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Abstract

The prototype programming language ForceOne is a general-purpose highly-expressive com-
piled procedural language. It provides a few orthogonal primitives, and its expressive power is
derived from combinations of these primitives. ForceOne unifies the syntax for array element
selection, procedure argument binding, and record element selection. The actions of binding
arguments to a parameter and calling a procedure are separated. Overloaded identifiers, impli-
cit conversions (coercions), and polymorphic procedures may be defined by the programmer.
Visibility of identifiers is controlled both by block structure and by the location of objects
within a hierarchical file system. Source files are separately compiled, and the compiler
automatically determines which source files have been changed or have been affected by a
change since the last time the program was compiled. The ForceOne language is defined and
a prototype compiler for the language is described briefly.
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Chapter 1

Introduction

Why?

1. Why Programming Languages?

Computers are directed in a deterministic sequential manner according to an algorithm. Algorithms
are expressed in programming languages. Unfortunately, most computers take direction in only one
language: machine language. A program written in machine language is simply a sequence of bits. Such
programs are very difficult for humans to read, write, or modify. For this reason, we invent programming
languages in order to express algorithms in a manner more understandable to humans.

2. Why New Programming Languages?

The world abounds with many different programming languages all invented for the purpose of
expressing algorithms. Each of these languages is capable of expressing the same algorithms; this can be
proven by implementing any one language in terms of any other. Intuitively though, it seems that an
expression of an algorithm in one language may be better than its expression in another. If it is generally
true that the expressions of most algorithms in one language are better than in another, we say that the
first language has greater expressive power. We continue to invent new programming languages in an
attempt to provide greater expressive power so that the expressions of our algorithms will be easier to
write, easier to read, and easier to modify.

8. Why Compiled Programming Languages?

In order to execute an algorithm expressed in a programming language on a computer, we must map
that expression into the machine language for that computer. There are two approaches taken to per-
forming this mapping: interpretation and compilation. An interpreter reads the source program and per-
forms machine instructions to correspond to the logical operations of the source program. Translation is
performed every time the program is executed. A compiler reads the source program and generates a
machine language program which implements the same algorithm expressed in the source program. This
machine language program is then executed directly by the computer. Interpretation does not involve
any intermediate steps between the writing of the program and its execution; compilation places some res-
trictions on the design of the programming language but allows for much faster execution of programs.
Compilation also allows for the detection of some errors before the program is run or distributed.



4. Why ForceOne?

ForceOne is intended to be a general purpose compiled programming language with greater expres-
sive power than contemporary compiled languages. The expressive power of ForceOne is derived by
combining primitives from a small set of very general orthogonal primitives. ForceOne is perhaps best
viewed as a language kernel; it is sufficiently extensible that many features typically built into other
languages are instead implemented by ForceOne source code.

Some of the more novel features of ForeeOne are user defined types, overloaded identifiers, user
defined automatic conversions (coercions), parameterized objects, and polymorphic procedures. Force-
One programs may be written in many source files which are arranged as a tree structure within the file
system. Visibility of identifiers is controlled implicitly by the structure of the source file tree. The
ForceOne prototype compiler allows separate compilation on a source file basis, with the order of compi-
lation determined automatically by the compiler.

The philosophy behind programming in ForceOne is that programs should be written as a set of
small independently compilable modules. The smaller the units of compilation, the less work must be
done to recompile the program in the presence of minor changes. Furthermore, if we assume that
modules will always be small, we can build a more efficient compiler. The prototype ForceOne compiler
builds a parse tree in memory for the entire module being compiled. Although this compiler cannot com-
pile large modules, it is much faster than compilers implemented as several programs passing information
from one to another, such as the C compiler on Unix. This approach is especially viable for personal com-
puters which may have a megabyte or more of memory but slow disks.

ForceOne has been designed with the aim of generality. Exceptions and special rules have been
avoided wherever possible, and the syntax is lightweight. A prototype compiler for ForceOne has been
implemented. The code generation phase of the compiler is not complete, however virtually all the
features of ForceOne have been implemented up to the point of generating complete decorated parse
trees.

This thesis primarily describes the ForceOne language, and not its implementation. It is hoped
that this definition of ForceOne will provide a solid foundation upon which a truly useful production
language can be built (ForceTwo?).



Background

ForceOne evolved from several predecessor languages. The first and most influential of these was
L, presented in [Cor 81, Cor 83]. This language embodied the essentials of the type structure and
separate compilation mechanisms of ForceOne. Leclerc’s language L [Lec 84] was developed from
Cormack’s L although it did not contain many of the more powerful features of the type structure. M
[Jud 85] was also developed from Cormack’s L, and contributed to the design of records. Finally, the file
structure is enhanced from Thoth [Car 79].

ForceOne was developed in parallel with the language Zephyr [Cor 85]. Zephyr was designed with
the intent of becoming a production language. ForceOne, on the other hand, was being designed while a
prototype ForceOne compiler was being constructed; ForceOne stopped evolving sooner than Zephyr
did in order that the implementation could proceed. Two reports [Cor 86a, Cor 87] and [Cor 86b| exam-
ine in greater detail the ForceOne type structure, the philosophy behind its design, and some problems
which it easily solves.

The rest of this thesis is organized into four chapters. Chapter two gives a brief overview of the
novel features in ForceOne and compares them with similar features in other languages. Chapter three
is a reference manual for ForceOne, and discusses its novel features as well as its unexceptional features
in greater detail. Chapter four describes the implementation of a prototype compiler for ForceOne, and
presents the most important algorithms used in the compiler. Finally Chapter five discusses some prob-
lems that have been discovered with ForceOne, presents some solutions, and suggests additional useful
features. This chapter also elaborates on the derivation of ForeceOne from its predecessor languages.
The appendices contain information useful when learning to program in ForceOne, including a complete
grammar for the language.



Chapter 2

The ForceOne Solution
Comparison and Summary

This chapter discusses the presentation of four major language features in existing programming
languages. While some languages present good implementations of one or two of these features, only
ForceOne presents satisfactory implementations of all four features. A brief introduction to ForceOne
is then given, and the presentation of these features in ForceOne is outlined.

The four features which will be discussed are overloading, coercions, parametric polymorphism, and
modularity. Overloading is the assignment of two or more meanings to a single identifier or operator, and
the selection of a particular meaning based upon information from context. Coercions are conversions of
an object from one type to another which are not specified by the programmer but are determined by the
compiler from context. Parametric polymorphism is defined by Cardelli [Car 85] to mean the parameteri-
zation of an object by a parameter which may be of many types. Modularity is the ability to encapsulate
related entities into a module which provides an external interface to these entities but may restrict
access to their internal structure. An abstract data type is a form of module which allows no access to
the internal structure of the module. These features are all desirable in a programming language because
they all serve to increase the expressiveness of the language and to decrease the complexity of programs
written in the language. Overloading aids in conservation of names; coercions increase both writability
and readability; polymorphism aids the creation of libraries of general purpose re-usable software; and
modularity enhances the modifiability of software by reducing the extent to which a change to one
module can affect the rest of the program.



Existing Languages

1. Overloading

PL/1 [PL1 76] is one of the oldest languages providing user-defined overloading. In PL/1, a gen-
eric statement groups together a number of procedures under a common name. When the generic name
is used, the appropriate definition is selected according to the types of the actual parameters. These
types are not matched against the formal parameter types of the procedure definition, but are matched
instead against abstract type specifications in the generic statement. A disadvantage of the generic
statement in PL/1 is that all of the overloaded functions must be specified in one common place; there is
no method to add another definition elsewhere.

In Algol 68 [Wij 76], operators may be defined by the user and may be overloaded. Selection is done
by matching formal and actual types. Operators, unlike procedures, are not first-class in Algol 68; they
may not be assigned or passed as parameters.

In Ada [Ada 83], operators, functions, and enumeration literals may be overloaded by the user. The
types of the parameters and the desired result type are used in selection. There is no way of preventing
functions that have the same name from overloading one another. Furthermore, if two names would nor-
mally overload but cannot be distinguished because their parameter types are identical, the more recent
definition hides the earlier one.

C++ [Str 86] allows user-defined overloaded operators and functions. Overloaded operators are
resolved by one bottom-up pass over the expression, so the result type may not influence the selection.
Overloading of parameterless objects is not possible in C++ for this reason.

Clu [Lis 77] is a fairly recent language based on the class concept of Simula 67 [Dah 70]. In Simula
67, a class describes a set of values and a set of operations. Each instance of the class has its own value,
and its own set of operations. While Simula 67 does not allow user-defined overloading, Clu allows defini-
tions of a function from different clusters (classes) to overload. When this function is applied the first
parameter determines the cluster to which the function belongs.

2. Coercions

PL/1 does not allow user-defined coercions, but it does have a wide variety of builtin coercions
which may be applied transitively: almost any type can be converted to any other type. The conversion
rules in PL/1 often yield unfortunate results. For example, the integer 123 when converted to CHAR(3)
is first converted to * 123" and then to * ’.

C [Ker 78], Pascal {Pas 80}, and many other contemporary languages provide a fixed set of builtin
coercions. However, none of these languages take the type of the eventual result into account when
selecting coercions for an expression. It has become accepted by the computing community that the
statement

float x;
x=1/ 3;

assigns to X the value O, where a novice would quite justifiably assume that x should receive the value
0.333...



C++ allows user-defined coercions. At each step in a bottom-up pass over the expression tree, a
particular definition of an overloaded operator will be selected if no coercions are required to match its
arguments. If no such definition exists, there must be only one definition that can be matched by apply-
ing coercions to some of its arguments. Suppose we introduce the new type complex along with the con-
stant 1 and the overloaded operator + which accepts two arguments of type complex and yields a result
of type complex. We create two coercions which convert from real to complex and from complex to
real. The expression

complex ¢;
c=1.0+1;

cannot be resolved by C++ since there are two choices available: either 1.0 can be coerced to complex
and the complex version of + used, or 1 can be coerced to real, the real version of + used, and the
result coerced to complex.

3. Parametric Polymorphism

Traditionally, parametric polymorphism has been achieved either through loopholes in type checking
or by the use of macro processors. C allows the definition of polymorphic functions simply by not check-
ing that types match across function calls; it is up to the programmer to ensure he is doing something
sensible. The function printf is the best example of this. printf accepts one or more arguments of
any type; their types are encoded as a string which is passed as the first argument.

Algol 68 provides a more controlled approach known as a type union. Functions that operate on
union types are in a sense polymorphic, though they must enumerate all possible types on which they
operate. Algol 68 provides a uniting coercion that allows actual parameters to match the more general
formal parameters. When the union type is used, a form of case statement called a conformity
clause is used to determine the actual type of the parameter. Algol W [Sit 72] has unions only for
reference types. EL1 [Weg 74] is a language that allows type manipulation and operations to be speci-
fied on objects whose type is known only at run time. However, these objects behave like unions: the set
of possible types must be known in advance, and polymorphic operations are akin to case statements.

Simula 67 provides a polymorphic facility via class hierarchies. A general class may be defined that
has a number of operations defined on it. These operations then automatically apply to any subclasses
that are derived from this class. The superclass may also specify virtual functions that must be
defined in the subclass. The Simula 67 class structure requires that all classes (and hence functions) be
organized into a strict hierarchy, which severely restricts the nature of polymorphism that can be
expressed in this way. Some languages (Taxis [Myl 80], for example) have multiple inheritance which
allows a subclass to be derived from more than one superclass, ameliorating somewhat the restrictive
nature of class hierarchies.

Clu reinforces the Simula 67 notion that a class contains the definitions of all permissible functions.
However, inheritance and subclasses are abandoned in Clu in favour of parameterized generic clus-
ters. A generic cluster is a template that describes an infinite set of clusters. A generic clus-
ter cannot be used directly; a specific member of the set must first be instantiated by the programmer.
Upon instantiation, constant parameter values are substituted and a new cluster is created. Ada pro-
vides polymorphic functions by special generic program units that resemble generic clusters.

Russell [Don 85 is a language that uses full run-time typing and type inference to provide polymor-
phism and considerable expressive power: types are first-class values that are computed by procedures
and may be stored in variables. The notion that a type is the set of all permissible operations is essential
to Russell - the run-time representation of a type is a list of procedures and a reference to a procedure is



an index into this list. A recent implementation of Russell [Boe 86] attempts to verify statically the type
consistency of the program. The language Poly [Mat 85|, based on Russell, has sacrificed some expressive
power to simplify the language and its implementation; the essential philosophy is unchanged.

ML Mil 78, Mil 85] is a functional language which does not have types or declarations in the tradi-
tional sense. An inference algorithm is used to infer the usage of functions, and to ensure that all uses of
a function are consistent. Two consequences of this approach are that functions cannot be overloaded,
and that only first order polymorphism can be expressed. A first order polymorphic object is an object
with a parameter which may be matched by an infinite number of argument types. A second order
polymorphic object is an object with a parameter whose argument must match a first order polymorphic
object.

4. Modularity

Early languages provide only a weak form of modularity. Simula 67 allows objects and functions to
be grouped together into classes, however no mechanism is available to prevent access by functions out-
side the class to the internal details of the class. More recently the need for the ability to hide informa-
tion has been recognized, giving rise to the concept of an abstract data type. An abstract data type con-
sists of a type plus a set of operations available on objects of that type. The internal details of the type
and its operations are not available outside the abstract data type.

Modula 2 [Wir 82] is a Pascal-like language which allows objects to be encapsulated within a
module. The types and operations to be visible outside the module must be listed in an export 1list.
The types and operations of other modules used within a module must be listed in an import 1list.
This redundant specification of the visibility of names means much writing for the programmer, and tends
to encourage the use of standard import lists which simply import everything under the sun. Ada has
packages which are similar to Modula 2’s modules although the mechanism is somewhat less verbose.



ForceOne

Each object in ForceOne has a type which describes the set of values it may take on. The func-
tions which operate on objects of a particular type are not considered to be part of that type. Types are
not first-class values; they are manipulated only at compile time.

A type declaration introduces a new type which is implemented as some base type, but is neverthe-
less unique. The type declaration also defines two functions, retype and detype, which convert from
the base type to the new type and from the new type to the base type respectively. These functions are
overloaded. By restricting access to retype and detype, the programmer can make the new type
opaque. By providing automatic conversions, the programmer can make the new type essentially inter-
changeable with the base type.

Primitive types in ForceOne include int, real, bool, char, and void. ref types describe
storage that holds a value of a particular type, as in Algol 68 [Wij 76], e.g. Tef int. routine types
describe executable procedures that yield a particular type as a result, e.g. routine bool. record
types contain fields of various types; declaration of a record type also defines functions to access these
fields. Types may be parameterized. A typical parameterized type might be

[ real, int ] routine real

This type is the ForceOne equivalent of a Pascal procedure. Arrays are constructed by parameterizing
a ref type.

[ 1..10 ] ref int \ an array of 10 int’s
[ 1..4, 1..4 ] ref real \ an array of 16 real’s

1. Overloading in ForceOne

ForceOne provides both hiding and overloading of identifiers under control of the programmer.
Any identifier will overload earlier definitions of the same identifier if its declaration is prefixed with the
keyword overload. If overload is not present, the declaration hides all earlier declarations. For exam-
ple,

overload i: ref int

declares 1 as an int variable which overloads all previous definitions of i whose declarations were also
preceded by overload. Any identifiers except those representing types may be overloaded; all that is
required is that their types be different. In resolving overloaded identifiers, the result type of the expres-
sion may affect the selection as in Ada.

2. Coercions in ForceOne

ForceOne provides two kinds of user-defined coercions, called widenings and narrowings. A nar-
rowing is intended to be a coercion which loses information in coercing to a narrower type; a widening
preserves information. The ForceOne compiler uses several rules to select among overloaded identifiers
and coercions in an expression. The rules are set up so as to try to preserve the most information by
doing a calculation in the widest of its operand and result types. For example, if the environment defines



«/*: [ int, 4int ] int
/*: [ real, real ] real
widen int_to_real: [ int ] real
narrow real_to_int: [ real ] int

which are the natural / operations and coercions for the types int and real, then the expression

x: ref real

x :=1/3
yields the value 0.333... Both 1 and 3 are widened to real, and the real version of / is used. Similarly
the following example assigns to 1 the value 1.

i: ref int
i:=1/3+0.7

3. Parametric Polymorphism in ForceOne

ForceOne provides parametric polymorphism through a mechanism called query parameters. In a
formal parameter list, all or part of the type of a parameter may be replaced with ? identifier, as in the
following specification of the routine poly.

poly: [ a: ?t ] routine int

poly accepts only one argument but has two parameters, one of which is implicit. The value of the argu-
ment is bound to a, and the type of the argument is bound to t. Within poly, t is considered a new
type, distinct from all others in the program. Typical calls to poly might be

i: ref int
polyl 1 ]
poly[ 1 + 2.0 ]

An argument of any type may be passed to poly; the effect and implementation is identical to coding
poly as

poly2: [ t: type, a: t ] int
and passing the type explicitly as follows.

i: ref int
poly2[ int, i ]
poly2[ real, 1 + 2.0}

Another mechanism known as automatic parameters allows the programmer to specify requirements
for the calling environment of a procedure. Parameters following || in a parameter list are automatic
parameters. When a parameter is specified as automatic, the user provides no corresponding argument;
the compiler will search the symbol table at the call site to find an identifier of the appropriate type to be
passed as the automatic argument. Automatic parameters are generally used in conjunction with query
parameters in order to allow a routine to perform operations upon its polymorphic parameters. For
instance, the following specification of ** allows a user to call ** in the usual infix manner, but *x*
requires that whenever it is called a * must exist which *% uses to implement its operation.
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‘#x*: [ a: ?t, b: dint || “* : [t, t1 t]t
* is passed implicitly, as shown in the following call to *x*.

‘x: [ real, real ] real ==
i: ref int

x: rtef real

X = 2.3 %k 1

4. Modularity in ForceOne

Modularity in ForceOne programs is inherent in the structure of the source code. Every source file
is a module. Source files are arranged in a tree, with visibility between source files controlled by their
position in the tree. Identifiers are neither exported nor imported; they are declared once and their visi-
bility is determined by the source file in which they are declared.

Each source file declares a set of identifiers which are called its outermost declarations. All outer-
most declarations of the program have the same duration, but they have different visibility. Program
code outside the subtree rooted at a given node cannot reference identifiers declared in descendants of
that node. Each node in the source file tree is an abstract data type; any types or operations it declares
are available to other source files, but any internal details declared in its descendants are not available
outside the subtree. Program code inside the subtree can reference identifiers declared in any of the
subtree’s ancestors and their siblings. Visibility toward the leaves of the tree is limited to one level; visi-
bility toward the root is not restricted.

This visibility structure not only encourages the use of abstract data types, it also encourages a dis-
ciplined source organization. A programmer reading someone else’s program will more easily be able to
find the declarations of objects since their locations within source files is not haphazard.



Chapter 3

Language Reference Manual

This chapter is a reference manual for the ForceOne programming language. The intent of this
chapter is to provide a concrete definition of ForceOne upon which future languages in this class may be
based.

Grammar Description

Backus Naur Form is used to describe the language grammar. The syntax used is as follows.

A AisaB

oraC

A is optional

+

B N S

A repeated one or more times

[
|
[

*
] A repeated zero or more times

A|B Aor B

There are several symbols used to represent classes of characters when defining the lexical structure
of the language.

alpha a through z, A through Z
digit 0 through 9

src_char  all printable ascii characters except \

11



Lexical Elements

A ForceOne source file is a stream of printable ascii characters terminated by an end-of-file. The
smallest indivisible units within a ForceOne program that have an associated meaning are known as
tokens. Some ForceOne tokens follow.

sail + { == "hi there" 54 23.0

Tokens may be placed without regard for column position with any amount of whitespace between them.
However, a token may not span more than one source line, and some tokens must be separated by whi-
tespace from some others when they are to appear adjacently; for example, the tokens 3 and 4. Com-
ments may appear anywhere in ForceOne source code so long as they do not break up tokens, and are
delineated by a backslash (\) character and the end of the source line.

a =b+c \ This is a comment!

1. Identifiers

Identi fiers are the means by which objects are tagged and referenced. ForceOne has two methods
of representing an ¢dentifier. The first method is by just giving the identifier’s name, but there are some
restrictions on the characters that may be used to form the name.

*
identifier = alpha [alpha |digit | - ]

The name must begin with an upper or lower case alphabetic character. Subsequent characters may be
alphabetics, digits, or underscores (). There is no restriction on the length of the identifier. There are
18 reserved keywords which may not be used as identifiers. A list of these reserved keywords is given in
Appendix A.

sailboard ForceOne number_5 i
The second method of representing an identifier is by enclosing the identifier’s name in grave accent

(*) characters.

*
identifier = [src_char escape_seq] ‘

With this form, any character may appear anywhere in the identifier, except the grave accent character.
Furthermore, an escape sequence signalled by the \ character may be used to enter non-printable charac-
ters or grave accents in the identifier. A list of recognized escape sequences is given in Appendix B. The
only character which is invalid in such an identifier is the ascii null (\$00) character.

‘Honolulu, U.S.A.° ‘+ ‘\$1Bhi there\n*

The grave accent characters are considered part of the identifier for purposes of comparison.

The first form of identifier is used most commonly. The second form is needed when defining a buil-
tin operator, but may be used anywhere.
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2. Constants

Since ForceOne is a type secure language, all constants have associated types. There are four dif-
ferent types of constants: integer constants, real constants, character constants, and string constants.
Integer constants are further subdivided into decimal constants and based constants.

constant =  decimal_const

based_const

real_const

char_const

string_const

2.1. Integer Constants

An integer constant is an unsigned number with some maximum value fixed by the implementation.
Integer constants have type int. Integer constants may be entered either in decimal or in a specified
base from 2 to 36.

*
dectmal_const =  digit [digz't l — ]

+
digit | _ ]

A decimal constant simply consists of a string of one or more decimal digits. A based constant consists of
an optional decimal constant immediately followed by a $ immediately followed by the constant to be
specified. The decimal constant preceding the $§ gives the base of the constant. If this decimal constant
is omitted, base 16 is assumed. The alphabet is used to represent digit values from 10 to 35, with no dis-
tinction being made between upper and lower case. Underscores (_) may be inserted anywhere in an
integer constant and have no effect on the value. The constants

based_const = [ decimal_const ] $ [ alpha

1_234 $10_00 88377
each have the following respective values in decimal.

1234 4096 255

2.2. Real Constants

A real constant contains either a dot (.) or a possibly signed exponent to differentiate it from a
decimal constant. Real constants have type real.
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real_const =  decimal_const . [ decimal_const] [ez‘ponent ]

decimal_const [e:cponent ]

decimal_const exponent

exponent e IE [ + |— ] decimal_const

Like integer constants, real constants are unsigned and are subject to implementation restrictions upon
their precision and range. Real constants may also contain _ characters. The following are all valid real
constants.

123.4 12e-29 .124.5 654 . 1e+10

2.3. Character Constants

A character constant is represented as a single character or escape sequence enclosed between single
quotes (’). Character constants have type char.

char_const = src_char |escape_seq *

There are 256 different characters, corresponding to the 256 possible ascii characters.

lal '$s I\nl

2.4. String Constants

A string constant is represented as a sequence of zero or more characters or escape sequences sur-
rounded by double quotes (*).

*
string_const = [ src_char |e.scape_seq ] "
A string constant has type { 1..n ] char where n is the length of the string.

"hi there\n" "Neil Pryde International"

3. Operators

There is a large set of builtin operators of various precedence levels and associativities which may be
defined by the programmer. Each operator may be named for purposes of definition by using the second
form of identifier. The identifier corresponding to a given operator is simply that operator surrounded by
grave accent characters. Some of the operators follow.

+ * >> = = & -

Some of these operators are binary infix operators and some are unary prefix operators. The two opera-
tors + and - are both. A complete list of operators is given in Appendix C.
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4. Punctuators

The only remaining tokens are punctuators which are required to parse the various forms of expres-
sions. Some examples of punctuators follow.

{ r» L0 . 5 7

Ezxpressions

The expression is the basic unit of program structure in a ForceOne program. ForceOne does
not differentiate between statements and expressions as do many current programming languages. The
analog of a sequence of statements is an expression sequence. A ForceOne source file consists simply of
an expression sequence in which each expression is a declaration.

Expression sequences are formed by placing several expressions in sequence, with each expression
optionally terminated by a semicolon (;).

+
expr_sequence = [expr [ ; ] ]

An example of an expression sequence follows.
f. type == int

i: ref £
i:=3+5

Semicolons are generally used to terminate an expression only when the place where the expression ends is
not obvious. The only time a semicolon is actually necessary is in the sequence "a; + b". In this case, if
the semicolon is omitted the sequence will be parsed as the single expression "a + b".

Some syntactic constructs require a list of expressions. An expression list is one or more expres-
sions, each expression being separated by a comma (, ).

*
expr_list = expr [ . expr]

In an expression list the comma separates the expressions in the list. In an expression sequence the
optional semicolon terminates each expression in the list.

a, b + ¢, 123, fx] \ expression list
a; b + c; 123; f[x]; \ expression sequence

The different kinds of expressions have different precedences and associativities in order to disambi-
guate otherwise ambiguous expressions. Parentheses may be used to force evaluation to occur in a dif-
ferent order.

a+b+cx*xd

Since * has a higher precedence than +, and since + is left associative, the above expression will be parsed
as

15
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((a+b)+(c*xd))

unless parentheses are inserted to force a different evaluation order. In an expression list, expressions are
evaluated from left to right across the list.

All expressions have a type, and all except those whose type is void are said to yield a value. The
type of an expression is determined statically at compile time. The value yielded by an expression is usu-
ally determined at run time, however for certain expressions that always yield the same value this value
may be computed at compile time. Since some expressions may have type type, and must therefore yield
a type, the value yielded by these expressions is always determined at compile time.

expr = basic_expr

type_expr

declaration

routine_text

active_expr

control_expr

aggregate

cast

typemod_expr

void_expr

op_expr

(expr)

1. Type Expressions

Types are used in ForceOne to describe and to determine the properties of objects. Types have
two attributes: size and alignment. The operations available on a type are not considered part of the
type. Types are not first class objects of the language, and may therefore be thought of as meta-objects,
although in some special situations they may be manipulated as if they were objects. Since the type of an
object is determined statically, types are manipulated only at compile time, and all type expressions have
constant value. A type expression is an expression built from type generators which yield type type,
from identifiers of type type, and from query declarations. Query declarations are discussed later.
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type_expr = ref_tgen

routine_tgen

param_tgen

enum_tgen

record_tgen

type_tgen

subrange_tgen

query_decl

identi fier

1.1. Type Generators

A type generator is a construct which yields a value of type type. ForceOne has seven forms of
builtin type generators.

1.1.1. The Ref Type Generator

The reference type generator is used to generate a type which may refer to an object of a particular
type.

ref_tgen = ref type_expr

The value yielded by the type expression following the ref keyword indicates the type to which the refer-
ence may refer. The ForceOne reference type is the same as the Algol 68 reference type. A reference
type is similar to a pointer in more conventional languages. Consider the following declaration:

i: ref int

This says that 1 can refer to an object of type int. This is analogous to the declaration
int 1,

in the C language. The ForceOne declaration
ri: ref ref int

declares i to be, in C terminology, a pointer to an int.

1.1.2. The Routine Type Generator

The routine type generator is used to generate a routine type. An object of such a type must be
called to yield a particular value. A routine is used to defer the evaluation of its enclosed expressions.
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routine_tgen = ToOutine [ type_expr Ivoid ]

The type expression following the Toutine keyword gives the type of the value which would be returned
were a routine of this type called. If the keyword void is used instead, then the routine returns no
result.

1.1.3. The Parameterization Type Generator

Unlike conventional programming languages which provide arrays of objects, ForceOne provides a
much more general construct called parameterization. Except for two restrictions, all type expressions
can be parameterized.

param_tgen = [ expr_list [ |l ezpr_lz'.st] 1 type_expr

The type expression following the ] indicates the type being parameterized, and this type is called the
base type. Each of the expressions in the expression lists indicates the type of a parameter of the
parameterized type. Expressions preceding the || may be either all declarations or all type expressions.
Any expressions following the | | must be declarations. Declarations are of the form

identifier . type expression

If the || is present, the declarations following it are automatic parameters of the type which will be dis-
cussed later. A parameter may be used in the specification of the type of a parameter to its right and in
the specification of the base type. The base type may not be the type void. The base type may not yet
be the type type as user defined type generators are not yet supported.

[ T: real, i: int ] routine char
[ int, real ] int

The first example above is the analog of a procedure returning char whose parameters are of type
real and int. The second example yields a type parameterized by two parameters: an int and a
real. The type being parameterized is int. This is a good example of the power of the parameteriza-
tion construct as in very few conventional languages can a comparable type be constructed. In Pascal
terms this might be called an array of constants.

There are no restrictions on what types may be used for parameters. It is quite feasible to declare
an infinite size array; its implementation will depend upon the method of declaration. Also, a parameter-
ized routine need not be thought of as something special; it can be considered to be an array of
unparameterized routines. Again, whether this is truly the case depends upon the method of declaration.
Certainly there are some types which cannot be represented; if the user really wishes an infinite number
of int variables declared with a storage declaration he is out of luck.

1.1.4. The Enumeration Type Generator

The enumeration type generator is used to declare a list of names to be values of some new type.
The syntax for the enumeration type generator is

enum_tgen = enumerate [ ident list ]

ident_list

*
identi fier [ , identifier]

A new type is created which is the type yielded by the type generator, and each identifier is declared as
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being a value of that type. It is important to realize that the enumeration type generator implicitly
creates a new type, unlike the other type generators referenced earlier. Because of this,

i: ref int
j: ref int
a: enumerate[ aa ]
b: enumerate[ aa ]

i and j have the same type, buf a and b do not. This ensures that two enumerated types declared in
different places in a program using the same names for values will not be the same type.

1.1.5. The Record Type Generator

The record type generator yields a new type composed of several field types and declares names for
these field types. A new type is generated, and each of the field names is declared to be a type
parameterized by this new type and with base type given in the field declaration.

*
record_tgen record [ field list [ | field_list] ]

[ field ]+
.
[ field_list [ | fz'eld_list] ]

Jield_list

field

storage_decl [ ; ]

The definition of the record type generator given above is best described by some examples.
record [ a: ref int; b: ref real ]

This example yields a record type containing two fields.
record [ a: ref int | b: ref real ]

This example yields a record type containing either a ref int or a ref real.

record [
a: ref int;
I
[
b: ref char;
c: ref real;

]

This example yields a record type containing either a ref int or a ref char and a ref real.

When required the compiler generates an invisible tag field which is also a field of the record. This
field contains one bit for each field of the record. When a variable is initially created of some record
type, each of these tag bits will be false. When a field is assigned to, the tag bit for that field is set true
and the tag bits for every other field which cannot exist at the same time as the field being assigned are
set false. When a field is referenced, the tag bit for that field is checked to ensure that it is true. In this
way records in ForceOne are kept type secure without requiring that the entire variant of a record be
assigned to in one operation. There is a mechanism available called query which allows the programmer
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to test the tag bit of a particular field.

Like enumeration, the record type generator implicitly generates a new type so that two records
which happen to look the same will not be the same type.

1.1.8. The Type Type Generator
A new type may be explicitly introduced to the program by the use of the type type generator.

type_tgen =  type
This type generator yields the value type. This type generator may only be used on the left hand side of
the == in an equivalence declaration or in a storage declaration which is a formal parameter. When it is

used in a formal parameter it indicates that the formal parameter is a parameter of type type; such
parameters will be discussed later.

1.1.7. The Subrange Type Generator

The subrange type generator generates the type int but also attaches some attribute information to
the type. This information is not used in determining type equality; the type generated with the subrange
type generator is exactly the type int.

subrange_tgen = expr .. expr

When values are bound or assigned to an object of this type, the compiler will ensure that the value lies
within the values specified. Note that the expressions representing the bounds are computed at run time
each time the type expression is reached during execution. Therefore, in the routine

{

i: ref 1..n
}

the variable 1 may have different bounds for each execution if the value of n changes.

1.2, Builtin Types
There are several builtin types defined in the library. They are
int
real

char
bool == enumerate[ false, true ]

The first three are the types of the various typed constants. The last, bool, is the type required by an ¢f
expression.
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2. Basic Expressions

A basic expression is simply an identifier or a constant.

basic_expr =  identifier

constant

8. Declarations

Declarations are the means by which new identifiers are introduced to the program. Except for the
18 reserved keywords listed in Appendix A, all identifiers, whether declared by the user’s program or by a
library, are created by declarations. Declarations may only appear as part of an expression sequence, or
as part of an expression list which is used by the parameterization type generator. New identifiers intro-
duced by declarations may hide existing definitions of the same name or may overload those definitions.
There are three kinds of declarations: equivalence declarations, storage declarations, and query declara-
tions.

declaration = equiv_decl

storage_decl
type_expr = query_decl

3.1. Equivalence Declarations

An equivalence declaration introduces a new identifier, assigns it a type, and binds a value to it
when the declaration is executed at run time. An equivalence declaration has the following syntax.

equiv_deel = [ decl_type] tdenti fier : type_expr == expr

narrow

overload | widen

decl_type

The identifier appearing on the left hand side of the colon is the name of the identifier being defined.
The type expression appearing on the right hand side of the colon yields the type of the identifier. The

expression appearing on the right hand side of the == operator yields the value of the identifier.
Equivalence declarations always yield type void.

loop(] {
\ j does not exist here
j:int == n + 1
\ ] now exists
n:=n-+1

}

This example shows an equivalence declaration. The identifier j is created with type int and bound to
the value n + 1. Since the computation of the value is done at run time, and since n has a different
value during each execution of the loop, a different value will be bound to j in each execution of the loop.
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One rather important instance of an equivalence expression occurs when the type expression is sim-
ply type. The identifier being declared is therefore a type, so this kind of equivalence declaration is
called a type declaration. In this case, the value to be bound to the identifier is actually computed and
bound at compile time.

a: type == int
b: type == [ 1..10 ] real

In the example above, a is declared to be a type whose value is int. b is declared to be a type whose
value is a parameterized type. Except when the value expression is a record or enumeration type genera-
tor, a type declaration implicitly generates a new type distinct from all others in the program which
becomes the value of the identifier being declared. This is discussed later in the section Type
Equivalence. Type declarations have an important restriction: the declaration type of a type declaration
cannot be overload, widen, or narrow.

When the type of the identifier being declared is parameterized, there is an additional rule which
applies to an equivalence declaration. If the parameters of the type are named, the expression on the
right of the == is a generic instance of the base type. The names of the parameters are visible on the
right side of the ==. Otherwise, the expression after the == must have the same type as the whole
parameterized type.

a: [1i:1..5] int == 1 + 1
b: [1..5] int == {{ 2, 3, 4, 5, 6 }}

The first example uses a generic instance to define a. Using a generic instance has the effect of evaluat-
ing the right side for each possible parameter value and storing the results. The second example uses an
aggregate to define b. The two declarations have equivalent effect.

There is another kind of equivalence declaration used to interface to other languages.

equiv_decl = [ decl_type] identi fier : type_expr
== external string_const

The string following the external keyword is an external symbol manipulated by the host’s linker. The
purpose of this kind of equivalence declaration is to specify the type of procedures or variables declared in
another language. In fact, in the prototype compiler all operations on builtin types, including :=, simply
result in calls to assembly language routines which implement that function.

8.2. Storage Declarations

A storage declaration is similar to an equivalence declaration, except that the value of the identifier
is bound to a storage location on the program stack. A storage declaration has the syntax

storage_decl = [ decl_type] identi fier : lype_expr

Since the identifier is being declared as a variable, the type of the identifer must be a reference or
parameterized reference type. If the identifier is a parameterized type, the number of instances
represented by the parameterization must be finite. Storage declarations yield type void.
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i: ref int
j: ref record[ a: real, b: real ]

The first declaration in the example above introduces an int variable named 1. The second declaration
introduces an identifier } which is a record composed of two real fields.

3.3. Query Declarations

Query declarations are the means by which polymorphic routines are implemented. There are two
flavours of query declaration: a query declaration of a type and a query declaration of a subrange bound.

+
query_decl = [ ? ] identi fier

Query declarations yield either type type or type int depending on where they are used. If the declara-
tion appears on the left or right side of a subrange generator, the identifier is declared as an int; other-
wise the identifier is declared as a type. The declaration

f: [ x: ?t ] routine int

declares f to be a routine which accepts one parameter of arbitrary type t. The type t is implicitly
passed as a parameter to the routine. The number of ? characters preceding the identifier determines
the number of parameterization brackets outward the identifier is to be declared. Query declarations will
be discussed in greater detail later on.

3.4. Overloading Declarations

As mentioned previously, a declaration may either hide earlier declarations of the same name or it
may overload them. Overloading an identifier simply means giving it two different meanings. Which
meaning is used depends upon the context. Most programming languages have overloading of some of
their builtin operators. The + operator is very commonly overloaded to operate both on integer and on
floating point operands. Ada allows the user to define overloaded procedures. The overloading supported
by ForceOne is more general; any identifier may be overloaded by the user.

The declaration type determines whether the declaration overloads or hides earlier declarations. I
none of the keywords overload, widen, or narrow appears before the identifier being declared in the
declaration, then this declaration hides all earlier definitions. If, however, one of the keywords is present,
then the declaration is an overloading declaration. The new definition is overloaded with all earlier defin-
itions which are not hidden and which were declared by an overloading declaration.

i: ref int \ #1

i: ref int \ #2 this hides #1
overload i: ref int \ #3 this hides #2
overload i: ref real |\ #4 this overloads with #3

Record fields and enumeration values are always considered to be overloading declarations, despite
there being no overload keyword in front of each field declaration or enumeration identifier.
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3.5. User Defined Coercions

If one of the keywords widen or narrow appears before the identifier then the declaration creates a
user defined coercion. The type of the identifier must be a routine taking one parameter. This routine
will be automatically called by the compiler if necessary in order to match a value to some context that
requires a value of a different type. Both the parameter and the type returned by the routine may not be
ref or routine types.

widen int_to_real: [ int ] routine real ==
r: ref real
T = 2

In the example above, the coercion int_to_real is applied to 2 to yield a real value which can be
assigned to r. User defined coercions are discussed at greater length in the section Overload and Coer-
cion Selection.

4. Routine Texts

Routine tezts are the means by which an algorithm is encapsulated into an object.

routine_text = { expr_sequence }

A routine text may return a typed value. If there are no return expressions within the routine text, the
. value yielded by the last expression in the expression sequence is returned.

{a:=bv;, 2}

The above routine text returns the value 2 which is of type int. The type of this routine text is there-
fore routine int. We can therefore say

rp: ref routine int
rp :={a:=b;, 21}

which causes rp to refer to the object { a2 := b; 2 }.

5. Active Expressions

There are four kinds of expressions in ForceOne which cause an action to be taken at run time.
They are calling, dereferencing, instance selection, and field query.

active_expr =  call

deref
= instance_select
= field_query

They correspond to the three type generators routine, reference, and parameterization. They may be
thought of as stripping one level of type generator from the object to which they are applied.
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5.1. Calling
Any object whose type is Toutine something may be called. A call is specified by

call = ! ezxpr

The value yielded by a call is that returned by the called expression. For example, the expression
i =t{a:=v;, 21}

causes b to be assigned to a and the value 2 to be returned, which is then assigned to 1.

Any number of calls may be automatically inserted by the compiler if doing so would cause the type
of the value returned to match the desired type of the expression. For instance,

rp: routine int == { 2 }
i: ref int
i:=rp

a call to rp will automatically be generated in the third line of this example, causing 1 to be assigned the
value 2.

Routine texts are an exception to the rule of automatic call. A routine text which does not have
type void will never be automatically called. Thus one can write

if [ true ] {

a :=b
b :=¢c
}
and the routine text will be automatically called since it has type void. However,
1: ref int
i={2}

will cause an error because the expression { 2 } has type routine int and the context requires an
object of type int.

5.2. Dereferencing

Dereferencing is the operation of selecting the object referred to by some other object.

deref = @ expr

For example, in

i: ref int
i::=2
j: ref int
j = el

the last expression causes j to receive the value 2.
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Like calling, dereferencing may be automatically applied by the compiler if necessary. Thus the
above example could have been written

i: ref int

i

j: ref int

h|

and a dereference would be automatically inserted.

5.3. Instance Selection

Instance selection is the mechanism by which arguments are supplied to a parameterized object to
yield the base object.

instance_select = expr [ expr_list ]

The expression must be an object or a reference to an object parameterized by as many actual parame-
ters as there are elements of the expression list.

f: [ i: real ] routine real ==

i+0.1
}
b: ref real
b := f[ 2.3 ]

In the example above, an instance of the parameterized routine f is selected, the routine is called, and the
result 2.4 is assigned to b. Since calls may be automatically inserted, the ! could have been omitted. In
the following example an instance of a reference to a parameterized object is selected, causing the refer-
ence to be propagated across the parameterization.

vector: ref [ 0..9 ] char
vector[ 2 ] := "a’

Note that selecting an instance of a parameterized routine is independent of calling the routine. We
can write

ri: ref routine int
ri := f[ 3.4 ];

Using the definition of f from above, ri will now refer to a routine which when called will yield 3.5.

An instance may be selected not only from a parameterized type, but also from a reference to a
parameterized type. Thus selection applied to the type

ref [ int ] real
will yield an object of type
ref real

The reference is said to propagate across the parameterization. Selecting an instance from a reference to
a parameterized type is similar to selecting an element of an array in a conventional language.
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5.4. Field Query

Field Query is used to determine if a field of a record is currently valid.

field_query = expr ? [ expr ]

The expression before the ? is the field name, and the expression in brackets is the record object in ques-
tion. The field query expression will yield either true or false indicating whether or not the field is

currently valid.

A cautionary note about field query is in order. A field query is intended only to allow a program-
mer to determine which fields in a record defined with |’s are valid. If the record contains no |’s then
the compiler may perform optimization and leave out the tag field. If this is the case, a field query on
such a field will always return true. For such records this eliminates the run time overhead of checking
the tag bit on each reference to a field and of setting the tag bit whenever the field is assigned to.

8. Control Expressions

ForceOne provides four kinds of expressions for modifying the flow of control within a routine text.
These expressions allow branching, multi-way branching, looping, and return from a routine text in a
structured manner. There is no goto mechanism to allow uncontrolled transfers of control flow.

control_expr if_expr

select_expr

loop_expr

return_expr

8.1. The If Expression

ForceOne has an if expression to allow the conditional execution of an expression.

if expr = if [ expr ] expr [ else expr ]

The expression inside the brackets is evaluated and must yield a result of type bool. If the result is
true, the following expression is executed. If the result is false and the else part is present, then the
expression following the else is executed.

If no else part is present, or if the context requires a void result type, then the if expression has
type void. If the else part is present, then the if expression may be used in-line.

a := 1f[ condition ] b else ¢

has the same effect as
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if [ condition ]
a :=b
else
a = ¢

in the absence of coercions.

else is right associative, so when an if expression is used as the body of another if expression, the
else is associated with the closest 1f.

if[ a2 ]
if[ b ]
C
else
d

The above code fragment is exactly the same as the following fragment.

if[ a ]
(
if[ b ]
c
else
d

6.2. The Select Expression

The select expression is the mechanism provided by ForeceOne for multi-way branching.

select_expr = select [ expr ]
+
[ case [ expr_list ] expr ]

[ else expr ]

The control expression contained in brackets following the select keyword is evaluated, and a search is
initiated over the expression lists following the case keywords for a matching value. A match is detected
by invoking the routine

*=*: [ type, type 1 routine bool

with the control expression and the case expression as arguments. When ‘=° returns true, the expres-
sion for that case is executed. If no match is found and an else part is present, the expression following
the else keyword is executed. If no match is found and there is no else part, the select expression
does nothing. The select expression itself has type void.
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a: ref int
select[ @a ]
case[ 1, 2]
'f
case[ x % 2 + 1]
'g
else
'h

8.3. The Loop Expression

ForceOne provides a loop expression for iteration.

loop_expr = loop [ [empr_lz'st ] 1 expr

There are actually four different kinds of loops allowed, depending on the number of elements of the
expression list. There may be one, two or three expressions in the expression list. All forms of the loop
expression have type void.

If the expression list is not present, then the loop simply executes forever, or until a return expres-
ston causes termination of the containing routine.

If the expression list consists of one expression, then that expression must yield a value of type
bool. Before each execution of the loop, this control expression is evaluated, and if it yields false, exe-
cution of the loop is terminated. This is the popular "while" loop.

If the expression list contains two expressions, the first is considered a control expression as above,
and executed before each iteration of the loop. The second is an increment expression, and is executed
after each iteration of the loop. Its value must be void.

If the expression list contains three expressions, the first is an initialization expression. It is executed
just once before any executions of the loop are done. The second expression is the control expression, and
the third is the increment expression. This is similar to the "for" loop in C.

loop[]
'f \ loop calling f forever

loop[ a 1=01] {

'f

a—-— \ loop while a != 0
}

loopl a = 0, a—- ]
'f \ same as above

loop[ a := 10, a '= 0, a— ]
'f \ call f 10 times
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6.4. The Return Expression

A return expression is used to cause termination of a named routine text without execution of its
last expression.

return_expr = return [ ezpr ]

A named routine text is a routine text which appears following the == in an equivalence declaration.
When a return expression is executed, the expression inside the brackets is evaluated and its value
becomes the return value for the routine.

a: routine int ==
return{ 2 ]
a :=b

}

In the above example, the return expression causes a return from the routine a, returning the value 2
before the assignment takes place. The result type of the return expression itself is void.

Each return expression of a named routine must return the return type of the routine. When a
return expression is used in a named routine, the last expression of the routine no longer yields a return
value. The last expression will be expected to have type void. However, if no return expressions are
used, the last expression of the named routine yields the routine’s return value.

7. Aggregates

ForceOne provides aggregates to allow the user to supply a parameterized object to a context
which requires one. An aggregate consists of a list of expressions, each expression yielding a value which
becomes an instance of the parameterized type.

aggregate = {{ expr_list }}

The number of instances of the base type which are represented by the parameterized type must be fin-
ite. Therefore, objects parameterized by a real or a type may not be constructed with aggregates. The
instances of the base type are listed in ascending order within each parameter, and from left to right
across the parameter list.

rotate: [ 1..5 ] int == {{ 2, 3, 4, 5, 1 }}
firstrow: [ 1..2, 1..2 ] int == {{ 1, 1, O, O }}

8. Casts

Since ForceOne supports overloading and user defined coercions, situations may occur in which an
expression is ambiguous. A cast may be used to disambiguate such otherwise ambiguous expressions.

cast = type_expr == expr

The type expression on the left side of the == gives the type of the expression on the right side of the ==.
The cast yields the result yielded by the expression being casted. For example, with the declarations
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overload vbl: ref int
overload vbl: ref real
overload fn: [ int ] routine void ==
overload fn: [ real ] routine void ==

the following expression is ambiguous.
tfn{ evbl ]
However, by applying a cast we can disambiguate this expression.

1fn[ real == @vbl ]

9. Typemod Expressions

A type declaration introduces a new type which is implemented as some other type, but is neverthe-
less a new type. A typemod expression is used to convert to or from the implementation type of the new
type. The use of typemod expressions is restricted in order to support information hiding; where they
may be used is discussed later in the section Type Equivalence. There are two forms of typemod expres-
sions, one for converting an object of the new type to the implementation type, and one for converting an
object of the implementation type to the new type.

typemod_expr =  detype_expr

= relype_expr

9.1. The Detype Expression

A detype expression is used to convert an object of some new type to its implementation type.

detype_ezpr = detype [ expr ]

The value yielded by the detype expression is the same value as that yielded by the expression in brack-
ets. The detype expression’s type is the implementation type of the expression in brackets.

sail_area: type == int
my_sall: ref sail_area

i: ref int

i := 2 + detype[ emy_sail ]

When a type declaration is made, a special coercion is created which is simply a detype operation.
Therefore it is not always necessary to explicitly detype an object; one level of detyping may be automati-
cally applied by the compiler if necessary. The last expression in the above example could have been
written as follows.

i :=2 + my_sail
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9.2. The Retype Expression

A retype expression is used to convert an object of some implementation type into a new type built
from that implementation type.

retype_expr = rTetype [ expr ]

The retype expression is essentially an overloaded expression; its result value depends on the context in
which it is used. Retyping is the inverse of detyping.

mod7: type == int

‘+¢: [ i: mod7, J: mod7 ] routine mod7 ==
retype[ (1 + 0 % 7 ]

}

In this case, 1 and j are detyped to int and the result of the addition is retyped to mod?7.

10. Void Expressions

It may occasionally be desirable to have an expression which does nothing. In ForceOne such an
expression is called a void expression.

void_expr = void

This expression has type void, and yields no value.

11. Operator Expressions

ForceOne provides 33 operator expressions of varying precedences and associativities for use as
short forms. Five of these expressions are unary expressions.

op_expr =  expr binary_op expr
= unary_op expr
A complete list of the available operators is given in Appendix C. The two expression forms

expr_1 b_op expr_2
u_op expr_1i

are simply converted by the parser into the following forms.

‘b_op* [ expr_1, expr.2 ]
‘u_op‘ [ expr.1 ]



Program Structure

A ForceOne program is structured as a set of source files arranged in a tree. Each node in the
tree contains source code and may have descendant nodes. This tree structure controls the visibility of
objects declared at the outermost scope level of each source file. Objects declared at the outermost level
of a source file have global duration; i.e. they are created at program invocation and destroyed at pro-
gram termination. Within a source file, block structure controls the visibility and duration of declared
objects. ForceOne has no explicit import or export mechanism; the tree structure of source files and
block structure within source files are the only means available for controlling the visibility of identifiers.

The root node of a ForceOne program must declare a routine named main. This routine is called
by the library upon program invocation. When this routine returns, the library terminates the program.

Figure 3.1 is a simple ForceOne program which just prints "hi there” on the user’s terminal. It
consists of two source files: one called "hi_there” and one called "hi". The root source file "hi_there"
declares the routine main and calls the routine hi to do the work.

\ Root file "hi_there"

main: routine void ==
thi

}

\ Source file "hi", a child of “hi_there"
hi: routine void == {

put[ "hi there\n" ]
}

Figure 3.1: A silmple program

When ForceOne is implemented on an operating system such as Unix which does not directly sup-
port the node structure of ForceOne source files, some mapping between the operating system’s file sys-
tem structure and the ForceOne node structure must be defined. The current version of the ForceOne
compiler is designed to run on Unix like systems. A Unix directory is created for each ForceOne source
file. The contents of the source file are stored in a Unix file named "src" in the corresponding Unix direc-
tory. Thus, the source code for the routine main in the above example is stored in "hi_there/src"; the
source code for the routine hi is stored in the file "hi_there/hi/src".

1. Visibility of Identifiers

The visibility of identifiers is controlled both by the source file structure and by scopes delineated
by open ({) and close (}) braces. Declarations outside of any braces are called outermost declarations,
and have global duration and visibility controlled by the source file structure. All other declarations are
called local declarations, and have duration and visibility determined by their containing scope.

Braces are used to enclose a scope. Identifiers declared within braces are created at their declara-
tion, and destroyed when the } for their scope is encountered, hence declarations and executable state-
ments can be intermixed. Scopes may be nested.
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When discussing trees the following terminology is used. The children of a node are those nodes
that are immediately connected to the node in question in the direction of the leaves of the tree. The
parent of a node is that single node immediately connected to the node in question in the direction of the
root. The descendants of a node are the node’s children plus their children plus their children’s children
etc. The ancestors of a node are the node’s parent plus its parent’s parent etc.

The source file tree is viewed with the root at the top, and descendants of the root on a level below
the root. The identifiers declared in outermost declarations visible to a node are:

1. identifiers declared in children of the node
2. identifiers visible to the node’s parent

Restating these rules in a nonrecursive manner:

1. identifiers declared in children of the node
2. identifiers declared in siblings of the node and the node itself
3. identifiers defined in ancestors of the node and their siblings

There may be several outermost declarations within one source file. These declarations are con-
sidered to be unordered, as are the children nodes of a node. Declarations at a lower level in the tree
may hide declarations of the same identifier at a higher level. Within the set of siblings of any node, all
non-overloaded declarations must have unique identifiers. Also, if an overloaded declaration of an identif-
ier is present within a set of siblings, then all declarations of that identifier within that set must be over-
loaded declarations.

Figure 3.2 shows a pictorial representation of the scopes of a typical program. Figure 3.3 shows
some overloading declarations, hiding declarations, and references in a ForceOne program and how they
are resolved. A declaration of the identifier 1 is represented as 1: .. .; a reference to the identifier 1 is
represented as @1.

This tree structure lends itself naturally to the definition of abstract data types. An abstract data
type (ADT) consists of an object type plus a set of operations available on objects of that type. The type
and the external operations applicable to the type are defined within one node. Any algorithms needed to
implement the ADT are defined in descendant nodes. Since nodes outside of the tree rooted at the ADT
node cannot see declarations within the ADT tree, only the external interface to the ADT is visible.
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\ Source file "main"
main: ... \ decl #i
i: ... \ decl #2

\ Source file "main/mi1"

i: ... \ decl #3, hides #2
{
ei \ resolves to #5
i: ... \ decl #4, hides #3
ei \ resolves to #4
}

\ Source file "main/m1/sm1*
i: ... \ decl #5, hides #3
{ei} \ resolves to #5

\ Source file “"main/m2"

overload i: ... \ decl #6, hides #2
overload 1i: ... \ decl #7, overloads #6
{
ei \ resolves to #6 or #7
overload i: ... \ decl #8, overloads #6 and #7
i: ... \ decl #9, hides #6, #7, and #8
}

\ Source file "main/m2/tmi*®
overload i: ... \ decl #10, overloads #6 and #7
{ e} \ resolves to #6, #7, or #10

Figure 3.3: Resolution of Identifiers
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Parameters of Type type

ForceOne allows the programmer to construct parameterized objects which accept parameters of
type type. Since a ForceOne type does not include the operations available on that type, all the com-
piler has to pass to a parameterized routine is the type’s size and alignment. The identifier naming the
type parameter is declared as a new type. From that point on the new type functions just as any other
type, although as yet it has no operations defined upon it.

alloc: [ t: type ] routine ref t == external "_malloc"

The example above shows a typical usage of a parameter of type type. The routine alloc accepts a
type as a parameter and returns an object whose type is a reference to the argument type.

To perform an operation upon an object of this new type, the operation would have to be passed as
a parameter as well. Figure 3.4 shows a memory allocator which zeros the allocated memory before
returning it, and a typical call to this allocator.

\ A memory allocator which zeros memory
zalloc: [ t: type, zero: [ ref t ] routine void ]
routine ref t ==
X: ref t = alloc{ t ]
zero[ x ]
return[ x ]

}
\ A typical call to this memory allocator

ptr: ref ref int
zero: [ i: ref int ] routine void == { 1 := 0 }
ptr := zalloc[ int, zero ]

Figure 3.4: Parameter of type type
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Query Parameters

Often it may be desirable to implement a routine which can accept an object of any type as a
parameter and perform some operation upon it. By using parameters of type type this can be achieved,
but by using query parameters one can avoid specifying the type of the object as an additional parameter.

toss: [ x: ?t ] routine void == ...

A query declaration is used to declare the type of the parameter in the above example. A typical call to
this routine might be

a: ref int
Itoss[ a ]

The routine toss has two parameters, but only one argument must be supplied when toss is called.
The value of the argument is bound to X, and the type of the argument is bound to t. This declaration
of toss achieves the same effect as the declaration

toss2: [ t: type, x: t ] routine void ==
but a call to toss2 would require an additional argument.

a: ref int
1toss2[ ref int, a ]

It is also possible to partially constrain the type of a polymorphic argument. Query parameters are
used for only those parts of the type which are to be polymorphic. For example,

stuff[ x: ref ?t ] routine void ==

stuff accepts only arguments of type ref to anything. When the type of an argument is to be con-
strained to be some parameterized type, extra ?s must be added to export the type parameter declaration
to the appropriate level of [] nesting. Figure 3.5 shows the use of two ?’s to declare a routine which
accepts any argument which is a routine accepting one parameter and returning void.

\ A memory allocator requiring a zero function
zalloc: [ zero: [ ref ??t ] routine void ]
routine ref t ==
x: ref t == alloc[ t ]
zerol x ]
return[ x ]
}
\ A typical call to this allocator
ptr: ref ref int
zero: [ i: ref int ] routine void == {1 := 0 }
ptr := zalloc[ zero ]

Figure 3.5: Query parameter

The query identifier is declared K-1 levels of brackets outward from its enclosing parameterization, where
K is the number of ?s preceding the identifier.
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The previous examples have all been examples of first order polymorphism. In general, a Nth order
polymorphic routine is one which accepts as an argument a N-1 order polymorphic routine. The follow-
ing example shows the use of a query declaration to declare a second order polymorphic routine. This
routine accepts one argument which is a routine accepting one parameter of any type and returning that
same type.

poly2: [ x: [ ?t ] routine t ] routine int



Automatic Parameters

Automatic parameters allow a routine to require certain operations be available from the environ-
ment in which it is used. The effect of an automatic parameter is just as if the user passed it explicitly.
An automatic parameter consists of both a type and a name. The compiler searches the symbol table at
the call site for a definition of the name with the appropriate type, and passes the object as any other
parameter. In Figure 3.6, the routine zero is an automatic parameter and so must be available at the
call site with the required type.

\ A zeroing allocator with a clean interface
zalloc: [ t: type || zero: [ ref t ] routine void ]

routine ref t == {
x: ref t == alloc[ t ]
zero[ x ]

return( x ]
}
\ A typical call to this allocator
ptr: ref ref int
zero: [ 1: ref int ] routine void == { 1 := 0 }
ptr := zalloc[ int ]

Figure 3.8: Automatic parameter

Automatic parameters are intended to be used with query declarations in implementing polymorphic
abstract data types. A polymorphic routine requires specific operations to implement its function. For
example, the following definition of square can square an argument of any type, provided the operation
* is available for that type.

square: [ x: 7t || “*°: [ ¢, £ ] ¢t ] t ==
return[ x * x ]

}
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Type Equivalence

In ForceOne a type is simply a representation for a set of values that is used by the compiler to
ensure that values from different sets are not inappropriately mixed. A new type, distinct from all others
in the program, may be created by an equivalence declaration from some other implementation type. The
new type may be converted to its implementation type and vice versa by typemod expressions.

Structural equivalence is used up to a point to determine if two types are the same. For instance,

i: ref int
j: ref int
r: ref real

the variables 1 and j have the same type. The variables 1 and r have different types. Structure
equivalence is not used to compare records or enumeration types.

a: record[ i: ref int ]
b: record[ i: ref int ]

The variables a and b in the above example do not have the same type. Another way of saying this is
that the record type generator and the enumeration type generator yield new types, whereas the other
type generators such as the reference type generator simply modify their argument type.

As mentioned earlier, two typemod operations, detype and retype, are available for use with new
types created by an equivalence declaration. If the equivalence declaration is an outermost declaration,
then these operations are available only to the source file containing the declaration and to its descen-
dants. This supports the construction of abstract data types, because placing the type declaration in the
node at the root of the ADT allows only routines implementing the ADT to have access to the internal
representation of the type. Furthermore, since the detype and retype operations are explicitly provided,
both the external and the internal representation of the type are available within the ADT.

Figure 3.7 is an implementation of a modulo 7 arithmetic package. It supports three operations, +,
*, and put. The mainline routine uses it to add 6 and 5. The operation * is implemented in a particu-
larly naive manner, however it shows the use of the external representation of the abstract data type.
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\ Source file “main"

main: routine void ==
put[ "6 plus 5 mod 7 is " J;
put{ const7{ 6 1 + const7[ 5] ];
put[ Il\nll ]

\ Source file "main/mod7*
mod7: type == 0..6

const7: [ 0..6 ] mod7 == {{ retypel 0 ], retypel 1 1,
retype[ 2 ], retypel 3 1],
retype[ 4 ], retype( 5 ],
retypel[ 6 ] }}

overload ‘+‘: [ i: mod7, j: mod7 ] routine mod7 == {

retypel (1 + j) % 7 1]
}
overload “*‘: [ 1: mod7, j: mod7 ] routine mod7 == {
count: ref int
sum: ref mod7
sum = j
loop[ count := 1 - 1, count > 0, --count ]
sum := sum + ]
return{ sum ]
}

overload put: [ 1: mod7 ] routine void ==
put[ detypel i ] ]
}

Figure 3.7: A modulo 7 arithmetic package
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Overload and Coercion Selection

The selection of the proper meaning of an overloaded identifier and the insertion of coercions where
necessary are closely related problems. The following example shows why.

widen int_to_real: [ int ] routine real ==
overload v: ref int

overload v: ref Teal

r: ref real

T = ev

Either definition of v can be selected for the assignment statement. If the ref int definition of v is
selected then the coercion int_to_real must be applied. ForceOne uses a minimum cost algorithm to
disambiguate such expressions.

1. Coercion Selection Rules

User defined coercions are classified into widening and narrowing coercions. Defining a coercion as
a narrowing is intended to mean that the coercion discards information. For example, converting from
real to int would be a narrowing coercion as the fractional part of the number must be discarded. A
widening coercion is just the opposite; it does not lose information. Following are the rules used to select
coercions and overloaded definitions for an expression. The rules are listed in decreasing order of impor-
tance.

1. The number of narrowings is minimized.

2. Widening each parameter of an instance
selection is cheaper than widening the result.

. The number of widenings is minimized.

. Narrowings are done as late as possible.

. Widenings are done as early as possible.

. Only one user defined coercion will be
inserted at any point in the tree.

[= L I )

Rules 1 and 3 are fairly clear. Because the rules are listed in order, the number of narrowings is first
minimized, then amongst all solutions with that minimum number of narrowings the number of widenings
is minimized. Saving one narrowing is more important than any number of widenings. Rule 2 says that if
a widening can be applied either before or after an explicit operation, the widening before the operation
will be chosen. Rule 4 ensures that when the result type of an operation is narrower than the operand
types, the operation will be carried out in the wider operand type. Rule 5 ensures that if an operation
may be carried out in two or more types, the widest type will be chosen to minimize information loss.
Rule 6 is necessary primarily due to implementation considerations.

Consider the following situation.
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widen int_to_real: [ int ] routine real ==
narrow real_to_int: [ real ] routine int ==
overload *+‘: [ int, int ] routine int ==
overload ‘+‘: [ real, real ] routine real ==
i: ref int

i:=1+23

The compiler has two choices: it can coerce the 1 to real, use the real +, and narrow the result so
that it can be assigned to 1; or, it can coerce the 2.3 to int and use the int +. Since the number of
narrowings is the same for both choices, rule 3 governs and the compiler takes the first choice.

i := treal_to_int[ !int_to_real[ 1 ] + 2.3 ]

Since automatic dereferencing and calling are not considered user defined coercions, any number of
dereferences and calls followed by one user defined coercion may be applied to an expression. When a
type declaration is made, a user defined coercion which detypes an object of the external type to one of
the internal type is created. If the programmer defines his own coercion from the external type to the
internal type this coercion overrides the automatically defined one. Of course, the effect of the automati-
cally defined one is still available through the explicit detype expression.

There are two errors which may occur during overload resolution. The compiler may be unable to
select any set of coercions and overloaded symbols to resolve some expression, or it may find several solu-
tions yielding the same minimum cost. These errors may be caused by several situations. Most often a
simple typographical or logical error in the expression is the cause; however, it is also possible for a
poorly defined environment to render seemingly innocuous expressions ambiguous.

widen int_to_real: [ int ] routine real ==
overload ‘+‘: [ int, real ] routine real ==
overload ‘+°: [ real, int ] routine real ==
r: ref real

r =1+ 2

In the example above, the compiler will be unable to choose between the two minimum. cost solutions
shown below.

r := !tint_to_real[ 1 ] + 2
r :=1 + !'int_to_reall 2 ]

There is a command line option on the compiler which requests that the selected coercions and overloaded
definitions be displayed.

2. Weak Contexts

Many language constructs can be resolved without any contextual information. Non-overloaded
identifiers and constants are simple examples of such constructs; their type can be determined indepen-
dent of context. These constructs are known as context independent constructs. QOther constructs, such
as overloaded identifiers, require contextual information to be resolved. These constructs are known as
context dependent constructs. A context which provides a finite set of possible types is known as a strong
context. A context which provides no information is known as a weak context. The selector expression of
a select expression is an example of a weak context. Context dependent constructs may not appear in
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weak contexts. Appendix D lists the context dependent constructs and weak contexts.

One specific instance of the weak context problem is the balancing problem, introduced first by
Algol 68 [Wij 76]. Certain language constructs return a type which is the same as their arguments,
although no one argument governs the choice of this type. The inline if expression is the best example of
this. Both the if expression and the else expression must be resolved to the same target type, which is
also the type returned by the whole expression. Such an expression cannot be used in a weak context,
such as the following case.

push: [ x: ?t ] routine void ==
push[ if[ a ] 1 else 2.3 ]



Chapter 4

Compilation of ForceOne

ForceOne is a separately compilable language, designed to be compiled into standard reusable
object units. One object unit is created for each source file compiled. These object units may be linked
by the host system’s linker to generate a standard code image. Object units generated by other
languages may also be linked into ForceOne programs.

The Automatic Compilation Mechanism

When changes are made to a program under construction, and that program is recompiled, the
effect of the compilation must be as if all previous work done by the compiler were discarded and the
entire program recompiled from its source. However, often only a small part of the program is changed,
hence recompiling the entire program would result in a lot of duplicated effort. A separate compilation
system allows the program to be divided up into many pieces, so that each piece can be compiled
separately. Only those pieces which have been changed and those pieces affected by the changes must be
compiled in order to recompile the program.

Many contemporary languages such as C provide separate compilation, but since the order of compi-
lation of source files is the programmer’s responsibility, bugs can be introduced in the program when
source files are not compiled in the correct order. The ForeceOne compiler determines the order of com-
pilation automatically and provides no means for the programmer to specify how a program should be
compiled, thereby guaranteeing that no program can be incorrectly compiled. To compile a ForceOne
program, one simply issues the compile command giving the root directory of the program to be compiled
as an argument to the command. The compiler will inform the user of any errors, and if there are no
errors an object unit will be created suitable for input to the host’s linker.

The automatic compilation system integrated into the prototype ForceOne compiler does separate
compilation on a node, or source file, basis. It determines which nodes are new, which have been
changed, and which have been deleted, and classifies the new and changed nodes into one of three states.
This state represents the compilation phases which must be applied to the node to produce a properly
compiled program. The compiler determines the state of each node by comparing the new symbol table
for the program with the old symbol table from the previous compilation, and finding changes in the
types of declared objects.

The three states are: unchanged, requires_parsing, or requires_resolution. A production compiler
would add a fourth state: requires_code_generation. Parsing refers to the process of reading the source
file, performing lexical analysis, parsing the file according to the language grammar, and generating a
parse tree for the node. Resolution refers to the process of traversing a parse tree and determining the
resolution of overloaded symbols and where coercions should be placed in the tree. Code Generation
refers to the process of using the resolved parse tree to generate machine code representing the file. A
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node which requires_parsing necessarily requires_resolution, and a node which requires_resolution neces-
sarily requires_code_generation.

The prototype ForceOne compiler uses five phases to compile a program. All phases are always
entered, although the amount of work done during a particular phase may vary depending on the extent
of changes to the source since the last recompilation. In each phase an algorithm is performed upon each
node of the program tree whose state indicates that work needs to be done in this phase. The program
tree is traversed in prefix, infix, or postfix order, depending upon the phase, although the order does not
matter in some phases.

1. Change Detection

The first phase entered by the compiler is the Change Detection phase. During this phase the com-
piler first reads a symbol table database saved by the last compilation of the program. This database
contains the symbol table for the entire program and the modification dates of the source files as of the
last compilation. The compiler then traverses the program tree as it is stored in the file system by mak-
ing the appropriate operating system calls.} By comparing the file system tree and the modification dates
of source files with the database, the compiler can determine what nodes have been changed, what nodes
are new, and what nodes have been deleted. The file system is traversed in infix order, as this ordering is
most conducive to the directory traversal interfaces provided by most operating systems.

New and changed nodes are marked as requires._parsing, and will be parsed during the next phase.
Deleted nodes may only affect the resolution of symbols in their parent node due to the visibility rules,
and so are handled by marking their parent as requires_resolution.

2. Lexical Analysis, Parsing, and Type Synthesis

The second phase the compiler enters is the Lexical Analysis, Parsing, and Type Synthesis phase.
During this phase, the compiler traverses the program tree in postfix order, parsing those files marked as
requires_parsing, and synthesizing the types of outermost declarations.

Within a routine text, forward references to declarations within that routine text are not allowed, so
the types of all symbols declared can be determined easily. However, for outermost declarations, the
situation is more complex. If the equivalence declaration

a: type ==

meant that a and b were exactly the same type, a closure algorithm over the whole program tree would
be necessary to determine the types of all objects. However, the type equivalence rules were chosen so
that except within the declaring node and its descendants, the new type is completely different from its
representation type. When the additional rule is added that type symbols may not be overloaded, this
allows the compiler to determine the type of every non-overloaded symbol in the program in one postfix
(or synthesis) pass. Figure 4.1 shows the type synthesis algorithm.

Although the prototype compiler does not implement it, the detection of cycles in types can also be
done during synthesis of types.

+ This is the only part of the compiler that is operating system specific.
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Iterate bottom-up over nodes N

If N is marked requires_parsing
simultaneously perform lexical analysis and parsing of N

check that no declarations of children of N conflict
Iterate top-down over children M of N

For each child Pof M
resolve type references of M with definitions of P

Figure 4.1: The type synthesis algorithm

3. Type Change Propagation

After the types of all objects in the program have been determined, the compiler enters the Type
Change Propagation phase. The compiler traverses the program tree in a prefix (or inheritance) pass to
determine which unmodified nodes are nevertheless affected by changes in the types of objects they refer-
ence. Since a change in the type of a symbol can affect how references in other nodes are resolved, a clo-
sure algorithm is necessary to propagate such changes to dependent nodes. However, the visibility and
type equivalence rules allow a single inheritance pass with closure only over sets of sibling nodes to com-
pletely propagate these changes. Figure 4.2 shows the change propagation algorithm.

Iterate top-down over sibling sets S

For all nodes N in $S marked requires_parsing
compare declarations of IV against old declarations of NV,
marking those which are different changed

Iterate until convergence
If an unchanged reference of node N of SS
depends on a changed declaration of any node
mark reference changed
mark N requires_resolution
If an unchanged declaration of node N of S§
depends on a changed reference of any node
mark declaration changed
mark N requires_resolution

For all references of the parent of SS
If the reference is not overloaded
If the reference refers to a declaration which
is changed and is not a type declaration
mark parent requires_resolution
Else
If any visible declaration matching the reference is changed
mark parent requires_resolution

Figure 4.2: The type change propagation algorithm

For each set of sibling nodes, the outermost declarations of those nodes marked requires_parsing
are sorted by name and compared with the old declarations from the previous compilation. Those
declarations whose type is different are marked changed. The closure over the set of sibling nodes of
those declarations which depend upon changed declarations is then computed. Each reference to a
changed declaration is marked changed, and each declaration which refers to a changed reference is
marked changed. When the closure algorithm is complete, any nodes containing a changed declaration
are marked requires_resolution. Finally, if the parent node references any changed declarations, the
parent node is marked requires_resolution.
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When an overloaded declaration is marked changed by the above algorithm, any node containing a
reference which might resolve to that declaration must be reresolved. This is handled by checking all
visible declarations which could match the reference and marking the node requires_resolution if any of
the declarations is changed.

When a coercion is marked changed, the number of nodes which might be affected by such a change
is very large. Cormack [Cor 81] proposes some algorithms for determining more precisely which nodes
may be affected, however the prototype ForceOne compiler simply assumes that each node in which the
coercion is visible is affected. Every descendant of the parent node of a node containing a changed coer-
cion is marked requires_resolution.

4. Overload Resolution

The Owverload Resolution phase resolves overloaded symbols and inserts coercions in the parse tree
where required by context. A two pass recursive algorithm is executed for each node which is marked
requires_resolution. This algorithm uses a cost function to select among the many possible interpreta-
tions of the parse tree which may result when user defined coercions and overloading are used. Effec-
tively, it assigns a cost to every possible interpretation, and selects the interpretation with minimum cost.
If two interpretations exist with the same minimum cost, the parse tree is ambiguous, and an error mes-
sage is issued. Similarly an error is issued if no interpretation can be found for the parse tree.

The function selbest is the recursive routine which implements the heart of the overload resolu-
tion algorithm. This routine is called upon a parse tree with a maximum cost, and returns the number of
least cost solutions and their cost where this cost is less than the specified maximum. Optionally the rou-
tine may mark the least cost solution it finds in the tree. This routine is first called upon a specific parse
tree with an infinite maximum cost to determine the cost of the least cost solution for that parse tree.
The solution is not marked; only its cost is determined. If there is a unique least cost solution, the routine
is called again upon the parse tree with the maximum cost being the least cost found earlier. During this
pass the algorithm determines the least cost solution again and marks it in the parse tree. This pass is
necessary as in order to mark each node with the correct coercion and overloading interpretation, each
node must be last visited with the appropriate target type required for the least cost solution. Figure 4.3
shows the routine selexpr which is the driver of selbest.

selexpr( target_type, tree )

select( n_solns, cost := selbest{ target_type, tree, infinity, false })
case 0:
put( "Expression has no solution” )

case 1:
selbest( target_type, tree, cost, true )

otherwise:
put{ "Expression is ambiguous" )

Figure 4.3: The overload algorithm: selexpr

The routine selbest, as shown in Figure 4.4 has only three cases: leaves, identifiers, and instance selec-
tion. In reality there is a different case for each different kind of parse tree node, however the case for
each of the other kinds of nodes is very similar to one of these three cases.

Leaves are the simplest case. If the type of the leaf coerces to the target type, there exists one
unique solution for this subtree, whose cost is the cost of that coercion. If this cost is less than or equal to
the required maximum, this cost is returned.
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selbest( target_type, tree, max_cost, mark )
returns n_solns, best_cost

n_solns := 0

select( kind of tree )
case Leaf:
if( (cost := coercible( type of leaf, target_type )) < infinity )
if{ cost <= max_cost )
if( cost == max_cost ) n_solns +=1
else max_cost := cost, n_solns :=1
if( mark )
save coercion in the tree
return( n_solns, max_cost )

case Identifier:
for( each identifier of this name visible here )
if( (cost := coercible( type of identifier, target_type )) < infinity )
if( cost <= max_cost )
if( cost = max_cost ) n_solns +=1
else max_cost := cost, n_solns := 1
if( mark )
save coercion in the tree
mark identifier in the tree
return( n_solns, max_cost )

case Instance_selection:
while( (n_isolns, cost, type := selnext( tree.expr, max_cost, false )) > 0 )
if( type is | and tree.n_actuals = type.n_actuals )
for( each type.formal and tree.actual )
(nisolns *==, cost +==)
selbest( type.formal, tree.actual, max_cost-cost, false )
if( (cost += coercible( type.result, target_type )) < infinity )
if( cost <<= max_cost )
if( cost = max_cost ) n_solns +=
else max_cost := cost, n_solns := 1
if( mark )
mark coercion of result in tree
selnext( tree.proc_expr, max_cost, true )
for( each type.formal and tree.actual )
selbest( type.formal, tree.actual, max_cost-cost, true )
return( n_solns, max_cost )

[

Figure 4.4: The overload algorithm: selbest

Identifiers are not treated the same as leaves because they may overload. The identifier whose type
coerces with least cost to the target type is selected as the minimum cost solution.

Instance selection is the hardest case. The cost of selecting any given interpretation of a lambda
expression at this node is the sum of the cost for the lambda expression’s subtree plus the cost of match-
ing each actual parameter to its corresponding formal parameter. The minimum cost solution may not
necessarily involve the minimum cost solution for the lambda expression. The algorithm must match all
possible interpretations of the lambda expression with the actual parameters in order to determine the
minimum cost solution. The routine selnext, shown in figure Figure 4.5 is called upon the lambda
expression to obtain a possible interpretation of the subtree. selnext parallels selbest in structure,
but operates like a coroutine, returning one possible interpretation of the subtree each time it is called. t

t The Instance_selection case of selbest as shown here does not include propagation of ref across parameteriza-
tion.
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selnext( tree, max_cost, mark )
returns n_solns, cost, type

select( kind of tree )
case Leaf:
return{ 1, 0, type of leaf )

case Identifier:
if( tree.current = nil }
tree.current := first possible definition
else
tree.current := next possible definition past tree.current
return( tree.current != nil, 0, type of tree.current )

case Instance_selection:
while( (n_solns, cost, type := selnext( tree.expr, max_cost, mark )) > 0)
if( type is || and tree.n_actuals = type.n_actuals )
for( each type.formal and tree.actual )
{(n_solns *=, cost +=)
selbest( type.formal, tree.actual, max_cost-cost, mark )
if( n_solns > 0)
return( n.solns, cost, type )
return( 0, infinity, nil )

Figure 4.5: The overload algorithm: selnext

The routine coercible, shown in figure Figure 4.6 is called by selbest to determine if a type is
coercible to another type.

coercible( type, target_type )
returns cost

if( type matches target._type )
return( 0 )

if( type widens to target_type )
return( number of nodes in tree currently being examined by selbest )

if( type narrows to target_type )
return( current depth of nested selbest calls }

return( infinity )

Figure 4.6: The overload algorithm: coercible

If the two types are the same type, then they are clearly coercible with zero cost. If the second type is a
query declaration, then they are coercible with zero cost, and the actual type matched to the query
declaration is stored in the symbol table. Otherwise, as many refs and routines are stripped from the
first type as possible, and a search is made of the symbol table to find a coercion from this type to the
desired type. If a widening is found, then the two types coerce with cost equal to the number of subnodes
of the current parse tree node. If a narrowing is found, then the two types coerce with cost equal to the
depth of the current parse tree node.

A more abstract description of the overload resolution algorithm may be found in [Cor 86a).
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5. Code Generation

The output from the overload resolution phase is one parse tree for each source file, decorated with
the type yielded by each node of the tree. The Code Generation phase converts this set of parse trees
into a set of object units suitable for linking. A code generator for ForceOne needs little more sophisti-
cation than a code generator for Pascal; the only additional capability required is the ability to generate
code for objects of varying size. Algorithms for generating such code are simple and already well known
[Aho 86]. The code generator in the prototype compiler is incomplete and unexceptional; it will be dis-
cussed in little detail.

The prototype compiler simply traverses every tree of the program and emits one Vax 11 assembly
source file which is assembled to produce one object unit representing the program. A production com-
piler would attempt to generate code for only those source files necessary, and would also generate
machine code directly. For each source file marked requires_code_generation, the code generator would
determine the sizes of all types used in the parse tree, and would determine by comparison with the previ-
ous sizes which types have changed in size from the previous compilation. In a similar manner to the way
in which the type change propagation phase propagates changes in types, those parse trees which depend
upon these sizes would be marked requires_code._generation. Then each tree whose source file is marked
requires_code_generation would be traversed to generate one object unit for each source file.

Memory for variables is allocated from a stack, with static links used to maintain the display for
each procedure. All objects and temporaries have fixed offsets in the stack frame; variable size objects
are represented by a fixed size pointer pointing to a variable size bucket at the end of each stack frame.
Symbols at the outermost level are treated as globals. Figure 4.7 shows the stack frame layout.

variable size
parameters

fixed size
parameters

call-return
and
display
linkage

fixed size
temporaries

variable size
temporaries

stack grows down

Figure 4.7: Stack frame layout



The Prototype Compiler

All of ForceOne has been implemented to some degree in a prototype compiler. All constructs are
parsed, and almost all constructs are handled by the overload resolution pass. Code generation, however,
has only been implemented for some of the more common constructs due to a lack of time. Completing
the prototype compiler would not be difficult; those parts not yet implemented have been sketched out.
This implementation has been very useful in highlighting and clarifying several issues and problems in the
language design which might never have been discovered if ForceOne had simply been designed on

paper.

Figure 4.8 outlines the source organization of the prototype compiler. The source comprises about
11,200 lines of C code in total.

codegen
code generation
2300 lines

findchg
change detection
100 lines

misc
miscellaneous
500 lines

propchg
change propagation
500 lines

debug
debugging
500 lines

flatten
symbol database 10
1500 lines

node
source file traversal
100 lines

symt
symbol tables
500 lines

error
error reporting
300 lines

h
include files
700 lines

overload
overload resolution
1700 lines

typeres
type synthesis
200 lines

Figure 4.8: Source code organization
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filesys
file system walking
300 lines

lex
lexical analysis
700 lines

parse
parsing
1300 lines



Chapter 5

Future Directions

Problems with ForceOne

ForceOne has been an excellent tool for finding problems in the specification and implementation
of languages of its class. ForceOne exhibits enough problems that of itself it would not make a very
good programming language; however, it seems fairly clear that when some of these problems have been
resolved a derivative of ForceOne could be built which would be much more expressive than many con-
temporary programming languages.

Failure of the overload algorithm due to insufficient context is clearly undesirable. There will
always be weak contexts so long as we have polymorphic procedures. Therefore, the only way we can
eliminate this failure is by eliminating context dependent constructs. This may not be feasible either;
however, it may be possible to arrange that very seldom in ordinary coding would context dependent con-
structs appear in weak contexts. The introduction of a var type generator may help. This type genera-
tor is very similar to the ref type generator, but subsumes the role ref currently plays in allocating vari-
ables. Automatic dereferencing is replaced with automatic devaring. The cost of devaring once is —¢,
where ¢ is very small. There exists a coercion from ref X to var X of zero cost which may be applied
automatically by the compiler. ref propagation across parameterization is no longer necessary. In
declarations, for identifiers of type ref X there may be a value supplied with ==. For identifiers of type
var X there must be no value supplied. We can now write

i: var int
selectf 1 ]

rather than

i: ref int
select[ @1 ]

In retrospect, the rule that routine texts yielding void are automatically called should be deleted.
Instead, parentheses should accept an expression list:

expr = ( expr_list )

where the last expression is the value returned and all others must yield void. Each expression in a rou-
tine text, including the last one, yields void; falling off the end of a routine text is illegal. The return
expression causes a return from the innermost routine text. We now use () where {} yielding void was
used before.
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f: routine int ==
if [ something ] (

return[ 1 ]
)
else

return[ 0 ]

}

The actions of hiding symbols, creating new symbols, and overloading existing symbols, currently
controlled by the keyword overload, should be separated. In some cases it may be desirable to hide a
particular symbol or coercion, without replacing it with anything. It may also be desirable to replace a
particular overloaded declaration with a different one, without affecting the other definitions of that sym-
bol.

The order in which the outermost declarations of a program should be elaborated before the main-
line procedure for that program is called is not obvious. The prototype compiler elaborates declarations
in a top down manner over the program tree. Within a source file, declarations are elaborated in the
order found. A better solution would likely be to determine a partial ordering of dependencies and ela-
borate declarations according to this partial ordering; if such an ordering could not be found then an
error would be reported.

The semantics for user defined type generators can be clearly and easily defined without any exten-
sions to the language syntax, however the current implementation of the ForceOne compiler does not
support these. Parameter substitution for a user defined type generator can be performed at parsing time
and so does not affect the rest of the compiler. However, this requires the rule that a file cannot use type
generators defined in sibling or descendant files, as all type generators used by a source file must be avail-
able before that source file can be parsed. This rule is similar to the rules for type equivalence, and so
should not seem too restrictive. An example of a user defined type generator for a linked list follows.

linked_list: [t: type] type == recordl[
next: linked_list[ t ]
data: t

]

ForceOne allows only a single identifier to be declared with one declaration. This should probably
be extended to allow declarations of the form

i, j, k: ref int
meaning precisely

i: ref int
j: ref int
k: ref int

If this is allowed for equivalence declarations and the right hand side of the == contains side effects, these
must be performed as many times as there are identifiers being declared.

In retrospect, reserving widen and narrow as keywords is unnecessary. Since the name of the rou-
tine defined as a coercion is unnecessary, coercions should be defined by simply overloading the special
names widen and narrow:
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overload widen: { int ] routine real ==
overload narrow: [ real ] routine int ==

Like widen and narrow, it seems obvious in retrospect that retype and detype need not be
reserved as keywords. A type declaration should automatically create the two procedures

overload detype: [ new_type ] base_type
overload retype: [ base_type ] new_type

and the coercion

overload widen: [ new_type ] base_type == detype



Additional Features

ForceOne is not a complete language; there are several features which should be included in the
language and many others which seem desirable. Some of these features have already been mentioned; a
few more are mentioned here.

Some mechanism to allow extensible syntax should be provided. This mechanism should be suffi-
ciently powerful to allow the definition of an inline select expression, so that the present control struc-
tures of ForceOne can be removed. Also the user should be able to define his own operators, and
specify their precedence and associativity. This would allow the deletion of the fixed set of operators
currently built in to ForceOne. This mechanism might also allow the definition of procedures that can
accept an arbitrary number of parameters.

No mechanism for exception handling has been included in ForceOne. Language support for
exception handling is required in order to allow the dynamic binding of a raised exception with its
handler. Some form of non_local_return may be sufficient to allow the flow of control to return
through several levels when an exception occurs. The exceptions raised by a particular procedure are
declared as automatic procedure parameters of that procedure. A handler for a particular exception is
declared by declaring a procedure of that name. An exception is raised by invoking the exception name.

add: [ a: int, b: int || overflow: routine exception ] ==
if[ signf[a]l = sign[b] && sign[al != sign[a + b] ]
loverflow \ raise overflow exception
else

return[ a + b ]

}

overflow: routine exception ==
put[ “"overflow\n" } \ handle the exception
non_local_return[ handling context ]

}

The problem remaining is to determine some means of binding an exception handler to its handling con-
text, which as the example shows is the same problem as determining the target of the
non_local_return.

Some mechanism should exist to allow access to the program state, in order to implement coroutines
and other process control mechanisms. Given a mechanism which allows the saving and restoring of the
program state, implementing a coroutine package or cooperating sequential process package in ForceOne
should be straightforward.

No compiler or language support is provided for libraries or version control. It should be possible to
define libraries of routines to be used by many programs, and to make compatible modifications to such
libraries without requiring the recomilation of all programs using the libraries. There should be a stan-
dard library available to all programs, and users should be able to define their own private libraries.

A production ForceOne compiler should generate inline procedure calls wherever possible. Since
ForceOne programs will use many small polymorphic routines, the generation of inline code for some of
the calls to these routines will greatly improve execution efficiency. Here by inline procedure call we
mean the generation of inline code and the substitution of arguments for formals in order to avoid
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building a new stack frame. Since ForceOne is a type secure language, more information is available to
the compiler to help it determine when arguments can be substituted for formals without modifying the
semantics of the program being compiled.



Contributions of this Thesis

ForceOne is the first attempt at defining a production language encorporating most of the features
introduced in the earlier languages L [Cor 81, Cor 83], L [Lec 84], and M [Jud 85]. L was mainly a
presentation of a set of loosely related language features and algorithms for compiling them. Leclerc’s L
was a more integrated language, but lacked many of the more interesting language features found in
ForceOne, such as query parameters. M was primarily an investigation into more unconventional
language features.

The ForceOne compiler is only the second attempted compiler for languages of this class. The first
was Leclerc’s L, however this compiler did not implement many interesting language features as L itself
did not contain them. ForceOne implements overloading, coercions, parameters of type type, query
parameters, automatic parameters, and a hierarchical file structure all within the framework of a separate
compilation system.

ForceOne contains several new features not present in L, L, or M. The file structure of Force-
One, which provides a clean module structure while eliminating import and export lists, was inspired in
part by Thoth [Car 79]. The realization that a polymorphic procedure has a type and that more than one
? in a query parameter is necessary to describe procedures accepting polymorphic procedures as argu-
ments is new to ForceOne. The style of records provided by ForeeOne with both alternation and con-
catenation of fields is not used by any popular language.

Chapter three of this thesis is the first complete definition describing both the syntax and semantics
of a language of this class.
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Conclusion

ForceOne is smaller and more expressive than most contemporary programming languages. Its use
should come as a natural extension to programmers already familiar with such languages. Through its
greater extensibility ForceOne adapts easily to diverse applications and programming methodologies.
ForceOne facilitates object oriented programming and the creation of reusable libraries of very general
purpose software. It is hoped that this presentation of ForceOne and the concepts it encapsulates will
provide the fabric from which a still simpler and more expressive language will emerge.
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Appendix A

Reserved Keywords

The following keywords are reserved for use in certain syntactic constructs and may never be used
as identifiers.

case detype else enumerate external
if loop narrow overload record
ref return retype Troutine select
type void widen
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Appendix B

Escape Sequences

Following is a list of escape sequences recognized within identifiers, character constants, and string
constants.

\a alert or bell

\b backspace

\f formfeed

\n newline

\r carriage return
\t tab

\v vertical tab

\’ single quote

\" double quote
\ grave accent

\\ backslash
\$nn  numeric constant

In the last form, nn must be a one or two digit hexadecimal number representing the value of the charac-
ter.
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Appendix C

Operators

Following is a table of the builtin operators. The operators are listed in increasing order of pre-
cedence. Operators listed on the same line have the same precedence, except for the assignment opera-
tors which all have the same precedence. Only the middle group of operators may be defined by the pro-
grammer; the others are language operators and are built in to the compiler.

Associativity
right
right
right
none

right

left
left
left
left
left
left
left
left
right
right

right
right

Operator
if
else

= +=
|

&

= #
< <=
<< >>
+ -
* /
*ok

+ -
e !
ref
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loop select

case

e *= = %=

|= <<= >>=

> >=

%

++ - - (unary)
routine 0]



Appendix D
Context Dependant Constructs and Weak Contexts

The following constructs are context dependant and may not be used in a weak context.

retype_expr
routine_text
aggregate
string_const
inline 1 f_expr

The following constructs generate weak contexts.

the true and false expressions of an ¢f_expr
the selector expression of a select_expr
query_dec! formal parameters
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Appendix E

Grammar

Following is the ForceOne grammar in a condensed form. The reader should beware that there are
semantic restrictions which actually reduce the accepted language. The symbol ¥ means the ascii blank
character. The symbol source_file is the start symbol for the grammar.

source_file expr_sequence

[ [+]

*
expr [ , expr ]

expr_sequence

expr_list

expr basic_expr

type_expr

declaration

routine_text

active_expr

control_expr

i

aggregate

1

cast

il

typemod_expr

il

void_expr

op_expr

( expr )

basic_expr tdentt fier

constant
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type_expr ref_tgen

routine_tgen

param_tgen

enum_Llgen

record_tgen

type_tgen

subrange_tgen

query_decl

identi fier

ref_tgen ref type_expr

routine_tgen routine [ type_expr

void ]

param_tgen [ expr_list [ 11 ez'pr_list] 1 type_expr

enum_tgen enumerate [ ident_list ]

ident_list

*
identi fier [ s identiﬂer]

record_tgen

*
record [ field_list [ | field_list] ]

field_list = [ field ]+

field = [ fieldtist [ 1 field Jist ]* ]
= storage_decl [ ; ]

type_tgen = type

subrange_tgen = expr .. expr



declaration

equiv_decl

storage_decl
decl_type
query_decl
routine_text

active_expr

call
deref
instance_select

freld_query

equiv_decl
storage_decl
[ decl_type] identifier . type_expr == expr
[decl_type ] identi fier : type_expr
== external siring_const
[ decl_type] tdenti fier . type_expr
overload I widen l narrow
+
[ ? ] identi fier
{ expr_sequence }
call
deref
instance_select
[field_query
! expr
@ expr
expr [ expr_list ]

expr P [ expr ]
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control_expr

if_expr

select_expr

loop_expr
return_expr
aggregate
cast

typemod..expr

detype_expr
retype_expr
votd_expr

op_expr

identi fier

identi fier

[

[

]

]

if_expr

select_expr

loop_expr

return_expr

if [ expr ] expr [ else expr ]
select [ expr ]

[ case [ expr_list 1 expr ]+

[ else expr ]

loop [ [e:cpr_list] 1 expr
return [ expr ]

{{ expr_list }}
type_expr == expr
detype_expr

retype..expr

detype [ ezpr ]
retype [ expr ]

void

expr binary_op expr
unary_op expr

alpha [alpha Idigit | - ]*

*
‘ [src_char escape_seq] ‘
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decimal_const

constant

I

based_const

real_const

char_const

string_const
*
decimal_const = digit [dz'git | _ ]

[ dectmal_const ] $ [ alpha |digz't

T

based_const

real_const = dectmal_const . [ decimal_const] [ea:ponent ]
= . decimal_const [ exponent ]
= decimal_const exponent

exponent = e |E [ + | - ] decimal_const

char_const = * src_char |escape_seq *

*
string_const " [ src_char lescape_seq ] "

binary_op = :=|+=|—=|*=|/=|%=|z:|
*=||=I>=|<=|<<|>>|**|
e s e e
L 1] e

o=+ |- [ ]

escape_seq = \a |\b |\f |\n I\r [\n [\vl
SR ACHASEAN

I

\$ [ alpha ldigit] alpha |digz't
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