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Abstract

Combining symbolic algebra with numerical computation has become an effective way of
solving many scientific and engineering problems. One of the difficulties in practice is producing
concise, efficient, stable code from the large expressions generated in symbolic algebra. Most
of the existing optimization techniques are applied after an operation or algorithm has been
performed. We introduce techniques using high-level knowledge which are to be applied while

the output expressions are generated.
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1 Introduction

1.1 Rationale for Needing Optimization

Symbolic algebra and numerical computing techniques can be combined to solve problems in engi-
neering and physics [Wir80,Wan86|, but expressions generated using symbolic algebra systems for
subsequent use in numeric codes tend to be very large [SR84,Bre84|. Translating these expressions
directly into a computing language can lead to disappointing results. The code may be inefficient
and numerically unstable. Furthermore, improving the code by hand is impractical because of
its size. Consequently, an interface between symbolic and numerical computing facilities should
include procedures for optimizing the number of arithmetic operations in the formulae and tools
for analyzing the numerical stability of the generated code. The term optimization is used in the
sense of improving the arithmetic operation count and compactness of the code rather than “the
best possible”.

Most of the existing optimization techniques are applied to the large output expressions after a
procedure has been performed. The process applied to the input to produce the output expression
is usually well-understood, although perhaps not by the user. We discuss an approach to expres-
sion optimization which uses knowledge about the operation or algorithm being performed, and
the structure of the input expressions to generate concise output formulae that can be evaluated
efficiently.

In Section 3 we present three examples in which optimization using high-level knowledge has
been applied. The examples involve differentiation, Taylor series approximation, and integration
operations. Within the process of this knowledge-based approach, we use some of the existing
structure-determining and structure-reducing optimization techniques on small components of the
larger problem. A brief summary of existing optimization techniques with references is given in

Section 2.

2 Survey of Existing Optimization Techniques

Using Built-in Procedures The built-in procedures in symbolic algebra languages like Reduce,

Macsyma and Maple can be used interactively to improve the quality of many codes. Steinberg and



Roache [SR84] and Cahill and Reeder [CR85] used built-in Macsyma procedures to interactively
analyze and produce improved FORTRAN code for specific applications in physics.

Expression Analysis and Compression Hulshof and van Hulzen developed a Reduce pack-
age for interactively analyzing and restructuring expressions [vHH82] and a package for expression
compression [HvH85]. After analyzing the expression(s), compression techniques using local fac-
torization [Coo82] and controlled expansions based on work done by Brenner can be applied to

produce a more compact representation.

Common-Subexpression Searching van Hulzen developed a common-subexpression searching
procedure in Reduce [vH81,vH83|, based on Breuer’s algorithm [Bre69], that performs a common-
subexpression search on multivariate polynomials. This approach to common-subexpression search-
ing has also been implemented in Maple.

The optimize procedure in the Maple (version 4.0) library, developed by M. Monagan, makes
use of “remember” tables [CGG W85, page 186}, which are based on hashing, to identify subexpres-
sions which are complete subtrees of an expression’s parse tree. Only subexpressions that Maple
simplifies as identical syntactic structures are recognized as common. In (z+y+ 2)(z+y+f ), z+y
is not recognized as a common component since it is only a part of the sum structure, whereas it
is recognized in (z + y) exp(5(z + y))-

Macsyma’s OPTIMIZE command also employs a heuristic based upon hashing. During the de-
scent of an expression tree, a hash code is formed for all subexpressions at a given level. A collision
in the hash codes triggers a check for a common subexpression. Thus OPTIMIZE makes two passes
through the expression — one to find and mark common subexpressions, and another to form the
list of expressions for the result.

Macsyma’s and Maple’s optimization procedures, which we will refer to as “syntactic-optimization
procedures” , both make use of hashing to discover occurrences of common subexpressions in linear
time. If expression-analysis and compression techniques are applied to an expression first, the result
of a common-subexpression search is usually more compact than if only a common-subexpression

search is performed.



Evaluation of Polynomials Given the polynomial p(z) = a, +a1z+azz? +...+apz", Horner’s
rule is suggested as an economical way of evaluating the polynomial. Horner’s rule is not always
optimal [Fat69]; methods for preconditioning the coefficients can further improve the operation
count. For example, preconditioning based on polynomial chaining, an extension of addition chain-
ing, is given in Knuth [Knu81, pages 446-505|. These methods extend to multivariate polynomials.
Horner’s rule and preconditioning methods very often give good results, but their numerical sta-

bility depends on the polynomial’s coefficients [MW67].

Other Techniques for Optimization The procedure FORT, due to Harten [Har84], uses the
built-in functions OPTIMIZE and HORNER to produce improved FORTRAN code.

Brenner [Bre84| describes techniques for simplying large algebraic expressions which include
segmenting the calculation in parts, and analyzing the structure so that rational simplification
can be applied at appropriate points in the computation. By segmenting, he is able to reuse
some intermediate results in the symbolic simplification process. His approach is implemented in
Macsyma in a procedure called LTAB.

Paul Wang [Wan86] describes several techniques for improving the code produced in his symbolic
system for the automatic generation of numerical programs for finite element analysis. These
techniques, which include automatic intermediate-expression labelling, exploiting the symmetry of
a problem using generated functions and subroutines, and interleaving formula derivation with code
generation, could be useful in other applications. Intermediate-expression labelling is an illustrative
example of Wang’s methods. This method generates machine-created labels for certain intermediate
expressions. These intermediate results are saved on an association list, which is checked before
each computation to avoid reevaluating expressions. For an expression not on the association list,
a label is generated and the expression-label pair is added to the list. For an expression already
on the association list, the label is returned. This technique is much like Maple’s option remember

[CGG W85, page 169], but a label representing the result is returned instead of the actual result.



3 An Alternative Approach Using High-Level Knowledge

We present an approach which uses knowledge about the operations, and the structure of the input
expressions to these operations, to produce a compact representation of the output. This technique
does not necessarily preserve the original structure of the problem, but does exploit it to a great
extent. Since the approach depends on knowledge about the operations being performed, we apply
it to three examples — differentiation, Taylor series approximation, and integration — to illustrate
how it works. These are representative of the (small number of) basic operations that all symbolic

algebra systems use to create and transform expressions.

3.1 Differentiation

Solving systems of nonlinear equations is just one problem where differentiation can be an important
part of the solution process. The generation of a Jacobian using a symbolic algebra system some-
times produces large output expressions that are difficult to understand, and must be transformed
into a more concise and efficient form for use in numeric code [Spe80,Ked80,NC79).

Differentiation will very likely generate common subexpressions. Certain differentiation rules,
such as the chain rule, also generate particular structures in the solution expressions. Rather than
generating the solution, and then searching for a concise representation of the output, we could
take advantage of the knowledge we have about the operation being performed and about the input
expressions such as their syntactic structure and sparsity.

Consider computing the Jacobian of the following nonlinear problem [Ric83, page 241]:

hl := sin(zy+1)/(1+z+y)—1

h2 := tan(zy+2)/(1-z+y)-2.

The Jacobian is:
cos(zy+1)y __ sin(zy+1) cos(zy+1)z __ sin(zy+1)

1+z+y (14z+y)? 1+z+y (1+=z+y)?
sec?(zy+2)y _ tan(zy+2) sec?(zy+2)z _ tan(zy+2)
1—z+y (I—z+y)? 1—z+y (1-z+y)2

We could then perform a Breuer-algorithm based common-subexpression search on the elements
of this matrix which would find 16 common structures. As an alternative we could exploit our

knowledge of the differentiation process, and the structure of the problem. In the given problem



we can use our knowledge of the division rule

d(u)_vg—:-—u%_ldu u dv

dz \v v2 T vdx vidz’

The denominator v is a common subexpression in the final result.

In the given problem, the following structures were identified using Maple’s op procedure to

extract the components of the internal representation of the input expressions.

tl = =xy

ul = sin(t1+1)
vl = 14z+4y
u2 = tan(tl+ 2)

v2 = 1—z+y

The component « + y could also be identified if a Breuer-algorithm-based common-subexpression

search was used.

For lack of space, we will just consider calculating the (1,1) and (2, 1) elements of the Jacobian
corresponding to the derivatives of hl and h2 with respect to z. We first calculate the derivatives of
the components that we identified above. For assignment variable var, its derivative with respect

to z is assigned to the variable varp.
tlp = y
ulp = cos(tl+ 1)tlp
vip = 1
u2p = sec?(tl+ 2)tlp

vip = -1

The (1,1) and (2, 1) elements of the Jacobian are given by

1 ul
11 = —ulp— —
J e p vl2
. 1 u2



where simple intermediate expressions representing simple constants have been eliminated. The
components, their derivatives, and the result can be saved as elements of an expression table.
The above approach could be used to generated the entire Jacobian; this approach produces an
improved description of the output expressions, finding a similar number of common subexpressions
as a Breuer-algorithm-based search, without requiring a search upon completing the differentiation
process.

To further illustrate how this strategy can be used, consider taking the derivative of a product
of 8 terms u, v, and w which are functions of the variable z. Using the product rule, the derivative
is

duvw) _ dw dv du

uv— t+uw—+ vw—.

dz dz dz dz
By identifying the operation we are performing and the existing factors in the product, we see that
the result contains the common subexpressions u, v and w. If the number of factors is greater
than two, the product rule for differentiation will produce common subexpressions (as long as the
components are independent of each other). The derivative of each factor can be determined and a
common-subexpression search can be performed on the smaller problem, the set of three expressions
{%‘zﬂ, g—:, %‘zi}, rather than doing a systematic search on the complete result afterwards.

If we consider a product of 4 terms, we can determine a more efficient representation than would

be expected from just applying the product rule directly. Using the product rule:

du

d(uvwy) u dy du
- dz

dw dv
Iz vw dz + uvyE + uwa + vwy
where the original factors in the product u, v, w, and y are now common subexpressions. uv
and wy could be identified as common subexpressions afterwards using a search based on Breuer’s
algorithm, but would not be found using syntactic optimization. On the other hand, we can take

advantage of the structure during the differentiation process and eliminate the need for a common-

subexpression search on the final result. Consider

d(uvwy)  d(uwv)(wy) _  d(wy) d(uv) ( dy d_w> ( dv du)
= = d CWa T W\ TV T\ )

uv and wy were identified as significant structures from the beginning of the process using knowledge

about the operation and the expression. Assuming the components u, v, w, and y are evaluated



once, the direct use of the product rule requires 12 multiplications and 3 additions; using knowledge-
based optimization, 8 multiplications and 3 multiplications are needed. This improvement has been
achieved without the need for a Breuer-algorithm-based common-subexpression search. Greater
improvements in efficiency and compactness of the code would be seen in large problems where
one uses knowledge about several differentiation rules, and all the structures identified in the input
expressions.

Similar strategies can be established for other differentiation rules involving exponentials, in-
teger powers, and powers which are functions of z. Using the differentiation operation with this
code improvement strategy includes steps to identify existing common subexpressions, factors in a
product, the number of such factors, and the use of division and exponentiation, and then, steps to
take advantage of these structures within the differentiation process. The derivatives of the com-
ponents can be calculated, a common-subexpression search performed on this set of derivatives,
and the required derivatives can be constructed from assigned variable names representing common

subexpressions.

3.2 Taylor Series Approximation

The standard form of the Taylor series for f(z) about the point z = a is given by

f(8) = £(@) + @ - @) f'(@) + E= D pra) o B )

2! 3!

There is two sources for improvement. Firstly, we can take advantage of the common subexpression

@)+ + EZ A a4

9 = (z — a). Secondly, we can exploit the common subexpressions produced by the differentiation
operation. For example, in the Taylor series expansion of exp(y/(1 — z) + a) about z = 0, each
term in the result contains the expression exp(—y + a). Both sources of common subexpressions
are identified without the need for a common-subexpression search.

Subsequent operations on the Taylor series approximation will have to deal with the common
subexpressions repeatedly. In a symbolic context, Maple already uses this fact by only storing the
common components once in its internal data representation of the expression, and using pointers
to the single representation of the common component. Furthermore, Maple’s taylor procedure
uses a remember table [CGG W85, page 186] to avoid recomputing the common pieces of the Taylor

expansion.



The proposal that is being made here goes further; in order to describe large output expressions
effectively to the user in the symbolic algebra system, and in order to generate efficient code for a
numeric environment, the output should be generated using, for example, the high-level-knowledge
approach described above, in a form where the common subexpressions are described only once as

a side relation [Hea84)].

3.3 Integration

Consider applying this strategy to integrals calculated using the Risch algorithm [Ris69]. Liou-
ville’s theorem states that if the integral of an elementary function f(z) € K(z,61,0s,...6,) is an

elementary function then it can be expressed in the form

k
/ f(z)dz = vo + Z c; log v;
=1
where 8;, c; and v; belong to a tower of algebraic, logarithmic or exponential extension fields, or
their algebraic closure, of the base differential field, K(z).

Consider two examples; in the first integral, I, the extension field used in the Risch algorithm

is ¢ = In(z — 1), and in the second integral, I3, the extension field is w = In(z).

_ (2% — 2)In®(z — 1) — (2?2 — z) In*(z — 1) + 21n3(z — 1) — 8In(z — 1) + 8
L= / (z—1)In*(z—1) - (z - 1) In®(z - 1) d
z? - z? + 2z
= g G- D)+ Tt - T where ¢ = ln(e - 1)
_ zln®(z) +1
I2 - /'—HII(';)——‘dZ

= zln(z) — =z + In(In(z))
= zw-—z+In{w) where w=In(z).

The extension fields act as common subexpressions in the indefinite integral. The final result can
be expressed in terms of variables, §; representing the extension fields, and a set of side relations
describing the 8; subexpressions. We observe that the integral can be described more concisely
simply by taking advantage of our knowledge about the Risch algorithm without having to do a
common-subexpression search on the result that is produced. Further investigation is needed to
determine if this optimization approach can be used to identify common subexpressions that are not

algebraic extensions and if this approach can be used with other procedures used for integration.
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4 Concluding Remarks

We have proposed an approach to expression optimization that differs from most existing tech-
niques, which are applied after the output has been generated. We take advantage of our knowl-
edge of the operation and the structure of the input to this operation to produce concise, efficient
code. The approach was illustrated using three operations as examples. It should not be necessary
to apply this approach to a large number of operations; most of the preprocessing occurring in
symbolic algebra systems for numeric codes appears to use only a few key algebraic operations such
as differentiation, integration, and power series. The proposed optimization scheme need only be
used in a small number of operations, in which the optimization strategies that can be exploited
are easily identifiable, in order to achieve code improvement for a significant range of problems.
Future research includes determining the class of operations with which this approach is useful
and comparing the cost and effectiveness of this approach with existing optimization techniques.
Since all the optimization techniques improve the representation of the large expressions but do not
necessarily generate the true optimum, the investigation should determine how much improvement
is achieved by applying each method, for what types of problems each method is best suited, and
when the use of several techniques in sequence is effective. Another issue that must be addressed

is the generation of expressions that are numerically stable as well as efficient to evaluate.
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