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Abstract: Several algorithms already exist for solving the uncapacitated
facility location problem. The most efficient are based upon the solution of
the strong linear programming relaxation. The dual of this relaxation has a
condensed form which consists of minimizing a certain piecewise linear convex
function. This paper presents a new method for solving the uncapacitated
facility location problem based upon the exact solution of the condensed dual
via orthogonal projections. The amount of work per iteration is of the same
order as that of a simplex iteration for a linear program in m variables and
constraints, where m is the number of clients. For comparison, the underlying
linear programming dual has mn + m + n variables and mn + n constraints,
where n is the number of potential locations for the facilities. The method is
flexible as it can handle side constraints. In particular, when there is a
duality gap, the linear programming formulation can be strengthened by
adding cuts. Numerical results for some classical test problems are included.






1. Statement of the Problem

The uncapacitated facility location problem can be stated as follows.
Suppose we have m clients indexed by I = (1, 2, ..., m} and n potential
sites for opening facilities indexed by J = {1, 2, ..., n}. We are given the
profit Ci j that can be accrued from supplying all of client i’s demand from a
facility in location j, and the fixed cost f ji 2 0 for setting up a facility in
location j. The problem consists of selecting an optimal set of facility
locations and assigning the clients to these facilities. Let ¥ij represent the
fraction of client i's demand supplied from facility j. Define

% = { 1 if facility j is open,
J 0 otherwise.

Then our model problem is

Max E z cijyij - 2 fJX] (1.1)
isI jeJ jeJ ,
¥ vij =1 for all i = I (1.2)
jeJ
xj-y,-j_>_0 for all i ¢ I, j & J (1.3)
Vij 2 0 for all i = I, j & J (1.4)
Xj ® {0,1} for all j & J. (1.5)

The constraint (1.2) expresses the fact that all of client i’s demand is
supplied, and (1.3) expresses the fact that we can only supply the clients
from open facilities.

This model has been extensively studied. See [7] for a recent survey of
the literature. By relaxing the 0,1 restriction on Xy, we obtain the so-called
strong linear programming relaxation of the uncapacitated facility location
problem. More precisely, we replace (1.5) in the above formulation by

0 < x;

<x; £1 for all j= J (1.6)



This relaxation has been very effective in practice. It turns out that its
solution is frequently integral for small and medium-size problems arising from
applications (see, for example, ReVelle and Swain [19], Garfinkel, Neebe and
Rao [11], Cornuejols, Fisher and Nemhauser [6], Erlenkotter[10], Mulvey and
Crowder [171). For large Euclidean problems, the existence of wvery small
duality gaps (about 0.2%) is supported by a probabilistic analysis [1]. Much
larger gaps arise under the uniform cost model but this model is not
representative of real-world applications.

We also note that, because of the size of the strong linear programming
relaxation (it has mn + n variables) and its special structure, it is not
efficient to use the simplex method directly. The standard linear programming

dual of problem (1.1)-(1.4),(1.6) can be written as

Min Tu; + L tj (1.7)
izl jeJ
u; + Wij 2 Cij for all i = I, j s J (1.8)
- 3 wijgt oty > - £ for all j & J (1.9)
izl
wij, t; 20 for all i = I, j = J. (1.10)

This is a problem in mn + m + n variables, but it is possible to rewrite it in a
condensed form in the light of the following observations.
We note from the form of (1.7) that, for any given u;’s, we would like to

make the tj’s as small as possible. Thus, using (1.9) and (1.10), we require

+
ty = [,EIWH - fj] , (1.11)
1€

where at = max (0,a). Consequently, we would like to make w; j as small as
possible. Constraints (1.8) and (1.10) imply that we should have

wij = (cjmupt. (1.12)



It is now possible to replace the dual problem (1.7)-(1.10) above by the

following condensed dual

Min F(u) = % u; + % S‘j(u) (1.13)
u isl jeJ
where Sj(u) = E (c.;j—ui )+ - f]‘ (1.14)
iel

We remark that
(a) this transformation is well known. See, for example, Spielberg [21] and
Erlenkotter [10].

(b} F(u) is a piecewise linear convex objective function.

(c}) Problem (1.13) is an unconstrained optimization problem in n variables.

(d) There is an optimum solution of (1.13) such that S; (u) < 0 for all j = J.
(To see this, note that the constraint x; < 1 of (1.6) is superfluous in the
strong linear programming relaxation since we have assumed fj > 0., This
shows that, in the dual, we can always set t; = 0.)

In this paper we propose a method that minimizes F(u) directly as a
piecewise linear function. Section 2 outlines the method and provides the
theory. Section 3 contains the proof of the main theorem. Section 4
describes the algorithm, and Section 5 reports our computational experience.
Section 6 describes connections between our method and Erlenkotter’s.
Finally, in Section 7, we discuss extensions of the method.

In the remainder of this section we provide additional background on the
uncapacitated facility location problem. This problem is NP-hard. Therefore it
is not surprising that most of the exact solution methods proposed in the
literature resort to branch and bound. The success of such algorithms
depends on the availability of a tight relaxation. The so-called weak linear

programming relaxation is defined by replacing (1.3) by



Lyij £ mxy for all j & J. (1.37%).
il

Although this relaxation is very easy to solve, its use within the context of
branch and bound leads to large enumeration trees, even for relatively small
problems (see Efroymson and Ray [9]). The strong linear programming
relaxation (1.1)-(1.4),(1.6) on the other hand produces amazingly tight bounds,
as we have noted already. Solving it is an interesting challenge as its
structure can be exploited in many different ways. Garfinkel, Neebe and Rao
[11] solved the strong linear programming relaxation by Dantzig-Wolfe
decomposition, Schrage [20] devised a variable upper bound simplex algorithm
to handle the constraints (1.3) while Morris [16] treated them as cutting
planes to be incorporated as needed; finally Guignard and Spielberg [14]
proposed to pivot only on unimodular bases. All these methods are variants
of the primal simplex algorithm. For the purpose of branch and bound,
however, there are advantages to solving the dual of the relaxation instead of
the primal, as any dual feasible solution yields a valid bound. We have seen
already that the dual has a condensed form (1.13). Erlenkotter [10] minimized
this piecewise linear convex function using a descent heuristic. Narula, Ogbu
and Samuelsson [18] and Cornuejols, Fisher and Nemhauser [6] used
subgradient optimization. Both approaches quickly yield good dual solutions,
are easy to program and well suited for branch and bound algorithms.
Recently some great successes have been achieved in the solution of
combinatorial optimization problems by combining a cutting plane approach
with branch and bound, see Grotschel and Padberg [12] for example. In order
to generate cutting planes for the uncapacitated facility location problem, it is
desirable to solve the strong linear programming relaxation to optimality.

Since the primal has many more variables than the condensed dual -- mn + n



versus m =--, it seems appropriate to solve the latter. Subgradient
optimization can be very slow to achieve optimality and Erlenkotter’s dual
descent algorithm is a heuristic, so neither approach is well suited to solving
the condensed dual optimally. The present paper proposes an algorithm to
solve this condensed dual to optimality.

The best cutting planes are those that generate facets of the convex hull
of the solutions to (1.2) - (1.5). This polytope is known as the uncapacitated
facility location polytope, and its facets have been partially described by
Guignard [13], Cho, Padberg and Rao [3] and Cornuejols and Thizy [8]. For
example, the inequality

Yre * Vst t Ysn * Yen F Ve t Yk — Xe — xp —ox L] (1.15)
defines a facet of the uncapacitated facility location polytope for any ¢, h, k =
Jand r, s, t ¢ I such that ¢ # h # k and r # s # t. It cuts off fractional
basic solutions of (1.1)-(1.4),(1.6) where all the wvariables in (1.15) take the
value 1/2. Adding the constraint (1.15) to (1.1)-(1.4),(1.6) and taking the dual,
we get

Min % u; + th+v
izl jeJ

u; + Wij 2 Cij for all (i,j) # (r,¢),(s,¢),(s,h),(t,h), (t,k), (r,k)

u; +w‘ij

+v 2 ¢y for (i,5§) = (r,8),(s,¢),(s,h),(t,h),(t,k) or (r,k)
—ZWij+th‘fj for all j # ¢, h, k
—Zwij+tj—v2—fj for j = ¢, hork

Wwijs ty, v > 0.

Therefore the new condensed dual is

Min Flu,v) = T uy + I ST(u,v) +v (1.16)
v>0,u is] jeJ
where Sj(u,v) = ¥ (E,-j—ui)"' - ?j (1.17)
iel



Cij for (11‘]) # (I‘,l),(S,z),(S,h),(t,h),(t,k),(l",k)
and Cij = {
Cij — V for (11.]) = (1",2),(S,l),(S,h),(t,h),(t,k) or (I‘,k)
B £ for j # ¢, h, k
f; = {
f;y — v for j = ¢, h or k.

This example shows that the general form of the condensed dual is preserved
when a cutting plane such as (1.15) is added. More generally, if p constraints
are added to the primal formulation, the condensed dual has p new wvariables.
Except for the nonnegativity of these wvariables, the new condensed dual is
still the unconstrained minimization of a convex piecewise linear function. For
the same reason, the potential extensions of the condensed dual include the
capacitated facility location problem. We will not treat this latter extension in
this paper, but both extensions further justify our interest in the condensed

dual F(u).

2. Motivation and Theory
As we have already seen, we are initially concerned with the following

optimization problem

m n

Min F(u) Tu + I SH(w (2.1)
us i=1 j=1

where Sj(u) = ]I[," (cij-—u,-)“‘“ - fj. (2.2)
Clearly F(u) is a pieclz;lvise linear convex function.
It is nondifferentiable at all points u such that either

i) Sj(u) =0 for some j ¢ J = {1, ..., n} (2.3)
or ii) i = wy for some i ¢ I = {1, ..., m} with Sj(u) > 0. (2.4)

We call these activities (breakpoints) of type i and type ii, respectively.



We shall define the following index sets at a point u.

JHu) = {j = J : Sj(u) > 0} (2.5)
Jo(u) = {j = J : S5(u) = 0} (2.6)
J=(u) = {j & J:S;(u) <0} (2.7)
Ifw) = {i ¢ IT: ¢cy5 —u; >0} (2.8)
I§(u) = {i & T : cyj = uy} (2.9)
Tj(u) = {i ¢ T: cjy —uy <0} (2.10)
1°(uw) = u 1 (w) (2.11)
jeJ°(u)ud*(u)
JHw = {§ & IH(w i s I9(u)} (2.12)
J9w) = {j = Jo(w) : i s I(w)}. (2.13)

Whenever the underlying u is evident, we will write Jt for J*(u), etc.
Using the above definitions

F(u) = L u; + I S5(u).
iel jeJ*t

As we shall see, it is useful to define a "base gradient” for F(u). Thus we

define
gu) = e+ I v S;u) (2.14)
jeJt
where e=(1,...,1)T = Rm, and
v 85w = (si,...,8D)7 & R, (2.15)
. [—1 if i = I‘j* v 1% (2.16)
b
S. =
1 0 otherwise.

Notice that g(u) expresses exactly the first order change in F(u) along the
direction d when, in this direction, the u;’s such that i = 1, j = J* happen

to decrease and, further, Sj(u) remains zero for all j ¢ J°. This statement,



and the modification necessary to express more general changes, is the basis
of our method.
Let e; denote the ith unit vector in R". We first state the following

theorem.

Theorem 2.1. The point u¥ solves problem (2.1) if and only if there exist

scalars 7\? and pf, called the Lagrange dual variables, such that

gw¥) = I  aesd) - 1 e (2.17)
jeJo(u¥) isI°(u¥)
where '
-1 <2k <o for j = J°(u¥) (2.18)
0 < p¥ < - DIEPS IV eI CLOY for i = I°(u¥). (2.19)
jeJg(u¥)

The theorem is constructive in the sense that whenever the conditions
(2.17)-(2.19) are not satisfied, it is relatively straightforward to obtain a
descent direction for F.

More specifically, the motivation is as follows. We first try to obtain a
descent direction by projecting -g(u) orthogonally into a space such that
J°(u) u I°(u) does not change (the activities remain active). A descent
direction is obtained when such a projection is nonzero. When the projection
is zero, it follows that g{u) can be expressed entirely in terms of v Sj(u) for
j & J°(u) and e; for i & I°(u). Thus, we are able to consider the effect of
dropping a single activity. This either determines a descent direction or
establishes the required optimality conditions.

We will try to make this more concrete by considering a simple example.

Consider m = n = 3,



241
(cij) =314
445

and (fj) = (21 3).
2 3 3 3 1 2
Optimal u¥’s are |1], {1}, |1], |2|, 12|, |1] or any convex combination
5 5 4 4 4 4
of these vectors.
1
We take u® = [2 as our initial point. F(u°) = 11 and J*(u®) = {1, 2, 3}.
3
We have no activity of type i but one activity of type ii given by uf = c;s.

The base gradient at u® is g(u®) = (-2,-1,-2)7. We maintain the activity of
type ii by choosing our search direction in a space orthogonal to (-1,0,0)T.
Thus, we take our search direction to be d° = -Pg(u®) where P is the
orthogonal projector onto the space orthogonal to the space spanned by the
gradients of the activities. Thus in our example, d° = (0,1,2)7.

We now descend as much as possible in this direction while minimizing
the entire function F(u). This gives a step size of 1/3 and hence u! =
(1, 2+1/3, 3+2/3)T- For this point, F{u') = 9+1/3, Jt(ut) = {2}, J°(ul) = {1, 3},
% and Ig are empty, and I3 = {1}. This time g(u') = (0,1,0)7 and we project
orthogonal to v S, (u') = (=1,-1,-1)T, v S;(u!) = (-1,-1,-1)T and e,, obtaining
d* = (0,-1,1)7, where without loss of generality d! has been suitably scaled.

The optimal step size for the line search is again 1/3 and thus u? =
(1,2,4)T. This gives F(u?) = 9, JH(u?) = {2}, J°(u?) = {1,3}, I = {3}, I = {3}
and IS = {1}. Now g(u?) = (0,1,0)T but the projection is zero. The point u? is
a degenerate stationary point but in this particular case it is easy to choose a
suitable basis. We choose v S;(u?), e; and e;. Now

g(u?) = Ay 9 S3(u?) - pe, - pses
with A; = = 1 and p, = p; = 1. Clearly, condition (2.18) of Theorem 2.1 holds.

To check condition (2.19) note that J%(u?) = {3} and J}(u?) is empty. So, for



i = 1, this condition reduces to 0 { p, < - A3 which is satisfied. For i = 3 we
have J$(u?) = {1} and Ji’(uz) = {2}. In this case the condition (2.19) reduces
to 0 < ps < Wi (u?3 | Again the condition is satisfied.

Therefore, according to Theorem 2.1, the point u? is optimum for our
example.

Given an optimum dual solution ,u*, we can derive an optimum primal

solution to the strong linear programming relaxation by wusing the

complementary slackness conditions. Namely

j & JH(u¥) implies x¥ = 1 (2.20)
j & J-(u¥*) implies x¥ = 0 (2.21)
is I'S-‘(u*) implies y*ij = x*j (2.22)
is I'}(u*) implies y*ij = 0. (2.23)

The values of xf for j = J°(u*) are the optimum Lagrange dual values 2\35,

up to the sign. Namely
j = Jo(u¥) implies x’g = —)\’g. (2.24)

The reason for (2.24) is that (2.22), (2.23), (1.2), (1.3) and (1.4) imply the
existence of 0 < «;; < 1 such that

) xf + 1 aijxf + Layy =1 for i ¥ v TI¥.
jeJ0:isT} jeJe JeJi jeJ*

This is equivalent to (2.17)-(2.19).

In our example, these conditions yield

¥=0 (by 2.24)
¥ =1 (by 2.20)
¥ =1 (by 2.24)

Y}fz = Y’;s = Y}:!fs =1 (by 2.22).

10



3. Proof of Theorem 2.1

In order to prove Theorem 2.1, we will require five lemmas.
Algorithmically, each lemma will correspond to a means of determining a
descent direction, when one exists.

Let P denote the orthogonal projector onto the space orthogonal to the

space spanned by v Sj(u) for j ¢ J°(u) and e; for i = I°(u).

Lemma 3.1. If Pg(u) is nonzero, then d = - Pg(u) is a descent direction for

F(u).

Proof: It follows from the definition of P and the fact that, for a
sufficiently small step size «, the index sets Jt, J-, I'}' and I:]-' do not change,
that

F(utad) = F(u) + «dTg(u). (3.1)
But

dTg(u) = - g(W)TPTg(u) = - | Pg(u) |2 <0, (3.2)
ﬁsing the fact that P is an orthogonal projector (P=PT,P2z=P) and the
assumption that Pg(u) # 0.

Consequently F(utad) < F(u) for all sufficiently small positive «. 0O

Now suppose that Pg(u) = 0, or equivalently
gu) = I AjvSj(u) - I pey. (3.3)
jeJo(u) izI°(u)
It will be convenient to assume that the multipliers 7‘j for j ¢ J° and p; for
i & I° are uniquely defined. This can be realized by methods such as
perturbation techniques. Indeed, this is exactly analogous to the situation in

linear programming. So, without loss of generality, we make the following

assumption for the next four lemmas.

11



Assumption 3.2. The vectors ¥ S; {(u) for j = Jo(u) and e; for i & Ioe(u) are
linearly independent.

From a computational point of view, a perturbation technique is
undesirable. Our algorithmic approach to degeneracy is presented in

Section 4.

Lemma 3.3. If A, > O for some k ¢ J° then d = - Pkg(u) is a descent
direction for F(u), where Pk denotes the orthogonal projector onto the space

orthogonal to the space spanned by v Sj(u) for j & J°\{k} and e; for i & I°.

Proof: We first note that, using (3.3) and the definition of Pk,
Pkg(u) = A P* 7 Sy (u). (3.4)
Thus dT ¥ S, (u) = = A, ¥ S(u)T Pk ¥ S, (u)
= -2 | PR v S, (u) |% <o,

where the inequality follows from the facts that A\, > 0 (hypothesis) and
Pk ¥ Sg(u) # 0 (Assumption 3.2).

Thus S,(u) descends in the direction d, i.e. it changes from an activity of
type i to being strictly negative. All the other activities remain active. So,
as for the proof of Lemma 3.1, we get F(utad) = F(u) + «adTg(u) < F(u), for all

sufficiently small positive «. O

Lemma 3.4. If \, < - 1 for some k & J° then d = - Pkg(u) is a descent

direction, where Pk is defined as in Lemma 3.3.

Proof: As in the proof of Lemma 3.3,

dT ¥ S, (u) = - & |IP* T s, ()= (3.5)

12



Hence dT v Si(u) > 0 and, for small positive «,
F(ut+ad) = F(u) + adTg({utxd)
= Fu) + «dT(g(u) + 7 Sy (),
Since dTg(u) = A, dT v Sy (u),
F(utad) = F(u) + «(A +1) dT v S, (u). (3.8)

Consequently, we will have descent if A < - 1. O

Lemma 3.5. If p, < O for some k = I° then d = - Qkg(u) is a descent
direction for F(u), where Q% denotes the orthogonal projector onto the space

orthogonal toc the space spanned by v Sj(u) for j & J° and e; for i & I°\{k}.

Proof: Using (3.3) and the definition of Qk,

Qkg(u) = - py Qke, (3.7)
Thus dT(-e,) = -u, | Q%e, [I2.
Since p, < 0 by hybothesis and Qke, Z# 0 by Assumption 3.2, we have that u,
is decreasing in the direction d.
Now it follows from the definition of v S j(u) that

e + T v 8 j (uted)
jeJt(uted)

e+ I vS;(u) = glw),
jeJt(u)

for sufficiently small positive «. Thus

g(utad)

F(utad) = F(u) + adTg(u) for sufficiently small « and dTg(u) =

- || akg(u) 2 < 0. o

Lemma 3.6. If p > - % Ay + | J¥ | for some k & I°, then d = — Rkg(u) is
JjeJg
a descent direction for F(u), where Rk denotes the orthogonal projector onto

13



the space orthogonal to the space spanned by v S5 (u) + e, for j = Jg, v Sj(u)

for j =& JO\J§, and e; for i = I°\{k}.

Proof: Using (3.3) and the definition of Rk

Rkg(u) = — (m+ T Aj) Rkey. (3.8)
JeJg
Thus d7(-ey) = - (1t T Aj) I Re, |2.
SEN

Since p) + T 7‘j > 0 by hypothesis and Rke, # 0 by Assumption 3.2, we
JjeJg
obtain the property that u, is increasing along d.

Thus, for « sufficiently small and positive,

Q2

SJ(H} + ey if k = I‘f]’(u)

v Sj(u+ocd) =1 . (3.9)
v Sj(u) otherwise.
Therefore, g(utad) = e + I v S.(u) + I € i.e.
JjeJ*(u) jeJf (u)
glutad) = g(u) + |TE)]| ey. (3.10)

Using (3.8) and (3.10), we obtain

Rkg(utad) = — (py + I A5 = [JFw)]) Rke,.
jedg(u)
Let 7 = py + T 7\j - 'Jﬂ and vy, = p, + 1L J\j. Then
jeJp jeJg

dTg(uted) = vi(e )T (R)T g(utad)
= vy 7 (e )T Rkey = — vy7 | Rke |2,
By hypothesis 7, > 0 and v, > 0. So dTg(ut+ad) < 0 and therefore
F(ut+ed) = F(u) + adTg(utad) < F(u)

for sufficiently small positive «. O

Proof of Theorem 2.1.
It follows directly from Lemmas 3.1, 3.3, 3.4, 3.5 and 3.6 that

conditions (2.17) - (2.19) of Theorem 2.1 are necessary.

14
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To prove that these conditions are sufficient, we assume that they hold
and analyze the effect of dropping a single activity., We show that, in each
case, F(u¥) cannot decrease.

By the piecewise linearity of F and the fact that nondifferentiabilities
correspond to activities of type i or ii, this implies that F(u*) cannot decrease
in any direction.

First consider the effect of dropping Sk(u*) for k = J°. Thus d =
oPkg(u¥), where Pk is defined in Lemma 3.3. As in the proof of Lemma 3.3,
dT v S (u¥) = or | Pk v S (u*) 2. If ¢ > 0, A, < O implies that, for
sufficiently small «, F(u¥+ed) = Fu¥) + «dTg(u¥). Now dTg(u¥) =

o | Pkg(u*) |2 > 0 implies that F(u¥+ad) > F(u¥). If ¢ < 0, A £ O implies, as

in Lemma 3.4, that F(u*+ad) = F(u¥) + a(A +1)dT v Sk(u*). This gives
non-descent since A, > - 1.

Next we consider the effect of dropping e, for k = I°. Thus d =
oQkg(u*), where Q% is defined in Lemma 3.5 or d = oRkg(u¥*), where Rk is

defined in Lémma 3.6.

We first consider d = oQkg(u¥). Then dT(-e,) = oy, | Qke, [|2, and by
hypothesis p, > O.

If ¢ > 0, then uf decreases and, as in the proof of Lemma 3.5, F(u*+ad) =
F(u¥) + «dTg(u¥) for sufficiently small positive «. Now F(u*+a«d) > F(u¥) since
dTg(u¥) = o | Qkg(u¥) |2 > 0.

¢ < 0 implies that u’,f increases. Consequently, if there exists j ¢ J‘,’((u*),
we violate our condition that only one activity is dropped. However, if J§ (u*)
is empty, Qk is identically equal to Rk and d = oQkg(u¥) = oRxg(u¥). Thus, as

in the proof of Lemma 3.6, omitting all terms involving J2(u¥), we obtain that

15



F(u¥+ad) = F(u*) + «dTg(u¥+«d) where dTg(u*+ad) = op,ry, | Rke, |2 with =, =
e - |Jtl. Now, by hypothesis 0 < p, < {3t(u¥*)| which implies 7, < 0 and
thus dTg(u¥+ad) > O.

It remains to consider d = o'ng(u*). If ¢ < 0, then directly from the
proof of Lemma 3.6, we have F(u¥+ad) = F(u¥) - RV Ty I Rke, |2 for any small
positive «. If v, > 0, then d7(-e,) = ov, | Rke, [|? implies that u}¥ does not
decrease along d and 7, < 0 (from (2.19)) implies that F(u¥+ad) > F(u*). If
v < 0,‘ then u, decreases along d. Therefore our condition that only one
activity is dropped implies that J§ (u*) is empty. But then v, = p which with
(2.19) implies v, > 0, contradicting v, < O.

If ¢ > 0 then, as in the proof of Lemma 3.6, Rkg(u¥) = - v, Rke, and
dT(-e,) = ov, | Rke, 2. Now, if v, < 0, uf increases along d and F(u¥*+ad) =
F(u¥) + «adTg(u¥+ad) with dTg(u¥+ad) = - ov e Rkg(u¥+ad) = ov 7, [|Rke, §2 > 0
since 7, < 0. This implies F(u*+ad) > F(u*). Finally, if v > 0, uf decreases
along d which once again violates our condition that only one activity is
dropped unless Jﬁ(u*) is empty. Then v, = p,, Rk = Qk and F(u¥+ad) =
F(u¥) + «adTg(u*) from the proof of Lemma 3.5. But now dTg(u¥) = o | Rkg(u¥)

2> 0.0

4. The Algorithm

We now present a finite algorithm for solving problem (2.1). For simplicity
of exposition, we first assume that nondegeneracy holds. Our approach to
degeneracy is explained in the latter part of this section.
Minimization Algorithm
(1) Choose any u® ¢ R" and set k « 1.

(2) Identify J°(uk), Jt(uk), 1$(uk), Ii(uk), j = J.
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(3)
(4)
(5)
(6)

(7)

(8)

Compute g(uk).

Compute dk = - Pg(uk) where P is defined in Section 3.

If d% # 0, then go to (9).

Compute the current estimate for the Lagrange dual variables )\f{, j =

J°(uk) and p¥, i & I°(u¥) by solving

gu) = I Ay v s;(uk) - I pyey.
jeJe(uk) igI®(uk)
Stop if - 1 £ 7\5‘ <0 for all j = J°(uk)

and 0 < p¥ < L Ap+ |3t (uk) | for all i = I°(uk).
JjeJg(uk)

Choose one of the violated inequalities in (7) and drop the corresponding

activity. Let ¢ & J°(uk) u I°(uk) be its index. Define

(— Pég(uk) if 7\5 > 0 or if )\"f < — 1, where P? is defined
in Lemma 3.3,
dk = {- atg(uk) if pk < 0, where Q! is defined in Lemma 3.5,
- Reg(uk) if u% > - X 7\3‘ + | J‘; |, where R* is defined
JjeJg

in Lemma 3.6.

where our preference is to choose d% in the order A > 0, p¥ < 0, A} < -1,

£ £
p'é > - 3 )\5‘ + IJ‘E |, whenever there is a choice.
JjeJg
(9) Determine the step size ak by solving Min F(uk+ad*) subject to keeping

>0
all activities active (except, of course, for the activity dropped in (8)

when step (8) is performed in iteration k). This line search can be done
by starting from uk and moving from one breakpoint of F to the next, in
the direction d¥, until either the wvalue of F starts increasing or an

active S j becomes nonactive.
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(10) Update and iterate.
akt1 = uk + akdk
kek +1

Go to (2).

Finite Termination of the Algorithm

A point u such that Pg(u) = 0 is called a stationary point.

First, note that at most n iterations can occur before a stationary point is
reached since, whenever we are not at a stationary point, the line search
picks up at least one new activity while maintaining those satisfied at the
beginning of the iteration. We next remark that there are only a finite
number of stationary points because of the piecewise linear nature of the
objective function -- i.e. the e;’s and v Sj’s come from a finite collection, as
does g(u). Finally, it is not possible to return to any given stationary point,
since the objective function sequence {F(uk)} is monotonic decreasing. Thus
termination occurs in a finite number of iterations.

Furthermore, the work required within each iteration is finite. In
particular, in the line search (9), a breakpoint of type ii occurs when uk +
adl} = cyy for some i ¢ I and j ¢ J. Given the current point and the sign of
d%, it is easy to find the next such breakpoint of type ii. A change in the
sign of S j(u) between two consecutive breakpoints of type 1ii yields a
breakpoint of type i since S j is linear in that range. So breakpoints of type
i are easy to find as well. Since there are only finitely many breakpoints

along the line uk + adX, the line search is finite.
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Remarks
(a) Although u! can be chosen arbitrarily in step (1), there are advantages
in choosing either

(i) .uli = second largest c;; over j & J,
or (ii) the best heuristic dual solution determined by Erlenkotter [10].
(b) The line search described in (9) can be modified to take into account the
remark made in Section 1 that there always exists an optimal solution such
that Sj(u) < 0 for all j ¢ J. Specifically, assume that S; (ut) < 0 has been
maintained through iterations t = 1, ..., k. Perform the line search by moving
from one breakpoint of F to the next until the first of the following events
occurs:

(i) F{uk+adk) starts increasing,

(ii) 8; (uk+adk) becomes inactive for some j = J°(uk) [J°(uk)\{¢} if uk

is stationary],

(iii) Sj(u"+ocd“) becomes positive for some j = J(uk).

We denote by LS1 the line search described in (9) and by LS82 the
modified line search described here. Thus LS2 is obtained from LS1 by
adding the stopping criterion (iii).

(c) We implemented an experimental code for the purpose of this article. We
use QR factorizations that are updated for dropping and adding activities until
there are a possible n activities, in which case we use LU factorizations with
updating. This is adequate since our primary concern in this paper is with
the number of iterations required to reach optimality. An ideal version of the

algorithm would use genuine large sparse techniques.
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Algorithmic Approach to Degeneracy

The difficulty arises in the degenerate case because the multipliers
associated with (3.3) are then no longer uniquely defined. A unique solution
can of course be determined if one chooses a basis ¥ S (u), e; from j & J°(u),
i & I°(u), and sets all other multipliers to zero. We note that this is exactly
what we did for the simple example given in Section 2. The problem is that,
once activities are dropped in Lemmas 3.3, 3.4, 3.5, and 3.6, one has to verify
the consequence to the dependent activities. Indeed, this is exactly analogous
to the situation in linear programming and, from a theoretical point of view,
can be handled by perturbation techniques. From a practical point of view, a
perturbation technique is undesirable since one loses, in general, the
underlying structure of the location problem. One may use an approach
analogous to that of Busovaca [2], namely adding the conditions of Theorem 2.1
as explicit constraints. In other words, one recognizes optimality by solving

glu) = T A5 v S5(u) - I myey
jeJo isl°

subject to

-1 <A <0 for j ¢ J°

0<py < -3 2+ | 31| for i & I°
j&Js

as a constrained least squares problem in A and up. Moreover, if no solution
exists, an optimal point has not been found and a descent direction can be
readily constructed.
For the purpose of the present article, suffice it to say that
(i) degeneracy is a relatively common occurrence for uncapacitated facility

location problems,
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(ii) we were able to solve degenerate problems without any particular
difficulties,

(iii) we outline in some detail one algorithmic approach to degeneracy that
is relatively straightforward and effective in practice, given the
special structure of location problems.

Suppose (3.3) is satisfied but Assumption 3.2 is not. Consequently, one

may choose a basis among the activities such that

gu) = I A5 VS u) - I pje; (4.1)
JeJg isI}
where the subscript B indicates that a basis is being chosen. Further,

without loss of generality, we may always take I§ = I°.
Now suppose A, > O for some k & J§ and consider d = - Pkg(u) as for
Lemma 3.3. Then

dT v Sp(u) = - A I P v 8 (u) |2 <0

and dTg(u) = A d7 v 8, (u) < O.
To find out whether d is a descent direction, we compute dTg(u+xd) for

small positive «. Thus it remains to consider d7 v Sy (u) for h & J°\J. For

any such h, we can write

T v Sp(u) = 7,dT v S (u) for some v, = R. (4.2)
Let D™ = {h & J°\J§ : 7, < O} and
DY = {h = JO\J§ : 7, > 0}. Now
d7 g(utad) = dTg(u) + § dT v 8, (utad)
hsD™
= dTg(u) + I dT v Sy(u)
heD™
= (Mt T 7n) aT v Sy (u).

heD™
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Therefore d is a descent direction if

A + I vn > 0. (4.3)
hzD™

Now suppose A, < - 1 for some k = J§. Using the same direction d as
above, we have d7 v Si(u) > 0. So, here, dTg(utad) = dTg(u) + dT v Silu) +

¥ 47 v Sy (u). Therefore, we obtain that d is a descent direction if
hsD*

Ay + 14+ T 7p <O0. (4.4)
hsDt

Suppose p, < 0 for some k & I§ and consider d = - Qkg(u) as for Lemma

3.5. Then
dT(-ey) = = . | Qke, §2 > 0. (4.5)
Moreover,
glutad) = e + T v S (utad).
jeJt(uted)

So, 'in order to know the sign of dTg(ut+ad) for small positive « we need to
consider d7 v S,(u) for h = J°\J§. We can write
dT v S, (u) = 7h dT(-ey) for h = J°\J§ (4.6)

Let D~ = {h & JO\J§ : 7, < 0} and Dt = {h = JO\J§ : 75, > 0}. Then

dTg(utad) = dTg(u) + ¥ dT v S, (utxd)
heD*
= (gt I 7)) dT(-ey).
hsD*

Therefore d is a descent direction if

By +h E+7h < 0. (4.7)
E3))]

Finally, it remains to consider

me > - L a5+ |3t (4.8)
LM
where J0g = J§ n J§. Let d = - Rkg(u) as for Lemma 3.6. Then

dT(—ey) = —(me+ I A;) || Rkey 2 < 0.
JjzJIis
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Define 7, for h & J°\J§ by
dT(3 Sp(u)+e,) = 7, dT(-e,) if h = JP\J}
dT v 8p(u) = 7, dT(-ey) if h = (JO\IQ)\JS.

Let D= =1{h = JO\J§ : 7, < 0} and D* = {h = JO\J} : 74, > 0} Now
dTg(u) - |Jf()|dT(-e) + I d7 v S, (utad)
heD™
(me + T Ay = |31+ T vn) dT(-ep).
jSJaB heD™

dTg(utad) =

Therefore d is a descent direction if

B > — L )\j + IJ-I‘:-I - % 7h- (4.9)
JeJge hsD™

5. Numerical Results

The first set of results given are for a class of ten 33 x 33 problems

where the c;; values are taken from data for a traveling salesman problem

This is a well-known test set considered representative. It was solved

[15].
for example by Schrage [20] and Erlenkotter [10].

We give results for two different initial points

(a) Ui = 0 i = 1, sesy 33
(b) u; = ¢y i=1, , 33, where c;, is the second largest entry for
given i, and the two different line search algorithms LS1 and LS2. No

results are given in the latter case for fixed charges 184 and 295 since not all

the S j’s are initially positive.
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# of iterations

u, = 0 Up = Cjg F(u¥)

Fixed Charge 1S1 LS2 1LS1 1.S2
184 3 3 10 - 6024
295 14 9 -8673
500 14 21 11 20 -11267
1000 10 17 9 12 -14832
1500 18 23 15 19 -17832
2000 40 31 -20346
2500 41 32 28 27 -22127
3000 30 23 14 22 -23474
4000 11 8 8 7 -25474
5000 5 7 4 5 -27474

We note that only the problem with fixed charge 2000 has a duality gap
[the solution is - 20363]. Next we consider this problem in more detail. Using
the complementary slackness conditions (2.20) - (2.24), we get

% = =¥ = x¥ = xfs =¥ = 12,
x¥, = x¥, =1 and x}: = 0 for all the other j’s.

The fractional y’!{ j are as follows.

Yi,3 = ¥Ya2,s = ¥Va,s = Ya,s = ¥s,3 = Ye,3 = 1/2

Y3,7 = Ya,7 = ¥s5,7 = Ye,7 = Y7,7 = ¥Y8,7 = Yo,7 Yio,7 = 1/2
Y2,8 = ¥Y7,8 = ¥Ys,8 = Yo,8 = Yio,8 = ¥Y11,8 =~ Yi2,8 = 1/2
Yi,13 = ¥Y11,13 = Y12,13 = ¥Y13,13 = Via,13 = Yis,13 = V16,13 = Yi7,13 = 1/2
Yi3,16 = Yia,16 = Yis,16 = Yi6,16 = Y17,16 ~ 1/2.
The remaining i ¢ I are assigned to either facility 20 or 24, whichever is
closer.

Note that there are severallcuts of the form (1.15) that cut off the above
fractional solution (x*,y*). In fact there are 18 such cuts. Sixteen of these

cuts involve the variables x;, x; and x;. The other two involve the wvariables

X3, X and X;3. We show one cut of each type.
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Cut 1 Yi,3 ¥ V2,3 * V2,8 F Vire * Yi,13 + Vi3 - X3 - X - Xaa <1

Cut 2 Y2,3 * Ya,3 * Va7 t Vo,7 + Va8 t Yo,8 - X3 - X7 — Xs <1

Adding these two cuts to the formulation yields a modified condensed dual
with two new dual variables, say v, associated with Cut 1 and v, associated
with Cut 2 [See (1.16) and (1.17)]. Starting from the previous optimum dual
solution u¥*, we only needed 9 additional iterations to solve the modified
condensed dual. We found an optimal dual solution (u*¥,v¥¥) with v¥¥ = 44
and vf* = 20 but there are alternate optima, as is typical with problem (2.1).
Using the complementary slackness conditions (5.1) - (5.5), we now have an
integer primal optimum solution:

Xy = X33 = Xg0 = Xz4 = 1, x; = 0 otherwise.

This solution is unique. Instances where the dual formulation has alternate
optima and the primal has a unique solution seem to be typical for the
uncapacitated facility location problem. At any rate, we have observed it
frequently whether it be with or without the addition of cuts.

We give another illustration of the cutting plane approach. By drawing
the c,-j’s randomly from a uniform distribution, duality gaps are more likely to
occur than when the c; j’s satisfy the triangle inequality (such as in the
above 33-city problem), [1]. Consider the following problem, where c; j was
drawn at random between 0 and 100 and where f; = 100 for every j.

(75 56 74 88 19 3 46 21 29 39
52 10 79 62 12 9 52 88 76 31
8 59 58 87 63 73 3 79 80 27
17 68 35 70 75 3 87 72 13 35
(cij) =1!64 32 40 73 11 93 30 80 64 71
70 33 44 71 34 21 20 56 59 19
55 56 9 21 40 7 93 50 49 27
42 14 69 15 77 8 36 52 72 98

41 5 99 21 27 51 23 83 23 68
64 32 59 29 96 31 81 83 4 63/
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Solving problem (2.1) using the algorithm of Section 4 with line search
algorithm LS1, we obtain the following optimum vector u, with wvalue F(u)
= 581 + 2/3.
u, = 32 + 2/3, u, = 62, uz = 63, uy = 70, us = 71, ue = 52+41/3, u; = 37, ug =
52, ue = 74+1/3, and u,, = 67+1/3.
Using (5.1) - (5.5), we get the primal optimum solution

X3 = X4 = X; = 1/3, x¢ = 2/3 and x; =0 otherwise.

2/3 for i £ 1,

Yi,s
Yi1,3 = Y1,4 = Y1,7 = V2,3 % ¥3,4 = Ya,7 = V5,4 = V6,4 = Y7,7 = Va8,3 = Yo,3 =
Yio,7 = 1/3, yij = 0 otherwise.

It was shown in [3], [8], [13] that the following inequality defines a facet of
the uncapacitated facility location polytope. Furthermore it cuts off the
current fractional solution.

Cut 1 Yi,3 % Vi, Viy7 + Vo, + V2,8 + Vas + Vs * Ya,7 + Ya,s + Vo,3 t
Y9,7+Y9,3'X3"'X4—X7—X3_<_2.

Adding it to the formulation and solving the new condensed dual yields an

optimum solution value of 575. Going back to the primal through (5.1) - (5.5),

we have

Xs = X4 = X7 = Xg = 1/2, x; = 0 otherwise,
Yi1,3 = Y1,4a = ¥Y2,3 = ¥Y2,8 = ¥3,4 = ¥3,8 = Ya,7 = Ya,8 = ¥s,a = Vs,8 = Ve,s =
Ye,8 = Y7,7 = Y7,8 = Y8,3 = Ye,8 = ¥9,3 = ¥Y9,8 = V10,7 = V10,8 = 1/2,

¥ij = 0 otherwise.
We added next
Cut 2 Yi,s t Y14 t Ya2,3 + V2,8t V3,4 + V3,8 — X3 - Xa ~Xg £ 1

reducing the optimum solution value to 573.5, and then
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Cut 3 y,,3 + ¥1,0 *+ ¥3,a + ¥3,8 + Yo,3 + Yo,8 - X3 — Xa - Xg < L.

The optimum solution of the new condensed dual was

u, = 21, uy = 52, uz = 62, u, = 48, us = 66, ug = 53, u; = 50, us = 49, vy =
40, u,o, = 64, v, = 24, v, = 8, v3 = 9 where v; is associated with Cut i,
i=1, 2, 3. The corresponding value is F(u,v) = 570. Now using (5.1)-(5.5)
once more, we get

xg = 1, vise = 1 for all i,

x Oandyijzo for j # 8.

i
6. Relationship with Erlenkotter’s Heuristic

A well-known heuristic approach to the condensed dual problem is that of
Erlenkotter [10]. This method is simple and often very effective. We analyze
it in the context of our proposed method.

Firstly, at all iterations of Erlenkotter’s heuristic all S j’s are nonpositive.
Consequently, g(uk) = e for all k.

We remark that the descent direction given by our algorithm amounts to
steepest descent in the particular subspace defined by Lemmas 3.1, 3.3, 3.4,
3.5 and 3.6.

By contrast Erlenkotter’s dual descent procedure corresponds to a
coordinate-wise search until a new activity of type ii is found or until blocked
by an activity of type i, repeating until no descent is so obtained. Consider,
say, a search along d = -e,. It is immediate that dTg(u) < 0 and Erlenkotter’s
line search is effectively stopped whenever an S j £ 0 becomes positive. Since
uy, is decreasing but all other u;’s remain fixed it is clear that all activities
remain active exceplt possibly an activity of type ii, given by cy j = U which

one could consider to have been dropped. In the former case, we clearly
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have a direction in the space defined by Lemma 3.1, although no longer in the
steepest descent direction in general. In the latter case we have a direction
of the type defined by Lemmas 3.5 or 3.6, but again, in general, no longer in
the steepest descent direction.

Evidently, what the dual descent procedure lacks in sophistication it
makes up for amply {(at least for medium-size problems) in the simplicity of
the computations. The dual adjustment procedure adds one level of
comr.;lication to the choice of search direction when optimality cannot be
reached via coordinate-wise search.

More particularly, suppose cy; > u, for more than one j = J°(u), jiy Jay soo
J¢ say.

Now suppose we increase u,. Consequently S [P S it that were active
become negative. We can now attempt to decrease other uj’s that appear in

IPEERERE Sjt'

S If more than one such uj can be decreased unit for unit as
u) increases, say U; i = i3, 12y ey ig, Wwe gain and F(u) decreases.
Thus in effect we are searching in a direction
s
d=e, ~- I €ip-
p=1

In other words, s + 1 activities of type ii are dropped, one by increasing u,
and the remaining s by decreasing Ujpe In addition, several activities of

type i may also be dropped in the search direction d.

7. Extensions
The essential ingredients of the method that we have presented are:
(i} F is a sum of nondifferentiable functions.
(ii) The combinatorial structure of the problem can be exploited.

See Calamai and Conn [4], and Conn [5] for additional related background.
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We expect to see applications of these ideas to other structured linear
programs that also have a piecewise linear condensed form. This is not an
uncommon occurrence. In fact, the primal of the strong linear programming
relaxation of the uncapacitated facility location problem itself has such a
condensed form [7]. It can be written as

max T oz;(x) - % fjxj
x> 0, Ix;2>1 il jeJ
jeJ
where z;(x) is the piecewise linear concave function defined by

z;(x) = min {c;,+ ¥ (cij—cik)"' x3).

keJ j=J
Equivalently z;(x) = cj + I (cj5-cii)™ %
jeJ
where k is defined by
E Xj <1 _{_ z Xj-
vj:cij>cik j:CijZCik

In general, problems with fixed charges such as network design or
lot-sizing problems have linear programming relaxations that may admit a
condensed form.

The capacitated facility location problem is obtained by adding the
capacity constraints

2 diYij _<_ Sij for ‘j g J (7.1)
izl
to the formulation (1.1)-(1.5). Here d; represents the demand of client i and

S j the capacity of a facility at location j. The dual of the linear programming

relaxation is
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Min E u; + 2 tJ

isl jed
u; + Wiy tdivy > oeyy for all i e I, jsJ
—.E wij +ty - syvy 2 -f; forall jsJ
isl
Wijs tjo vy 2 O for all i ¢ I, j & J.

This dual has a condensed form, namely

where S;(u,v) = ) (cij—ui—divj)"‘“ + 8;V;y

Min F(u,v) = I u; + I S}'(U,V)
v>0,u isl JeJ

- f..
. 37l J
il

As for the uncapacitated problem, F(u,v) is piecewise linear and convex, and

there is an optimum solution such that Sj(u,v) <0 for all j ¢ J.
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