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ABSTRACT

We describe and analyze an asynchronous distributed
algorithm for finding a consistent orientation in a ring
of anonymous processes. In rings of N processes, the
algorithm sends O(N3/2) messages on average. Attiya,
Snir and Warmuth proved that every such algorithm

requires sending Q(NQ) messages in the worst case.

* This work was supported by the Natural Sciences and Engineering Research Council of Canada.
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1. The ring orientation problem

In this paper we consider the following orientation problem, which
was introduced and studied by Attiya, Snir and Warmuth [1]: A
number of processes are arranged in a ring configuration, in which
each process is connected by communication channels to its two
neighbors. The processes communicate by messages sent through
the channels. Every process can discriminate between the two
channels visible to it; thus in every process one channel may be
called left and the other right. However, these local orientations
need not be globally consistent. The goal is to reach an agree-
ment, among all the processes, on a consistent orientation of the
ring.

The processes are indistinguishable from each other, and all
execute the same program; in the terminology of [1], the ring is
anonymous. We also assume that the configuration is asynchro-
nous. That is, the execution in different processes is not synchron-
ized, and there is no bound on the message delivery time (although

every message is eventually delivered).

By Theorem 4.4 in [1], any asynchronous algorithm to solve
. . . 2 .
the orientation problem requires {2(/N“) messages to be sent in the

worst case. On the other hand, as is shown in [1], there is an
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algorithm that executes correctly in every synchronous ring, and
needs only O(N log N) messages in the worst case. In this paper
we describe an asynchronous algorithm and show that it sends

O(N3/2) messages on average.

2. An orientation algorithm

By Theorem 3.1 in [1], there is no algorithm that would solve the
orientation problem in all rings without some information about
the number N of processes in the ring. Thus from now on we
assume that N is known to every process when the execution

begins.

In each process, one channel is named left and the other
right. Two processes in the ring have the same orientation if their
right channels point in the same direction (either both clockwise or

both counterclockwise).

Of the two possible ring orientations, the algorithm described
below selects the one that is shared by the majority of processes.
If N is even and there is no majority agreement, then the algo-
rithm signals that there is no majority and does not select an
orientation. This incompleteness is inherent in the problem;
indeed, by Theorem 3.5 in [1] there is no orientation algorithm
that would work correctly for all rings of N processes when N is

even.

As has become customary in the study of 'symmetry-
breaking” distributed algorithms, we measure the complexity of the
algorithm by the number of messages that are sent, under the
assumption that all processes begin their execution simultaneously.
For the sake of simplicity we make the same assumption in our

description of the algorithm.

The algorithm terminates with an indication, in at least one

process, that the orientation in the process agrees with the
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majority orientation (“The majority agrees.") or that there is no
majority. (It would be straightforward to add another phase to
the algorithm, to send the result to every process, at the cost of

additional N messages.)

In our description of the algorithm, the processes execute
operations send and recetwve to send and receive messages. The
statement send( dir, msg ), where dir = left or right, sends the
message msg to the channel specified by dir.. The statement from
:= recetve( msg ) copies the next message received from either
channel to the variable msg and returns either from = left or

from = right to indicate the source of the message.

Every message msg in the algorithm has two fields:
msg =[vote,distance]. Initially every process sends a message to
its right channel. Each of these initial messages begins a chain of
messages forwarded from process to process in one direction
around the ring. The vote field records the number of favorable
and unfavorable local orientations along the chain. The chain is
terminated when the number of unfavorable local orientations
exceeds the number of favorable ones. The distance {ield meas-
ures the length of the chain; it allows a process to detect that a

received message is part of a chain that spans the whole ring.

When all processes begin their execution simultaneously, every

process executes the following program:
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constant N

variables wvote, distance, from

begin
send( right, [1, 1])
repeat
begin
from = receive( [vote, distance] )
if distance = N then goto DONE
if from = left then
send( right, [vote +1, distance +1} )
if from = right and wvote >0 then
send( left, [vote—1, distance+1])
end
DONE :

if vote >0 then claim "The majority agrees."
if vote =0 then claim "No majority."

end

3. The correctness of the algorithm

Both the proof of correctness in this section and the analysis in the
next are based on combinatorial results about sequences of ones

and zeros.

When s is a sequence of ones and zeros, denote by #;s and
#,s the number of ones and the number of zeros in s, respec-
tively. In [2], a nonempty sequence s of ones and zeros is called
dominating if #,t > #,t for every nonempty prefix ¢t of s. Say
that s is weakly dominating if #,t > #,t for every prefix ¢ of s.
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that order, to the processes around the ring in the clockwise direc-
tion. For 1<¢ <N, define s; to be 1 if the right channel in the
process labeled + points clockwise, and O if the right channel in the
process points counterclockwise. Define s to be the sequence
8, 89 *** 8y of ones and zeros.

Since the right channel points clockwise in at least N/2
processes, we have #,s >#(s. By 3.1, at least one cyclic permuta-
tion s; Sp4; °*° 8k-; of s is weakly dominating. Therefore the
chain of messages starting at the process labeled k reaches all the
way around the ring. (Since s;=1, the chain moves clockwise.)
Hence the process labeled k receives a message [vote,N]. (The
value vote in the message is the difference between the number of
ones and the number of zeros in s.)

[

4. The message complexity of the algorithm

In this section we count the number of messages sent when the
algorithm is executed in rings of NN processes. Recall that we

assume that all processes begin their execution simultaneously.

If all local orientations in the ring agree then every process
starts a message chain of length N; thus N? messages are sent. In
fact, by the lower bound cited above (Theorem 4.4 in [1]), every
algorithm that solves the orientation problem sends Q(/N?) mes-

sages for some choice of local orientations.

In the rest of the paper we study the average number of mes-
sages in rings of N processes. The average is computed over all
choices of local orientations. Each such choice is called a ring con-
figuration in the sequel. There are oV ring configurations; each
can be represented by a sequence of ones and zeros as in the proof
of 3.2. In the proof of Theorem 4.4 below we exploit a correspon-
dence between clockwise chains of messages sent by the algorithm

and weakly dominating sequences of ones and zeros.
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The following result is proved in section 2.4 of [3].

4.1. Lemma. Let p and ¢ be two integers, p >¢>0. Among
th p+q
.

p+ql p+l—q

sequences 8 such that #;s = p and #,s = ¢, exactly

q | sequences are weakly dominating.

|
For N>0, let L(N) be the set of all sequences of ones and
zeros of length N, and let Pref(/N) be the set of all nonempty pre-
fixes of cyclic permutations of .the sequence 12 --- N. When
§=8,8p *** SyE L(N) and =04y * * * 04 € Pref(IN), define
sla] = 84,84, " " * Sa, -

For s € L(N), denote by D(s) the cardinality of the set

{ o€ Pref(N) | s[a] is weakly dominating } .

The identity below will be useful in the proof of 4.3. It may
be found in [4] as equation (1.109).
2n
n

Proof. This may be proved by induction.

4.2. Lemma.

n —2k 2k - 2'n +1
Z 2 [IC ] - 2271
k=0

4.3. Lemma. For any integer N >0,

Y D(s) = 2V [2\/2/7r N2 4 O(N)].

s€ L(N)

Proof. When s€L(N) and p+¢<N, denote by D, ,(s) the cardi-
nality of the set
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{ o€ Pref(N) | #s5[0] = p, #¢s[0] = ¢, and s[o] is weakly dominating } .

For fixed p and ¢, p+q<N, there are p:]l-q sequences t (of

length p+q)i such that #l‘t =p and F4¢ = q. For each such t
there are N2V=(P*9) pairs (s,0) such that s€L(N), a€Pref(N),
and t=s[ca]. Therefore, by 4.1,

ptl—g
p+1

p+q

3 Dp,q(s)=N2N‘(p+‘1) )

‘sEL(N)

when p 2>q.  Obviously D, .(s)=0 when p<g. Substituting
k=p+q, we obtain v

N &
>, D(s) = > X Dk—q,q(s)
s€L(N) k=0 g=0
k
S B A
2 2 7| k+1—q
N [o] k| k+1—2
= N2V 3 ok 3 L
= = 9 k+1—g
N |2
= N2VN§Y ok o J pp—
k=0 g=0 k+1—q
k /2 k2 ,‘
— NaN S o i fl - lZ/)] = :
o = q 4=0 g! (k—q)! k+1—¢q
N %] . k2| i
= N2Vy) 27F | S - X 1
k=0 | g=0 q g=0 q
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N || ZE
k=0 | ¢=0 7 g=0 g
N ( A
= NoVy ok || F
k=0 llc/2J
\
N N \
S ol 1D I ML IR s B T
k=1 lk/2J k=0 [k QJ
k odd k even
L
N+1
N & ~(21-1) |20-1 lN/Q] o—2l |21
| 1= 1=0
N+1
N 2 o1 |21 [N/2] —21 |21
I=1 1=0
By Lemma 4.2,
2 2 N;+1 |2 N;
N ¢ t
2 D(S) = N2 2N | N ] — 1
SEL(N) i=1 2 !
where N, = N+l and N, = l%]

By Stirling’s approximation,

1
n

onf _ 2" 1 4+ 0
n| T Van t

and therefore
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2 N (2N;+1) 1

S o———" 1140
s€L(N) i-1 VT N; N

H

— N

Since N, = AR O(1) and N, = N

5 > + O(1) , we obtain

> D(s) = 2V [2\/2/vr N/ — N+ 0(\@]

SEL(N)
= oV [2 V2 /r N¥2 4+ O(N)]
[

- We are now ready to compute avg(N), the average number of
messages sent by the algorithm in rings of N processes. The aver-

age is computed over all oV ring configurations.

4.4. Theorem. For any integer N >0,

avg(N) =4 V2/r N2 + O(N).

Proof. We first count the total number of messages sent clock-
wise in all ring configurations of a fixed size IN. By symmetry, the

same total number of messages is sent counterclockwise.

As in the proof of 3.2, we assign labels 1,2,...,IV, in that
order, to the processes around the ring in a clockwise direction,
and we define s;, 1<K<N, to be one or zero when the right chan-
nel in the process labeled ¢ points clockwise or counterclockwise,

respectively.

"It follows from the definition of the algorithm in section 2
that a message [v,d] is sent clockwise by the process labeled k if
and only if, for the sequence a€Pref(IN) such that the length of o
is d and the last element of « is k, s[o] is weakly dominating (in

that case v = #, 00 — #4a ). Moreover, two different messages
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sent (clockwise) correspond this way to two different sequences in
Pref(N).
Thus, the total number of messages sent clockwise in all ring

configurations is

>, D(s),

s€EL(N)

and the total number of messages sent both clockwise and counter-

clockwise is

2 Y, D(s).

s€L(N)

Thus,

1
avg(N) = Py 2 E( )D(s)
s€L(N

and by Lemma 4.3
avg(N) = 4V2/r N*? + O(N)
[
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