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ABSTRACT

We prove that the asymptotic setting for linear problems is
essentially equivalent to the worst-case setting, as considered in [1].
Algorithms and information operators which are optimal in the
worst-case setting lead to the best possible asymptotic convergence.
We also prove, under some restrictions, that sequential choice of
information does not help for linear problems.

1. Introduction

The objective of this paper is to characterize asymptotic convergence of
optimal algorithms. We rely strongly on the results of the long article by Micchelli
and Rivlin [1] and references therein (which are not listed here). For the conveni-
ence of the reader we recall briefly the principal definitions and results of that fun-
damental paper.

Let X and Z be normed spaces, U be a linear operator from X into Z
(further assumptions we need will be added in Section 2). We want to recover Ux,

x €X, given finite information operator
I,(x) = [Lix, Lyx , . . ., L.x], (1.1)
where Ly, k =1, ..., n are linear (real) functionals. So we seek an algorithm

o, : R* — Z such that «,(7,(x)) approximates Ux. The process is schematized in

Figure 1.
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IRn
Figure 1

By considering an example of integration, where
1

Ur= [ x(dt, Z=R, LE)=[x@),xt),....x@)]  (1.2)
0

it is obvious that one cannot guarantee any finite bound on the error. Some addi-
tional information is required. Usually it is assumed that x is in some set B,

bounded with respect to some seminorm on X. Then the error of @, on B is

defined by

E(ap, B) = sup ||an(l,(x)) ~ Ux]l.

Micchelli and Rivlin prove that if B is balanced and convex then there is an

intrinsic lower bound on E(a,, B), namely

e(l,, B) < inf E(ay,, B) < 2e(l,, B) (1.3)

where
e(l,, B) & sup {||Ux|| | x eker I, n B}.
We have now two problems to solve: find an optimal information operator 7}, in

view of (1.3) it amounts to minimizing e(/,, B) and then, given ;, find an

optimal algorithm «,;, where, by definition

E(a}, B) = inf E(a,, B).
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Both problems were widely treated in literature, in particular the problem of find-

ing optimal information operator is closely related to the theory of n-widths.

Two strategies are possible. If the functionals L; in (1.1) are given a priori
then we have nonsequential (simultaneous) information operator. However, one
might expect that if we allow L, depend on the previously computed values
Lix,...,Liyx,k=2,..., n then we may obtain better results (in our
example of integration (1.2) such an approach means that the point 7, depends on
x(t), ..., x(t)). We call such information operator sequential. It was proven

by Gal and Micchelli, although not accepted by those who use adaptive quadrature

routines, that it is not the casc,

sequglllflhlln e(lm B) - non.ve;ulgl:tialI,l e(I’” B).
In our paper we address the same problems, but with a different definition of
the error of an algorithm. Namely, instead of restricting the set of admissible x’s
to B (often the estimate on the norm of x is not available) we admit x to be an
arbitrary element from X and let n tend to infinity. That is, we consider sequences

of information operators I = {I,} and algorithms o = {a,} (from now on we call «

an algorithm) and define the error of « on x as a sequence
{|lea(tn(x)) — Ux|}. (1.4)

We look for an algorithm « such that (1.4) converges to zero as fast as possible for

all x in X. We call this approach to optimal recovery an asymptotic setting.

The main result of this paper, Theorem 2.1 states that (up to some technical

details) the bound on the rate of convergence is essentially that of {e(/,, B)}; and

later we present an algorithm which attains this rate. That is, the sequence of
intrinsic errors of the worst-case recovery problem characterizes asymptotic behavior

of optimal algorithms.

Section 3 deals with optimal information. We show, in Theorem 3.3 under
some restrictions, that sequential choice of information does not help, as in the
worst-case setting. Finally, in the last section we analyze the optimal rate of con-

vergence with respect to regularity of the class X. We show that more regular X
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(smoother functions x(¢) in our integration example (1.2)) allows faster conver-
gence of optimal algorithms. This is what one could expect, however such state-
ment is not true for nonlinear operators U. It is shown in [2] that for Ux = x~1(0)
(that is, we seek a zero of a function x(¢) on an interval) the n-th intrinsic error is

of order 27" and does not depend on the smoothness of x(t).

In the rest of this paper we will assume that U is a continuous operator.
Noncontinuous case can also be tackled similarly, see [3], where the ill-posed prob-

lem of solving the equation
Kx = z,

with a compact operator K is considered (that is, U = K~! and this operator is not
bounded).

2. Optimal Algorithm

Let X be a Banach space and Z a normed space. By is the unit ball in X, U

is a linear continuous operator from X into Z. By X* we denote the dual space to
X, X' is a subset of X*. The (sequential) information 7 : X — R* is defined with
the help of a sequence of functions g, : R" = X', n=0,1,2, ..., R'2 (0}.

Given x € X we put
Li=800),Ly=pLx), ..., Ly=Bpalix, ..., L_1x),... (2.1)
and
I(x) = [Lyx, Lyx, ..., Lyx ,...] (2.2)
By I,(x) we denote the first n components of 7(x), that is
L(x) = [Lyx, Lyx , . .., Lyx].

It is worthwhile to distinguish between the operators I, and I, . [, : X — R" is

generally nonlinear and not continuous, while 1, , defined by
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Liyy =Ly, Ly . ..., Lyl
where L;, k = 1,2, ..., n are given by (2.1), is linear and continuous.

If all g, are constant functions then I, = I, , is called nonsequential informa-

tion operator. By ®(X') we denote the family of all information operators using

functionals from X'. ®y(X') is the family of all nonsequential information opera-
tors.

An algorithm o is a sequence of arbitrary functions
o, : L(X)—2Z, n=1,2,... By A(I) we denote the set of all algorithms using

I. The error of an algorithm o at x is a sequence {E,(c, I, x)}, where
Ey(o, I, x) = ||aq((x)) — Ux]].
Let
ea(I, X, x) = sup {|{Uy|| | y ker I, n By}. (2.3)

We will show that the sequence {e,(/, X, x)} provides an intrinsic lower bound on
the error of any o € A(I). Let {5,} be a sequence of positive real numbers, mono-

tonically converging to zero (read: arbitrary slowly) and let
M(a, 6,) = {x €X | E,(e, I, x) = 0(8,)ea(I, X, x)}. (2.4)

Thus M(a, §,) consists of all elements in X such that the error of o at x converges
faster than {6 ,e,(/, X, x)}. If M(c, é,) # X then there is an ¥ € X such that the
error of o at ¥ does not converge faster than {5 ,e,(7, X, X)}. We may then say
that {e,(I, X, x)} provides a lower bound on the error of any « in the asymptotic

worst-case setting. From a practical point of view we would rather like to know

how massive, M(a, §,) is in X. We will show that M(a, 6,) behaves like a set of
the first category in X: a countable union of M(e, §,) cannot be equal to X.
Hence {e,(I, X, x)} is also a lower bound on the error in the asymptotic average-
case setting. To be more precise, let Ayp(Z) be a countable union of algorithms

o, r=1,2, ..., using information /. Define
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M(Ag, 6,) 2 U M(o, 8,) = {x €X | 3r B, 1, x) = 0(8,)enll, X, 1)} (2.5)

Then we have

Theorem 2.1:

For any set of continuous linear functionals X', any information 7 € ®(X’),

any sequence of positive real numbers {4 ,}, monotonically convergent to zero and

any countable family of algorithms Ay(7) the set M(Ag, §,) has empty interior.

Proof: Define

Cl={xeX |E, (", I, x)<b,e,(I.X,x)}, D= n Cr.
m2n

Note that
M@, 8,)cu D, and D cC DL,
n
Hence
M(Ag, 6,) = U MO, 8,)cuuD;=uU U Dj.

r ron n r<n
Let

GQUGm=U U D,:,

m n r<n

where G,, denotes the m-th term of the sum on the right-hand side. Thus
G = {x €X| E(a™, 1,x) < 5,60, X, x) Vj 2 kn},
where

Oskm+1_km£1, km_’oo'

It suffices to show that G has empty interior. Let x €X and ¢ > 0.

going to show that
(x + BY)\G # &,

which is equivalent to our assertion.

We are

2.6)
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Let My = x + ¢Bx and my be such that 45 m, < €. There exists
y €kerl, ., |lyll =36,
such that
Oyl > 26, em (I, X, x).
Since
Ly (x) = Ln(x + y) = Ly (x — y),
from the triangle inequality it follows that there is x; = x + y (say) such that

@

Eml(a > 1, xl) Z HUY” Z 26»11 em1(17 X, xl)'

Let My = x; + (6w, Bx N ker I, ). Obviously M, is closed. Moreover, for every

xeM
HUE — Uni|| < 6pn, em (T, X, X1) = 8, € (I, X, )
and
e — x|l < [ =l + {be = x|] < 6m, + 36, <,
which yield

M, ¢ My and MinG=g.

Now, let my > my + 1 (so my > ky) be such that 45 m, < 6m . We repeat our
construction. There  exists yekerl, ., |ly|[=36, such that

Uy || > 26 m, emfI, ). As before, for x, = x; + y we have
E (a(lz) I,x)>26,, e, (,X,x)

my s £y 2) 2 my Cm\' > A5 A2)-

Let My = x2 + (6., B N ker I, , x). Then, for every X € M,

”Uj - UXZH < 6»12 emz(l’ X, XZ)
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and
1 — xll < I = wll + [l — 2l < 6my + 36m, <6,
which yields
Mzcxl + 6mlBX and Mzﬂ Gz= @
Since ker /., C ker L x, Weget My C M.
Proceeding this way we obtain a sequence of closed sets {M,,} with the pro-
perties
Mn - Alm—la Iwm n Gm =, diamMn < 25»1’ m= 1’ 2 yeese
Hence

ﬂan U Gm=®'
m m

To show (2.6) we apply the Cantor’s theorem. O

The assumption that é, tend to zero is crucial. Namely, consider the follow-
ing example
Example 2.1:

Let X be the space of sequences x = {x*} converging to zero with the max
norm. We consider the approximation problem, that is Z = X, U = id with non-

sequential information I, where

Lx) =[x 2,..., x"].

o, (L)) =[x, ¥, ..., x",0,..]
We have

el, X, x)= Iax (k] | fmax W =1=1,
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whereas

E.(a,I,x) = Jnax x| = o(1)

2n+1

for every sequence x. O

We will show now that there are algorithms with error of order e,(/. x). To
this end we choose a constant ¢ > 1 and denote by x¢ any solution of
bl < ¢ inf {JIE]] | Inx £ = L}, Loy x5 = L(x). 2.7
Then we put
a5 (In(x)) = Uxs. (2.8)

Note that our definition of o€ is not unique. There are infinitely many algo-
rithms defined by (2.7) and (2.8). However each of them produces asymptotically

the same error which is given by the following theorem.
Theorem 2.2:
For any ¢ > 1 and x

En(aca I, x) < (1 + C) “x” en(I5X’ x)-

Proof: We have

c

c c c Xn — X
En(a 1, JC)= ”UXn - Ux” < ”xn —-XH ||U ”xc x“ H <
<

< |l — x| sup {||Uy]| | y €ker 1, , N B} <

<A+ o) k]| eall, X, x).

The estimate of Theorem 2 is sharp (up to a constant). Namely, let us look

at another approximation problem
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Example 2.2:

Let X be the space of all bounded sequences with the sup-norm, Z, U, I and
o be as in Example 2.1. Note that a = o° for any ¢ > 1.

We have here
eall, X, x) = sup {Ic*| '155“)30 kKl=1=1

and

E(a,1,x)= Sup, .

Contrary to Example 2.1, there are elements in X such that E,(a, I, x) = ©(1). O

3. Optimal information

In this section we try to find optimal information I € $(X’), given X’. The
question of optimality is a tricky one: we want to find the fastest convergent

sequence {e,(I, X, x)} for every x € X. Since the set of convergent sequences is

only partially ordered one can not expect that this problem has a solution in gen-
eral. We will show however, that under an additional assumption there exists

optimal information, moreover, this information is nonsequential.

Let

enX) =, inf _ sup{||Uyl] |y en kerL, n By}, (3.1)

e,(X") provides a lower bound (up to a factor 2) for an optimal algorithm in the
nonasymptotic setting, [1]. LetL{, k=1, ..., n be such that

sup {|{Uy[| | ¥ € ker Lif 0 By} < Cea(X"), (3.2)

where the constant C does not depend on n. If we put

I:=[L1",Lf,..., L:]’
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we may say that {I,;} is a sequence of nearly optimal information operators for the

nonasymptotic setting. We say that the sequence {/,} is nested if
Foa=[5LLl n=1,2,.. (3.3)
The following theorem follows directly from our definitions

Theorem 3.1:

Assume that there exists a nested sequence of nearly optimal information

operators using functionals from X'. Then
(i) foreveryl ed(X')andx €X
e(X') = 0(1) e,(7, X, x)

(i) ifI(x) 2 [Lix, L, ..., Lk ,...] then

e,(I, X, x) = 0(e,(X")).

If we accept the definition of optimal information as given by (i) and (ii)
then Theorem 3.1 states a condition for existence of optimal nonsequential infor-

mation. Since e,(/, X, x) does not depend on x for I = ®y(X") since now on we
will use an abbreviated notation e,(7, X) whenever it is clear / is nonsequential.
Example 3.1:

Let X be a Hilbert space, Z = X, U — a compact linear operator, X' = X*.

Then there are sequences of orthonormal eigenvectors {x"} and associated eigen-

values {\2}, \, — O of the operator U*U. The optimal information operators for

the nonasymptotic case have a form
Iy = [(x’ xl)’ (.\’, XZ) y e ey (X, x")].

Hence the sequence {I,;} is nested, so there exists optimal information I € ¢ y(X*)

in the asymptotic setting,
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I(x) = [(x, xY), (5, 2D, ..., (6, 2D ,.01]
and

en(l’ X) = n(X*) = An-

It may happen that the sequence {I;} is not nested, for instance in the

integration problem. However, one may still find a nested sequence of nearly

optimal information operators, provided that {e,(X')} does not tend to zero too

fast.
Theorem 3.2:

Assume that
en(X') = 6(e,(X")). (3.4)
Then there exists I € ®,(X') such that
eI, X) = 6(ex(X")).
Proof: Lct {I;} be any sequence such that (3.2) holds. We define
1) =[x, ix, Igxe s oo, Lex L)
Assume that 28 — 1 < n < 2+ _ 1, then
Lx)=[Kx,..., Izi_lx,lekx e Lszkx], s=n-2%4+1<2,
Hence and from (3.2)
exn(X') < e,(X') < (I, X) < Cepn(X').

This and (3.4) proves our assertion. O

For many problems of practical interest ¢,(X') = ©(n™") for some r > 0, for
instance integration problem in Sobolev spaces W™, see [1]. Then (3.4) is satis-
fied. Note that (3.4) is not satisfied if e,(X') = 0(¢"), ¢ < 1. This is the case of

integration of analytic functions.
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As a corollary of Theorem 2.1 we now have
Corollary 3.1:

Let there exist a nested sequence of optimal information operators using
functionals from X' and let 7 € ®(X’). Then for any sequence of positive

numbers {5 ,}, monotonically convergent to zero, and every countable family of
algorithms Ay(7) C A(I) the set M(Aq, 6,), defined by (2.4) and (2.5) has empty

interior. O

If we restrict our considerations to continuous algorithms (those consisting of
continuous functions o,, n = 1, 2 ,... ) then it is possible to show, using Baire’s
category method, that the sets M(e, 6,) are of the first category in X. Therefore
the result in Corollary 3.1 is not the strongest possible. To get a full analogy with

the continuous case we would necd to show that the countable union of M(a{, 5,)

cannot be cqual to X, where o) € A(I®)), r = 1, 2 ,... that is we admit a count-
able family of (possibly different) informations /¢). We will show this under an

additional assumption.
Let Un(X') 2 (ID, 1@ ..} C ®(X’) denote a countable family of informa-
tions and

AWNX) 2 (& | oD eA(D), r=1,2,.}.

We show that sequential choice of information does not, in general, lead to faster

convergence.
Theorem 3.3:

Assume that (3.4) holds. Then, for any sets X' C X*, Yn(X'), A(YnN(X"))
and any sequence {8 ,}, monotonically converging to zero, the set

MWy, 6,) 2 (xeX |3r E(ID, oY, x) = 0(6,)e.(X")}

has empty interior.
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Proof: The proof rescmbles the proof of Theorem 2.1. First, note that (3.4) yields
ep(X')>ce,(X) n=1,2,... (3.5)
for some constant ¢, 0 < ¢ < 1. Define

D2 (xeX | E, (D, oM, x) < c 6, enX’), ¥ m >n},

D

>

U u Dy
rn
Then M(¥y, 6,) C D and it suffices to show that D does not contain a ball. Let
{w)=(1,2,1,2,3,1,2,3,4,1,...) and {m} be any sequence that
n >+ m 4+ o 4 My (3.6)
Since D, C Dj;,4 for every n and r we get
D=y D, (3.7
Let x € X and ¢ be an arbitrary positive number. There exist m; such that
45 < c and y e ker I, (1 36, By such that |[Uy|| > 25, en (™, X, x). As
in the proof of Theorem 2.1 we may find x; = x + y such that
En (™, X, %) > 25, en (™, X, x,).

uy)

Let M 2 x + (6 my Bx N ker l,,(,l, xl). Then, since e,,,l(I("‘), X, x)> e,,,l(X M,

M, C x + ¢By and MlnD,:i = .

We procéed now by induction. For any k >2 we choose m; such that
my > 2my_y and §,, < % Sm, (hence (3.6) is satisfied). Denote by 1® the opera-
tor
PN LONTY CAVIRRRITE L I /L Y A Y A SR A |

"ll

There exists
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y € ker I-;g:-)q-...wnk,x N 35 'I:' By

such that
”U)” 2 26 my em1+...+mk (i(k)~ X’ xk—l)
and
X=X 1 %Y
such that
() () 2 (k)
Emk(l s & ’ xk) 2 6mk em1+...+mk (l . X, xk)- (38)

Let M+ x =6, BxN ker I:,(,’:?F____,_mk X then M, C M;_;. Since for any
%My, ||[UE — Uxil| < 8., €mps..sm, (®, X, 5), from (3.8) and (3.6) we obtain
En (1™, ¢, 2) > 8, s om (X') > 8 o, (X') > Oy em (X').
Hence M, N D,',',’; = .
We have constructed a sequence of closed sets {A;} with the properties
My C M, Mpn D,',‘,’; = and diam M; < 25, .

Let My = r’? M,. Then, by Cantor’s theorem, M; # (j, moreover

Mo Cx + GBX
and, by (3.7),
MynD=¢.

This completes the proof. O
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4. Regularity and the rate of convergence

In this section we are concerned with the question: how regularity of the

space X affects the rate of convergence of {e,(I, X, x)}. Since in the previous sec-
tion we have proven, provided {e,(X')} does not converge too fast, that sequential

information does not help, and we suspect this is true in the general case, we res-

trict our considerations only to nonsequential informations.

Be begin with a trivial lemma
Lemma 4.1:

Let 7e€dpy(X') be given by (2.2). A necessary condition for
e, (I, X) = o(1)is

8

K2 0, ker L, C ker U. 4.1)

Let Y be a subspace of X. We say that Y is more regular than X if the
canonical embedding ¥ — X is compact. A motivation for such definition is pro-
vided by the Sobolev embedding theorems. The following theorem generalizes the

results of [4] and shows that more regular problems are easier to solve.
Theorem 4.1:

Let K C ker U and Y be more regular than X. Then for any 7 € ®5(X")
enll, ¥) & sup {|{Uy]| | y €ker I, 0 By} = o(Deu(l, X).
Proof: Forn = 1, 2 ,... let x, € ker I, N By be such that
[|Uxa|] > eall, ¥)/2. 4.2)

We prove first that

disty(x,, K) = o(1).
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Indeed, if {x,} does not converge to K then, due to compactness, there is a

sequence {m} and an element x* € X K such that x, — x*. On the other hand,
for i<m we have Lx, =0, so continuity of L; yields
Lx*=0, i=1,2, ..., thatisx* €K and we have a contradiction.

Let x,, € K be such that ||x, — x, || < 2 disty(x,, K). Then
lben — x4 [ = o(1). (4.3)
We define X, = (x, — x,/)/||x. — x.||- We have ||%,]|| = 1, and since &, € ker I,,.
Uz || < enll, X). (4.4)
Now, from (4.1) and (4.2) it follows that

- ’ 1 !
NUR || = |Uxall/ 1w = % || 2 5 eall, Y)/ |1 = 271

This, (4.3) and (4.4) give
eI, Y)/en(l, X) < 2”xn - X,,'” = o(1),

which completes the proof. O

On the basis of Lemma 4.1 and Theorem 4.1 we may deduce a sufficient

condition for {e,(/, X)} to converge to zero.

Corollary 4.1:

Let K C ker U and let there exist a Banach space X containing X such that
(i) the embedding X C X, is continuous
(ii) U and the functionals L;, k = 1, 2 ,... are continuous on Xj.

Then e,(I, X) = 0o(1). O
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