Converting AND-control
to
OR~control
by
program transformation

M.H. van Emden
University of Waterloo

P. Szeredi
Comp. Research & Innovation Centre

Research Report CS-87-21
March 1987

To appear in

"roundations of Deductive Databases and
Logic Programming"

Jack Minker (editor)

Morgan, Kaufmann Publishers, 1987,






Converting AND-control to OR-control
by program transformation

M.H. van Emden
University of Waterloo
Waterloo, Canada

P. Szeredi
Computer Research and Innovation Centre (SZKI)
Budapest, Hungary

Abstract

We show how AND-control of logic programs can be transformed to OR-control by
the well-known program transformation of unfolding followed by folding. We demon-
strate the technique by taking as starting point the logic specification of a dataflow
network, which requires complex AND-control, so that it cannot be run by standard
Prolog. After transformation we supply the required OR-control, resulting in a pro-
gram that can be run by a standard Prolog interpreter.

Introduction

The success of logic programming depends on how often it happens that a definition in logic
can be transformed easily to an executable Prolog program. How easy it is to transform
(or whether transformation has to done at all), depends on the power of Prolog’s control
mechanisms.

The control mechanisms of logic programming belong to two main categories. Goal
selection determines the derivation tree when the query and the program are given. To
find a successful derivation within this tree is the problem of OR-control. To select goals in
such a way that the derivation tree as a whole is favourable is the problem of AND-control.

Prolog’s AND-control is characterized by the fixed goal ordering where the leftmost
goal is always selected. Thus, when the goals are G1,G3z,...,Gy, none of G,...,G, will
get any attention until G; is completely solved. This is not effective for an important



Figure 1: Dataflow network for a simplified version of Hamming’s problem

class of logic definitions, where co-routining between goals is required: a goal typically is
not solved to completion, its execution being interrupted by work on other goals. Several
variants of Prolog provide AND-control which is adequate for co-routining [4,5,11].

Co-routining can be viewed as a way of running conceptually parallel cooperating pro-
cesses on a single processor. Thus, it is not surprising that several variants of Prolog
[2,3,9,12,13] designed for parallel execution of goals have more sophisticated AND-control
than Prolog itself. In this paper we consider an alternative to providing such more sophis-
ticated control, namely to transform a program requiring co-routining AND control to one
that can be run by plain Prolog. The elimination of the need for coroutining is obtained
at the cost of additional OR-control.

In this paper we demonstrate a transformation method applicable to logic definitions
representing dataflow programs where each node in the dataflow network represents a
perpetual cyclic process. This class is not executable by Prolog because co-routining
AND-control is required.

Translation of network specifications

The type of network specification we translate here was proposed in [10]. Consider the
dataflow network in Figure 1, which solves a version of Hamming’s problem. This simplified
version produces the sequence of integers containing no prime factors other than 2 and
3. Each node represents a processor, each arc a communication channel. Each processor
executes an cyclical computation and is activated as soon as its input channels contain
enough data for one cycle of its computation.

The computation of the merge node is as follows. In case the first numbers in each of



the input channels are equal, both are removed and one is written in the output channel.
If the two first numbers are different, the smallest one is removed and output. times2
outputs each input number multiplied by 2; analogously for times3. split outputs a copy
of each input number. The diagram in Figure 1 shows the initial state of the network,
where all channels are empty except for the one between merge and split, which contains
al.

According to [6,7], a dataflow network is represented in logic in two parts. The logic
program contains definitions of the individual nodes in the network as relations between
lists of data items. Thus the program contains no information about how the nodes are
connected; this is done in the goal statement.

Here follow the definitions of the nodes in Figure 1:

merge(A.X B.Y A.Z) if 1t(A B) merge(X B.Y Z);
merge(A.X B.Y B.Z) if 1t(B A) merge(A.X Y 2);
merge(A.X A.Y A.Z) if merge(X Y Z);

times2(A.U B.X) if prod(A 2 B) times2(U X);
times3(A.V B.Y) if prod(A 3 B) times3(V Y);

split(A.Z A.U A.V) if split(Z U V);
The network is specified by the goal statement:
? merge(X Y Z) times2(U X) times3(V Y) split(1.2 U V)

Note how the shared variables represent the communication channels between the proces-
sors of the network. In cases where two goals have as argument just the shared variable
itself, the corresponding channel is empty in the initial state. This is the case everywhere
except for the channel connecting merge (where the argument is Z) and split (where
the argument is 1.Z). The difference (in the sense of “difference lists”) between these
arguments is 1, just the content of the channel represented by the arguments.

Of course, if we ask the question

? merge(X Y Z) times2(1.Z X) times3(1.Z Y)

obtained from the previous one by using the fact that, by the meaning of split, U and V
both equal 1.Z, then we don’t need the definition of split at all and we get a shorter ques-
tion. This shorter question, however, has no corresponding dataflow diagram. This sim-
plification is a symptom of the greater power of logic programming compared to dataflow
diagrams. In the sequel we continue with the dataflow diagram because we need an in-
structive example, rather than a most concise statement of Hamming’s problem.



Figure 2: The unconnected conjuhction of nodes

A variant of the dataflow network representation

For the purpose of the program transformation it is convenient to modify the dataflow net-
work representation described in the previous section, where the network was represented
directly by a question.

In this section we describe a network representation consisting of two parts. In the
first part, consisting of an equivalence, we represent a conjunction of all nodes, without
specifying any connections. ‘

For our example this equivalence is:

conj(X1 Y1 Z2 Ul X2 V1 Y2 Z1 U2 V2) iff
merge (X1 Y1 Z2) & times2(Ul X2) & times3(V1 Y2) & split(Z1 U2 V2)

Although this is not a clause, we have followed here the clausal convention of implicitly
universally quantifying all variables. In the right-hand side we have named the variables
in a way indicating how they are going to be “connected”: X1 and X2 are now respectively
the input and output ports of the same channel that was represented by X before; similarly
for the other variables and channels. See Figure 2.

More helpfully, X1 and X2 can be regarded as lists: X1 is then the list of all items
passing through the output port of X, while X2 is the list of all items passing through
its input port. It follows that X2 must be a posterior sublist of X1 and that the (possibly
empty) prefix of items in X1 which is not in X2 consists of the contents of the channel X.
In other words, X1 and X2 are the two components of the difference list representation of
channel X.

In the second stage, we complete the network specification by a question. It is here
that we use the difference list representation to specify the contents of each channel.

4



?conj(X Y Z U X V Y 1.Z U V)

Although this representation will support our program transformation, it has the disad-
vantage that conj has a long list of arguments that hides a useful structure: the arguments
can be partitioned into groups representing ports of the same node. We will therefore con-
tinue with a modification of the representation used before.

This modification is obtained by changing the predicates for the node computations to
become, formally at least, unary, by the use of a functor to package the input and output
streams into a single term.

merge(m(A.X B.Y A.Z)) if 1t(A B) merge(m(X B.Y Z));
merge(m(A.X B.Y B.Z)) if 1t(B A) merge(m(A.X Y Z));
merge(m(A.X A.Y A.Z)) if merge(m(X Y Z));

times2(t2(A.U B.X)) if prod(A 2 B) times2(t2(U X));
times3(t3(A.V B.Y)) if prod(A 3 B) times3(t3(V Y));

split(s(A.2 AU A.V)) if split(s(Z U V));

Now that each of the node relations has one argument, the definition of conj is simpli-

fied:
conj(M T2 T3 8) iff merge(M) & times2(T2) & times3(T3) & split(S);
Finally, the network connections are specified by the question

? conj(m(X Y 2) t2(U X) t3(V Y) s(1.Z2 U V))

Deriving the program

In this section we show how to apply the unfold/fold transformation [1] to obtain a logic
program requiring OR-control where the original network specification required AND-
control.

The key predicate in the derived program is conj. From the definition we use only the
tf part:

conj(M T2 T3 S) if merge(M) times2(T2) times3(T3) split(S);

Let us combine this definition with that of merge. As the first step, we obtain from the
above implication the instance:



conj(m(A.X B.Y A.Z) T2 T3 S)
if merge(m(A.X B.Y A.Z)) times2(T2) times3(T3) split(S);

We use the definition of merge to obtain by resolution (“unfolding”, or “partial applica-
tion”):

conj(m(A.X B.Y A.Z) T2 T3 S)
if 1t(A B) merge(m(X B.Y Z)) times2(T2) times3(T3) split(S);

When we now use the only if part of the definition of conj on the right-hand side, we
obtain (by “folding”):

conj(m(A.X B.Y A.Z) T2 T3 S)
if 1t(A B) conj(m(X B.Y Z) T2 T3 S);

In a similar way, each of the clauses defining a node relation can be combined with the
definition of conj to yield the following set of clauses:

conj(m(A.X B.Y A.Z) T2 T3 S)

if 1t(A B) conj(m(X B.Y Z) T2 T3 S);
conj(m(A.X B.Y B.Z) T2 T3 S)

if gt(A B) conj(m(A.X Y Z) T2 T3 8);
conj(m(A.X A.Y A.Z) T2 T3 S)

if conj(m(X Y Z) T2 T3 §);
conj(M t2(A.U B.X) T3 8)

if prod(A 2 B) conj(M t2(U X) T3 8);
conj(M T2 t3(A.U B.X) S)

if prod(A 3 B) conj(M T2 t3(U X) 8);
conj(M T2 T3 s(A.Z A.U A.V))

if conj(M T2 T3 s(Z2 U V));

OR-control of the derived program

The derived program is activated by the question:
? conj(m(X Y Z) t2(U X) t3(V Y) s(1.2 U V))

This call, and calls generated later by this call, are such that all clauses for conj match.
The required control is to select a suitable subset of clauses; hence OR-control.

Just as with AND-control for the specification, the control is derived from the compu-
tation rule for dataflow networks:



Any node is allowed to execute one cycle whenever it has enough data in its
input channels to execute this cycle.

In this example, the computation rule translates to the condition that a clause should
only be selected when certain variables have become bound. A straightforward approach
is the following:

conj(m(A.X B.Y A.Z) T2 T3 S)

if not(var(A)) not(var(B)) 1t(A B) conj(m(X B.Y Z) T2 T3 S);
conj(m(A.X B.Y B.Z) T2 T3 S)

if not(var(A)) not(var(B)) gt(A B) conj(m(A.X Y Z) T2 T3 S);
conj(m(A.X A.Y A.Z) T2 T3 S)

if not(var(A)) conj(m(X Y Z) T2 T3 S);
conj(M t2(A.U B.X) T3 8)

if not(var(A)) prod(A 2 B) conj(M t2(U X) T3 S);
conj(M T2 t3(A.V B.Y) S)

if not(var(A)) prod(A 3 B) conj(M T2 t3(V Y) S);
conj(M T2 T3 s(A.Z A.U A.V))

if not(var(A)) conj(M T2 T3 s8(Z U V));

Each condition of the derived program has received its OR-control in the form of
“guards” on the conditions. In this way we intend to realize the requirement of the dataflow
rule of computation that only those processes are allowed to be activated that have the
required data in their input channels.

This example shows that just mechanically inserting guards of the form not (var(...))
does not always have the desired effect. In fact, the above program does not solve Ham-
ming’s problem, but generates instead an infinite sequence of 2’s. Why this happens may
be seen as follows. Suppose the state of the dataflow network is as represented in the
question

? conj(m(Z.X Y Z) t2(U X) t3(1.V Y) s(Z U V))
Now the third clause

conj(m(A.X* A.Y’ A.Z°) T2 T3 S)
if not(var(A)) conj(m(X* Y* Z°) T2 T3 S);

will be used. But this clause represents an action by the merge-node, which should only
be allowed when both input channels are non-empty. Use of the third clause results in the
question

? conj(m(X Y’ Z2°) t2(U X) t3(1.V 2.Y’) s(2.2’ U V))



Not only has a 2 appeared in the output channel of merge, but the equivalent of pushing
it into the empty input channel has also occurred.

The third clause should not be obtained by merely inserting the guard. Instead, it
should be recognized that there is an implicit test for equality (the first two occurrences
of A) and that this test should come after a guard ensuring that the input channels are
nonempty, like this:

conj(m(A.X B.Y A.Z) T2 T3 S)
if not(var(A)) not(var(B)) eq(A B) conj(m(X Y Z) T2 T3 S);

An alternative route to the transformed program

The transformed program can also be obtained by considering the state of the dataflow
network and regarding a computation by the network as a sequence of state transitions.
And of course, we have to formulate a logic program having as property that its execution
by SLD-resolution somehow mimicks the desired sequence of state transitions.

We first explain the general principle and then apply it to the dataflow situation. Con-
sider a binary relation between states such that trans(Statel State2) iff the transition
from Statel to State2 is possible.

Let us call a computation a sequence of states such that successive elements in the
sequence are in the transition relation. If there is a last state in the computation, then it
has to be a specially designated halt state. Let comp(Statel State2) be true iff there is a
computation with Statel as first element and State2 as last element. The relation comp
is then defined by:

comp(State State) if halt(State);
comp(Statel State2) if trans(Statel State) comp(State State2);

As we are interested in our data-flow example in computations without a halt state,
the first clause is irrelevant. Moreover, in the second clause the second argument of comp
becomes irrelevant. Hence we arrive at the predicate start which asserts of a state that
it is the start state of a possibly infinite computation.

start(Statel) if trans(Statel State2) start(State2);

The state consists of the aggregation of the channel contents, represented as lists. We
implement this aggregation by representing the state as a term with state as functor and
with clusters of channels as arguments. Let us take as example one of the transitions
possible when the merge node has nonempty input channels:

trans(state(m(A.X B.Y A.Z) T2 T3 S) state(m(X B.Y Z) T2 T3 S))
if 1t(A B);



When we do a resolution (“partial application”) with the clause for start, we get:

start(state(m(A.X B.Y A.Z) T2 T3 8))
if 1t(A B) start(state(m(X B.Y 2) T2 T3 8));

Note that this is substantially the same as one of the clauses of the program obtained by
the unfold /fold transformation and that the other clauses can be obtained in the same way
from operational reasoning about state transitions.

Of course, we have to add the same OR-control as we did to the result of the unfold/fold
transformation. We use the operational reasoning about state-transitions in the dataflow
model to finish the incomplete control of the last version of the result of the unfold/fold
transformation.

Opportunities for parallel computation arise in dataflow networks when more than one
node has sufficient input. In our example it often happens that both multiplication nodes
can operate in parallel. In the transformed program this shows by more than one clause
having its guard succeed. From the dataflow rule of computation it is apparent that one
can commit on a choice to any clause for which the guard succeeds. Thus, the result of
our transformation of dataflow programs can be made to exhibit the committed-choice
nondeterminism typical of variants of Prolog for parallelism.

Taking this consideration into account, we find that we can place “cut” operators, to
obtain as our final program the one shown below. Of course, a Prolog hacker would have
seen the opportunity for cuts right away; we prefer to conclude their permissibility from
properties of the dataflow computation model.

conj(m(A.X B.Y A.Z) T2 T3 8)

if not(var(A)) not(var(B)) 1t(A B) cut conj(m(X B.Y Z) T2 T3 S);
conj(m(A.X B.Y B.Z) T2 T3 §)

if not(var(A)) not(var(B)) gt(A B) cut conj(m(A.X Y Z) T2 T3 8);
conj(m(A.X B.Y A.Z) T2 T3 8)

if not(var(A)) not(var(B)) eq(A B) cut conj(m(X Y Z) T2 T3 8);
conj(M t2(A.U B.X) T3 S)

if not(var(A)) cut prod(A 2 B) conj(M t2(U X) T3 8);
conj(M T2 t3(A.V B.Y) S)

if not(var(A)) cut prod(A 3 B) conj(M T2 t3(V Y) S);
conj(M T2 T3 s(A.Z A.U A.V))

if not(var(A)) cut conj(M T2 T3 s(Z U V));

Conclusions

We presented two ways of deriving Prolog-executable programs from logic specifications of
dataflow diagrams. The first used the well-known unfold/fold transformation; it depended

9



exclusively on declarative concepts. The second was based entirely on machine-oriented
concepts: transitions allowed in the dataflow model of computation. It is surprising that a
purely declarative approach can result in essentially the same Prolog program as a purely
operational approach.

It is not surprising of course to find some connection with operational concepts. After
all, the unfold transformation is a top-down computation step of a Prolog interpreter.
But we found a close relation not directly to the action of the Prolog interpreter, but the
dataflow model of computation.

We have shown an example of conversion of AND-control to OR-control. AND-control
is needed to exploit the potential for parallelism in the evaluation of the conditions of a
clause. Our work raises the question: have we also shown how to convert opportunities for
AND-parallelism to opportunities for OR-parallelism?

The demonstration of this paper clearly applies to all static dataflow networks consist-
ing of nodes executing nonterminating cyclic computations. An attractive area for further
investigation is to expand our technique to a wider class of logic specifications.

Acknowledgments

We owe a debt of gratitude to Steve Gregory and two anonymous referees for their pen-
etrating remarks, which made it possible for us to remedy some of the previous version’s
shortcomings. Owur thanks also to Mantis H.M. Cheng for pointing out that the naive
OR-control of the derived program is wrong, and why. Last, but not least, we gratefully
acknowledge the role of the Digital Equipment Corporation of Canada and the National
Science and Engineering Research Council of Canada in contributing to the research facil-
ities used in the work reported here.

References

[1] Burstall, R. and Darlington, J. [1977] A transformation system for developing recursive
programs. Journal of the ACM, vol. 24, 44-67.

[2] Clark, K.L. and Gregory, S. [1981] A relational language for parallel programming.
Proceedings of the ACM conference on functional languages and computer architec-
ture.

[3] Clark, K.L. and Gregory, S. [1986] Parallel programming in logic. ACM Transactions
on Programming Languages and Systems, vol. 8, 1-49.

[4] Clark, K.L. and McCabe, F.G. [1979] The control facilities of IC-Prolog. In Ezpert
Systems, D. Michie (ed.), Edinburgh University Press.

10



[5] Colmerauer, A. [1982] Prolog II reference manual and theoretical model. Internal
report, Groupe Intelligence Artificielle, Université d’Aixz Marseille II.

[6] Emden, M.H. van, and Lucena, G.J. de [1979] Predicate logic as a language for parallel
programming. Research Report CS-79-15, Computer Science Department, University
of Waterloo.

[7] Emden, M.H. van, and Lucena, G.J. de [1982] Predicate logic as a language for par-
allel programming. In Logic Programming, K.L. Clark and S.A. Térnlund (eds.),
Academic Press, 189-198.

[8] Gregory, S. [1980] Towards the compilation of annotated logic programs. Research
Report DoC 80/16, Department of Computing, Imperial College, London.

[9] Gregory, S. [1987] Parallel Logic Programming in PARLOG. Addison-Wesley.

[10] Kahn, G. and McQueen, D.B. {1977] Coroutines and networks of parallel processes.
Proceedings IFIP 1977.

[11] Naish, L. [1983] The MU-Prolog 3.2 reference manual. Technical Report 85/11, De-
partment of Computer Science, University of Melbourne.

[12] Shapiro, E.Y. [1983] A subset of concurrent Prolog and its interpreter. ICOT Tech-
nical Report TR-003.

[13] Ueda, K. [1985] Guarded Horn Clauses. ICOT Technical report TR-103.

11



	
	
	
	
	
	
	
	
	
	
	
	
	

