MENT

o

EPA
EPARTMENT
EPARTMENT

ER SEENGE B
L SCRNEE

]
Ur
UT

T

e
OMP

3¢

Y
RL

UNIVERSITY OF WATERLOO C

Y
iy

UNIVER§I1 Y

HNIVER

A livelock-free protocol
for slotted rings

Research Report

Jan Pachl

CS-87-20

March, 1987

A livelock-free protocol for slotted rings

Jan Pachl

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

March 17, 1987

Abstract

The purpose of this paper is to show that the commonly used
empty-slot protocol for slotted rings is livelock-prone, and to propose
a livelock-free modification of the protocol.

Research supported by the Natural Sciences and Engineering Research Council of
Canada.

2 Jan Pachl

1 The empty slot protocol

A slotted ring is a unidirectional ring communication network in which a
number of fixed-length slots are passed from station to station around the
ring. A station that has data to send to another station waits for an empty
slot to arrive and uses the slot to send the data.

A well-known example of a slotted ring is the Cambridge ring [5], in
which the slot has the following format:

EM DEST SRCE DATA RESP

The one-bit field E (“full-empty”) has two values, empty and full. The
one-bit field M (“monitor”) has two values, new and old. The DEST field is
the destination station address, the SRCE field is the source station address,
and the RESP field (“response bits”) transports an acknowledgement from
the destination to the source.

There is exactly one monitor station in the ring. Each ordinary station
(other than the monitor) executes the following protocol to send data: If
there are data to transmit, the station repeats each slot as received until the
received value of the E field is empty; then the station changes the value of
the E field to full, and sends the value new in the M field, the destination
address in the DEST field, its own address in the SRCE field and data in
the DATA field; the value destination absent in sent in the RESP field.

The destination station recognizes its address in the DEST field, and, if
it has a buffer available for reception, makes a copy of the DATA field and
sends the value packet accepted in the RESP field. However, except for the
RESP field, the destination station repeats the slot as received. The sending
station waits for the slot to return around the ring, then changes the E field
back to empty, and repeats the rest of the slot as received. (The number of
slots in the ring is fixed, and the station is therefore able to determine when
the slot has returned.) The sending station also reads the RESP field, and
thus finds out whether the data have been received by the destination.

The monitor station manipulates the contents of the E and M fields,
and repeats the rest of the slot as received. (On a lower protocol level,
the monitor station is also responsible for maintaining the circulating slots.)
When the monitor station receives the values (full, new) in the (E,M) pair,
it sends (full, old) instead; when the monitor station receives (full, old), it
sends empty in the E field.

In [5] it is argued that ring reliability decreases as delays in each node
increase. As is pointed out on p. 171 in [3], the Cambridge ring protocol

A livelock-free protocol 3

may be implemented with minimum delay in non-monitor stations. Indeed,
if a (non-monitor) station has data to send then the value of the E bit sent
by the station in the next slot is full, regardless whether the slot arrives
empty or full. Thus the outgoing value of the E bit depends on its incoming
value only when the station has no data to send, and in that case the E bit
value is simply repeated by the station. However, in the monitor station the
delay must be longer, because the value of the E bit sent by the monitor
station depends on the value of the M bit received in the same slot.

Transmission errors affect the E field in two ways: empty value may
be changed to full, and full value may be changed to empty. The monitor
station protocol ensures that the ring recovers from the empty-to-full errors.
However, in the next section it is shown that the protocol described above
may fail as a result of a single full-to-empty error.

2 A livelock example

Figure 1 shows one possible execution in a ring with five non-monitor sta-
tions. (The monitor station is not shown.) There is a single circulating slot.
In the figure, the thick line means that the E field is set to full, and the thin
line means that the E field is set to empty.

Station 1 sends data, and a transmission error marks the slot empty
between stations 3 and 4. Station 4 immediately uses the slot to send its
own data, and from then on the stations send their data in the order

4,2,5,3,1,4,2,5,3,1,...

As long as all the nodes always have data to send, the situation persists
forever. (This would happen, for example, if a higher-level protocol required
that unacknowledged data be retransmitted.) If the data from station 1 are
destined for station 4, from station 2 for station 5, from station 3 for station
1, from station 4 for station 2, and from station 5 for station 3, then no data
ever reach their destination.

3 The recovery procedure

Tt is not difficult to devise modifications of the protocol which avoid livelocks
like the one in section 2. However, in this section it will be shown that there
even exists a modification that is compatible with the original protocol, in
the sense that the slot format and the protocol in the monitor station remain
the same.

In the protocol described in section 1, the sending station reads the RESP
field in the slot returning around the ring. Thus the station can also read the

(b1]

Jan Pachl

&

T2
-- e il B
UFL |
u
4

Figure 1. A livelock scenario.

thick line = slot marked full
thin line = slot marked empty

A livelock-free protocol 5

SRCE field and compare it with its own station address. If they differ, then
the content of the slot may have been overwritten by another station, and
it is possible that a livelock has developed. Therefore the station initiates a
recovery procedure.

In the proposed recovery procedure, the station waits until the slot in
which the problem has occurred is received with the E field set to empty,
changes it to full, sends new in the M field, an invalid address in the DEST
field, and its own address in the SRCE field. (Thus the station waits until
it is allowed to send its own data in the suspect slot, and sends dummy
data, not addressed to any valid destination.) However, the station does not
change the E field back to empty when the slot returns.

The appendix contains an algorithmic description of the protocol. One
can argue, informally, that the protocol is livelock-free, as follows: Livelocks
like the one in Figure 1 arise when there is more than one “permission to
transmit” in one slot during one round trip. Every time a station executes
the recovery procedure, the number of those permissions is reduced by one.
It is possible that all permissions are removed in this way, but then a new
permission is created by the monitor station.

Figure 2 shows an example of recovery in a ring with three non-monitor
stations. The square box symbols in the figure denote the times when re-
covering stations send dummy data.

This technique is conceptually similar to that used in the token ring de-
fined in [1], where the situation in which multiple tokens are created through
an error is converted to the situation with no token. (Cf. [1], p. 76.)

It should be noted that only the data sender protocol is modified. The
other parts of the original protocol remain the same. Moreover, the proposed
protocol is compatible with the original one in a very strong sense: One
can mix stations executing the original protocol with those executing the
modified protocol; as long as the stations executing the modified protocol
send their data often enough, the system recovers from any number of full-
to-empty errors.

4 Other recovery procedures

Another approach to recovery is taken by the designers of the MAN protocol
[4]. Although the protocol has a different frame format, the following rule,
adapted from [4], may be added to the protocol in section 1 to prevent
livelocks: The sending station changes the E field value in the returning
slot back to empty only if the M value in the returning slot is old. The
disadvantage of this scheme is that, since the outgoing value of the E bit
depends on the incoming value of the M bit, the delay in every station has to
be at least one bit longer than the minimum delay necessary to retransmit

6 Jan Pachl

4 --
monitor

Figure 2. The recovery procedure.

thick line = slot marked full
thin line = slot marked empty

A livelock-free protocol 7

the received bit values. However, the scheme is very simple, and is to be
recommended when longer than minimum delays are acceptable.

All the protocols in this paper are centralized, because they rely on one
station (the monitor station) that is different from other stations in the ring.
Zafiropulo and Rothauser [6] describe a decentralized protocol for slotted
rings; several livelock-free modifications of the protocol are proposed in [2].

References

[1] W. Bux, F. Closs, P. A. Janson, K. Kummerle, H. R. Muller, and
E. H. Rothauser. “A local-area communication network based on a re-
liable token-ring system”, Local Computer Networks (Edited by P. C.
Ravasio, G. Hopkins and N. Naffah), Proc. IFIP TC 6 International In-
Depth Symp. on Local Computer Networks, Florence, Italy, April 19-21,
1982; pp. 69-82.

[2] J. K. Pachl and L. M. Casey. “A robust ring transmission protocol”,
UW/ICR 86-11 (July 1986), Institute for Computer Research, Univer-
sity of Waterloo.

[3] B. K. Penney and A. A. Baghdadi. “Survey of computer communication
loop networks: Part 1”7, Computer Communications 2 (1979), 165-180.

[4] D. T. W. Sze. “A metropolitan area network”, IEEE J. Selected Areas
in Communications SAC-3 (1985), 815-824.

[6] M. V. Wilkes and D. J. Wheeler. “The Cambridge digital communication
ring”, Proc. Local Area Networks Symp. (Edited by N.B. Meisner and
R. Rosenthal), Boston, May 1979.

[6] P. Zafiropulo and E. H. Rothauser. “Signaling and frame structures in
highly decentralized loop systems”, Proc. 1st Internat. Conf. Computer
Communications , Washington, D. C., October 1972.

8 Jan Pachl

Appendix

This appendix contains a description of the modified sender protocol in an
algorithmic notation. For the sake of simplicity it is assumed that there is
only one slot in the ring (so that the sender need not skip any passing slots
before receiving the transmitted slot after its trip around the ring).

The protocol is described by means of three low-level primitives:

bit_in = Repeat_bit();
bit_in Send_bit(bit_out);
Await_next_slot();

The primitive Repeat_bit copies the next bit from the input channel

to the output channel, and returns its value. The primitive Send_bit

receives the next bit from the input channel (bit_in) and sends the bit

bit_out to the output channel. The primitive Await_next_slot copies

the bits from the input channel to the output channel until a new slot begins.
The procedures

Send_address(address_out);
address_in = Receive_address();

which are easily written in terms Send_bit and Repeat_bit , are used
to send and received address fields.
The modified sender protocol follows on the next page.

A livelock-free protocol

constants
OWN_ADDRESS : address
INVALID_ADDRESS : address
FULL, EMPTY, NEW : bit

variable
recovering : boolean

recovering := FALSE;
repeat
begin
Await_next_slot();

if "ready to send" and not recovering then

begin
if Send_bit(FULL) = EMPTY then
begin
Send_bit(NEW);

{* E field *}

{* M field *}

Send_address("destination address");

Send_address(OWN_ADDRESS);
"send data and response field"
Await_next_slot();
Send_bit(EMPTY);
Send_bit(NEW);
Receive_address();

if Receive_address() !

recovering := TRUE;
end end
else if recovering then
begin
if Send_bit(FULL) = EMPTY then
begin

Send_bit(NEW);
Send_address(INVALID_ADDRESS);
Send_address(OWN_ADDRESS);
Await_next_slot();
recovering := FALSE;

end end end

{* DEST field
{* SRCE field

{* E field *}
{* M field %}
{* DEST field

OWN_ADDRESS then

{* SRCE field

{* E field *}

{* M field #}
{* DEST field

*}
*}

*}

*}

	
	
	
	
	
	
	
	
	
	

