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Abstract

One of the interesting differences between Circumscription and
other proposals for formalising nonmonotonic reasoning is the ability
to partition predicates into varying and fixed predicates. In this pa-
per we show how corresponding distinctions can be added to default
reasoning systems. A way to implement this, as well as some potential
applications are discussed.
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1 Introduction

Circumscription [McCarthy86,Lifschitz86| has one interesting feature which
is not shared by other systems for non-monotonic reasoning. This is the
ability to distinguish between relations which are able to vary when making
assumptions about other relations, and those which cannot.

As shown by {Etherington85] this distinction is essential to circumscrip-
tion. If no variables are allowed to vary, then circumscription can only
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change the relation being minimised. This is not very interesting from the
point of view of finding the consequences of one’s assumptions.
The following example shows what varying and non-varying means.

Example 1 Let our default be “ontable”. Let the only other thing given
as an axiom be
red = —ontable

Intuitively we want this to mean that a block is on the table by default,
however if it is red then it is not on the table.

In each of [Reiter80,Poole86,Moore84] we can “deduce” ontable. ontable
can also be proven from the circumscription [McCarthy86] with red allowed
to vary. In each of these, ontable is consistent with all of the facts, and so
can be assumed. Once we have ontable, we can conclude —red.

The problem with this is that the side effect of concluding something
about the redness of the block may not be desired. We may not want to
assume anything about the redness of the block. An alternate answer to
the question of whether the block is on the table is “yes, unless it is red”.

If one circumscribes red = —ontable, with red fixed (not allowed to
vary) then one does derive ontable = —red. Note also that ontable does not
follow from the circumscribed formula (in some sense we still need some
form of conditional answers as suggested by this paper).

Example 2 Let us suppose we had no defaults and the fact
—red => ontable

This says that a block is on the table if it is not red, and says nothing about
the case if a block is red. From this, we cannot conclude ontable.

These two examples are interesting if we are allowed to reason by cases.
Consider the two cases of the block being red and the block being not red.
In each of these cases the second example provides stronger support for
ontable being true than the first example. If red is false, then the second
says that ontable is true; the first says it is true by default. If red is true,
the first says that ontable is false; the second says nothing about whether
it is true or false.
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The difference is when we do not know whether the block is red or not.
In the first case, it allows us to assume that it is on the table (and so not
red), and in the second we are not allowed to assume anything.

The problem is how to handle the side effects of making assumptions.
It would be nice to only make these side effects explicitly, and to be allowed
to control implicit side effects of making assumptions. This papers shows
how this can be done effectively in a default reasoning setting.

2 Formal Framework

This work is placed in the context of Theorist [Poole86,P GA86|, but seems
to be applicable to all systems which use consistency or failure to prove as
a basis for concluding things.

We use the standard syntax of the first order predicate calculus, with
variables in upper case.

F is a set of closed formulae (called facts), which we are giving as true

A is a set of formulae, from which instances can be used as a possible
hypotheses?.

Definition 1 We say formula ¢ is explainable if there is some D, a set of
instances of elements of A, such that

FUuDkg

F U D is consistent

D is said to be the theory that explains g.

3 Fixed Predicates

In this section we introduce the notion of fized predicates. These should
be interpreted as those predicates about which we do not want to be able
to make implicit assumptions. For example, in the example above, we

lw € A is equivalent to [Reiter80]’s normal default : Mw/w [Poole86].
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could make red fixed if we did not want the system to be able to make an
assumption (as a side effect of the defaults) of the block being red. Let ®
be the set of fixed predicates.

Definition 2 g is conditionally explainable from F, A and ®, if there is a
set D of instances of elements of A, and a formula C made of instances of
elements of ® (under conjunction, disjunction, negation), such that

1. FACADEg
2. FAC A D is consistent

3. if FACAD = ¢, where ¢ is a formula made from elements of @,
then FAC [ ¢.

D is said to be the theory that explains g, and C is the condition for D.

Example 3 consider

F = {red = —ontable,on floor = —ontable},

A = {ontable} and

® = {red}.

The intended interpretation is that we may assume that the block is on
the table, but we cannot make any assumptions about the redness of the
block. Here ontable is conditionally explainable with theory {ontable} and
condition {—-red}. This is to be read that the block is on the table if it is
not red. We have allowed the side effect that on floor is affected by the
assumption.

Example 4 Let
A = {ontable,redon floor}

F = { red = —ontable,
red A redon floor = on floor,
on floor = down,
ontable = down}

® = {red}
We can conditionally explain ontable with the theory {ontable} and

the condition —red. We can conditionally explain on floor with the theory
{redon floor} and the condition red.
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Intuitively, we should have more confidence in down as it can be ex-
plained independently of whether the block is red or not. If it is red, then
it is on the floor; if it is not red then it is on the table. In either case it is
down. The following definition formalises this intuition.

Definition 3 g is unconditionally explainable from F,A,® if g is condi-
tionally explainable with theories D; and corresponding conditions C; for
¢ =1,n, such that F =C1 V...V Ch.

Example 5 In the previous example, down is unconditionally explainable.
D, = {ontable}, Cy = —red, D; = {redon floor}, C; = red.

The following example shows that a goal can be unconditionally explainable
(definition 2), yet not explainable (definition 1).

Example 6 Let A = {ontable,on floor},

F = {red A ontable = g,—red A on floor => g,ontable = —on floor},

® = {red}.

In this case we can unconditionally explain g, with D, = {ontable}, C; =
red, D; = {onfloor}, C; = —red. g is not explainable, as the only poten-
tially explainable theory is {ontable,on floor}, which is not consistent.

The preceding examples shows the intuition behind the fixed predicates.
They are intended to be predicates which can subsequently (and indepen-
dently) be shown to be true or false. We want to ensure that an answer
can be found independently of whether they turn out to be true or false.

This means that some relations should not be fixed, for example on floor
should not be fixed with ontable allowed to vary, as these are not indepen-
dent conditions. ontable and red may be independent, in so far as we may
find out later whether the block is indeed red, and we want to reason about
whether the block is on the table independently of whether the block is red
or not.

Possible applications of this may include

¢ in planning we may want to have a plan depending on some condition
which is not known at the time, but which can be determined when
the plan is executed. We would like the plan to work whether the
condition turns out to be true or not.
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e in decision making where we do not want to make a condition implicit
upon some condition which we cannot determine. We may want to
make sure our decision is appropriate whether or not some person
is telling the truth. In this case we want to be able to explain our
decision independently of whether the person in honest. This is done
by making honesty fixed, but unknown.

e in a diagnostic setting, it may be appropriate to make the values of
some tests fixed. If we can explain the same results independently
of the value of a test, then it is not appropriate to carry out the
test. If different diagnoses are conditionally explained, then the it is
appropriate to carry out the tests defining the conditions.

4 Comparison to other systems

The only other system which makes a distinction similar to the one in this
paper is Circumscription [McCarthy86,Lifschitz86].

The underlying logic in this paper is similar to other systems which rely
on consistency or failure to prove as the basis for conclusions. Elements §
of A correspond to Reiter’s [Reiter80] normal defaults of the form : Mé/6
[Poole86], and also seem to correspond to ~L—6 = § in [Moore84]. These
systems, however, do not make the distinctions made in this paper.

The definition given here for conditional explainability does not exactly
correspond to circumscription (minimising the negations of the elements
of A). Consider example 6, where we unconditionally explain g. If we
circumscribe {-ontable,—onfloor} with red fixed, then we just add the
formula ontableVon floor to the axioms, from which we still cannot conclude
g.

The difference is that we treat fixed predicates as relations for which we
do not know the truth values, and for which we may not assume that they
have any values as a side effect of other assumptions. We can uncondition-
ally explain some goal if we can explain the goal no matter what the values
of the fixed predicates are. We are assuming that the values are implicitly
knowable. We may not know which theory is appropriate until we know
the values. Circumscription, however treats fixed variables as somehow un-
knowable. We must be able to give a theory independently of the values of
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the variables. This seems to correspond to the following definition:

Definition 4 g is consistently unconditionally ezplainable if g is uncon-
ditionally explainable with theories Dy,..., D, such that D; A ... A D,, is
consistent with F.

In this case, if we have D = Dy A...A Dy, then FAD =g andif FAD |~y
then F |=~. That is g is explainable from theory D which does not affect
the truth of values of 4. A detailed comparison with Circumscription is
beyond the scope of this paper.

5 Implementation

Note that the notion of explainability for the predicate calculus is undecid-
able (not even recursively enumerable). The following is argued in terms of
a theorem prover which halts. If the system does not halt, then we cannot
conclude explainability or not. The procedure will be given in terms of a
complete backward chaining theorem prover (for example linear resolution
[Chang73], which is complete in the sense that a goal can be proven if it
follows from a consistent set of axioms).

Essentially the “algorithm” follows the definition of explainability. To
unconditionally explain g from F, A, T, try to prove g from FUA UT.
Make D the set of instances of elements of A used in the proof. Make Cy
the set of (positive and negative) instances of elements of T' which cannot
be proven from F. If we find a proof then we know

FuDUCGCy =g

We can check conditions (2) and (3) of definition 2 for conditional explain-
ability, by trying to prove =(D A Cp) from F together with I'. Let C; be the
conjunction of instances of elements of I' used in each proof of =(D A Cj)
which could not be proven from F. If one C; = {}, then FUDUC, is incon-
sistent. Otherwise we have F A C; = —(D A Cp), that is F A D A Cy = —C;
for all z.

We now have g is conditionally explainable from theory D and condition
C = Co AN;—C;. We know F A D A C is consistent as F A D A Cy is
consistent (as a complete theorem prover failed to prove it is inconsistent),
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and it implies ¥ A D A C. Property 3 of definition 2 holds by virtue of
how we constructed C. Essentially we added all of the elements of I which
F A DA C implied, to C.

To compute unconditional explainability of g, we now try to explain g
from F A ~C, if it is consistent. If it is inconsistent, then we have F = C,
and so ¢ is unconditionally explainable; otherwise we must cover the other
cases, until the generated conditions cover all cases.

6 Conclusion

We have shown how the notion of fixed predicates may be defined for De-
fault reasoning. A few examples of how this may be useful are suggested
(but, of course, only experience will tell us how useful this notion is). An
implementation is outlined which is not very much more complicated than
the implementation for default reasoning [PGA86,Poole87] (the problem is
undecidable, so it is hard to give a comparison).

The most valuable contribution of this paper is probably in that it
provides one more piece of the jigsaw puzzle to give a comparison of two
of the major proposals for formalising non-monotonic reasoning, namely
default reasoning and Circumscription. A detailed comparison is beyond
the scope of this paper.
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