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Abstract

We prove that the internal path length of an AVL tree of size N is
bounded from above by

1.4404N(log, N — log, log; N) + O(N)

and show that this bound is achieved by an infinite family of AVL trees.
But AVL trees of maximal height do not have maximal path length.
These results carry over to the comparison cost of brother trees.

Key words: AVL trees, brother trees, path length, comparison cost,
node visit cost.

1 Introduction

The cost of a search operation in a tree corresponds to the length of the path
from the root to the node that contains the desired information. Almost 25
years ago, Adel’son-Vel’skii and Landis [1] introduced AVL trees, the first
class of what came to be known as balanced trees. They satisfy the basic
property that their height is logarithmic in their size. Although the worst
case height of AVL trees is well known to be 1.4404log, N (see [1,7]), the
worst case internal path length (or IPL) has been an open problem. In this
paper we provide the first tight upper bound on the internal path length
of AVL trees. Moreover, we demonstrate why AVL trees of maximal height

*This work was partially supported by a Natural Sciences and Engineering Research
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Structuring Group in Waterloo in 1986/1987.
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2 Path Length of AVL Trees

Fib(h - 1)

Figure 1: Fibonacci trees

cannot have maximal internal path length. This illustrates that the principle
of the AVL tree scheme, namely, keeping access paths short by balancing
the heights of subtrees, does not guarantee good worst case behaviour of the
internal path length.

Since each path’s length is bounded by the height there is an obvious
upper bound for the internal path length of an AVL tree T', namely

IPL(T) < 1.4404Nlog, N

But can this rough bound really be achieved? We shall show that it almost
can (up to a lower order term), but that the AVL trees of maximal path
length do not look like one might expect, because they are not of maximal
height.

If N + 1 is a Fibonacci number Fj,3, then the AVL tree of maximal
height is uniquely determined; it is the Fibonacci tree Fib(h). In Figure 11
we display the AVL trees Fib(0), Fib(1), Fib(2), Fib(3), and Fib(h). But,
despite their being of maximal height Fibonacci trees do not have maximal
path length! For example, consider Fib(6) of size 20, height 6, and internal
path length 76. The tree Ty of Figure 2 has the same size but height 5 and
IPL 77, as was already noted by Knuth [7], Exercise 4, p. 470. Since Fib(7)
also fails to have maximal path length, this implies that Fib(h) is not IPL

!This and the following figures were drawn using TreeTEX[2]
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Figure 2: A counterexample tree

pessimal, for all A > 6. In fact, Fibonacci trees have an internal path length
IPL(Fib(h)) = 1.0422Nlog, N + O(N)

(see Lemma 2.3, B), which is not pessimal but rather quite close to the
optimum!

Independently, Gonnet [4] also made this observation. He presented a
family G of AVL trees some of which have an IPL of

1.2557Nlogy, N + O(N)

The trees in this family G, like the tree of Figure 2, have only two kinds
of subtrees: complete binary trees and Fibonacci trees.

In the next section we prove that the internal path length of a binary
tree is bounded from above by

1.4404Nlogy, N — 1.4404Nlogylog, N + O(N)

Then, we show in section 3 that this bound can be achieved by AVL trees
that are also members of the family § — but worse ones. In order to
establish our upper bound we first prove that

IPL(T) < h(N +1) - %h¢"+1 +1
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level height in T

0 5=h

1 4

2 3

3 2

4 1
h=5 0

Figure 3: Notations

holds for each AVL tree of size N and height h, where ¢ = (1+ /5)/2 =
1.618.... This estimation shows why AVL trees of maximal height cannot
have maximal path length. For, if h is increased beyond a certain threshold
then the exponential growth rate of the negative term will outrun the linear
positive term and, therefore, the value will decrease.

In the last section we show that our results on the internal path length of
AVL trees carry over to the comparison cost of brother trees. This cost mea-
sure together with the node visit cost measure, captures the time complexity
of this tree scheme; see [5].

2 An upper bound for the internal path length

Let T be an extended binary tree. We count the level of nodes starting with
level O at the root. The height h of T is its maximum level number and
its stze is the number N of internal nodes. A node at level ¢ is said to be
at height h — 1 with respect to T. The access path to a node at level ¢ is of
length ¢ + 1 (see Figure 3). Furthermore, weight(T) = size(T) + 1 denotes
the number of external nodes of T'.
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The internal path length of a binary tree T is defined as

IPL(T)= ) length(path(p))
p binary

Note that the external path length EPL of a tree of size N, that is, the sum
of the lengths of all paths from the root to the external nodes, is related to
IPL by the formula

IPL(T) + 2N +1= EPL(T)

For, each internal node p of T with rooting subtree T} is counted size(T})
times in computing IPL, but weight(T}) times in the computation of EPL.
Furthermore, each of the N + 1 external nodes contributes to EPL. The
difference being O(N), all our asymptotic results hold for EPL as well as
for IPL. Finally, let us recall that an AVL tree is an extended binary tree
in which the heights of the two subtrees of each internal node differ by at
most one.

First we derive a formula for IPL that corresponds to a view from the
frontier of the tree.

Lemma 2.1 Let T be an AVL tree of size N and height h, and h; be the
hetght of the i-th external node in T. Then,

IPL(T) = (h—1)(N+1)+1- 'ff h;

i=1
Proof: We have

IPL(T)+2N +1= EPL(T) = (h+ 1)(N + 1) - Nf hi

see Figure 4. O

We denote Efi"l'l h; by U(T) in the following; U(T') is the “area” below
the external nodes of height > 1 in T'; see Figure 4. The formula in Lemma
2.1 does not hold only for AVL trees but also for arbitrary binary trees. It
can be used to establish an interesting connection between the path length
of a binary tree and the ratio of the arithmetic and the geometric mean of
certain integers; see [6)].

To derive an upper bound for IPL we need to establish a lower bound
for U(T), according to the above Lemma. If T is a complete binary tree
then U(T) = 0. Intuitively, any height exceeding log, N must be paid for
by a “skew” frontier and thereby, by a non-zero area U(T). In the following
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h+1

Figure 4: The area U(T)

Lemma we compute U(T') for those AVL trees which are as skew as possible,
i.e., the Fibonacci trees. Recall that the Fibonacci tree Fib(h) is of height
h and of weight Fj.q, where Fo =0, F; = 1, Fry2 = Fj + Fry1 denotes the
sequence of Fibonacci numbers.

Lemma 2.2
U(Fib(h)) = %(th +(h—3)Fy)

Proof: By induction on h. If A = 0 or h = 1, then both sides are equal to
zero. Assume h > 2. Due to the recursive definition of Fibonacci trees (see
Figure 1) we have

U(Fib(R)) = U(Fib(h — 2)) + Fp + U(Fib(h - 1))

because the subtree Fib(h — 2) is lifted by one level. By the induction
hypothesis, this yields

U(Fib(h)) = %((h — 2)Fp+ (h—5)Fh_z2 + 5Fy + (h — 1) Fpp1 + (h — 4) Fr1)

1
= g(hFh+2 + (h — 3)Fy)

We derive an asymptotic formula for U(Fib(h)).
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Lemma 2.3
A. U(Fib(h)) > %h:ﬁh‘” - ¢"
B. IPL(Fib(h)) = 1.0422928...Nlog, N + O(N)

Proof: It is well known that
1 N
P = h_ 3k

holds, where ¢ = (1+ v/5)/2=1.618... s the positive root of X% — X — 1,
and ¢ =1 — ¢ = —0.618... is the negative one. By Lemma 2.2,

; 11 . ht2, ,hy_ 4k
UERR) 2 SR ) s
%h¢h+l_¢h

because ¢ + ¢! = 2¢ — 1 = /5. This proves assertion A. Since ¢t =
VB¢ 1 Fpia + 0(1) Lemma 2.1 yields

: 1 _
IPL(Fib(h)) = hFhis— gh\/gqs ! Fhiz + O(Frt2)

2+
= —g—éhFhH + O(Fhrt2)
Because h = logy Fri2 + O(1)
2+ ¢

IPL(Fib(h)) = = logy2Nlog, N +O(N)

= 1.042298...NlogyN + O(N)

follows, where N = Fpi2 = weight(Fib(h)). 0

Now the crucial point in deriving a lower bound for U(T') is to consider
a linear combination of U and the weight, rather than U alone.

Definition 2.1 For an AVL tree T and integers a,h > 0, let
U(T,a) =U(T) + a- weight(T)

and
U(h,a) = min({U(T,a); T is an AVL tree of height h})

Figure 5 shows the graphical representation of U(T,a).

If a = 0 then U(h,a) = 0. The following Lemma shows that for each
integer a > 1 the Fibonacci tree has a minimum area U(T,a) among all
AVL trees T of height h.
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h+1

N+1

Figure 5: The area U(T,a)

Lemma 2.4 Let h > 0 and a > 1; then U(h,a) = U(Fib(h),a).

Proof: By induction on h. The cases h = 0 and h = 1 are trivial because
Fib(0) and Fib(1) are the only AVL trees of their height. Assume h > 2
and U(h,a) = U(T,a), for an AVL tree T of height h. Two cases arise,
according to the structure of T'; see Figure 6.

Case 1. Both subtrees are of height h — 1. We have U(h,a) = U(T,a) =
U(Ti,a) + U(Ty,a), hence U(Ty,a) = U(h — 1,a) = U(T}, a), by the
minimality of T. By the induction hypothesis,

U(T,a)=2U(Fib(h —1),a)
Case 2. T} is of height h — 2, T} of height h — 1. Here U(h,a) = U(T,a) =

U(Ti,a + 1) + U(Ty,a), hence U(Tj,a+ 1) = U(h — 2,a + 1) and
U(Ty,a) = U(h — 1,a). By the induction hypothesis,

U(T,a) = U(Fib(h—2),a+ 1)+ U(Fib(h — 1),0a)
We claim that Case 2 applies because the corresponding value of U(T, a)

is the minimum of both. We have to show that

U(Fib(h - 2)) + (a+ 1)Fx < U(Fib(h — 1)) + aFri1
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case 1: case 2:

h—24
»h—1 h-1

T

T, T, T,

Figure 6: The possible structure of T

or, equivalently
Fp <U(Fib(h— 1)) — U(Fib(h — 2)) + aFp—;
holds. This is true if h = 2. If A > 3 then
U(Fib(h—1)) — U(Fib(h —2)) = U(Fib(h — 3)) + Fr—1 > Fr

(see the proof of Lemma 2.2), and the assertion follows because, for a > 1,
Fr < (a+1)Fp—; holds. Therefore,

U(h,a) = U(T,a)
= U(Fib(h—2),a+ 1)+ U(Fib(h - 1),a)
U(Fib(h), a)

This theorem provides us with the appropriate tool.
Theorem 2.5 Let T be an AVL tree of height h and size N. Then
IPL(T) < h(N +1) - éh¢"+1 +1
Proof: An application of Lemma 2.5 with a = 1 yields
UT)+(N+1) > U(h,1)=U(Fib(h))+ Fnio
> TR~ gh 4 P
1

1 h+t
5h¢

v
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according to Lemma 2.3, A. Now we obtain
1
IPL(T) < h(N +1) - gthh“ +1

by Lemma 2.1. O

Theorem 2.6 Let T be an AVL tree of size N. Then
IPL(T) < 1.4404...N(logy N — log,log, N) + O(N)
Proof: Let C = ¢/5. The function
f(X)=X(N+1) - CXx¢*X

takes its maximum at the zero of its first derivative

d
&= (N +1) - O + X¢¥Ing),

that is, at z satisfying the equation
1
(1 +zing)= (N +1)

This yields
z¢® = O(N) (1)

and
z + logyz = logy N + O(1) (2)

After adding logylogy N — log,z to either side in (2) we get

lOg¢N
T

) ot
logyz + 0(1))

z + logylogs N = logyN + log, <

= logsN +log, (1 + + O(1)

= logsN + O(1)
using (2) again. Therefore, f takes its maximum at

z =logy N — logylog,N + O(1) (3)
Now Theorem 2.6 yields

IPL(T) < f(h)+O(N) < f(z) + O(N)
N(logg N — logylogs N) + O(N)

<
< 1.4404...N(log, N — log,log, N) + O(N)
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P +co —'i

ItH

173

1.0422log, N 4

log, N xe:f
5
N =2
u-; p = 1.4404(log, N — log, log, N)
!
13 4
h
12-1‘7711.1‘11*"1’171 T Y T YT TR,
15 18 17 18 1e 20 , 21 22 ' 23 24
log, N ptey 1.4404log, N — ¢,
Figure 7: The upper bound
using (3), (1), and log,Y = 1.4404.. .log,Y. O

In the next section we show that the maximum value determined above
can in fact be achieved by AVL trees whose average internal path length is
equal to their height.

Now the reason why AVL trees of maximal height can’t have a maximal
internal path length has become clear: If h is increased beyond log, N —
log, logy NV then the upper bound in Theorem 2.4 begins to decrease. Even-
tually, when h takes its maximal value log, N + logd,\/g — 2, the value of
the bound is down to

1 1 2 1
At — Shht L o(1) = ZEZA g4 o)

V5 5 V5
= IPL(Fib(h))

= 1.0422Nlogy, N + O(N)

see Lemma 2.3, B. Figure 7 displays the graph of IPL/N, the upper bound
for the average path length, for a fixed size N.
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Fib(h + k — 2) Fib(h)  Fib(k — 1)

Bin(h)

Figure 8: The tree G(k, h)

3 Asymptotically IPL pessimal AVL trees

In order to prove that the upper bound obtained in Theorem 2.7 is in fact
achievable we consider the family of AVL trees

G = {G(k,h); k, h are integers > 0},

where G(k,h) is the AVL tree obtained by replacing the “lowest” subtree
Fib(h) of a Fibonacci tree Fib(h+ k) by a complete binary tree Bin(h), see
Figure 8.

Gonnet [4] has shown that for k ~ (log,2 — 1)h

IPL(G(k,h)) = (1 - -i\/gg) Nlog,N + O(N)
= 1.225695...Nlog,N + O(N)
holds. We show
Theorem 3.1 Let k= (log,2 — 1)h — logg h + ¢, where | € |[< 3. Then

IPL(G(k,h)) = Nlogy N — Nlogyslogy N + O(N)
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Proof: Since log,2 — 1 ~ 0.4 we have k < h. Now

height(G(k,h)) = k+h
= hlog,2—log,h +¢

2h
= 108¢(T) te

and
N+1 = Fuypsz— Fryz+2"
ga(k)¢"* 428 + 0(1)
k €
= (ﬂ(hl +1)2k+0(1)
where g = -\%-5—452 and a(k) =1— 51"‘_’ since
2h
¢h+k — que

from (4). Now by Lemma 2.3, A, for some constant d > 0 we have

U(G(k, k) U(Fib(k + h))

d(h + k)¢h+k
dof(1+ %)2" < 2dge2"
O(N)

IANIAIA

13

(4)

(5)

(6)

by (6) and because k < h, and by (5). We also have, from (5) and (6) that

N +1 = (ga(k) + h¢ )" * + 0(1)

hence, taking logs we obtain

h+ k +logy(ga(k) + h¢ ™) = log, N + O(1)

Now

logs(ga(k) + h¢™¢) = logy h+ O(1)

= logylogy N +O(1)

because from (5) we have

h = logy N+ 0(1)
log, ¢logy N +O(1)

(7)

(8)
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Figure 9: A brother search tree

Summarizing, we have
h+k=logy N —log,logy N + O(1)
and Lemma 2.1 yields

IPL(G(k,h)) = Nheight(G(k,h))—U(G(k,h))+ O(N)
= N(logy N —logylogy N) + O(N)

O

This shows that the upper bound in Theorem 2.7 is tight. The asymptoti-
cally IPL pessimal AVL trees constructed here have an average path length
that differs from the height by an additive constant only!

4 The comparison cost of brother trees

A brother tree is a rooted, directed tree each of whose internal nodes has
either one or two sons. Each unary node must have a binary brother. All
external nodes are at the same level. We associate one key to each internal
binary node while the internal unary nodes and the external nodes remain
empty. The keys are stored in inorder. This results in the class of drother
search trees (also called 1-2 brother trees in the literature); see Figure 9 and
[9].

During a search in a brother search tree, both the unary and the binary
nodes on the search path must be visited but key comparisons only occur at
the binary nodes on the path. Therefore, the time complexity of a brother
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tree T has two constituent parts, node-visit cost or NVCOST and comparison
cost or CCOST, where

NVCOST(T) = Z number of nodes on path(p)

p internal binary

and

CCOST(T) = Z number of binary nodes on path(p).

p internal binary

The space cost SCOST of a brother tree is the number of internal binary
and unary nodes.

In [8] the structure of those brother trees that are optimal with respect to
one of these cost measures has been determined as well as how to construct
them in linear time. From these structural results, tight lower bounds for
the cost measures can be derived. In [5] a characterization of the structure
of all NVCOST-pessimal brother trees has been given, which led to a tight
upper bound for the node visit cost.

Although we do not have a structural result on CCOST pessimal brother
trees Theorem 2.7 and Theorem 3.1 provide us with a tight upper bound
for the comparison cost. For, the following correspondence holds between
brother trees and AVL trees (see [10] and [11] for details). The contraction
of a brother tree performed by removing its unary nodes results in an AVL
tree, and by this operation each AVL tree is obtained exactly once. Clearly,
CCOST corresponds to IPL. Therefore

CCOST(T) < 1.4404...N(logy N — log,logy N) + O(N)

holds for each brother tree T of size N, and this upper bound is tight.

5 Concluding Remarks
We have shown that
1.4404 N (log, N — log,loga N) 4 O(N)

is a tight upper bound for the internal path length of AVL trees and for
the comparison cost of brother trees. But it remains an open problem to
characterize the structure of those AVL trees that have maximal internal
path length, for any given size N. In Foster [3] the attempt was made to
construct IPL pessimal AVL trees of given size and given height, but the
algorithm suggested there was incorrect, see Knuth [7], p. 675.

We have also shown that for a fixed size of the tree the maximal internal
path length is not increasing with the height but rather increasing first and
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then decreasing, after taking its maximum as the behavior of the upper
bound in Theorem 2.6 suggests. The maximum is achieved by AVL trees
whose average internal path length is equal to their height, up to an additive
constant. This illustrates that the AVL tree principle, to balance the height
of subtrees does not guarantee a short internal path. In fact, Gonnet [4]
shows that balancing the internal path length directly results in an upper
bound for IPL of only

1.05155...Nlogy N + O(N)

which is only 5 percent worse than optimal, whereas the path length of
AVL trees can be 44 percent worse than optimal. However, in these trees
insertions and deletions can cause linear cost in the (very unlikely) worst
case. Therefore, the question arises: is there a balanced binary tree scheme
that guarantees logarithmic worst case performance and an internal path
length substantially smaller than the path length of AVL trees?
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