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On the Path Length of Binary Trees*

Rolf Klein } Derick Wood?
February 16, 1987

Abstract

We show that the external path length of a binary tree is closely
related to the ratios of means of certain integers and establish the
upper bound

External Path Length < N(log; N + A — log, A — 0.6623)

where N denotes the number of external nodes in the tree and A is the
difference in length between a longest and a shortest path. Then we
prove that this bound is (almost) achieved if N and A are arbitrary
integers that satisfy A < v/N. If A > v/N, we construct binary trees
whose external path length is at least as large as N(log, N+¢(N,A)A
—log; A — 4), where (N, A) = (1+6O(§)) L.

Keywords: Binary trees, path length, comparison cost, node visit
cost, ratio of means.

1 Introduction

The time taken by a search operation in a search tree depends on the length
of the path from the root to the node that contains the desired information.
More generally, the execution time an algorithm needs to reach a certain
state from its initial state is related to the length of the corresponding path
in the decision tree. Therefore, the path length of a tree is a cost measure
of great importance for the analysis of algorithms.

We consider the ezternal path length EPL(T) of an extended binary tree
T, that is, the total number of edges along all the paths from the root to the

*This work was partially supported by a Natural Sciences and Engineering Research
Council of Canada Grant A-5692. It was done during the first author’s stay with the Data
Structuring Group in Waterloo in 1986/87.

Hnstitut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitit
Karlsruhe, Postfach 6980, 7500 Karlsruhe, West Germany

#Data Structuring Group, Department of Computer Science, University of Waterloo,
WATERLOO, Ontario N2L 3G1, CANADA



2 Path Length of Binary Trees

N
Figure 1: A snake.

__external nodes of T. If N denotes the number of external nodes (the weight
of T') then EPL(T)/N is just the average length of a path from the root of
T to an external node. It is well known that the external path length is a
minimum if and only if all paths in T differ in length by at most 1. In this
case

EPL(T) = N(log, N + 1+ 6 — 2%) (1)
holds, where § = [log; N] — log, N € [0,1); see Knuth [6], p. 194. This

formula establishes a lower bound for the external path length. On the other
hand, the path length takes its maximum value

N(N +1)
AU

if the tree is a “snake” as shown in Figure 1l. Here the shortest path is
N — 2 levels shorter than the longest path.

In this paper we present an upper bound for the external path length
in terms of the weight N and the maximal path length difference A (see
Figure 2) by proving that

EPL(T) < N(log, N + A — logy A — ¥(A)) (2)

1

holds for all binary trees, where
T(A) =0.9139 — o(1) > 0.6623

and o(1) tends to zero as A tends to infinity. For the tree in Figure 2, for
example, we obtain the value 31.56 whereas its actual path length is equal
to 30.

!This and the following figures have been produced using TreeTEX; see [1]
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Figure 2: An example tree.

In order to establish this upper bound we first show, via the Kraft In-
equality, that the external path length of a binary tree is related to the
ratio of the geometric and the harmonic means of the integers 2%, where
I; denotes the length of the i-th path. It is also related to the ratio of the
arithmetic and the geometric mean of the integers 2*~!  where h denotes
the height of the tree. Either relation can be used to obtain an upper bound
for the path length by applying a general theorem by Specht that imposes
an upper bound on the ratio of means of arbitrary real numbers. However,
we shall also give a direct proof for our result, in order to keep this paper
self-contained.

In Section 4 we discuss the tightness of our upper bound. If A =1, then
expression (2) is exactly equal to the maximum value the lower bound in
(1) can take. If A and N are integers of arbitrary, independent orders of
magnitude, we can build a tree whose path length is greater than

N(logg N + A —logy A — 4)

if A < V/N, and greater than

N (logz N + —logy A — 4)

1
— A
1+6(7)
if A > +/N. This shows that the upper bound for the external path length
obtained here is tight if A < v/N and quite sharp if A > v/N.

2 Path length and ratios of means

Let T be an extended binary tree. We count the level of nodes starting
with level O at the root. The access path to a node at level j is of length 7,
because it consists of j edges. The height h of the tree T' is the maximum
level number or, equivalently, the length of a longest path in 7. A node
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at level ¢ is said to be at height h — { with respect to T. Furthermore,
N = weight(T) denotes the number of external nodes of T'. Finally, we let

N
EPL(T)=)_;
=1

where [; is the length of the path to the i-th external node.
First, we recall the definition of means. Let ay,...,ay and q,...,qn be
sequences of positive real numbers such that ¢; +¢2 + ...+ gy = 1. Then

N
-1 -
MI[V ](0'1Q) = (Z 'a_) !
i=1
is the weighted harmonic mean,
0 T o
MN (a'a q) = H a':‘h
=1

is the weighted geometric mean, and

N
M a,q) =Y gia;
=1

is the weighted arithmetic mean of the numbers a;,...,any with weights
q1,.--,4N-

Lemma 2.1 Let T be a binary tree of weight N whose paths to the external
nodes are of length ly,...,In. Let a; = 2% and ¢; = %, 1<i< N. Then

Mlol(a,q) B 2*——Epﬁm
Ml-U(a,q) N

Proof: By Kraft’s Theorem (usually referred to as the Kraft Inequality, see
[3]) there exists a binary tree whose paths to the external nodes are of length
ly,...,1n if and only if

N
do2h=1
=1
Hence,
g\
M (a,q) = ( —*)
=1

= N



Klein and Wood 5

Furthermore,

2z~

N
MO a,q) = (H2"')
=1

— 9&EPL(T)
O

We can compute the external path length and the height of a binary tree
of weight N if we know only the heights Ay, ..., Ay of the external nodes in
the tree. This leads to

Lemma 2.2 Let T be a binary tree of weight N whose external nodes are
of height hy,...,hx in T. Let b; = 2% and ¢; = Iiv,l <1< N. Then

EPL(T)
N

MY (b,q) _ 2
MP(,9) N

Proof: After multiplying by 2%, the Kraft Inequality becomes

N N
Zh — Z 2h—l.- — Zzh;
=1 =1

Therefore,
N
EPL(T)=Nh-) ki
i=1
EPL(T) LA LN
——= = log, 22 * ] —log, (2TV‘ i=1 ")
N =1
N N
= log, (Z b,-) — log, (H b.'N)
1=1 1=1
and

QEELE N My (b, q)
M(b, q)
0

Inequalities involving means were first studied by the Pythagoreans and
Euclid, and many interesting results have been obtained since. For example,
it is well known that

MGV (a,q) < MY (a,q) < MU (a, q)
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holds, for any sequences of numbers a; and weights ¢;. Either inequality,
combined with the corresponding Lemma above, yields immediately

EPL(T) > Nlog, N

In the next section we will use an upper bound for the ratios of these means
discovered by Specht [7] in order to derive a new upper bound for the ex-
ternal path length of binary trees.

3 An upper bound for the external path length

Throughout this paper, A(T) denotes the difference between the length of
a longest path of T' and the length of a shortest path to an external node.
We also refer to A as to the thickness of the fringe of T'.

Theorem 3.1 Let T be a binary tree of weight N whose fringe is of thick-
ness A. Then

EPL(T) < N(logs N + A — log, A — ¥(A))
where

o(A)

A 1
log, e — log, log, e — 251 log, (1 - 2—A)
0.91392867 — o(1)
> 0.66229950

and e denotes the basis of the natural logarithm.

Proof: (first version) By Lemma 2.1,

EPL(T)
2N

_ MJ(a,q)
N MiYe,q)

where a; = 2%, l; = length of the path to the i-th external node, and ¢; = —]];7,
for{=1,...,N. By a theorem by Specht (Satz 1, (5.4) in {7]) we have

MI[\(I)](aa q) < (% - 1) e<-1~§—-§1—) (3)
My (a,q) " \~In B

if B= M jssuch that m < ay,...,ay < M. Ifl = min; l;, then B = % = 22
will do. The above exponential term equals

1
e—lBl+m
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whereas the left hand factor is equal to

-
(logz €)~1A

observing that Inz = (log, €) ! log, z holds for the natural logarithm. Tak-
ing logs yields

EPL(T)

1
N logg N < log, (1 - 2—A) + log; logy e — logy, A

1
—log2e+<1+—2—5_—1)A

In order to complete the proof we note that the function log, (1 — 2L ) +
2 2

519_7 takes its maximum value among all integer arguments A > 1,if A = 2.

O

Another proof for the theorem used in the above proof was given by
Cargo and Shisha in [2|. In addition, they showed for which values of
ay,...,an and B the inequality (3) becomes an equality. However, we now
give a direct proof of Theorem 3.1.

Proof: (second version) We want to determine the maximum value of
EPL(T) = YN, I; under the condition that ¥, 2% = 1 (the Kraft In-
equality), where max;l; — min;l; = A. To this end, we let I; = Xy +
(sin X;)2A. Here X, denotes the (unknown) length of a shortest path in T.
The value of (sin X;)? oscillates in [0,1] as X; varies in R, thereby leading to
a total path length I; that lies between Xy and Xp + A.

We consider the function

N
f(Xos X1, -, XN) = D _(Xo+ (sin X;)?2)

=1

under the condition that g(Xo, X1, ..., Xn) = 0, where

N
g(Xo,Xl, .. -aXN) = 22—(X0+(sinX;)2A) -1

=1

For each constrained maximum p = (ag, a1, ...,an) of f there must be
a real number A such that all partial derivatives of f — Ag vanish in p, by
the Lagrange Multiplier Theorem (see [4], for example). This means

N
0= __3(];;(_/\g) (p) = N+ Aln2 ) 27 (@0+(na)’a) — & 1 AIn2
0

t=1
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and
A(f — Ag)
0X;

for 1 = 1,..., N. The latter equalities imply

0= (p)=2sina,-cosa,-A(1+/\——h.l—2—)

9a0+(sina;)2A
(sina;)? € {0,1} or N = 2%+(sina)’a
due to the first equality. Therefore,
l; = ag + (sina;)2A € {ao, a0 + A,log, N}

fori=1,...,N. In order to determine how often each of these three values
occurs we consider the constrained maxima of

f(X,V,W,R)=ViX +W*(X + A) + Rlogy, N

subject to the conditions g, (X,V,W, R) = 0 and g2(X,V,W, R) = 0, where

2
a(X,V,W,R) =V~ Liwe L B

2X 2X+A +~ N -1

represents the Kraft Inequality and
92(X,V,W,R)=V2+W2+R- N

is because we are considering trees of weight N. Again, for each maximum
p = (z,v,w,r) of fi there must be real numbers XA and p such that the
partial derivatives of the function f— Ag; — ugs with respect to the variables
X,V,W, and R vanish at p. This means

0 = vi+w +/\ln2(vl+w L )

2z 2z+A
Aln2
_ 2
= (N r)<1+ N) (4)
due to the constraint conditions, and
0 = 2vy(2) (5)
0 = 2wy(z+A) (6)
0 = 2ry(log; N) (7
where

If r2 = N, then according to g;, v = w = 0 and f takes the value Nlog, N
at p—the minimum! Therefore, we must have A = i:r%’ due to (4).
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The function «(Z) takes its unique minimum if Z = log, N, because
:—'ZL(Z )=1- 5’% Hence, v(y) = v(logy N) implies y = log, N, for arbitrary
real numbers y. If we assume r # 0 then (7) implies y(log, N) = 0.Therefore,
due to (5) and (6), v or w must be equal to zero because A > 0. Assume
v =0 and w # 0. Then q(z+ A) = «(logy N) implies z + A = log, N
and again, f takes its minimum at p, a contradiction. The same holds if we
assumev#0and w=0orv=w=0.

Therefore, r must be equal to zero. This yields v # 0 and w # O
(otherwise f would take a minimum), hence y(z) = 0 = v(z + A). So,

z+ N1 z+ A+ N _1
In222 In22z+ A
o N 1
z = log, (—A ln2) + log, (1 — _2—5) (8)
The constraint conditions now read as vZ + w? = N and v222 + w? =
=15(24 — 1), the solution of these linear equations being '
1 1
2
= - 9
v N(Aan 2A-1> (%)
26 1
2 = _—
v _N<2A—1 A1n2) (10)

Now combining (8) and (10) yields

flp) = vz+vi(z+2)
= Nz+w?A
= N (logy N —logyIn2 —log, A

+ log, (1 - -2-15-) +A2—A—2—A_—1 - Eli)
Therefore, for all binary trees T' of weight N and fringe thickness A we have
EPL(T) < f(p) = N(logg N + A —log; A — ¥(A))
O

We observe a certain similarity between the formula in Theorem 3.1 and
the tight upper bound for the path length of AVL trees recently obtained
by Klein and Wood [5], caused by the term log, A. Namely, for each AVL
tree T we have 1 1
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which makes Theorem 3.1 read as
EPL(T) < N(1.72021log, N — log, log, N) + O(N)
This bound is bigger than the tight upper bound
1.4404N (log, N — log, logy, N) + O(N)

in [5], but the presence of the term log,logy N in the above equation is
surprising!

Equations (8), (9), and (10) in the above proof seem to indicate how, for
given integers A and N, a binary tree of maximal external path length has

to look. Namely, N ('A'Tlﬁ - Q—Alfl-) external nodes should appear at level

z = log, (A—’]\:ﬁ) + log, (1 - 515) , and the rest of them at level z + A. But
these numbers are reals, not integers, a difficulty that in this case cannot be
overcome by rounding! For example, if N = 320000 and A = 14427 then
these formulae yield that 31.99989... external nodes should be located at
level 4.999995 ... . But there is no 2-level-tree that has 32 external nodes
at level 5, because it couldn’t have any internal node at level 5. Moreover,
there is no 2-level-tree at all, if N < 22! Nevertheless, in the next paragraph
we will construct binary trees whose external path length comes very close
to the upper bound established in Theorem 3.1.

4 Binary trees of high external path length

In order to investigate how close to reality the upper bound established in
Theorem 3.1 is we have to allow the parameters N and A to vary indepen-
dently. If A =1, then ¥(A) = log, e — logylog, e = (1 +1Inln2)/1In2, and
our upper bound takes the form

N(logg N+1—(1+1nin2)/In2)

This is exactly the maximum value of the lower bound N(log, N+1+60— 29)
for the external path length, for § = —(Inln2)/In2, see formula (1) in
Section 1, and Knuth [6], p. 194.

Next we consider the case 22 < N.

Lemma 4.1 Let A = 2% > 1. Then for each integer s > 0, there exists a
binary tree T of weight N = ©(25%%) whose fringe is of thickness A such
that

EPL(T) > N(logy N + A — log, A — 2)
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Bin(k)

K"’J—A

Figure 3: The tree Ty(r, k, A).

Proof: Consider the tree T = Ty(r, k, A) displayed in Figure 3, a complete
binary tree of height k, r of whose external nodes are the roots of complete
binary trees of height A.

Since a complete binary tree Bin(h) of height h has 2" external nodes and
external path length h2" we have

weight(T) = N = 2% + (2% - )r

and

EPL(T) k(2F — r) + r(k + 20)22
kN +r A28
Now let k= A —log; A +s=2%—a+sand r = A2¥"2 = 2% > 1. Then

EPL(T) = kN + A%2*

and
A2D 28 A
_ k
N = A2 X
= 8(A2h)
@(2A+s)
Therefore,
EPL(T) _ A28
N - ktAxgmiaaa
> k+A-1 (11)

On the other hand,
A28 + 28 - A
A28
< k+log,A+1 (12)

logg N = k+logy A+log,
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Combining equations (11) and (12) completes the proof. ‘ !

In the above construction we could build a 2-level-tree because 22 < N.
But if the fringe grows thicker (in relation to the weight) we have to place
the external nodes at more than 2 levels in the tree. This tends to keep the
maximal possible external path length smaller than the value of the upper
bound. However, if A < /N, then the difference from EPL(T)/N is only
a small additive constant, as the following lemma shows.

Lemma 4.2 Let A = 2% > 1. Then, for each integer k in [1,A — a], there
ezists a binary tree T of weight N = ©(A2*%) whose fringe is of thickness A
such that

A. EPL(T) > N(logz N + A — logy A — 4)
holds if A < /N and

B. EPL(T) > N (1og2 N+ —do A —log, A - 4)

+8(%)

holds otherwise.
Proof: We consider the tree T = Ty(k, s,t) shown in Figure 4, a complete
binary tree of height £ > 1 in one of whose external nodes a “snake” of

length s originates that leads to another complete binary tree of height t.
Clearly, A=s+t, N=2%4+5— 142t and

EPL(T) = k(2*-1)+sk+ serl) + (k+ s +1t)2t

2
EN + A2

\%

Now let t =k + a and s = A —t. Then 2t = A2F and

N=(A+1)2"+s-1 (13)
Therefore pok
EPL(T) > b+ A?2
N (A+1)2k+s-1
Because of
s—1=A—-t-1=2%—1-1t<2%tgt-a = A2g-tok (14)
we obtain
EPL A
=~ >
N 2 kAR AR
1
> _ 15
2 kt+Oyrage 1 (15)
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The latter inequality can be verified easily by crossmultiplying. Because
(1+-1—) 2t < (1+l)2‘+s-N+1< (1+l)2‘+A
A = A - - A
we have %S 1+%+% $1+%+%and

N = 6(2%) = 6(A2")

The former, applied to (15), yields

EPL(T 1
—Lz 2k+ A—p- - (16)
N 1+ 6(%
where © (%) = %% + % If A2 < N, then
3A 1\ 3
1+2242) >1--2
tow ™t N) 21-35A
hence EPL(T 5
BPUO) o an
On the other hand, equation (13) yields
k —
logg N = log, <A2k (1 + 2_227:_—1))
< log2A+k+; (18)
because
2k 451 14 A22-¢
£ TP <« re s
1+ Aok < 1+ N
< B
- 2

according to (14). Now assertions A and B follow by combining (17) and
(16) with (18), correspondingly. O

Lemma 4.2 covers the case where 22 > N holds (by orders of magnitude).
According to assertion A, the upper bound for EPL established in Theorem
3.1 is tight up to a small additive O(N) term if A < +/N. If A is increased
beyond v/N, then the coefficient

1

p=——%<
1+06(%)
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of A in B begins to decrease. However, as long as A = O(N?®) holds for
some real number « > 1 the value of p still comes arbitrarily close to 1 for
large integers N. Only if A = ©(N) is the decreasing of p substantial —
but bounded, nevertheless. In fact, in the extreme case where the tree T is
a snake (see Figure 1) we have A = N — 2 and

EPL(T) = LN;_—I—)—I
= N3 A+O(N)

= N(log2N+%A—log2A) + O(N)

This indicates that there is a difference between the world of reals where
the upper bound of Theorem 3.1 is tight for all values of N and A and the
real world of trees — but only a small one! (See the end of Section 3.)

5 Concluding remarks

We have used the relationship between the external path length of a binary
tree and the ratio of means of certain integers to derive an upper bound for
the path length in terms of the weight N and the thickness of the fringe, A,
namely

EPL(T) < N(logy N + A —log, A + O(1))

Then we have constructed binary trees that have a high external path length
to show that this bound is tight if A < v/N and reasonably sharp otherwise.

The result obtained here raises a number of interesting problems for
further research. Does our result extend to weighted binary trees? To
multiway trees? What does a tight upper bound look like in the case A >
vV/N? And finally, how much better a bound can be established if more
information about the fringe is available?
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Bin(k)

R

Bin(z)

Figure 4: The tree Ta(k, s, t).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

