to be 1 if there is a good path to 1 and no

path to 0, or if the previous value was 1 and there is no path to 0. A dual situa-
tion holds for ¥ =0.

Consider again the CMOS circuit C; of Fig. 14. Using model 1¥ and assum-
ing node c is a key node, we get the node excitation functions for nodes a and c:

Yy = (8a1+ Ya)tao + ((8a0+ Ya)ta1)' X =
= (A +y)A + (A +y)AY)X =

ce = A’

Yc = (gcl+yc)t::'0+ ((gc0+ yt:)tc'l)’x =
= (Q'B'+:)(Q+AB + Q'BY + ((Q+AB)+y.)(@'B' + AB') Y X =
= -+ = QB +(QA’y. +AB")X

When there is more than one key node in each channel-connected subnet-
work, a more complicated node excitation function must be used. This is because
the charges stored on the nodes may interact with each other, and charge can
“spill over” from one node to another causing the excitation to become undefined.
To handle this charge sharing we need path functions for the paths between any
two key nodes i and j in the channel-connected subnetwork. We call such a path
function ¢; for consistency. It is defined like ;5 and #;4, i.e. #; = 1 if there is a

definite M-path from node i to node j, ;=0 if there is no definite nor indefinite
M-path from i to j, and #; =X otherwise, i.e. if there is no definite M-path but
there is an indefinite M-path from node i to node j. It is easy to verify that one
can disregard all paths that go through the nodes 1 or 0, simply because such paths
will show up in 7,9 and #;; and “override” the charge sharing path. Note that this
is essentially what Bryant [3] calls blocking. Assume, for notational convenience,
that key nodes 2,3, - - - ,i—1,i are in a channel-connected subgraph, and that we
are interested in the node excitation function of node i. We assume that charge
sharing comes into effect only when the nodes are isolated from the supply nodes.
"Model 1, extended to handle the multiple key node case, is as follows:
Model 1€ Y; = gutio + %02+ 1)+ 13) -+ O+ i1 o +
+ (it + 5/ 02 +12)03 +13) -+ - Oy + tiia i)' X
It is easy to derive similar node excitation functions for the other basic CMOS
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node excitation functions.

In the above discussion only the key nodes were assumed to have memory.
Furthermore, it was assumed that all key nodes have the same “strength”. A
common technique in MOS circuits is the use of pre-charged lines. In such cir-
cuits, certain nodes are designed with a substantially higher capacitance. This can
be modeled as if these nodes were ‘‘stronger” than normal nodes. We will not
derive node excitation functions for this case, but the interested reader is referred
to Bryant’s work [4]. Here it suffices to say that, using the MOSSIM model [3]
and the procedure described in [4], one can derive ternary functions for the node
excitations. Using this approach, not only CMOS, but also NMOS circuits can be
handled. '

9. Network Model for MOS Circuits

It is shown in this section how the different switch-level models described in
the previous section can all be handled by the framework established earlier.
There is one input vertex for every input letter in the S-graph. Furthermore, there
is one function vertex for each internal node in the S-graph. The excitation func-
tion associated with a function vertex is simply one of the node excitation functions
described in Section 8. (It is easy to verify that all node excitation functions of
Section 8 satisfy the monotonicity property of Section 3.) There is an edge between
vertex i and vertex j if the excitation function of vertex j depends on the input
letter A; if i <n, or on the key node y; if i > n.

Consider for example the CMOS circuit C; of Fig. 14. The corresponding net-
work Ns, when the node excitation model 1 is used, is shown in Fig. 15. The exci-

tation functions are:
Yi=A, Y,=B, Ya=y{, Y4=y(y; + y1¥3+X), Ys=2y3 + (1y3 + yp2 )X

Figure 15. (a) Network Ns; (b) network Ng.
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On the other hand, if the node excitation function 1 is used, we get the network
N of Fig. 15(b), with excitation functions:

Yi=A, Yo=B, Ys=y{, Y4=y, (33 + Y13+ X), Ys=y2y3 + (1 ¥3¥s+ yp2 )X

In the model above, only the input letters and the internal nodes have state
variables associated with them. There are several natural ways to modify this
model. First, we can associate a state variable with each internal node and with
each transistor. The excitation function for a transistor is trivial: For an
N-transistor i, controlled by node y;, the excitation is Y;=y;; similarly, for a
P-transistor i, controlled by y;, ¥;=y;. We will call such a network N. Second, it
is possible to apply the reduction procedure of Section 6, and obtain a reduced net-
work N. Naturally, combinations of the these ideas are also possible. The follow-
ing theorem summarizes the results concerning simulation of switch-level circuits.

Theorem 6 The following analysis techniques are all equivalent for switch-level cir-
cuits, using anyone of the node excitation models described in Section 8, from the
point of view of nontransient state behavior and static output hazards:

1. XMW analysis of: (a) N, (b) N, and (c) N.

2.  Ternary simulation of: (a) N, (b) N, and (c) N.

Proof: The equivalence between an XMW analysis and ternary simulation of the
same network follows from Theorems 1, 2 and 4. Hence, we will only discuss the
equivalence of the different networks for ternary simulation. Since no function
vertex in N representing a transistor can have a self loop, Lemma 1 and 1P applies.
Hence, without affecting the ternary simulation we can remove all the transistor
function vertices, yielding network N. This, together with Theorem 4, demon-
strates the equivalence between ternary simulation of N and N. Using the same
arguments it follows that ternary simulation of N and N are equivalent. O

Returning to our examples, we apply the reduction method to Temove the
function vertex 3 from networks N5 and Ns. We obtain the networks N5 and Ny of
Fig. 16, with excitation functions:

Y1=A Y,=B Ys=yp» +¥yn
and
Yi=A Y,=B Ys=ymz +YD1)s
respectively. '
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NS ‘ Nﬁ
Figure 16. (a) Network Ns; (b) network Np.

10. Conclusions

In this paper we have developed a general framework for the analysis of asyn-
- chronous circuits. We have shown how both gate circuits and switch-level circuits
fit into the framework. (The interested reader can easily verify that the framework
can also handle relay circuits.) Using the framework, we defined a transition rela-
tion based on the assumptions that delays are inertial, unknown, but finite. Con-
trary to classical binary race models, the XMW analysis gives the same results even
if only a feedback vertex set of state variables is used.

The XMW analysis is exponential in the number of state variables. However,
ternary simulation can be used to efficiently compute the outcome of the XMW
analysis. Hence, race detection and hazard detection in the XMW model can be
done in polynomial time.

Unfortunately, the XMW transition relation is ‘“‘pessimistic’’, in the sense that
it will detect timing problems that are highly unlikely to occur in practice. One
example of a more optimistic model is the almost-equal-delay (AED)
model [6,18]. This model rejects certain outcomes of the GMW model as very
unlikely; in fact, it is probably too optimistic for most applications. Nevertheless,
we feel that this work represents a step in the right direction, and that more realis-
tic models can be developed. The results of the present paper constitute a con-
sistent framework in which such problems can be studied.
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