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Abstract.
It is generally believed that methods based upon solving the dual of the linear programming
formulation of the linear [, problem are superior to methods based upon the primal formulation,

We present a primal approach along with evidence that for random problems primal methods are
to be preferred. We then show that the method that is generally considered the best algorithm for
discrete linear approximation in the [ snorm actually owes much of its efficiency to effective choice of a

starting point. This phenomenon is explained with the aid of results from classical minimax theory,
which are then used to determine a suitable initial point for a primal method.

With this enhancement it would appear that the primal approach is also preferable for data-fitting
problems.

Abbreviated Title: Primal Linear !, Algorithms.

Keywords: linear Chebychev approximation; primal descent algorithms; linear loo approximation.

1. Introduction

We are interested in solving the following problem:

Given an nXm matrix
(r.1) A= [al a,,,] eER™ | (m >n >2)
and a right hand side vector
T
(1.2) b= [ﬁ, ﬂm] ER™

we wish to find a vector £ € R” such that

T, _ - T, _ g
(1.3) ATz — b [l max o B: |
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is minimized.

This problem is termed the discrete, linear I, (or Chebychev) problem.

In [7] we discussed the solution of this problem by so-called primal
techniques. All such methods essentially reduce the maximum modulus of the
residual components at each iteration and are finite algorithms.

Most other techniques formulate a related linear programming problem and
then solve its dual. (See for example [1], [12] and [15].) It is generally believed
that the dual approach is superior to the primal approach. However, it is the
authors’ contention that this belief is not justified.

We will first provide evidence to show that for random problems the primal
approach appears to be distinctly superior to the dual approach (see also [6] and
7).

In [7] it appeared, however, that for function approximation problems, an
important source of Chebychev problems, the dual method of [1] performed
better than the primal algorithms. Indeed, Barrodale and Phillips is the usual
algorithm of preference.

Motivated by the curious discrepancy between random and data fitting
problems, we conjectured that the apparent superiority of Barrodale and Phillips
for function approximation problems was due, not to an inherent superiority of
the approach, but rather as a consequence of the structure of function
approximation problems, it being obvious that the random problems were
essentially non-structured. Furthermore, we conjectured that this structure,
characterized theoretically by the alternating sign property (the details of which
will be summarized below) manifests itself particularly in the choice of starting
point.

In this paper we shall show that the method of Barrodale and Phillips
typically chooses an excellent starting point in the following sense. Suppose k is
the rank of the coefficient matrix, A, of (1.1). Then the algorithm of [1], at the
end of iteration k<41, has a superior initial basic feasible solution for the
subsequent (exchange) iterations of the dual linear program. When appropriate

attention is given to the choice of starting point for the primal approach, as
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applied to function approximation problems, it once again appears that the

primal method is to be preferred.

2. Description of the Barrodale and Phillips Algorithm

In [2] the authors suggest that the algorithm converges in relatively few
iterations, in general, because of its automatic construction of an initial
approximation which is already quite close to the best solution. However, they
give no proof that the initial approximation is predominantly responsible for this
efficiency, nor do they offer any explanation as to why the initial point is likely
to be a good approximation to the solution.

Since we are particularly interested in the function approximation problem it
is convenient to use a slightly different notation.

Let L = < ¢, ¢, ... $, > denote the linear space spanned by the functions
é;, it =1,..., n on the closed interval of the real line, {a, b], where the ¢;

are continuous on [a, b].

A function ¢ is in L, if and only if
#(z) = X o 4i(2)
where z €[a, b]. Given m > n > 2 data points (z;, y;), we are to determine a

discrete [, approximation function in L (equivalently, determine

a= (o, ..., a,)) which minimizes

(21) 6(01 o an) ”yt - j§1 a;i ¢j (zi)”oo

M=

a; ¢; ()]

= max |y; —

1<i<m Jj=1

Thus, in the notation of (1.3) we have that
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-¢1(21) e By(2m) 7

s Um)T

and b= (y;,...

a2+ balzm)

It is clear that the optimal & that solves (2.1) can be determined from the
- o, and & given by

linear programming problem, in n+1 variables a;,

Minimize £
subject to  y, — E o; ¢i(z) < €
(2.3) =l L, =12, ,m .
and g, 4 Zl a; ¢z < €
Jj=

Moreover, it is evident that we may add the (redundant) linear constraint £ > 0.
variables

dual linear program in 2m

The  corresponding
.+, T,, 1s given by

9'_1;--->E_;m£1;-
m
Maximize X (o; — 75)u;
i=1
m
(2.4) subject to > (0; —1;)¢:; =0, J=1,2 ..,n

i=1
m

(e + 1) <1,

i=

and
i=1,2,...,m,

6,7, 20,

where ¢ ; = ¢ (z;), and we use the underscore character to signify dual variables.

The algorithm of Barrodale and Phillips consists of solving (2.4) whilst taking
calculations. More

advantage of the structure to suppress some of the
in each of the n equality constraints

specifically, inserting artificial variables o ;

and a slack variable £ in the inequality constraint we have
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m

m
(2.5) subject to E (0; —1;)¢ji +2;=0,
fm=

where it is understood that the ¢; will ultimately be zero. [In fact, they always

have the value zero — even in the basis. The problem is degenerate.]

Denoting the column vectors formed from the coefficients of o;, 7;, @; and §

by s;, t;, a; and w respectively, it follows that
(2.6) G+L=2w, i=1,...,m.

Furthermore, letting b denote the right hand side of the constraints (2.5) we
have that

(2.7) b=w=100,...,0,1T=¢l,

where e, ., denote the n+1st column of the (m X n+1) identity matrix.

Using the relations (2.6) and (2.7) Barrodale and Phillips condense the
standard simplex tableau associated with (2.5) (which would be expected to have
dimensions (n + 1)X(2m + n + 1)) to a tableau that is (n+1)Xm.

Let ¢ denote the nXm matrix given by

® = ($is)i<i<n -
1<5<m

Suppose P is of rank k, then the algorithm of Barrodale and Phillips starts
with the initial basis @, £ and can be divided into three consecutive stages. Stage
1 refers to the first k simplex iterations. Stage 2 refers to the single k+1st
simplex iteration and stage 3 consists of all the remaining (finite) iterations.

In Stage 1, only o, can enter the basis matrix and only ¢; can leave the basis
matrix. Corresponding to each g,, say, that enters the basis, we have that the

t* residual is zero, i.e.
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Y — Z o piz)=€.
J=1

Moreover, the o, that enters the basis corresponds to that with the largest

absolute reduced cost. With respect to the primal problem this corresponds to

2,

chosing the residual that is largest in magnitude. Since £ and the chosen ¢;’s

—t
remain in the basis during this stage it follows that the selected residuals are
reduced to zero at each iteration and remain there during subsequent iterations.
Thus at the end of Stage 1 we have k residuals at zero, (and n—k o’s and € still
basic).

In Stage 2 the variable to leave the basis is £ corresponding to the primal

variable € becoming non-zero. Another o; (or 7;) enters the basis, along with
possibly an exchange of o;’s and 7,’s to maintain feasibility. Consequently, at

the end of stage k+1 the approximating function possesses k-1 residuals of
magnitude equal to the resulting value of £

Stage 3 is equivalent to the well-known exchange algorithm for linear
minimax approximation (see [14], chapter 8, for example).

In the light of the above comments it is clear that an equivalent formulation
of the algorithm of Barrodale and Phillips can be stated in a direct way based on

the original statement of the problem as follows.

Let
rf Dy — j2=:1 af ¢(z)
and
o, = sign (r;) .
Stage 1
{Initialize}



Primal Linear Chebychev Algorithms

P¥ =1, A =g, theempty set.
{Iteration k}
t A{i| |r;|is maximal },
{choose search direction}
1(2")
&= -0, PN gr(at)=o, PD | . | = o, PB4,
$a(z')
where
ay = [p:(2") - Ga ().
{choose stepsize}
choose A, so that
rée* + N\ d¥) =0,

or equivalently

{update the orthogonal projection matrix and loop}
A =A0U{},
k=k+1,
=G Ak(A"T Ak AfT ’
where
A¥=la, --- a,) with A ={1,2,..., s}

{Return to iteration k until |A | = rank of A.}
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Note: The above is not meant to be a practical statement of the implementation
but merely a statement of the necessary algebra. This remark applies equally to
Stage 2 and Stage 3, below. Moreover, we mean equivalent in the sense that all
primal versions of the simplex method for linear programming move from a
primal feasible basic solution to an adjacent primal feasible basic solution whilst
improving the objective function and are, in this sense, equivalent. However, the
path to an optimal solution is not thereby uniquely defined. In an analogous
manner P*) above could be replaced by any projection onto the null space of Af
— not necessarily an orthogonal projection.
Stage 2
{iteration k = |A | + 1}

Determine t A {i | |r; | is maximal}.

{Choose search direction}

d* = o, Pa, ,
where
P=1— N(NTN)? NT with N = [0,a, — 0409, 01a; — 0ga3 " - - 0,a; — 0,
and

A={1,...,k

from stage 1. Thus d* decreases the magnitude of a, whilst changing
a;, ..., a simaltaneously.

{Choose the stepsize}

choose A, so that
or(@® + X d*) = oyr(0* + N d"),

or equivalently

Irt(a")l + )‘tat(dk)Tat Irl(a")l + )‘tal(dk)Tal .
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Thus,
|7't(°‘k) |

(dk)T[atat — 010y .

A =

Consequently, r, and r; have the same magnitude at of + \,d* and hence, by
the choice of d*, so do 7y r3 -+ r,. In other words we now have k + 1

residuals at the same value.
Stage 3

For the third stage, we have
A=1{1,2,..., k+1},

say. Put ! = |4 ]|+ 1.
{iteration I}

Let A denote the matrix, nXxk, whose columns are given by
Oy, —0;a;, 1 EA , 1 # s.
{test for optimality}

Let t €{i | |r;|is maximal and t ¢ A}. If |r,| < |r;|, ¢ € A stop (optimal,
see below) .
{determine multiplers}

Solve
(2.8) o.a, = Afu |
{update the projection matrix and iteration count}

Clearly (2.8) has an exact unique solution since the rank of A is k. Let P, ;

denote the projection given by
-1

T

where A, ; denotes the nX(k — 1) matrix whose columns are given by

8,7

T
(2.9) P =1~ Af,,-[[A;‘,j] Af;

g.,a, —0;a; 1 €A, 1 #sorj.
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Putl=1+1
{choose search direction}

If u given by (2.8) is such that

(2.10) u; <0,
define d* = —o, P, ; a, (i.e. supposing s=1).

Clearly [d*]T @, = —o, [P, ; a, |2, which implies that |r, | descends.
Moreover,

T . i
[alal——aaas] d 0,s#y3, sed,
Tk T
010 —0;a;| d¥ = —a,(0a; —0ja;)" Py ;a

~o, u;||P foa; — o;a) [P >0, [using (2.8), (2.9) and 2.10] .

Thus, the first equation implies that
rlo® + Xd*) =r(a* + N\d¥), s %1, se€4,
and the second equation implies that
Irie® + MdF)| < lry(a* + Md¥)],

for A\ sufficiently small and positive.
{choose stepsize}
The stepsize is that which determined the first residual whose value equals

that of |r,],s €A, s # J.

{return to iteration [}

Equation (2.9) was developed on the assumption that the current point is not

optimal and j # 1. However it may be that we need to “drop” a,. That is, we

may require that

ro{a® + Ad¥) = r,(ef + Nd¥), s # 2
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and
Ir(e* + Xd¥) | < Irfef + 2d¥)].

From (2.8) we have that

k
(2.11) 0.0, = 2 T(0ga, — 050,
=
where
k
fi=-Xu and G=u ixl.
Uy = u; A U; u; 1 F#

Thus we are able to drop q; if #; < 0, or in terms of the original multipliers u;, if
k

0>~ 2 u .
t=2
By hypothesis u; > 0,1 =2,..., k and at least one of the u; is strictly
positive (as follows from (2.8)). Hence 4; < 0 is always satisfied. Note this
implies that we know immediately in this case that we can drop a;. Thus, we are

optimal when there is no maximal residual (in modulus) greater than |r; |, ¢ € A.

Thus, assuming we were not optimal, once again at the end of the iteration
we have k+1 residuals of equal value. Moreover the maximum residual has

clearly descended since no absolute residual |r;|, ¢ € A, is allowed to excede |r, |
by the choice of stepsize, and |r, | has descended by the choice of d.

More specifically we choose A to be the minimum positive A such that
lo,re(a* + Nd¥)| = |o;r;(a* + N\d*)|, where s, i ¢ 4

le.

—0,re(e) + airi(af)

A =
' [0’8(1, - oiai]Tdk

if r, and r; do not change sign from o to of + \d*, with analogous formulae if

r, and r; (or both) change sign. One then chooses
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X = min {\; |X; > 0}.

Thus, in summary the method of Barrodale and Phillips initially chooses the
residual of maximum modules and brings it down to zero. In the next iteration,
the residual of maximum modules is again chosen (which possibly is larger than
the maximum modules of the previous iteration) and brought down to zero whilst
maintaining any residuals already at zero. This is repeated for k iterations where
k is the rank of the coefficient matrix A. A single iteration follows where the
residual of maximum modulus is reduced (in absolute value) whilst the residuals
at zero are brought up (in absolute value) together, until one has k+1 residuals
all at the same value. These residuals are not necessarily the maximum residuals.

All subsequent iterations correspond to choosing that residual which has the
largest absolute value and reducing it whilst maintaining k of the k41 identified
residuals at a common magnitude. One continues until once again one has k+1
residuals all at the same absolute value. Since the maximum magnitude has
decreased, improvement is assured. One terminates when no residual is identified
with a larger value in magnitude than the current k41 residuals, whereupon
optimality is achieved.

This is in marked contrast to the proposed primal method of this article
which can be summarized as follows.

Initially, choose the residual of maximum modules, reduce it as much as
possible until one ‘“crosses” an increasing (in the absolute sense) residual. Now
determine a search direction such that the residuals of equal maximum modules
descend together until a new residual is “crossed”. After at most k steps (where
k again refers to the rank of A) we will have k+1 residuals of equal magnitude
with all other residuals smaller in magnitude. It now follows from a theorem of
the alternative equivalent to Farkas’ Lemma (Gordan’s Theorem) that either we
can find a search direction that reduces the magnitude of k of the k+1 residuals
together, with the k+1% remaining residual reducing more rapidly, or we are
optimal. In the former case one reduces the k residuals until a new (increasing in
magnitude) residual is met, whereupon, once again, we have k+1 equal residuals.

We have thus established the prototype of all remaining iterations.
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Intuitively, we believe the direct approach of the primal method is much
more natural than the dual approach and the primal interpretation of both
algorithms suggest that the primal approach, contrary to popular belief, is

superior. We hope to justify this intuition below.

3. Basic Classical Chebychev Approximation Theory

In order to understand the significance of the initial point obtained at the
end of stage two of Barrodale and Phillips’ algorithm we shall first review some
concepts and theorems of classical minimax approximation theory.

Definition 3.1

An n dimensional linear function space L = <¢, - -+ ¢,> defined on the

interval [a, b] is said to satisfy the Haar condition if and only if, for every
non-zero ¢ in L, the number of roots of the equation ¢(z) = 0 on [a, b] is less
than n, the dimension of L.

Definition 3.2

A reference on [a, b] is a set {g;}/} of n+1 distinct points in R where we

assume that
(3.1) a<<q " <gu<lb

and it is understood that the reference is defined with respect to an n
dimensional linear function space.
Definition 3.3

Let {g;}%! be a reference. The corresponding values ¢(g;) of any function

#(q) in L are related by the equation
n+1

(3.2) El 0; ¢(g;) =0,

for some suitable § = (8, - - - 0,7 e R**.
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Equation (3.2) is called the characteristic relation.
Definition 3.4

Let ¢(q) be any function in L and p; = y; — ¢(g;) be the errors of the
approximation at the points ¢; of the reference {g;}*%!. The function ¢(q) is

called a reference function with respect to the reference set {g;}24! if

(3.3) sgn (p;)=sgn(0;) <¢=1,..., n+l
or
sgn (p;)=—-sgn(f;) i=1,..., n+1.

where the 0; are defined by the characteristic relation (3.2).
Definition 3.5

The levelled reference function with respect to a given reference {¢;} is
characterized by the property that the errors p; have the same absolute value.
The common absolute value |p;]| of the approximation errors is called the
reference deviation.

For these definitions, and much more, the reader is referred to the excellent
text [14].

We shall state, without proof (see [14] page 77) the following fundamental
characterization theorem.
Theorem 3.1

Let L be an n-dimensional subspace of Cla, b], the set of continuous real
valued functions that are defined on the interval [a, b] of the real line.
Furthermore, we assume that L satisfies the Haar condition and f € Cla, b].
Then ¢* is the best minimax approximation from L to f if and only if there

exists a reference {g;}! on [a, b] such that

(3.4) [£(g:) = 2% a:)| = U/ - ¢*|lo

and
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f@i4) — @ir) =~ [fla:) —8%(@)) i=12,...,n.

Equivalently the theorem can be stated as follows: The function of best
approximation is the reference function with maximal reference deviation.
We will also require
Theorem 3.2
Let L be an n-dimensional subspace of Cla, b] that satisfies the Haar
n+l

condition. Furthermore, let {¢;}"}' be a reference on [a, b] and let {#;}"! be a

set of real multipliers that are not all zero and satisfy the characteristic equation
n+l

El 0; ¢(g;) =0

for all functions ¢ in L. Then every multiplier is non-zero and their signs
alternate. Once again, the reader is referred to ([14], page 18) for a proof.
We now wish to establish certain key properties of the point determined by

the algorithm of Barrodale and Phillips at the end of stage two.

4. Barrodale and Phillips’ Initial Point for the Exchange Algorithm

We wish to show that the trial approximation obtained after stage two of
the algorithm of Barrodale and Phillips is a levelled reference function that
satisfies the alternating sign property.

Recalling the dual linear program (2.4), we introduce several algebraic
transformations to map points in the dual space into corresponding points in the
primal space.

Let B* denote the current dual basis matrix, [(r+1)X(n+1)], whose columns
are given by Bf,..., Bf,, at iteration k. In what follows, the iteration

number is omitted whenever no confusion results. Let cg denote the cost vector

associated with the basis matrix B.
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Define ff : R — R by

(4.1) Ha) = BB e, i=12,...,n.
As above, we may omit the iteration index k and write

(4.2) fila;) = ¢5B™'a; .

Similarly we write

(4.3) g(s)=ciB7's —yi, i=1,2,...,m,
(4.4) hi()=ctB ' + 9, i=12,...,m,
and

(4.5) i(w) = FB'w .

We will now show that if we write
o; = file;), ¢=1,2 ---n,
(4.6) o, =g;(8;), 1=12,...,n,
r,=h(t;), ¢=12,...,n,
and
§=i(w),

then provided the rank of A is n, these o, ¢;, 7; and € satisfy the constraints of

the primal problem.
Lemma 4.1

Assuming the rank of ® is n. Consider the mapping M defined by
M@ - ays st b b)=[eT o7 7T €.

Then [aT 07 77 ¢ satisfies the constraints

(47) Y: — J'Z=:l aj ¢j(zi) + 0',- = E;
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n
(4.8) -y + El o;diz)+1.=¢,
(4.9) €>0.
Proof
Now
]
s A Se; = LT € -

Thus ¢5B7'S = y + o [using (4.3) and (4.6)]. But g, =¢;, ¢ =1,..., n, and
w = e,,,. Hence CF B~ I = |o, ¢, [using (4.2) and (4.5) and (4.6)].
n

It now follows that y; + o; = [a, § Se; = by ;05 + &
=1

proving (4.7).
Similarly

and

B T=1-y
n
= Ti—yiz[ar€]ICi=_§laj¢ji+E

proving (4.8).
To prove that £ > 0 we note that, by definition of B, the dual objective
m

function Zl(g,- — 7,)y; has value ¢f Ble,,; = Cf B w = € using (4.5) and
t=

(4.6). However, by construction, the initial value of the dual objective function is
zero, and this value never decreases. Consequently, £ > 0.

We are now able to prove the following key theorem.
Theorem 4.2

Let L be an n-dimensional subspace of Cfa, b] spanned by the basis

functions ¢;,¢ =1,..., n. Furthermore assume that L satisfies the Haar

condition. Then the point, [aT, 67, 77, ¢, given by the algorithm of Barrodale
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and Phillips at the end of stage two, determines a levelled reference function
n

¢(z)=j§l o; ${2), with respect to the reference set {2, piL

fin iy *** dan} C{L2,..., m}.

In other words

sgn [y;, — ¢z )] =sgn(0;) k=1,..., n+l,

or
sgn [y;, — é(z)] = —sgn(0,) k=1,..., n+l,
where
n+l
El 0; ¢(2,)=0,
and
v, — $(z) = i, — é(z)| k=2 - nil.
Furthermore,
Yip, — )= — v, — =) k=1,....n.
Proof

The algorithm of Barrodale and Phillips only allows ¢;’s to enter the basis in
Stage 1. Stage 2 consists of one pivot in which either a g; or a 7; enters the
basis, after possibly, some trivial pivots in which one or several o ;’s are swapped
with their corresponding 7 ,’s (see below).

Thus w can be written as a linear combination of the columns of B, and by
assumption B is n+1 X n+1. To simplify the notation somewhat, without loss

of generality we can assume that at the end of Stage 2

{il in+1}={1)"'; n+1}
n+1

Consequently, w = > 5,- B; and the basis consists of ¢;’s and 7;’s only.
t=1

Furthermore, at least one \; # 0. Equivalently, B; = s; or t; and thus
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n+l
(410) 0=i§loi¢j(2i)’ j=1)"')n,

where

9; = Ei , if ¢ corresponds to g; being in the basis,

= —0—,- , if 1 corresponds to 7; being in the basis.

We used here the definition of the first n rows of s; or t;. Moreover, without
loss of generality we may assume that 0_,- >0, i=1,..., n+l, since if
0; <0 and B; = s; (t;) then we may pivot (trivially) making g; (or 7;) non-basic
and 1; (or g;) basic. Thus B; = t; (s;) and §; changes sign. It is clear from

(2.6), and the definition of w that this merely requires that the original f; be

k -1
scaled by [1 -2 i,-j] where k£ are the number of swaps required and
J=1

a

0",‘ <0, y=1,..., k. But now, for arbitrary ¢ in L, writing

d(z) =X z; ¢ i(2;), we have that
=1

n+l1 n+l1 n
(4.11) §:1 0,- &(Zi) = .Zl 0" '21 :t_,- &J(Zz) =0 )
t= 1= 1=

the characteristic equation.
Let p; A y; — ¢(z;.
For each basic variable o;, say, we have

T n-1 T, _
cgBT si=cze; =y,

and similarly, for each basic variable 7;

— T
EB L =che= -y,

since
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b2 ]9R

But it now follows from (4.3), (4.4) and (4.6) that the corresponding primal

variables ¢; and 7; have the value zero.

Thus, in the notation of the primal, using Lemma 4.1,
(4.12) Y — jél ;9 {z)=y; —d(z) =€, e [p;=¢,
if o; is in the basis, and
(4.13) -y + ]_z:'l oa;9z)=—vi + d(z) =€, e [p;=-§,

if ¢; is in the basis, where a; = oL BT a;.

Thus we have n+1 of the primal variables o;,7;, zero and
n

#(z) = 2 a; ¢ {z) is a levelled reference function with respect to the given
i=1

reference {z;}/1! with reference deviation &.

Now from Theorem 3.2 we have that every @; is non-zero and their signs
alternate with .

We will now complete the proof by showing that
sgn (p;)=sgn(0;) i =1,..., n,orsgn(p;)=-sgn(8;) ¢ =1,..., n.

Using (4.12) and (4.13) we have that

p; =&, if o; isin the basis,
= —§, if 7; isin the basis.
Using (4.10) we have that
0 ; is positive, if o; is in the basis,

and
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0 ; is negative, if 7; is in the basis.

Thus sgn (8;) = sgn (p;). But, clearly we could have

n+l
0=_210,-¢j(z,-), j=1,...,n,
§ =

where
0; = -i,. , if 7 corresponds to g; being in the basis,
= -0-,- , if ¢ corresponds to 7; being in the basis,

merely by multiplying (4.10) through by —1. Thus the theorem is proved.

5. The Proposed Direct Algorithm

Returning to the notation of Section 1, we will describe a method that is a
generalization of [7].
Consider the primal linear program
Minimize 3

T
—afr > 8.
subject to ¢-aiz 2-hi,

€+aiTw2+ﬁiy

which we will write as

Minimize cdv

subject to cfv26j, j=1,...,2m,

where
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1
0
Co = . 3
0
1
c; = —a; )
(5.2) .
Cm+i = +ai »
bi=—PF;, i=1,...,m
6m+i +ﬂi7 i=l,...,m

o=l

The approach is based upon solving (5.2) via a piecewise linear penalty
function.

Let ¢ > 0 be a fixed parameter. Define

2m

(5.3) p(v, 1) = s ¢f v— 2 min (0, cfv—46,).
j=1

For any arbitrary v € R**!, (5.3) can be expanded into

p(v, ) = p ¢l v — 2 min (0, cFv—15,)
i€’

— 2 min (0,cTv—156,)
ot i j

— 2 min (0, cfv-146,),
jer

where the index sets are given by,
P=Pv)={jlefv=583={n, -, &},
(5.4) F=I'w)={j|cfv>6;,

IF=I()={jlcfv<é;}.
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For any d € R"*!, and any X > 0 sufficiently small, we have

p(v + M, p) = p(v, p) + X |p cfd — > c;[d — 2 min (o, cJTd)
jer ser®

(5.5) =p(v, p) + MTd + X\ X o7 cld,
p
where
(5.6) h=pe— 2 ¢,
Jje

and

o7 =0 if ¢Fd>0

7 J = N 0

=-1if Td<o’ ‘€T

We define the matrix

(5.7) N=lc; ¢,
and let
(5.8) P=1—- N(NTN)7INT,

Thus P is the orthogonal projector onto the null space of NT. Once again we

emphasize that, in practise, we do not propose to compute P via (5.8).
Case i) Ph # 0.

If we define
(5.9) = —Ph
then it is easy to see, from the definition of P that
p(v + \d, p) = p(v, p) + \Td and hTd <O.

Thus d will serve as a descent direction for the function p.
Case ii) Ph = 0.

Assuming that the columns of N are linearly independent (guaranteed by
the Haar condition, for example) h can be expressed uniquely as a linear

combination of the c]-‘_’s, t=1,..., k. Otherwise x is a point of degeneracy

and the reader is referred to Section 8 below for a brief discussion of how this
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degeneracy may be handled. [The situation is equivalent to standard degeneracy
in linear programming.
Thus writing

k
(5.10) h=2 1 Cji s

i=1
(5.5) reduces to,

k
(5.11) p(v+)\d,l‘)=P(v7”)+)‘§l[ ;+0f,-] e d -

There are two subcases to consider.
Subcase a)

Suppose 7; < 0 for some ¢, € I°. Then we choose d to satisfy
(5.12) c}‘d=0, JEI, j#1,,

c,-T; d=1.
Noting that (5.12) implies that 07 = 0, j € I°, (5.5) becomes

(5.13) p(v + M, p) = p(v, p) + \hTd .
Furthermore h7d < 0. Since hTd = ", c,-7: d = 1n; <0, [using (5.10), (5.12)].

Subcase b)

Suppose 1; > 0 for all ¢ € I°. Then no choice of d exists which will reduce
the value of p further without causing at least one of the constraints of (5.11),
which is currently satisfied, to become violated.

If Subcase b) holds and no constraints are violated then v = [€, z]¥ is
optimal for (5.1). In fact Subcase b) is then equivalent to the Kuhn-Tucker
conditions.

On the other hand, if any of the constraints are violated, then u can be
reduced (¢ + p/8, say) and the function p can be minimized again starting from
the current point z. In [11] it is stated that the linear programming problem
(which in our case must be feasible) will be optimized by a point z attained after

a finite (and usually very small) number of such reductions of g. In fact, more
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precisely one might notice that, in Subcase b), if there exists a 1 € I° such that

n; > 1, then choosing d so as to satisfy
cjd=0, jel’, j#i

(5.14) Td =1,

d is a descent direction for p.

However, n; > 0 for all + € I°, and Ph = 0 indicates that, with the possible

exception of the feasibility condition not being satisfied, one is at a Kuhn Tucker
point. Thus either one is optimal (feasibility is satisfied) or the parameter g is
above the threshold value (feasibility is not satisfied). Consequently there seems
to be little that can be gained by not reducing g immediately.

If X\ is increased slightly from zero then the index sets change as follows:
v + X\d) = I°(v), for d given by (5.9),

= I%v) — 3, , for d given by (5.12),

(5.15) I'*(v + X\d) = I'*(v), for d given by (5.9),

= I*(v) + j;, , for d given by (5.12),

I(v + \d) = I"(v) .
For both choices of d, the change in p can be expressed as
p(v + Nd, p) = p(v, ) + \h7d .

We now need to discuss the choice of the stepsize X.
To date in this section we have assumed that A > 0 is sufficiently small. In

fact we have required that 0 < X\ < )\(l), where MY is the minimum element of
(516) AW={\ [N\=(6;,—clv)/cJd and X\ >0 and jeltUI}.

For a nondegenerate problem, each of the ratios (6§ — cfv) /c,rd defining Al

will have a unique value.

If
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(5.17) A0 = (5 i c}-;v) /(c}:d) , for j, eIt

then an increase of \ past A will result in the constraint J. being violated. This
would cause the index j, to be removed from It and transferred to I~, and it

would require that the vector 2 be readjusted according to

On the other hand, if

(5.19) MO = (6, —clv) /(c]d), for j.€l™,

then an increase of \ past A will result in the constraint j, being transferred

from I~ to I* and a readjustment of h according to

(5.20) h:=h +c;

I

The increase of A\ past A will be useful if h7d < 0 for the readjusted h;
that is, if d continues to be a descent direction in the region X >>\(1), A
sufficiently small.

As was done in [11], we may continue increasing A until the value A\ is

reached, with X\ the minimum of the set A('), where
(5.21) AD = AC) _min (A} for I =2,...,¢t.

The index t is the least for which d fails to be a descent direction after the

corresponding correction, (5.18) or (5.20), is made to h. We redefine v as
vi=1v + A4
We note that the index j, must be transferred to the index set I°%(v) at the

redefined point v, where j, is the index, (5.17) or (5.19), to which the value A

corresponds.
The algorithm of Bartels, Conn and Charalambous corresponds to the above

algorithm where we always take A = X\ that is we stop at the first possible X.
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That this corresponds to the primal description of Section 2 is easy to verify.
One need merely realize that d given by (5.9) corresponds to keeping all current
activities active, whereas d given by (5.12) keeps all but one of the activities

active, with the “dropped” activity, 7, becoming feasible. Once one notes further

the form of the objective function and constraints of (5.1), it is readily
appreciated that maintaining feasibility (i.e. talking A\ = AW at each iteration)
ensures that, assuming the Haar condition holds, one “picks up” a single activity
for each of the initial iterations until one has n+1 activities. Henceforth one
“drops” and “adds” a single activity. Maintaining feasibility ensures that the
dropped constraint corresponds to one of the maximal residuals at the start of
the iteration descending more rapidly than the maintained n activities. It is
equally evident that activities always correspond to a maximum residual (in
magnitude}. Finding an initial feasible point is trivial. For arbitrary z one

merely defines € = Max {afz — 8; , —afz + B;}.
1

The more general form of the stepsize described above introduces a degree
of flexibility analogous to that described in [11] for the general linear
programming framework (see also the comments of Section 8, below). It also has
the advantage that since it is no longer necessary to start at a feasible point,
multiple related, or perturbed problems, can be solved using the previous solution

as the new starting point.

6. Implementation

We will now describe briefly a stable implementation of the above primal
algorithm. The basic ideas are relatively standard, since essentially one is doing
no more than is required in linear programming.

The algorithm has the outline
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{initialize}
repeat
b= p/8
repeat
opt: = false;
{update}
= —Ph;
if {d = 0} then
begin
{obtain 7}
if {n > 0} then
begin opt: = true; break loop; end
{obtain d}
end;
{choose \}
zi=z+ N
until opt

until {feasible}

The section between {update} and {choose A} will be referred to, in brief, as
{choose d}.

For {initialize} we must choose z and g, identify the index sets I°, I* and I~
and construct N. The choice of z and g, in theory, can be arbitrary, although,
as we will see below and have already alluded to, some choices of 2 are
significantly better than others when A and b arise from function approximation
problems.

Instead of constucting N explicitly it is useful to construct a factorization of
N which facilitates the {choose d} operation. Our choice has been to use the

factorization
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” vl

where @ is n+l X m orthonormal and R is a non-singular upper triangular
matrix of order k.

In {update} we must transfer indices amongst I°, I* and I~ as described in
Section 5 above, to account for the just completed modification z: = z + M\d.
The net effect of this modification on N will be to cause one column to be added
and (possibly) one column to be deleted.

Updating the QR decomposition of N under the addition or deletion of a
column is straightforward and is discussed, for example in [8].

In {choose d} we must carry out the operation Ph as well as (possibly)
solving Ny = h for  and NTd = e, for d, where ¢, denotes an appropriate
elementary vector.

To obtain
= —Ph
(6.2) set d = —Q, QFh ,
where @, consists of the last (n+1) — k columns of Q.
We note that d = 0 iff Q7h = 0, so we do not have to compute d in this

case. For most of the algorithm, this is in fact the case and then computing QJh

is not necessary.

To solve

set,
(6.3) u=Qh,

and backsolve
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for n, where @, consists of the first k columns of Q.

To solve
NTd =e,,
forward solve
(6.4) RTu =¢,,
and set
d=Qu,

where advantage should be taken of the special form of ¢,, the column of N
corresponding to e,.

If the components of # are non-negative, the inner loop is broken, and a
check for feasibility is made (which will indicate whether the linear programming
problem has been solved).

If the components of 1 are not non-negative the {choose \} step is to be
carried out as indicated in Section 5. Concurrent with the determination of A we
may adjust I°, It and I~, leaving only N, or more appropriately its QR
factorization, to be updated at the beginning of the loop.

It should be evident that linear constraints can be incorporated into this
scheme with no substantive change to the discussion.

Constraints of the form

grtx 2 Ti»
need only be accommodated as
[0:g] E > 7,

If we make the definitions

-0
Com4r = [gr ] and b9 4 = s
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for all given r and add the inequalities c%,,_,_,. v > 8omqy to (5.2) then Section 5

onward can be read essentially without change. Only the .implementation of the

proposed software requires slight modification. Each column a; which is stored
must spawn two constraints cfv > 6 ;, while columns g, 'give rise to one. An

occasional “if-then-else” suffices to treat both a’s and ¢’s if they are stored in a
single matrix array.

Constraints of the form
glz =1,

can be accommodated by defining ¢, = [;)] and §, = v, and by considering the
[

penalty function

p(v, p) = pedv — 2 min (0, cJv — p;) + 2 |eTv—6, |
2 4

as an extension of the earlier defined p(v, #) of (5.3). This is essentially the
function minimized in [5] and the reader is referred to that paper for details.
The algorithm given there is only slightly different from the one just described.

The major change is to be found in the {choose d} step. If a component 7, of

the vector n given in (5.10) corresponds to a column of N arising from an

equality constraint, the subcase a) corresponds to [7,] > 1 and subcase b)
corresponds to |7,] < 1. Thus (5.12) will change to CTd = —sgn (1.)e, and (5.13)
will hold if & is redefined by

:=h —sgn (n)c,

where the columns of C' are the gradients of the active constraints.
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7. The Choice of an Initial Point

We have shown that assuming the Haar condition holds, the trial
approximation function obtained from the Barrodale and Phillips algorithm after
stage two is a levelled reference function with respect to a determined reference
set. Moreover, the error terms of this reference set satisfy the alternating sign
property.

The classical approximation theory indicates that the best approximation
function is the one whose reference deviation is the maximum residual over all
the data points and the error terms alternate sign.

Given that the primal methods appear to be superior to the dual methods on
random problems [see below for some numerical evidence in support of this
statement] and the classical approximation theory is inappropriate for random
problems, it seems reasonable to conjecture that the apparent demise of primal
algorithms for data fitting approximations is a direct consequence of the fact that
no account of the rich structure of data fitting problems was considered in the
choice of starting points.

Thus we will now investigate the question of choosing a suitable starting
point for primal methods applied to data fitting problems.

A starting point such that the corresponding error terms alternate signs on
the reference set is emphasized. The reason being that this structure would
appear to be more fundamental than the residual value, as the direct algorithm
above is more likely to make the necessary value adjustments rather than making
a sign adjustment. However, we are currently investigating methods that
attempt to take direct account of the sign during intermediate iterations.

In choosing a suitable starting point there are two subproblems to be
considered. One is the choice of the reference set and the other is the choice of
the corresponding parameters so that the approximating errors satisfies the

alternating sign property.
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We use classical theory to determine our reference set and we solve a
suitable system of linear equations to satisfy the alternating sign property.

In an attempt to verify the significance of the conditions necessary to invoke
the classical theory, we also determine a reference set that is uniformly
distributed over the interval of approximation [a,b] whilst still satisfying an
analogous system of linear equations.

We first summarize the required classical results.

Define
(7.1) T,(z) = cos (n cos™ (2)), -1<2<1.

T,,, called a Chebychev polynomial, is an algebraic polynomial of degree n.
It is obvious that the Chebychev polynomial 7, has the following properties.

Lemma 7.1

There are n+41 points

(7.2) zp = cos [ik——:ﬁ

k=1,2,...,n+1

on the interval [—1, 1] such that T,(z) achieves its maximum value 1 and

minimum value —1, alternating with k.

We will also require the following
Theorem 7.2 [14]

Let f be a function defined on [—1, 1] and ¢ be an approximation function
of f in P*7!, the space of all polynomials with the degree less than or equal to

n—1, that is calculated via
n
(73) #(z) = X o 4il2)
with basis functions ¢; (z) where the a;, are chosen to satisfy the linear system

(7.4) f(z)—d(z)= (1€, i=1,2,..., n+l,

in the n + 1 unknowns ; *-- ¢, and &
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Furthermore, our reference set {z}24! is given by (7.2). Then, if f is a

polynomial of degree n, ¢ is the best minimax approximation from P*~! to f.

For a general function, suitably scaled to have range [-1, 1], we are using the
n + 1 term Taylor’s expansion as justification for using the Chebychev initial
point.

In the numerical results that follow we use the terminology ‘“the Chebychev

initial point of degree n” to denote that point (a; - - - a,) that satisfies (7.3)
and (7.4) with reference set (7.2), suitably scaled over the interval [a, b].

We use the terminology, ‘“the uniformly distributed initial point of degree n”
to denote that point (a; - - - a,) that satisfies (7.3) and (7.4) with reference set

b —

na(z'—-l), i=1,..., n+l.

(7.5) z=a+

8. Degeneracy

Degeneracy is a difficulty whose importance is gradually being recognized,
and even for linear problems it cannot simply be waived away with the statement
that a computer’s finite precision automatically results in degeneracy being a
theoretical rather than practical difficulty.

From the point of view of the linear Chebychev problem the degeneracy
with which we are concerned is that of the n; of (5.10) not being uniquely defined

(or equivalently, the activities being linear dependent).

Two approaches that are suitable for overcoming the difficulties is that of
perturbation and solving the optimality conditions explicitly. Our
implementation took the former approach, details of which are given [7].

An example of the latter approach in the context of nonlinear !, problems is

given by [10]. In the case of the linear Chebychev problem, one solves the

bounded least squares problem in 7 (corresponding to 5.10) given by
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E
minimize |}h — > i ¢, [l
=1

subject to n; >0

or alternatively, one can use the I; formulation
k
minimize || — 2 7, c; 1l
f=1 i

subject to n; > 0.

In either case, if a solution with zero objective function exists, one is optimal for
the penalty function, and if feasible, optimal to the original Chebychev problem.

If not feasible, as before, 4 will be reduced. Otherwise or,:e finds a solution that

satisfies the positivity constraints but for which h # > n; ¢j, In this case
i=1

k
> nic;—h is a usable descent direction.
i=1

9. Numerical Results

Our first intention is to indicate that primal methods appear superior to dual
methods on problems that do not correspond to discretizations of continuous
function approximation problems (which we will term random problems).
Problem 1:

With this end in view we ran a series of random problems (1.3). More
specifically we generated (pseudo-) random elements in the interval (—100, +100)
for A and b using the IMSL routine GGUBF. These random problems were
solved by the Barrodale and Phillips routine [1] (BP) and the Bartels Golub
implementation of Stiefel’s method (BGS), [9], as the two best known
representatives of the dual approach. As representative of the primal approach
we will consider the algorithm of Section 5 with two different stepsize choices.
The first corresponds to taking the minimum stepsize A giving the algorithm of

[7] (BCC) and the second corresponds to taking the maximum stepsize consistent
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with descent on the maximum absolute residual, that was first presented in [6]
(BC).

These results are tabulated below.

Each of the methods can be programmed to require only O(mn) work per
iteration step. Thus numbers of iteration steps can be translated, roughly, into
comparative running times. For this reason, and because of the disparate nature
of the codes to which we had access (for example, the BP code uses O(mn) work
per iteration and BGS uses O(n® 4+ mn)), we report the number of iteration
steps rather than run times in our comparisons below and in subsequent results.

BP, BCC and BC codes had = = 0 for their initial point. BGS selects its

own starting point by finding a nonsingular submatrix of [AT : e], where

e=[1,..., 1%
n =2
Number of Steps
m BP BC | BCC | BGS
z=0 | z=0 | =0
50 4 2 3 4
100 5 2 3 6
150 6 2 3 8
200 6 2 3 6
n =6
Number of Steps
m BP BC | BCC | BGS
=0 | z=0 | z=0
50 14 6 7 14
100 14 6 7 9
150 17 8 9 17
200 18 7 8 14
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Number of Steps
m BP BC | BCC | BGS
z=0 | z=0 | =0
50 19 12 13 20
100 29 13 14 19
150 30 14 15 25
200 24 13 14 24

We also include a random problem set with which we can compare the BC
results using three initial starting points, a = 0, the Chebychev initial point
(C-points) and the uniform distributed initial point (D-points), as described in

Section 7.

Problem 2:
Solve the non-data fitting problem

n
oy + .1';2&]‘ ﬁji z‘j—l =V 1+2; * (4ﬂt - 2)

where
:Bi)ﬁjiy i=l,2,...,m, ]‘=2;-";n’

are random numbers in [0,1] and the z; are chosen to be distinct points in [0,1],

distributed uniformly
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Number of Steps

m | BP | BC BC BC
a=0 | D-points | C-points
50 5 3 4 2
100 5 3 4 3
150 6 3 5 3
200 5 2 4 4
Number of Steps
m | BP | BC BC BC
a=0 | D-points | C-points
50 12 7 14 12
100 | 23 6 28 24
150 | 15 9 23 25
200 18 7 24 17
250 | 22 12 19 23
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n =10
Number of Steps
m BP | BC BC BC
a=0 | D-points | C-points
50 30 16 37 30
100 | 40 12 37 47
150 { 28 15 47 48
200 32 14 39 49
250 27 16 34 42
n =14

Number of Steps
m | BP | BC BC BC
a=0 | D-points | C-points
50 38 22 31 30
100 62 24 55 45
150 | 40 22 54 47
200 55 22 69 50
250 59 38 73 57

The results of Problem 1 make both BC and BCC (the primal methods)
appear distinctly superior to (the dual methods) BGS and BP.

As the theory predicts, Problem 2 confirms that D-points and C-points are
of no value for non-data approximation problems. Indeed, the results for these
starting points are quite similar to those of Barrodale and Roberts. However, in

all cases, BC with the zero initial point is noticeably superior.

We now wish to consider approximation problems. Consistent with the
arguments of this paper, we expect that an “intelligent” choice of starting point
would more than eradicate the believed superiority of dual methods in this case.
Thus, in the case of BCC we consider three starting points, 0, C and D. As
before, O corresponds to the initial point =0, C corresponds to Chebychev initial

points and D corresponds to the uniform distributed initial point.



40 Bartels, Conn and Li

Since the algorithm of Barrodale and Phillips is generally considered to be
superior to Stiefel’s algorithm, in what follows we report only the dual results

corresponding to BP.

Problem 3:
Approximate f(z) = ¢?, evaluated for z = 0.0 (0.1) 2.0 (i.e., m = 21) by a

polynomial of degree n—1.

pR)=&+ &z + - + 62"
Letz = [§, &, ..., &)
Number of Steps
n | BP BC BC BC
z=0 | D-point | C-point
4 4 8 4 4
6| 6 | 12 10 6
8 16 16 14 9

Problem 4:

Approximate f(z) = e, evaluated for z = 0.0 (0.01) 2.0 (i.e., m = 201) by a

polynomial of degree n—1.

pz) =&+ &+ - + 627
Letz =[§,..., &.
Number of Steps
n | BP | BC BC BC
2=0 | D-point | C-point
2 3 5 2 2
4 8 27 7 4
6 12 40 13 6
8 | 18 30 17 9
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Problem 5:
Approximate f(z) = sin (z) e™*, evaluated for z = 0.0(0.02) 4.0 (ie.,
m = 201) by a polynomial of degree n—1.

Number of Steps
n | BP | BC BC BC
=0 | D-points { C-points
2 5 5 4 4
4 11 24 7 5
6 17 22 26 16

We also include the Barrodale problems in [1]. Once again, the comparisons
are made with results from the direct method of Bartels and Conn with =0, the
initial point produced by Chebychev point, the uniformly-distributed initial
points, and the BP algorithm.

Problem 8:
Approximate following f(z), evaluated for z = 0 (0.01) 1 (i.e., m = 101) by

a polynomial of degree n—1:

#(z) = 2 a; 2770

Jj=1

Letz = (o, ..., a,).
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Number of Steps

n | BP | BC BC BC
=0 | D-points | C-points

2 3 8 2 2

3 6 7 4 3

4 8 17 6 4

5 9 16 8 5

6 12 23 13 6

7] 14 18 12 8

8 16 29 13 14

Number of Steps

n | BP | BC BC BC
=0 | D-points | C-points

2 4 7 2 2

3 8 12 3 3

4 | 11 17 6 4

5 12 14 9 5

6 | 12 27 11 6

7 18 32 14 7

8 | 15 29 19 12
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1(z) = log (1+2).

Number of Steps

f(z) = sinh (2).

n | BP | BC BC BC
z=0 | D-points | C-points

2 3 10 2 2

3 7 10 3 3

4 7 20 5 4

5 12 16 8 6

6 13 36 9 6

7 15 20 14 9

8 15 33 22 10

Number of Steps

n | BP | BC BC BC
=0 | D-points | C-points

2 3 9 2 2

3 6 9 5 3

4 8 23 8 4

5 9 23 6 5

6 12 23 13 6

7 14 20 16 12

8 | 16 26 23 19

43
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5. f(z)=erf (2).

Bartels, Conn and Li

Number of Steps
n | BP | BC BC BC
=0 | D-points | C-points
2 5 8 2 2
3 6 12 4 3
4 9 20 5 4
5 10 13 16 10
6 14 31 15 6
7 12 22 12 10
8 17 25 20 9
6. 2
f(z)=¢?
Number of Steps
n | BP | BC BC BC
=0 | D-points | C-points
2 5 8 2 2
3 8 16 4 3
4 12 21 6 4
5 10 15 7 5
6 | 13 30 11 7
7 13 34 14 7
8 16 28 12 13

From the results tabulated above, we notice that the Chebychev initial point

is indeed a better choice if the basis function space L =< ¢; ;1 =1, ...

satisfies the Haar condition.

examples.] Comparing the last column (C-points) with BP, we observe that BC
algorithm performed much better than BP in most cases and a significant
improvement over z=0 is achieved. If we compare the D-point column with BP
and 2=0, we note that in addition, the initial D-point has a significant

improvement over z=0 although it is typically, as expected, inferior to the

Chebychev initial point.

[L satisfies the Haar condition in all the above
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We now consider some data fitting problems for which either the Haar

conditions are not satisfied or the function being approximated is not continuous.

Problem 7:
A. Approximate f(z) =14 2z + 22+ 2* + 2* + g(2)

5 for094<2<10
g (2)= 0 for all others /

evaluated on the points z = 0.0 (0.02) 1.0 using a polynomial of degree n—1.

Number of Steps
n | BP | BC BC BC
=0 | D-points | C-points
2 3 8 2 2
4 10 21 14 15
6 | 11 44 19 23
8 | 14 45 37 16

B. Approximate f(z) = 1 + z + 22 4+ 2% + 2% + g(2)

5 for05<2<038
9(2) = 0 for all others

evaluated on the points z = 0.0 (0.02) 1.0 using a polynomial of degree n—1.

Number of Steps
n | BP | BC BC BC
z=0 | D-points | C-points
2 6 3 3 3
4 9 9 6 6
6 13 21 11 15
8 24 37 17 18

Problem 8:
A. Approximate the following functions evaluated for z = 0.0 (0.02) 1.0

(i.e., m = 51) by the cubic spline
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3'221 (€ 2771 + €54 max [(z — ;)% 0))

where 7, are given by

Y= 0.1, Vo = 0.2, g = 0.4, Vg = 0.7, fl(Z) = \/;, fQ(Z) = V142,

fz) = sin [7] f(z) = log (1+2)

Number of Steps
F | BP | BC BC BC
2=0 | D-points { C-points
i 12 33 25 28
fo | 13 26 18 21
fs 13 24 19 19
.l 12 | 19 16 20

B. Approximate the following functions evaluated for z = 0.0 (0.02) 1.0

(i.e., m = 51) by a piecewise linear function:

#(2) = gi(2) + go2) ,

Jat+tmz if z < a;
9(2) = 0 otherwise
(my — my) + e+ maz
1 2 ! * fz<o;
9:2) = 0 otherwise

where a =05, fi(z) = 22, fz) = Vz, f4(z) = sin [%i], fi(z) = log (142)

and c,, m;, m, are the variables, i.e. z = (¢}, m;, m,).
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Number of Steps
F | BP | BC BC BC
=0 | D-points | C-points
i 6 6 10 11
fa 5 6 3 4
s | 5 6 5
| 7 5 8

Problem 9:
Approximate y = 2 + 2 by

y=0ay+ o a2+ azt

on the interval -2, 2]. Let a = (ag, o), ay).

Number of Steps
m BP | BC BC BC
a=0 | D-points | C-points
4 3 2 2 2
10 6 3 3 5
20 8 4 5 5
60 11 4 8 8
100 | 12 4 7 7

In Problem 7, the functions to be approximated are not continuous. The
numerical results are inconclusive as to which method is preferable.

In Problems 8, and 9 the Haar condition doesn’t hold for the basis space.
For Problem 8 B), the BP algorithm indicated that the solution may not be
unique while the BC algorithm found different solutions for different starting
points. The residuals for both algorithms did not satisfy the alternating sign

property at termination.
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9. Further Remarks and Conclusions

It is interesting to note the connection between the linear !, and [, problems.

Firstly, they are dual problems in the functional analysis sense. That is,

they correspond to !, and !, normed spaces, where 1 + 1_ 1, in the limiting
p q

casep =1 g =00

Consequently, all things being equal, one would expect to be able to solve
both problems equally well — or at least, failing to do so, one might always solve
one via its dual. In actual fact, until around 1972, the most effective algorithm
was most probably that of Barrodale and Young [4], for the I, problem, although

l, and [ algorithms were almost comparable. However, in 1974, the I, algorithm

of Barrodale and Roberts [3], was clearly superior. In other words, at this time

we were more proficient at solving the [; problem than the [, problem.

Arguably, the fact that the algorithm of Barrodale and Roberts was, in linear
programming terms, not restricted to choosing a stepsize corresponding to the
first feasible vertex, was a significant contributor to this superiority.

We now note that the penalty function approach enables us to incorporate a

similar relaxation in the case of the I, problem. This is best illustrated by
looking at a simple example.
In the case of the !, problem — a typical line search along d for

F(z) = ‘21 laf z — b; | might be as depicted in Figure 1

A standard linear programming approach (or that of Barrodale and Young, which
is essentially a standard linear programming approach that incorporates some

efficiencies because of the special structure of the I, problem) would choose the
stepsize A = A\;. By contrast, the algorithm of Barrodale and Roberts would
choose the stepsize A = Aj.

Analogously, if we were to consider the [, problem with

F(z) = max | fi(z)| we might have F(z) as depicted in Figure 2
1<i<m
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F (x+\d)

\\Z

Figure 1

F(x)

Figure 2
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A method based on a standard linear programming primal formulation would

take a stepsize A = A\;. However, consider the primal linear program solved via a
penalty approach. At A = 0, our objective £ would have the value |f,(z)| and
€ — fi(x)or €+ fy(zx) would be active. Now past X\ = \;, £ — |fy(z)| > 0 would
become violated, but since |fo(z)| is decreasing for X > \; our penalty function
would continue to decrease [it corresponds to &€ — (€ — |fy(z)]) = |fo(z)] ] and
thus we would take A = X, for our stepsize.

With respect to the numerical results presented above, it is noteworthy that,
for many of the examples presented, the results of the primal approach of Bartels
and Conn is close to the best possible, in that normally one would expect to
require at least n+-1 iterations.

In conclusion, it has been observed that indirect (i.e. dual) methods perform
better on data fitting problems. See for example [13] page 157, in addition to the
earlier cited references. We have shown that the initial point generated by the
algorithm of Barrodale and Phillips gives a trial approximation whose error terms
possess the alternating sign property, if the Haar condition is satisfied for the
basis space and the function to be approximated is continuous. It is the claim of
this paper that this is the most significant aspect of the apparently superior
performance of dual methods on data fitting problems.

We are able to generate equivalent starting points for primal methods, in an
amount of work equivalent to solving a square linear system in the number of
unknowns. Consequently it is worth giving some thought to the representation of
the basis functions. For example, if one is approximating by a polynomial of
degree n one could likely choose a Newton form of the type

1, (x—2zy), (z—2 f(z—2) , . . -, _Hl (z—2;) for basis functions. One is then able to

generate the starting point in O(n2) work, which compares favourably to the
O(mn) of a single iteration. We then demonstrate that, with such a choice of
initial point, the primal methods are superior to dual methods in the case of

data-fitting problems that satisfy the same Haar and continuity conditions.
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In the case where we have a data fitting problem which does not satisfy
either the Haar-condition or the continuity condition a choice of a good initial
point is unclear and, as is to be expected, there are examples for which any of

the considered algorithms might be superior.
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