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ABSTRACT

We present a modification and extension of the (linear time) visibility polygon
algorithm of Lee (1983) and a proof of its correctness. The algorithm computes the visi-
bility polygon of a simple polygon from a viewpoint that is either interior to the polygon,
or in its blocked exterior (the cases of viewpoints on the boundary or in the free exterior
being simple extensions of the interior case). The algorithm is described by a procedural
decomposition in pseudocode and the proof establishes pre- and post-conditions for the
procedures.

We show by example that the original algorithm by Lee, and 2 more complex algo-
rithm by El Gindy and Avis (1981), can fail for polygons that wind sufficiently. We
present a second version of the algorithm, which does not extend to the blocked exterior
case.

CR Categories : F.2.2
Keywords : computational geometry, visibility, algorithm correctness

1. Introduction

We consider the following problem: Given a simple polygon P and a viewpoint z in the
plane, find all points on the boundary of P that are ‘visible’ from z. The position of the
viewpoint z determines three cases: z in the interior or exterior of P, or on the boundary of £.
The exterior case can be further categorized as free exterior or blocked exterior depending on
whether there exists a ray from z which does not intersect P or there is no such ray. The boun-

dary and free exterior cases can be handled as simple extensions of the interior case. So from an
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algorithmic viewpoint, there are basically two cases, the interior case and the blocked exterior

case.

Two linear time algorithms for computing the visibility polygon of P from an interior
viewpoint have been published, Lee (1983) and El Gindy and Avis (1981), and Lee also presented
a modification for the blocked exterior case in his paper. Lee’s algorithm is simpler in structure;
in particular it requires only one stack which eventually yields the visibility polygon, as opposed
to three in the El Gindy and Avis algorithm. However, all these algorithms can fail for polygons
which wind sufficiently and examples of polygons for which they fail are given in Figures 1 and
2. The failure of Lee’s algorithm is a technicality that can be readily corrected, once its origins
are understood; the failure of the El Gindy and Avis algorithm seems far more fundamental and

we do not believe it can be corrected.

In this paper, we present a modification of Lee’s algorithm which handles both interior and
blocked exterior cases, and a second modification that handles only the interior case (the boun-
dary and free exterior cases being immediately accessible from the interior case). We also present
new proofs of correctness for the first of these algorithms. Although some of the proofs are quite
complex, we believe the past difficulties in formulating a correct algorithm and proof and the
importance of this problem in computational geometry justify a rather lengthy, detailed exposi-
tion. Our description of the algorithm is organized in a procedural decomposition with pre- and
post-conditions specified for the procedures that aid in the presentation of the proof. This decom-

position also helps to make the modifications to the original algorithm by Lee more apparent.

For a viewpoint z in the interior or exterior of P, this problem was originally called the
two-dimensional hidden line elimination problem in computer graphics (Freeman and Loutrel
(1967)). Our interest in this problem arose in the application of finite element triangulation (Joe
and Simpson (1986)), where z is a reflex vertex on the boundary of P and an extended version of

the method of Schachter (1978) is used to decompose a simple polygon into convex polygons.
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Other recent papers in the computational geometry literature which reference this problem include

Avis and Rappaport (1985), Guibas et al (1986), and Suri and O’Rourke (1986).

In Section 2, we give our notation and definitions. In Section 3, we present pseudocode for
the two modified versions of Lee’s algorithm and mention where the algorithms of Lee and El
Gindy/ Avis are incorrect. In Section 4, we prove the correctness of the first modified version and
state how to similarly prove the correctness of the second modified version. The viewpoint is
assumed to be interior or blocked exterior in Sections 3 and 4. In Section 5, we describe how the
algorithms can also be used for boundary and free exterior viewpoints. In Appendix A, we illus-

trate the algorithms for the examples in Figures 1 and 2.

2. Notation and definitions

We first present our notation for line segments, rays, and chains. Let « and v be distinct
points. The line segment joining u and v is denoted by uv, (uv), (uv], or [uv) depending on
whether both endpoints are included, both endpoints are excluded, only u is excluded, or only v
is excluded, respectively. The directed half-line (ray) originating at ¥ and going through v is

denoted by u3.

A chain of connected line segments ugu,, uuy, U, _14, is denoted by ugu, - - u,.
The chain is open if ug#u, and closed if uy=u,. The chain is simple if it does not intersect
itself, with the exception that ug=u,, is allowed. If C =uguy - u,, and C'=wow, - w, are

two open chains such that u,, =w, then C || C' denotes the chain uy - - - u,,w, - - w, formed

m
by concatenating the two chains. If chain C =ugu, - - u, is closed and simple, we define
Left(C) and Right(C) to be the regions to the left and right, respectively, of the chain as it is
traversed from ug to u,, and we define Int(C) and Ext(C) to be the bounded interior and

unbounded exterior regions, respectively, determined by the chain. These two regions exist from

the Jordan Curve Theorem and do not include C. Depending on the orientation of the chain,
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either Int (C)=Left(C) and Ext (C)=Right(C), or Int (C)=Right(C) and Ext (C)=Left (C).

Let u, v, and w be distinct points. The chain uvw is said to be a left turn or right turn if w
is to the left of or right of, respectively, the directed line from u to v; and uvw is said to be a
backward move or forward move if u, v, w are collinear, and [uv) and (vw] overlap or do not

overlap, respectively.

We now present our notation for the simple polygon P and the definitions of angular dis-
placement and visibility from the viewpoint z. The boundary of P is a simple closed chain. We
denote the boundary, interior, and exterior of P by Bd(P), Int(P), and Ext(P), respectively, so
that P = Bd(P)ulnt(P), Int(P) is a bounded region, and Ext(P) is an unbounded region. The
viewpoint z may be in Int(P), Ext(P), or Bd(P). If z € Ext(P), then z is said to be blocked
exterior to P vif all rays emanating from z intersect Bd(P ), and z is said to be free exterior other-
wise. Without loss of generality, we assume that the coordinate system is translated so that z is at

the origin. We denote the polar angle of a point v by 8(v) where 0<8(v) < 2.

Let C =uqu; - - " u,, be asimple chain which does not intersect z. We define the angular
displacement, a(u;), of u; with respect to z as follows : aug) = 68(u);
for1<i<m,
ou; ;) +angle(u; zu; ;) if zu;_u; is a left tum

ofu;) = { olu;_;)—angle(u;_yzu;) if zu; _yu; is a right turm (1.1)

ou;_1) if z, u;_y, u; are collinear,
ie. o(u;) =06(u;)+2rk where k is the integer determined so that | o(y;)—ofu; ) | < ®. The
definition of angular displacement can be extended to any point on the chain C. Note that the
angular displacement measures the ‘winding’ of the chain in addition to the polar angle. We
define the angular displacement of the chain C to be &(C ) = a(u,, )~ (u). If the chain is closed
(i.e. ug=wu,,), then from classical complex integration results (Carrier, Krook, and Pearson (1966,

Section 2.3), Henrici (1974, Section 4.6)),



0 ifz e Ext(C)
XC)={2r ifz € Int(C)=Left(C) (1.2)
=2 ifz € Int(C)=Right(C).

Freeman and Loutrel (1967), who presented a nonlinear-time algorithm for finding the visibility

polygon, used the term total angle for angular displacement.

If z € Int(P)u Bd(P), then the point v is said to be visible from z with respect to P if
(zv) is entirely in Int (P). If z € Ext(P), then the point v is said to be visible from z with respect
to P if (zv) is entirely in Ext (P ). The problem we are considering is to find a subset ‘7(P ,2) of
points on Bd(P) which are visible from z, i.e. V(P ,2)={v |ve Bd(P)and v is visible
from z }. An equivalent problem is to find the star-shaped simple polygon, V(P,z), the visibility
polygon from z, which is the closure of the set {u |ue zv and v € V(P.z) }. Note that some
points on Bd (V (P ,z)) are not visible from z, according to our definition, but they are included to

enable Bd(V (P,z)) to be a simple closed curve (see Figures 1 and 2).

In the rest of this paper, except for Section 5, we assume that z € Int(P) or z is blocked
exterior to P. Note that in both of these cases, all rays emanating from z intersect Bd (P ), so
there exists exactly one visible boundary point at each polar angle. In Section 5, we will describe
how the algorithms given in Section 3 can also be used for boundary and free exterior viewpoints.

If z € Int(P), we orient the vertices of P in counterclockwise order (Inz(P) is to the left as
Bd (P ) is traversed), and label them vy, vy, - - - ,v,_, and v, =v,, where v is the point on Bd(P)
which is on the positive x-axis and has the smallest x-coordinate. (The edges of Bd(P) are vgvy,
ViV, t " ,Ve_1Va-) If z is blocked exterior to P, we orient the vertices of P in clockwise order
(Int(P) is to the right as Bd (P) is traversed), and label them vo, v, - - - ,v,_;, and v, = v, where
v is the point on Bd(P ) which is on the positive x-axis and has the smallest x-coordinate. Note
that v is visible from z in both cases. We consider v and v, to be ‘distinct’ points with vy on

edge vov, and v, onedge v,_;v,.
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Let s and ¢ be points on Bd(P). s is said to occur before ¢ if s appears before ¢ in a
traversal of Bd(P ) from vyto v,. If s occurs before ¢ then we denote the chain of Bd (P ) from s
tot by Chis,t], Ch(s,t), Ch(s,t], or Ch[s,t) depending on whether both s and ¢ are included,
both s and ¢ are excluded, only s is excluded, or only ¢ is excluded, respectively. This definition
also applies when s =t in which case the chain degenerates to a single point or the empty set.

Note that Ch[vy,v,]=Bd(P).
Let v be a point on Bd(P). If z € Int(P) [alternatively Ext (P )], we define v to be

(@) CCW-oriented if v lies on an edge which is oriented counterclockwise (forms a left turn)
with respect to z and zv contains a nonempty subsegment [uv) which is entirely in /nt(P)

{Ext(P)],

(b) CW-oriented if v lies on an edge which is oriented clockwise (forms a right turn) with
respect to z and zv contains a nonempty subsegment [uv) which is entirely in Ext(P)

Unz(P)],

(c) CL-oriented if v lies on an edge which is collinear with z and zv contains a nonempty sub-

segment [uv) which is entirely on Bd(P).
See Figures 1 and 2 for examples of CCW-oriented and CW-oriented points.

From the definition of ‘visible’ and the orientation of Bd (P ), we have the following two

lemmas.
Lemma 1 : If (zv) intersects Bd (P ), then v is not visible from z.

Lemma 2 : If v is CW-oriented or CL-oriented, then v is not visible from z.

3. The algorithms

In this section, we present the two modified versions of Lee’s algorithm. We refer to them
as Algorithm 1 and Algorithm 2. Algorithm 1 is the version which works correctly for both inte-

rior and blocked exterior viewpoints. Algorithm 2 is the version which works correctly for
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interior viewpoints only. To reduce the number of cases in the algorithms and the correctness
proof, we make the simplifying assumption that no two vertices v; and v;, 0<i < j < n, have the
same polar angle with respect to z (Lee (1983) and El Gindy and Avis (1981) also made this
assumption). It is straightforward to add the extra cases to the algorithms when this assumption is

removed. This is done in Joe and Simpson (1985) for Algorithm 2.

Algorithms 1 and 2 carry out a sequential scan of Bd (P) starting from edge vv; and ending
at edge v,_;v, , while manipulating a stack of boundary points sq, 54, - * -, 5, such that ultimately
the chain s¢5¢ * - - 5, becomes Bd (V (P ,z)). When processing the current edge v; v;,,, the opera-

tions that may be performed are:

(a) add boundary points to the top of the stack,

(b) delete boundary points from the top of the stack,

(c) scanedges v;,  V;,2, ViaVis3, - - for the first edge v, v, to satisfy a certain condition.

Operation (c) is performed if v;v;,, enters a ‘hidden’ region where boundary points are not
visible from z. There are four types of hidden regions, and the condition for exiting the scan in
each of these regions is slightly different. When v;v;,, is not in a hidden region or upon exiting a
hidden region with the new current edge v; v, operation (a) or (b) is performed if zv; v, is a left
turn or right turn, respectively. Note that if zv;v;,, is a left turn then the points on (v;v;,;) may be
visible from z since they are CCW-oriented, and if zv;v;,, is a right turn then the points on
(v;v;41) are not visible from z since they are CW-oriented. Algorithms 1 and 2, as well as Lee’s
two algorithms for interior and blocked exterior viewpoints, differ only in the conditions for exit-

ing the scan in the four types of hidden regions.

Algorithm 1 is given in the pseudocode below. It is decomposed into the six procedures
LEFT, RIGHT, SCANA, SCANB, SCANC, and SCAND, along with a driver procedure VISPOL

which repeatedly calls them. Procedure LEFT is called when the previous edge v;_,v; is notin a
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hidden region, zv;_;v; is a left turn, and one or two boundary points have just been added to the
stack. Procedure RIGHT is called when the previous edge v;_,v; is not in a hidden region, zv;_;v;
is a right turn, and v;_,v; is in front of the tail part of the chain s¢s; - - - 5, so that points must be
deleted from the stack. Procedure SCANA, SCANB, SCANC, or SCAND is called when the pre-
vious edge v;_,v; enters one of the four hidden regions. In the next section, we prove that the
edges scanned in a hidden region are not visible from z, and that there exists an edge which

satisfies the condition for exit from the scan.

The viewpoint z, the number of vertices n, and the vertices v, vy, ",V 1, ¥V, =vg Of P
are global variables in the six procedures. They all have input/output parameters proc, i, ¢, S,
and w. proc is a string containing the name of the current or next procedure or FINISH. ¢ is the
index of the current edge v;v;,; (Ch[v(,v;] has been processed so far). ¢ is the index of the top
stack point s5,. S is the chain of stack points sgs, * - - 5,. w is a point on v;_,v; which is required
only in SCANC and SCAND; it is used extensively in the correctness proof of the next section.
On entering LEFT, SCANA, and SCANB, w =v;; on entering RIGHT, SCANC, ar_ld SCAND, w
is the point on v;_;v; such that 8(w)=0(s,).

The pseudocode is designed so that the following properties are satisfied by the stack points
Sg S1»° 5, on entrance to each of the six procedures. In these properties, i and ¢ are the
parameters described above. In this section and the next, 0(s;) denotes the angular displacement
of s; on the varying chainsgs; - - - ;.
(S1) 0<t<i,sje Chlvgv;)for0<j<t,so=v and s; occurs before s;,; .

(S2) O=asg)<aus)S - - - <oys,)<2m; at most two consecutive 5 have the same angular dis-

placement.
(S3) If ofs;) < odsjyy) thens;s; < Bd(P). If as;) = ods;41) then (s;5;4) is not on Bd(P).

The various cases in the pseudocode below are labeled for reference in the figures and in the
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the next section. The statement (proc,i,t,S,w) := (argl, arg2, arg3, arg4, arg5) used in the pro-
cedures is short for the simultaneous execution of the statements proc := ‘argl’; i = arg2; ¢t :=

arg3; S = arg4; w = arg5. A ‘#’ symbol indicates that the rest of the line is a comment.

procedure VISPOL(z,n,P,t,V(P,z2)) # Pseudocode for Algorithm 1
# Input : Viewpoint z in Int (P ) or blocked exterior to P, and vertices Vo Vs s Vp
# of P with labeling and orientation of vertices as described in Section 2.
# Output: Vertices sq, 51, " -, 5, of visibility polygon V(P,z).
# Assumption (V0): No two vertices v;, v; have the same polar angle with respect to z.
# See Figure 3 for possible configurations of vyv, and v,_,v,,.
(V1) if zvyv, is a left turn then
(proc,it,S,w) = (LEFT,1,1,vgv{,vy)
(V2) else # zvgv, is aright turn
(proc,i t,8,w) = (SCANA, 1,0,vq,v,)
endif

repeat

# Properties (S1), (S2), (S3) are satisfied.

case proc of
‘LEFT’ :LEFT(proc,i,t,S,w)
‘RIGHT’ : RIGHT(proc,i,t,S,w)
‘SCANA’ : SCANA(proc,i,t,S,w)
‘SCANB’ : SCANB(proc,i,t,S,w)
‘SCANC’ : SCANC(proc,i,t,S,w)
‘SCAND’ : SCAND(proc,i,t,S,w)

endcase

(V3) if proc = ‘LEFT’ and (s,_;s,) intersects zv,, then
# ofs,_y) < 2w < ofs,), zv;_yv; is aleft turn, and s, =w =v;.
# Replace s, (shorten s,_;s,) so that a(s,) = 2x.
s, = intersection of s,_;v; and zV,
proc = ‘SCANB’
endif
until proc = ‘FINISH’

# Properties (S1), (S2), (S3) are satisfied, and s, =v, and o(s,)=2x.
end # VISPOL
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procedure LEFT(proc,i,t,S,w) # Previous case can be (V1), (L2), (R2), (A3), or (D1).
# (LO) zv;_yv; is aleft tum, 5, =w =v;, 5,_; € [v;_,v;), and either a(s,) < 2 or s, =v,.

# See Figure 4 for possible locations of v;v;,;.
(L1) ifi=n then
(proc,it,S,w) =(FINISH,n,t,s¢" ' 5;,V,)
(L2) elseif zv;v;,, is a left turn then
(proc,i,t,S,w) = (LEFT,i+1,t+1,50 " " " 5;Vi11 Vig1)
(L3) elseif zv;v;,; is a right turn and s,_;v;v;,, is a right turn then
(proc,i t,S,w) =(SCANA,i+1,t,5¢" " 8,Viy1)
(L4) else # zv;v;,, is aright turn and s,_;v;v;, is a left turn
(proc,i,t,S ,w) = (RIGHT,i+1,t,s¢ " ' 5,,V;)
endif
end # LEFT

procedure RIGHT (proc,i,t,S,w) # Previous case can be (L4), (R1), (A1), (B2), or (C1).
# (RO) zv;_,v; is a right turn, zs,v; is a right turn, ofs,_,;) < (s, ), and

# either (i) s, =w =v;_; and s,_;s,v; is a left turn,

# or (ii) s, is not on v;_;v;, w € [v;_;v;), and zs,w is a backward move.

# See Figure 5 for possible locations of v;_yv; and v;v; ;.
Scan s, 5,1, " * -, 515 for the first edge s;5;_; such that

(RA) zs;v; is aright turn and zs;_,v; is a left tun, or

(RB) zs;_;5; is a forward move and v;_;v; intersects (s;_;5;)
Delete s;,5,_y, * - *,5;4; from stack

if case (RA) then # zs;_;s; is a left turn
# Replace 5 (shorten sj_lsj).
. -
s; = intersection of (s;_;s;) and zv;
# zs;v; is a backward move and (sjv;) is not on Bd(P).

(R1) if zv;v;,; is a right turn then
(proc i t,S,w):=RIGHT,i+l,j,sq" " Sjy Vi
(R2) else if zv;v;,, is a left turn and v;_,v;v;,, is a right turn then
(proc,it,§ w) = (LEFT,i+1,j+2,50 """ 5jviVis1, Vig1)
(R3) else # zv; v, is a left turn and v;_;v;v;,; is a left turn
(proc,i,t,S,w) = (SCANC,i+1,j,SO e Sj,Vi)
endif

(R4) else # case (RB)
u =intersection of v;_;v; and (s;_;5;) #ue (vi,v;)
# Delete 5; from stack.
(proc it S ,w):=(SCAND,i,j-1,54 - Sj_1s u)
endif
end # RIGHT
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procedure SCANA(proc,i,t,S,w) # Previous case can be (V2) or (L3).
# (AQ) zv;_,v; is aright turn, 5, =v;_;, 0(s,) < 2, and w =v;.
# If i > 1 then o(s,_;) < ofs,) and s,_;s,v; is a right turn.

# See Figure 6 for possible exit cases. 5
(AS) Scanv;v;.y, " ,v,_v, for the first edge v, v, to intersect zs,
u = intersection of vy v, ,; and zE,) #fue (vey)
(A1) if zvpv,,, is aright turn and zs,u is a backward move then
#0(s,v; - vu)=-2m
(proc,i,t,S,w) = (RIGHT,k+1,¢,54" - - 5;,u)
(A2) elseif zvy v, is aright turn and zs,u is a forward move then
#O(s,v; - vu)=-2n
(proc,it,S,w) =(SCAND,k+1,t,5¢ " - s,,u)
(A3) elseif zv, v, is aleft turn and zs, u is a forward move then
# 8(s,v; - vu)=0
(proc,i,t,Sw) = (LEFT, k+1,t42,5q " * * S;uVii1s Vis1)
(A4) else # zv, v, is a left turn and zs,u is a backward move
# This case is not possible.
endif
end # SCANA

procedure SCANB(proc,i,t,S,w) # Previous case is (V3).
# (BO) zv;_yv; is a left turn, afs,_;) < ofs,)=2m, 5, € (v;_1v;), and w =v;.

# See Figure 7 for possible exit cases.
(BS) Scanv;v;,, " ,v,1v, for the first edge v, v, ., to intersect (s, v, ]
# zv, v, must be a right turn. 8(s,v; - - - v, u) may be 0 or -2x.
u = intersection of v, v; . and (s, v, ]
B1) ifu=v, =v, then
(proc,it,S.w) = (FINISH,n,t+1,s¢" - " 5,V,,V,)
(B2) else#u e (vgvg,)
(proc i t,Sw) = (RIGHT,k+1,t,5¢ " - 5;,u)
endif
end # SCANB

procedure SCANC(proc,i,t,S,w) # Previous case is (R3).
# (CO) Zv;_1v; i{S aleft tumn, ZV; _oV; iS a rlght turn, vi_zv,-_lv‘- is a left umn, w =Vl
# s, is not on v;_yv;, zs,w is a backward move, and o(s,_,) < o(s,) < 27,

# See Figure 8 for possible exit cases.

(CS) Scanv;v;, " ,v,_1v, for the first edge vy vy, to intersect (s,w)
# zv, v, must be aright turn. 8(wv; - - - v u) may be 0 or 2x.

(C1) u :=intersectionof vy vy, and (s,w) #ue (vvey)
(proc,it.S,w) :=RIGHT, k+1,t,5¢ " 5., u)

end # SCANC
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procedure SCAND(proc,i,t,S,w) # Previous case can be (R4) or (A2).
# (DO) zv;_;v; is aright tum, s, is not on v;_;v;, o(s,) < 2w, w € (v;_v;),
# zs,w is a forward move, and if ¢ 21 then o(s,_;) < o(s,).
# See Figure 9 for possible exit cases.
(DS) Scanv;v;, ", v,_v, forthe first edge v, v;, to intersect (s, w)
# zvy vy, must be a left urn. d(wv; - - - v u) may be 0 or 2x.
(D1) u :=intersectionof vyv, ;and (s,w) H#ue (vyveyy)
(proc it S,w) =(LEFT, k+1,t42,5¢" " * S,V 1 Vis1)
end # SCAND

Algorithm 2 only differs from Algorithm 1 in when the exits from the four scan staten;ents
(AS), (BS), (CS), (DS) occur. In Algorithm 2, the exits in these four statements occur at the first
edge v, v, which intersects the line segment or half-line and also contains a point 4 such that
d(xv; - - - viu)=0, where x =5, for (AS), (BS) and x =w for (CS), (DS). So it is possible that the
exit does not occur at the first edge to intersect the line segment or half-line, since the first inter-
secting point # may satisfy 8(xv; - - - v, &) =12x as seen in the above comments for Algorithm 1.
For polygons that wind a lot, such as Figures 1 and 2, exits will occur at different points in the
two algorithms. With the change to (AS), only case (A3) can occur in SCANA for Algorithm 2.
Algorithm 2 does not work correctly for blocked exterior viewpoints, since the exit condition in
SCANA is not guaranteed to be satisfied. In Appendix A, Algorithm 1 is illustrated for the exam-
ples in Figure 1 (interior viewpoint) and Figure 2 (blocked exterior viewpoint), and Algorithm 2
is illustrated for the example in Figure 1.

Lee’s algorithm for interior viewpoints has the same exit condition in SCANA as Algorithm
2 and the same exit conditions in SCANB, SCANC, SCAND as Algorithm 1 (Lee’s algorithm
does not take into account that &(xv; - - - vy u)==%21 may occur in SCANB, SCANC, SCAND).

This inconsistency in the exit conditions causes his algorithm to fail for polygons that wind
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sufficiently; either the exit condition of a scan statement is not satisfied or the algorithm ter-
minates with an incorrect visibility polygon. Lee’s modified algorithm for blocked exterior
viewpoints is based on a modification of an incorrect algorithm, so it is also incorrect for
polygons that wind sufficiently. In Lee’s modified algorithm, the exit condition in SCANA is the
same as Algorithm 1 until the first occurrence of case (Al) or (A2), then the exit condition
changes to that of his original algorithm or Algorithm 2, i.e. (A3) only; the exit conditions in
SCANB, SCANC, SCAND are the same as Algorithm 1 (again, Lee’s algorithm does not take

into account that 8(xv; - - - v, u) =121 may occur).

The El Gindy and Avis algorithm also has a step which is similar to the scan statement in
SCANA. But this algorithm neglects the fact that the first intersection of zE,) may occur after
traversing a clockwise circle of angular displacement. Therefore it also fails for polygons that
wind sufficiently. We do not believe that this algorithm can be corrected since El Gindy and Avis
try to maintain the property ‘chain § =s4° - * 5, contains the boundary points visible with respect

to Ch [vg,v; T, which is different from the less restrictive property (S6) of the next section.

4. Correctness proof

In this section, we establish that Algorithm 1 is correct for both interior and blocked exterior
cases, i.e. S =Bd(V(P,z)) at its termination. (At the end of this section, we state how the
correctness of Algorithm 2 can be similarly established.) It is established by an induction proof
that properties (S1), (S2), (S3) of the previous section, and properties (S4), (S5), (S6) below hold
at all entrances to the six procedures and at the end of the algorithm. This proof is quite different
from Lee’s proof, and is based on keeping track of the processed part of the polygon boundary

with respect to the stack points and its winding with respect to the viewpoint.
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To describe the additional properties satisfied by the varying chain of stack points and the
processed part of the polygon boundary, we assume that properties (S1), (S2), and (S3) of the pre-
vious section and condition (LO), (R0), (A0), (B0), (C0), or (D0) are satisfied on entering LEFT,
RIGHT, SCANA, SCANB, SCANC, or SCAND, respectively. These additional properties

require the definitions of chain C; and region R;. We first make some observations.

Recall that on entering a procedure, Ch[v,,v;] is the part of Bd(P) processed so far,
S =s¢s; - 5, is the chain of stack points, and w € v;_;v;. From (S1), (LO), ..., (D0), Ch[v,v;]
is partitioned into the subchains Ch[sg,s], Chs,s5], -, Chls,_y,5,1, Chls,,w], Chiw,v;].
For notational convenience, we denote w by s, although s,,, is not on the stack. From (S3), for
j<t, sisjc Bd(P) if ofs;)< 0fsj41), and (s;s7,) is not on Bd(P) if ofs;)=0ds;.y), i.e.
z5;S;,1 is a forward or backward move. From (LO0), ..., (D0), if 5, is not on v;_;v; (which is possi-
ble on entering RIGHT, SCANC, or SCAND), then zs,s,,, is a forward or backward move and

(s;8,41) is not on Bd(P).

We now define C; to be the closed chain (which forms the boundary of a ‘hidden’ region)
Cj=Ch[Sj»5'j+1] Hsj+lsj (4.1)
if 5;5;41 is not on Bd(P), j <t. Otherwise C; is not defined . We define R; to be the simply-
connected region
Rj={u|uezvandve sosl-'-sj} (4.2)
for j=0,1,.,¢. (If 2815 is a forward move then Rj is simply-connnected but not simple
because it contains the ‘extra’ edge s;_;s; on its boundary.) We also define Ext(R;) to be the set

of points which are not in R;. From (S2),

Ro(;Rl(_: gR’ and EXt(R,)_g gEXt(Rl)gExt(Ro). (43)

Examples of C; and R; are illustrated in Figure 10.
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We now state three additional properties which are satisfied on entrance to each of the six

procedures.

(S4) For 0<j <t, Ch(s;,w)< Ext(R;) unless (j <¢ and zs;s;,; is a backward move) or (j =¢
and w #s, and zs;w is a backward move) in which case Ch(s;w)c Ext(R;)\ (zs;).

(Note that Ch (vq,s;) may intersect R i-)

(S5) For all j <t such that C; is defined, C; is simple (i.e. Ck(s;,s;,,) does not intersect 5;5;,,),
Ch(sj41:w) < Right(C;), z € Right(C;), and Left(C;)< Ext(R;). (It can also be shown
that either Int (C;)=Left(C;) and &C;)=0 or Int(C;)=Right(C;) and &(C;)=-2r.)

(S6) If ve Ch[vgv;)butv isnotonS =s¢s; - -5, then v is not visible from z.

Before proving these properties by induction in Lemma 5, we need Lemmas 3 and 4.

Lemma 3 ; Suppose

(@) s; occurs before s, (s;5;,1) is not on Bd (P), zs;s;,, is a forward or backward move,

b) CJ- =Ch [s; Sl 11 5j415j is simple, and

(c) there exists a nonempty segment (s;,;x ] of Bd(P) such that x occurs after 5;,; and (s;,,x]
is entirely in Left (C ;) [or alternatively Right (C;)].

Then Ch (x,v,) remains in the same region (either Left (C;) or Right (C;)) as (s;,,x ] until it inter-

sects (s;s;41). Furthermore if such an intersection occurs for the first time at point 4 on edge

Vi Vi1 80 that Ch (x,u) is in the same region as (sj,;x ], then either zv, v, ,; is a left turn if
(i)  zs;sj4 is a forward move and (s;,;x] < Left (C;), or
(ii) zs5;5;4 is a backward move and (s;,;x]1< Right(C;),

7%

OF zVy V4, is a right turn if
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(iii) zs;sj4y is a forward move and (sj41x]1< Right (C;), or
(iv) zsjsj,; is a backward move and (sj+1x1< Left (Cj).

Proof : Bd(P) is simple, Chls;,s;, ] Bd(P), and (s;s;,;) is not on Bd(P) imply that
Ch[x,v,) may intersect C; only on (sjsj41). Hence Ch(x,v,) remains in the same region as
(sj41x] untl it intersects (s;s;,;). Suppose an intersection occurs for the first time at point u on
edge v, v, so that Ch(x,u) is in the same region’ as (sj,1x]. Then zvyv,, is either a left or right
turn, with the direction as indicated in the cases (i) to (iv), since (see Figure 11) zs;s;,, is either a

forward or backward move, v, is either to the left or right of z.;; and is in the same region as
(5j41x), and vy vy intersects (s;s;4). [
Lemma 4 : Suppose
(a) properties (S1), (S2), and (S3) are satisfied by S =s¢g5, " - * 5,221,
(b) zsys, is a forward move if ofs,)=2x and osg) =0s ),
(c) there exists a nonempty segment (s,x] of Bd(P) such that x occurs after s, and
(s,x1c Ext(R,), and
(d) forall j <t such that C ; is defined, C; is simple and Ch (sj41x1< Right (c ;) (this condi-
tion is similar to property (S5)).
If Ch(x,v,) intersects the boundary of R, for the first time at point # on edge v,v,,; so that
Ch(x,u)c Ext(R,), then zv v, is aright turn and u € (ys,), wherey =z if a(s,) < 2R, y =54 if
a(s,)=2m and asg) < 0sy), ory =5 if afs, ) =21 and s ) = 0fs ).
Proof : (See Figure 12.) Let ¢ =¢—1 if zs,_;s, is a forward move, and g =t otherwise.
Ch(x,v,) does not intersect zs since sg=v is visible from z. Suppose u € (v, v, ) is the first

point of intersection with S or (ys,) (i.e. the boundary of R,) in a traversal of Bd(P) from x to v,
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so that Ch(x,u)c Ext(R,). Ifu e sq)s then zv, vi,; is a right turn since v, must be to the left

Y
of zs,.

Suppose 4 € S. Then u must be on s;s;,; for an index j such that ofs;)=0(s;). From
part (d), Ch(s;,1x 1< Right(C;). From Lemma 3, zvg v, is a left tum if zs;s,,, is a backward
move, and zv, v, is a right turn if zs;s;,, is a forward move. But, if zs5;s;,; is a backward move,
it is not possible for both zv, v, to be a left turn and v, € Ext(R,) (if vy € Ext(R,) and (v;v,,,)
intersects (s;s;,1) but does not intersect any other part of S then zv,v,,; must be right turn).
Similarly, if zs;s;,, is a forward move and j < ¢—1, it is not possible for both ‘zvk V41 to be aright

turn and vy € Ext(R,). Therefore if u € S, then u € (5,.;5,), zs,_;5, is a forward move, and

Zvp Vi is aright tum. []

Let Py, P,, ... be the sequence of procedures called by VISPOL, where P,, may be LEFT,
RIGHT, SCANA, SCANB, SCANC, or SCAND. P,, = FINISH is also allowed as the last pro-

cedure in the sequence to indicate the end of the algorithm.
Lemma 5 : For all m, onentering P,,,,

(a) condition (LO), (RO), (A0), (BO), (C0), or (DO) is satisfied if P,, is LEFT, RIGHT, SCANA,

SCANB, SCANC, or SCAND, respectively,
(b) properties (S1), (S2), and (S3) are satisfied,
(c) properties (S4), (S5), and (S6) are satisfied, and
(d) wv;lc Left (C,) if P, is SCANC or SCAND.

Proof : We will use induction to show that (a), (b), (c), and (d) are true on entering P,, for
all m. By assumption (V0) and the orientation of the vertices of P, there are only three possible
configurations of the edges vgv; and v,_;v, (see Figure 3): (1) both zvyv, and zv,_,v, are left

turns, (2) zvgv, is a left turn, zv,_;v, is a right turn, and v,_,vov, is a right turn, or (3) zvgv, is a
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right turn, zv,_;v, is a left turn, and v,_;vqv, is a right tum. Initially, P; is LEFT or SCANA if
case (V1) or (V2) occur, respectively, and (LO) or (A0) and (S1) to (S6) are clearly satisfied on
entering P, in both cases (in case (V2), (vyv) is not visible from z by Lemma 2).

Suppose (a), (b), (c), and (d) are true on entering P,,. Then it is straightforward but tedious
to show that (a) and (b) are true on entering P, ; (which is allowed to be FINISH), so we shall
leave the details of these two parts to the reader and concentrate on parts (c) and (d) which are
more difficult. We will show that properties (S4), (S5), (S6), and (d) are satisfied on entering
P,, .+ for all the possible cases. In these cases, i, ¢, S, and w refer to the values of these variables
on entering P,,. The reader should refer to the pseudocode and figures to see how these variables
and (S4), (S5), (S6) are updated on entering P,,.;. Since (S4), (S5), and (S6) are satisfied on
entering P,,, we mainly have to examine the location of Ch(w W), Ch(v;,V;), and any newly
defined C; to show that (S4), (S5), and (S6) are satisfied on entering P, ;, where w and v; are the
new values of w and v; on entering P,,,;. Also, note that the inductive hypothesis implies that

the conditions of Lemmas 3 and 4 are satisfied when we use these lemmas below.

(i) P,, = LEFT : i =n (case (L1)) may occur for configurations (a) and (c) of Figure 3. If
i #n, then zv;v;,; may be a left turn (case (L2)) or a right turn (cases (L3) and (L4)) by assump-
ton (VO0). In the latter case, 5,_;v;v;,; may be a right turn (case (I.3)) or a left turn (case (L4)).

Case (L1) : Since ¢, ¢, S, and w are not changed, (S4), (S5), and (S6) are satisfied on enter-
ing P,,,; = FINISH.

Case (L2) : First we consider the subcase where &(sq - - - 5,v;,1) 21 (by assumption (VO0),
8(sg -+ 5,v;y1)=2n can only occur if v;;;=v,). (S6) is clearly satisfied on entering P, ,; =
LEFT. By Lemma 4, (v;v; ;) is in Ext(R,), so (S4) is satisfied on entering P, (. (v;v;) does

not intersect S, so by Lemma 3, (S5) is satisfied on entering P,,,, ;.
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Now we consider the subcase where &(sq - - - 5,v;,1) >2n. The intersection of s, v;,; and zv},
is added to the stack (replacing v;,,) in (V3), so let this point be called s,,;. By Lemma 4,
(v;vi41) is in Ext (R,), s0 zs,5,,, is a forward move if 0(s)=0(s ), and (5,,1v;41) is in Ext (R, ).
This implies that (S4) is satisfied on entering P,,,; = SCANB. By Lemma 3, (S5) is satisfied on
entering P, .. For v € (s,,1v;,1), (zv) intersects a point of S which is also on Bd(P), so by

Lemma 1, (S6) is satisfied on entering P, ,,

Case (L3) : By Lemma 4, (v;v;,,) is in Ext(R,), so (S4) is satisfied on entering P,,,; =
SCANA. (v;v;,;) does not intersect S, so by Lemma 3, (S5) is satisfied on entering P, ;.

(v;v;41) is not visible from z by Lemma 2, so (S6) is satisfied on entering P,,, ;.

Case (L4) : S and w are not changed so (S4) and (S5) are satisfied on entering P,,,; =

RIGHT. (v;v;,,)is not visible from z by Lemma 2, so (S6) is satisfied on entering P,,, ;.

(ii) P,, = RIGHT : From (RO0), a nonempty initial subsegment of (wv;] is in R,. It is not
possible that v; =v,, since v;_;v; does not satisfy any of the three configurations of Figure 3. If
(wv;] is entirely in R,, then by assumption (V0), (RA) is satisfied for exactly one index j in the
range 1<j <t and (RB) is not satisfied for any j. Otherwise, since it is not possible for (wv;) to
intersect zvq, (wv;) intersects (s;_;s;) for some j in which zs;_;s; is a forward move, and in a

backward scan of the edges s;s;_;, (RB) occurs first (note that if j is the largest index such that

(wv;) intersects s;_;s; then zs;_;s; cannot be a backward move since zv;_,v; is a right tum).

Case (RA) : Let s be the intersection of (s;_;s;) and 2\—1’,-. A point v on subchain

S§;8jSje1 " 5, is not visible from z by Lemma 1, since (zv) intersects wy; (if s, =v;_; then s, is

not visible from z by Lemma 2). Hence § is shortened to s¢s, - - - 5;_;5}, and R; is shrunk to R f

(which is defined as in (4.2) with s replacing s;). From (S4), Ch(s;,w) < Ext(R;)V (zs;). This
implies that Ch(s;,w)C Ext(RAj) since §s; € Bd(P). Also, [wv;)c Ext(R}-) and v; € z5;. So

A

Ch(s‘j,v,-) does not intersect s‘jv,- and Cj=Ch [s},v‘-] ||v,-sj is simple. Ch (s‘j,v,-)g Ext(R;),
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zv;_1v; is a right tumn, zv;; is a forward move, and z§;s; is a left urn imply that z € Right(C;)

and Left(C;) < Ext(R;). §; and K; are renamed s; and R; below.

As mentioned above, it is not possible that v; =v,. By assumption (VO0), zv;v;,, may be a

right turn (case (R1)) or a left turn (cases (R2) and (R3)). In the latter case, v;_,v;v;,; may be a

right turn (case (R2)) or a left turn (case (R3)).

Case (R1) : From the above statements for case (RA), (S4) and (S5) are satisfied on entering
P,..1 = RIGHT. zv;_;v; and zv;v;,, are both right turns imply that v; is not visible from z by
Lemma 2. The latter right turn implies that (v;v;,,) is not visible from z by Lemma 2. Hence,

(S6) is satisfied on entering P,,, ;.

Case (R2) : By Lemma 4, (v;v;,;) < Ext(R;). v;_jv;V;, is a right turn and Lemma 3 imply
that (v;v; ;1] < Right(C;). From the above statements for case (RA) and for reasons similar to

case (L2), (S4), (S5), and (S6) are satisfied on entering P, ,; = LEFT or SCANB.

Case (R3) : v;qv;vy; is a left mrn and Lemma 3 imply that (v;v;,]1< Left(C)).
z € Right(C;) implies that all points in Left (C;) are not visible from z by Lemma 1; in particular
(v;v; ;1] is not visible from z. Hence, from the above statements for case (RA), (S4), (S5), (S6),

and (d) are satisfied on entering P, ,; = SCANC.

Case (RB)/(R4) : Subchain s;s;,; - s, is not visible from z for the same reason as case
(RA). (s;_15)), which is not on Bd(P), is not visible from z by Lemma 1 since s;_; € Bd(P).
So S is shortened to sg5; - 5j1- From (S4) and (S5), Ch (s]-_l,w)g Ext(R;_y),
Ch(sj,w)c Right(C;_y), z € Right(C;_y), and Left(Cj_y) < Ext(R;_;). Let u be the intersection

of (wv;) and (s;_;s;). wu C Ext(R;_;) and [wu) does not intersect s;_;5; imply that

j-1%]
Ch (sj_l,u); Ext(Rj_l) and Ch (sju)< Right(C]-_l). So Ch (sj.u) does not intersect s;_;s; and

(fj=Ch[sj,u]||usj is simple. Also, Ch(s;j_y,5;] does not intersect s; ju4, SO

A

Cj_1=Ch [sj_l,u] [ us;_y is simple. z € Right((fj) and Left((fj); Ext(R;_,) for reasons simi-
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lar to case (RA). Ch(sju)c Right(C;_,) implies that Leﬁ(éj); Right (C;_;) which implies
that Left (Cj_y)=Left (Cj_1)U Left(C;)\ (s;u) and Right(C;_)=Right(C;_;) N Right(C}).
Finally, this implies that z € Right (¢ j-1) and qui(éj_l) < Ext(R;_;). Since (uv;] does not inter-
sect s;;5; and an initial nonempty subsegment of (uv;] is in Left(C -1

(uv;1c Left (C j_,)g Left(C:j_l). From the above statements and with C,-_l set to C 15 (S4),

(S5), (56), and (d) are satisfied on entering P,,,,; = SCAND.

(iii) P,, = SCANA : There are two possible subcases, i =1 ori > 1. If i =1 then, in order to
satisfy configuration (c) of Figure 3, Ch[v;,v,) must intersect z§:=z{7:, at a point 4 which is
farther from z than v, so case (A2) or (A3) is satisfied by u.

Now suppose i > 1. From (A0), 0 < o(s,) < 2x. From (S4), (s,v;) < Ext(R,). If Ch[v;,v,)
intersects (zs,) for the first time on edge v, v;,;, then from Lemma 4, zv, v, is a right turn so it is
not possible for case (A4) to occur before case (Al). We will show by contradiction that
Ch[v;,v,) intersects 25: . Suppose Ch[v;,v,) does not intersect zE,’ . Then there exists an interval
of polar angles [6(s,),y], where 6(s,) <Y< 2x, which contains no points from Ch[v;,v,). From
(S6), Ch[vg,v;) does not contain any points with polar angle in the interval (8(s,),y] which are
visible from z. Therefore Bd(P) does not contain any points with polar angle in (6(s,),y] which
are visible from z. This contradicts the fact that if z € Int(P) or z is blocked exterior to P then
there exists exactly one point on Bd(P) at each polar angle which is visible from z. Therefore
v; #v,, Chlv;,v,) intersects z.;': , and either case (A1) or (A2) or (A3) will occur for the first such

intersection.

For i =1 or i > 1, suppose the first intersection of Ch[v;,v,) and z:vj occurs at point ¥ on
(veVes1)- Then C, =Chl[s,,u] || us, is simple. If i > 1, then Ch(s,,u)< Ext(R,) by Lemma 4.
If i =1, then Ch(s,,u)< Ext(R,) since R, =zvy. Ch[v;,u) does not intersect S, so by Lemma 3,
Ch[v;,u)< Right(C;) for all j <t such that C; is defined. Since zs,v; is a right turn and

Ch (s, ,u) does no intersect zvq, 8(s,v; - - - v,u) must be =27 in cases (Al) and (A2), and 0 in case
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(A3).

Case (A1) : Ch(s,,u)< Ext(R,), zs,v; is a right turn, zv, u is a right turn, and zus, is a for-
ward move imply that z € Right(C,), Left(C,)< Ext(R,), and Right(C,)=Int(C,). Let v be a
point on Ch(s,,u). If v is the closest point to z on Ch(s,,u) with polar angle 6(v) then v is
CW-oriented since Int (C,)=Right (C,) and z € Int(C,), so v is not visible from z by Lemma 2.
Otherwise (zv) intersects Ch(s,,u) so v is not visible from z by Lemma 1. Also, [uv, ;) is not
visible from z by Lemma 2. From the above statements, (S4), (S5), and (S6) are satisfied on

entering P,,, ., = RIGHT.

Case (A2) : For reasons similar to case (Al), z € Right(C,), Left(C,)< Ext(R,), and
Ch(s,,vt4y) is not visible from z. (uvg,] is to the left of u.?, and Lemma 3 imply that
(vl Left (C,). From the above statements, (S4), (S5), (S6), and (d) are satisfied on entering
P,.1 = SCAND.

Case (A3) : Ch(s,,u)c Ext(R,), zs,v; is a right turn, zv, « is a left turn, and zus, is a back-
ward move imply that z € Right(C,), Left(C,) < Ext(R,), and Left(C,)=1Int(C,). As for case
(A1), a point v on Ch(s,,u) is not visible from z because either v is the closest point to z on
Ch (s, ,u) with polar angle 8(v) and it is CW-oriented since /nt(C,)=Left(C,) and z € Ext(C,),
or (zv) intersects Ch(s,,u). (uvy,;] is to the right of us, and Lemma 3 imply that
(uvi 1< Right (C,). From the above statements and for reasons similar to case (L2), (S4), (S5),

and (S6) are satisfied on entering P, ,; = LEFT or SCANB.

(iv) P,, = SCANB : v; #v, since 6(v;)#0. The scan for edge v, v,,; must be successful
since i < n and v,_,v, intersects (s,v, ] at v,. There are two possible cases for the first intersec-
tion of (s,v,]: (B1) at v, (k=n-1), or (B2) on (s,v,) and v, v;,,, ¥k <n—1. Let u be this first
intersection point. In case (B2), zvyv,,, is a right tumn, Ch(s,,u)c FExt(R,), and u € (ys,) by

Lemma 4, where y =s if 0sy) < os ;) and y =s; otherwise. In case (B1), Ch(s,,v,) < Ext(R,)
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by Lemma 4; in particular, [v,_yv,)C Ext(R,), s0 zv,_v, is a right turn (configuration (b) of
Figure 3).

u is the first point from Ch(s,,v,] to intersect (s,v,] implies that C, =Ch[s,,u] || us, is
simple. Ch(s,,u)c Ext(R,), zs,v; is a left turn, zv,u is a right turn, and zus, is a forward move
imply that z € Right(C,), Left(C,)< Ext(R;), and &s,v; - - v u) may be 0 or —2% only.
Ch[v;,u) does not intersect S, so by Lemma 3, Ch [v;,u) < Right(C;) for all j < ¢ such that C ;i
defined. Ch(s,,u) is not visible from z by Lemma 1 since it is entirely in Ext¢(R,) and o(s, ) =2m.
In case (B2), [uv;,) is not visible from z by Lemma 2. From the above statements, (S4), (S5),

and (S6) are satisfied on entering P, ,; = FINISH or RIGHT.

(v) P,, = SCANC : From (S5), z € Right(C,) so all points in Left(C,) are not visible from
z by Lemma 1. From (d), (wv;]C Left(C,). v; #v, since v; is not visible from z. v, is visible
from z and O0< ofs,) < 2x, so Ch(v;,v,) must enter Right(C,). By Lemma 3 with s,,;=w,
Ch(v;,v,) intersects (s,w ) for the first time at a point u on an edge v, v, such that zv, v, is a
right turn (since zs,w is a backward move). Also, Ch[v;,u)c Left(C;) so Chlv;,u) is not visi-

ble from z as mentioned above. [uv,,,) is not visible from z by Lemma 2.

From (S4) and (SS), Ch(s,,wlc Ext(R,)U (zw] and Left(C,)c Ext(R,), so
Ch(w,u)c Ext(R,), Ch(s,,u)c Ext(R,)U (zw], and u is the only intersection of (s,w) from
Chis,ul, ie. (f, =Ch{s;,ul || us, is simple. Ch(w,u)g Ext(R,), zwv; is a left turn, zv,u is a
right turn, and zuw is a backward move imply &(wv; - v,u) may be 0 or 2m only.
Ch(s,;w)S Ch(s,,u) and Ch(w,u)c Left(C,) imply that Left(C,)c Left(C,) and
Right(C,)c Right(C,) which imply that z € Right(C,) and Left(C,)< Ext(R,). Ch[w,u) does
not intersect S, so by Lemma 3, Ch[w,u)c Right(C;) for all j <t such that C; is defined.
From the above statements and with C, set to C,, (S4), (S5), and (S6) are satisfied on entering

Pm+1 = RIGHT.
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(vi) P,, = SCAND : From (SS5), z € Right(C,) so all points in Left (C,) are not visible from
z by Lemma 1. From (d), (wv;1< Left (C,). v; #v, since v; is not visible from z. If ¢ >0 then
0 < ofs,) < 2x, so Ch(v;,v,) must enter Right (C,) since v, is visible from z. If t =0 (which is
possible only if zvgv, is a right turn) then, in order to satisfy configuration (c) of Figure 3,
Ch(v;,v,) must enter Right(C,). By Lemma 3 with s,,;=w, Ch(v;,v,) intersects (s,w) for the
first time at a point 4 on an edge v, v, such that zv, v, is a left turn (since zs,w is a forward

move). Also, Ch[v;,u)< Left(C;) so Ch[v;,u) is not visible from z as mentioned above.

From (S5), Left(C,)< Ext(R,), so Ch{wu)c Ext(R,;) and by Lemma 3,
Chiw,u)cg Right(Cj) for all j < ¢ such that Cj is defined. Chlw,u)c Ext(R,), zwv; is a right
turn, zvgu is a left turn, and zuw is a forward move imply &(wv; - - - v, u) may be 0 or 2x only. u
is the only intersection of (s,w) from Chl[s,,u], so (f, =Chl[s,,u] || us, is simple.
Ch(s,,w)c Ch(s,,u) and Ch(w,u)c Left(C,) imply that Left(é,)g Left (C,) and
Right (C,) c Right(C,) which imply that z € Right(C,) and Left (C,) < Ext(R,). (4vy;]is to the
right of u.-;,) and Lemma 3 imply that (uv, ;] < Right(C,). From the above statements and with
C, setto Cf, and for reasons similar to case (L2), (S4), (SS), and (S6) are satisfied on entering

P,.+1 =LEFT or SCANB. []
Lemma 6 : Algorithm 1 terminates with s, =v,, and o(s,)=2.

Proof : In each procedure P,, called by VISPOL, i is increased by at least one, except in
cases (L1) and (R4) for P,, = LEFT and RIGHT, respectively. In the former case, P,,,; = FIN-
ISH; in the latter case, P,,,; = SCAND. So i must eventually get to n and there are a finite
number of procedure calls. By Lemma 5, VISPOL terminates as a result of case (L1) or (B1). In
both cases, upon exiting the ‘repeat’ loop, s, =v,. In the former case, zs,_;s, is a left turn and
property (S2) imply ofs,)=2r. In the latter case a(s,_;)=2r and zs,_;s, is a backward move

imply a(s,)=2n. []
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Theorem 1 : Algorithm 1 correctly computes V(P ,z) in O(n) time where n is the number

of vertices of P.

Proof : Let S =sos; -5, be the chain of stack points at the end of the algorithm. By
Lemmas 5 and 6, properties (S1), (S2), (S3), and (S6) are satisfied withi =n, sg=v, 5, =v,, and
0(S)=2x. If ve Ch[vyv,]=Bd(P) but v is not on S, then v is not visible from z by (S6).
Therefore if v € Bd(P) is visible from z, thenv € S. From (S2), S is a simple closed curve and
Int (S) is a star-shaped region containing z. The points of S can be partitioned into two disjoint
sets V and W where V ={v | v is the point of § closest to z with polar angle vy, 0Sy<2xn} and
W =S-V. From (S1) and (S3), V< Bd(P). If ve W Bd(P) then either v =s;,1 Where
z5;S;, is a forward move or v =s; where zs;s;,, is a backward move, and v is not visible from z
by Lemma 1 since zv intersects s; or s;,,;, respectively. A point v € V is visible from z since
there exists a point on Bd (P ) with polar angle 6(v) which is visible from z and all other points
on Bd (P ) with polar angle 6(v) are not visible from z as mentioned above. Therefore V contains

exactly the points of Bd(P) visible from z and W contains the points which connects up the

points of V to form a simple closed curve, i.e. the algorithm correctly computes S =Bd (V (P ,z)).

The running time of the algorithm is O(n) since the edges of Bd(P) are sequentially
scanned once in the algorithm and for each edge v;v;,, processed, at most two points are added to

the stack, which implies that at most 2n points are deleted from the stack in RIGHT. []

The correctness of Algorithm 2 for interior viewpoints can be established in a way similar to
that for Algorithm 1. In Algorithm 1, properties (S4) and (S5) are needed to show that property
(S6) is satisfied. In Algorithm 2, properties (S4) and (S5) are not always satisfied because the
exits from the four scan statements (AS), (BS), (CS), and (DS) do not have to occur at the first
point to intersect the line segment or half-line, so the closed chains C; defined in (4.1) are not
guaranteed to be simple. Recall that an additional exit condition is that &(xv; * - - v, u)=0 where

x =s, or w. The following observations can be used to show that property (S6) is satisfied for
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Algorithm 2. More details are given in Joe and Simpson (1985).

(1) &Ch[vq,v,])=2n by (1.2) since z € Int(P) and the boundary is oriented in the counter-
clockwise direction. Let ©(v) denote the angular displacement of a point v on
Bd(P)=Ch{vgv,). Theno(v)=0(v) forve Bd(P)N S where S is the varying chain of stack
points. In particular, the previous statement is true when S =Bd(V(P,z)). This implies that if
v € Bd(P) and either &(v) < 0 or (v ) > 2x then v is not visible from z.

(2) The exit condition §(xv; - * - v, u)=0 implies that 8(Ch [s;,5;,11)=0 whenever zs;s;,; is
a forward or backward move. This means that it is possible to redefine C; for these indices j as
follows to make it simple:

C;i=Chls;,sjl || Path[s;j,y,s;] “4.4)
where Path [sj+1,sj]=sj+1sj if Ch [sj,sjﬂ] does not intersect (sjsj+1), otherwise Path [sj+1,sj] is
the path from s;, to s; with ‘detours’ to the left of sj:sj to avoid intersecting Ch [s;,5;,1] (see
example in Figure 13). C; satisfies Left (C )=Int(C;) and z € Right(C;).

(3) Suppose there exists a nonempty segment (s,x] of Bd (P ) such that x occurs after s, and
(s;x]1< Ext(R,). Let!I be the interval [0,6(s,)] or (0,2n] if afs,) < 27 or s, ) =2x, respectively.
If point 4 on edge v, v,,, is the first point on Ch(x,v,) to intersect the boundary of R, and also

satisfy Cl(u) e I, then zvy v, is a right turn and 4 € (ys;) where y is defined in Lemma 4.

5. Extension

In this section, we indicate how Algorithms 1 and 2 can be used for boundary and free exte-
rior viewpoints. For a boundary viewpoint z, we orient the vertices of P in counterclockwise
order and label them z, vy, vy, - **,V,_1, V», and z, where v is the successor vertex of z and v,
is the predecessor vertex of z. We also assume that the coordinate system is translated and
rotated so that z is at the origin and v is on the positive x-axis. This implies that 8(v, ) < 21 is

the interior angle at z. No modifications are required in the pseudocode, but case (V3) and
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procedure SCANB imply that os,) <8(v,) in property (S2). The visibility polygon V(P ,z) is
258y * * 5,z where sos; - - - 5, is the chain of stack points at the end of the algorithm. The rea-
son why the algorithms are correct is that there are no boundary points with polar angle in the

interval (6(v, ),2r) which are visible from z.

If z € Ext(P), but it is not known whether z is blocked or free exterior, then the angular
displacement of the boundary vertices can be used to classify z as in Freeman and Loutrel (1967).
Suppose the vertices vg, vy, - *,v,_;, and v, =vy of P are oriented in clockwise order with v
being an arbitrary vertex. The angular displacement of the vertices, ovg), o{vy), = -, (v, ), as
well as their maximum and minimum, can be computed in linear time using (1.1). Let
Olpax =max {oyv;)} and O, =min {ov;)}. If Oy — Oin 227 then z is blocked exterior other-
wise z is free exterior.

If z is free exterior to P, then the problem of computing V (P ,z) can be reduced to the fol-
lowing equivalent problem of computing V(Q,z) with z on Bd(Q) as in Lee (1983). Letv; and
v, be the vertices closest to z with angular displacement o;, and 0t,,,, respectively. Bd(P) can
be partiu'onéd into the front chain F =v;v;,; - - - v,_1v; and the back chain B =vy v,y -~ v;_1v;
where the indices are taken modulo n. Since the vertices of P are oriented in the clockwise
direction, chain F is in front of chain B, i.e. for every point v #v; or v, on B, zv intersects F, s0
B —{vj,v, } is not visible from z by Lemma 1 and can be ignored. v; and v, are both visible
from z, so V(P,z)=V(Q,z) where Q is the polygon with vertices z, VisViels s Vk=1s Vio and z

in counterclockwise order.
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Appendix A

In this appendix, we illustrate Algorithms 1 and 2 for the polygon P and the interior
viewpoint z in Figure 1. We also illustrate Algorithm 1 for the polygon P and the blocked exte-
rior viewpoint z in Figure 2. The sequence of procedures P, called by VISPOL, along with the

parameter values i, ¢, S, and w on entering each procedure, are given in Tables 1, 2, and 3.
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m P, i t  w S

1 | LEFT 1 1 v VoY

2 | SCANA 2 1 v, unchanged

3 | SCAND 6 1 a unchanged

4 | LEFT 24 3 vy, vgvidvyy,

5 | LEFT 25 4 vys vy idvauvas

6 | LEFT 26 5 vy  vovidvouvasVag

7 | LEFT 27 6 vy vovidvogvasVoagVar
8 | FINISH 27 6 v,; unchanged

Table 1 Sequence of procedure calls for polygon P and
interior viewpoint z in Figure 1 (Algorithm 1)

m P, i . w S

1 | LEFT 1 1 v Vovi

2 | SCANA 2 1 v, unchanged

3 | LEFT 12 3 vy, vouibvpy

4 | LEFT 13 4 vz vevibvpvns

5 | RIGHT 14 4 v,;3 unchanged

6 | SCAND 14 1 ¢ VoV

7 | LEFT 24 3 vy, vovidvy,

8 | LEFT 25 4 vys  vovidvoavas

9 | LEFT 26 5 vy  vovdvoyvasvag
10 | LEFT 27 6 vy vgv1dvoaVasVogVar
11 | FINISH 27 6 v,; unchanged

Table 2 Sequence of procedure calls for polygon P and
interior viewpoint z in Figure 1 (Algorithm 2)
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m P, i t w S

1 | LEFT 1 1 v VoY

2 | LEFT 2 2 vy vgvyvy

3 | SCANA 3 2 v; unchanged

4 | RIGHT 8 2 d unchanged

5 | SCANC 9 2 vg  vgvyc

6 | RIGHT 16 2 e unchanged

7 | RIGHT 17 2 vy vovib

8 | LEFT 18 3 vz veavyvis

9| SCANA 19 3 v,y unchanged
10 | LEFT 22 5 vy vavvisfva
11 | SCANA 23 5 v,; unchanged

12 | SCAND 27 5 g unchanged
13 | LEFT 43 T vy veavvigfvahva
14 | RIGHT 44 7 v, unchanged
15 | SCAND 4 3 »p Voavi7Vig
16 | LEFT 46 5 vi veavV17V189Vas
17 | LEFT 47 6 vy veav17v139VasV4r
18 | LEFT 48 T v4g VoAV 17V189V46Y 47V 48
19 | LEFT 499 8 vy veaV17V139VaeVa1V 48V a9
20 | FINISH 49 8 v4 unchanged

Table 3 Sequence of procedure calls for polygon P and
blocked exterior viewpoint z in Figure 2 (Algorithm 1)
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Vi3 Vi4
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Vi7 Vig
Va0 Vi9
5 V¢
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b4 Vi
Vat vV
Vi6 Vis
Vo

Figure 1 Example for which the algorithms of Lee and El Gindy/ Avis fail
for an interior viewpoint z. The labels of vertices are in the exterior

of the polygon. Bd (V (P 4 )) =Vqv 1dV24V25V 26Y0 Vi1 and Vy
are CCW-oriented points, v, and v¢ are CW-oriented points.

Vio




Vig

Vig

Va0
V3o V2o
Var Vg Vis Vie
Va2 Ya Vi Vi3
v Va4
Vig Vi3
& Vi Va
h [
V2 C b Vl
Vis € Vig
Vo f Vai
V43 P Vg
Vio Vo
V7 d Vg
) q Vs
Ay
\Vig Vo
\ l al
A ,—’
Vig Vi
Ze Vo
Va7 va4g
V¢ Vs
Vi1 V12
Va6 Vas
V31 Viz
V37

Figure 2 Example for which Lee’s modified algorithm fails for a blocked
exterior viewpoint z. The labels of vertices are in the exterior
of the polygon. Bd(V(P,z))=voav 7V 189V 46V 47v4gv0- vy and v g
are CCW-oriented points, v, and vg are CW-oriented points.




Vo=V, Vo=Vn
z z Yo=Vn z /\
V-1 V-1 Vi
(a) (b) (c)

Figure 3 Illustration of possible configurations of edges vov, and v,_;v
(a) and (b) are case (V1), (¢) is case (V2).
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¥4 So=VYq

Figure 4 [Illustration of chain§ =sos, - - - 5, and
edge v;v;,, in cases (L2), (L3), and (L4) of LEFT.
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Figure 5 Illustration of chain S, edge v;_;v; in cases (RA) and (RB),
and edge v;v;,; in cases (R1), (R2), and (R3) of RIGHT.
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Figure 6 Illustration of chain S and scan for first edge v, v, to intersect
>
25, in cases (A1), (A2), and (A3) of SCANA; case (A4) is not possible.
O(s,v; - - - vyu)is —2m in cases (A1), (A2) and 0 in case (A3).




Figure 7 Hlustration of chain § and scan for first edge v, v, to intersect
(s,v,1in SCANB. &s,v; - - - v,u) may be O or —2r.




So=Vo
\

Figure 8 Illustration of chain S and scan for first edge v, v, to intersect
(s,w) in SCANC. &(wv;

- vyu) may be O or 2x.




Figure @ Illustration of chain S and scan for first edge v, v, to intersect
(s,w)in SCAND. &wv; - - - v,u) may be 0 or 2.
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V3

Vaq

Figure 10 Hlustration of C; and R; for Ch[vq,v ol and § =505 157535455 :
C=51vyvavyvsvevs,ysy, Cy=s3vgsyss, C; is not defined for j =0, 2, 4, 5,
Rg=1zs(, R =closed interior region bounded by zsgys,z,

R,=R U 555, R3=R 4= closed interior region bounded by zsy5 55532,
R 5= closed interior region bounded by zs (5 15,535 4552 .

Left(C}) Right (C;)

Si+

e

.
Z

() (i)

Figure 11 Illustration of 5;s;,) and v, v, in cases (i) and (ii)
of Lemma 3; cases (iii) and (iv) are similar.
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Figure 12 Illustration of chain § and Ch [s,,v; ] for Lemma 4.
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Figure 13 Illustration of Cj =Ch [sj,sj+1] || Path [sj+1,sj] forj=1.
Chls,Syl=5,vyv3 " - v S5, is part of Bd(P)in Figure 1.
Path [s4,5,]=s,abcds | is the dashed chain; the ‘detour’ part, abed,
is arbitrarily close to the corresponding part of CA [s4,5,].




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

