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ABSTRACT

Evidence suggests that analogy is a key component in human reasoning and
learning situations. Analogy is both a common reasoning and instructional technique.
We briefly review research, beginning with the 1950’s, up to the present, and in greater
detail the work of Burstein, Gentner and Winston. We present a particularly simple
(the computational complexity is polynomial) but powerful algorithm for detecting
analogies. We examine the effectiveness of this algorithm, which is based on subtree
matching, as a means of detecting analogies within two strikingly different contexts:
two-dimensional scenes, and instructional systems (such as ICAI systems). Two-
dimensional scene analysis is a domain rich in analogies that are also intuitively verifi-
able; this domain is used for our first tests. There are several reasons why within an
instructional or diagnostic system one would want to detect analogies; these are dis-
cussed herein. As an initial study in this regard, a particular framework for student
modelling — the genetic graph — and a variety of examples from the domain of ele-
mentary ballet are employed as our second set of tests. The results are discussed along
with suggestions for future research.
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1. Introduction

One of the problems with the the notion of analogy is understanding exactly what it is. At the most
basic level, analogy is a relation of likeness between two things. These things may be objects, relations or
complex concepts, taken from either the same domain or disparate domains. One dominant characteris-
tic of analogy is that there often appears to be no apparent relationship between the two things. On a
more complex level, analogy manifests itself in the literary world as metaphors and similes. For exam-
ple, consider the metaphor:

““What light from yonder window breaks?
It is the east, and Juliet is the sun! ...”’

A second example, illustrating the lack of an obvious relationship between the objects is (Quine and
Ullian 1978):

“‘knowledge in some ways is like a good golf score ...”’

The complete statement removes the mystery:

“‘knowledge in some ways is like a good golf score: each is substantially the
fruit of something else, and there are no magic shortcuts to either’’

One of the meanings of the Greek word ‘“‘analogia’, from which analogy originates, is proportion
(Polya 1954). The notion of proportion appears in a problem-solving environment; a common example
are intelligence-tests. A proportion problem often has the form “A:B::C:?”, i.e. A istoB as C isto
what? The familiar geometric-analogy intelligence-test problem is an example of a proportion problem
using two-dimensional shapes for A , B, and C .

As far as terminology goes, the structure of an analogy is divided into two parts: the base (or vehi-
cle) and the targer (or ropic, traditionally called the tenor). The base of an analogy is the domain with
which the reader is assumed to be familiar (the base from which to infer). The target of an analogy is
the domain of which the reader has little or no knowledge (the targer of the inferences). Analogy in
teaching and communication is used to impart a better foundation for understanding new domains (of
which little or nothing is known by the listener) in relation to a domain familiar to the listener.



Good analogies represent extremely efficient (compact yet rich) representations of knowledge. For
example:

““The hydrogen atom is like the solar system’’

Here, it is assumed the reader has some knowledge of the “solar system” (the base of the analogy) and
that certain (but not all) characteristics of our solar system (planets revolve around the sun, the sun is
significantly more massive than any planet) have corresponding characteristics in the “hydrogen atom”
(the targer of the analogy). The relationship between atom and solar system may not be obvious (as in
out last example), but the characteristics that electrons (like planets) revolve around the nucleus (like our
sun), and that the nucleus is significantly more massive than an electron, are represented. If we were to
also infer that the nucleus ‘““was hot” and that people live on one of those electrons, we would be extend-

ing the analogy to far. Rarely can one make exhaustive inferences from an analogy; more often, only a
select few are intended.

2. Background

The study of analogy is a modern endeavor, although the use of analogy is old. The diversity in
existing research on analogy makes it difficult to to fit the area into set categories; hence, a chronological
ordering for the discussion of analogy research will be used. We will first discuss briefly a wide range of
research, starting in the 1950’s, up until the present, from both the fields of Psychology and Artificial
Intelligence. This overview will then be followed by a more detailed look at the work of three people
who’s research is closely related to section 3.

2.1. The 1950’s

In the later part of the 1950’s, two prominent scientists independently gave credit to the signifi-
cance of analogical reasoning in past scientific achievements and that analogy was a key component in
scientific theory formation and development. Polya, a mathematician (Polya 1954), noted for his work
on mathematical problem-solving, and Oppenheimer, a physicist (Oppenheimer 1956), discussed the his-
torical significance of analogy in their respective fields, thus beginning a period of analogical research
that studied the use of analogy in famous theories and its use in scientific theory.

2.2. The 1960’s

The “History of Analogy in Scientific Reasoning” theme continued into the 60’s; the extensive
work of Hesse looked at the use and validity of models and analogies in science (Hesse 1966), and the
work of Dreistadt began a long tradition of analogy classification that has been continued by later
researchers (Dreistadt 1968). Unfortunately, even today, these classifications remain almost as diverse
as the area itself. The work of Evans in the early 60’s was a dramatic departure from the dominant
study of the day (Evans 1968). For his Ph.D., Evans developed a LISP program capable of solving
high-school geometric analogy intelligence test problems. The representation and decomposition of two-
dimensional pictures were major problems in themselves; unfortunately Evans did not attempt to model -
the human process for solving such problems, reducing slightly his contribution to the study of analogical
reasoning.

2.3. The 1970’s

The 1970’s saw a substantial increase in research on analogy; largely in psychology. Psychologists
are primarily concerned with studying how people recognize and use analogies and began to develop
their first models for analogical reasoning. The earliest model, introduced by Rumelhart and Abraham-
son, was based on representing objects in a Euclidean space, indexed by a select number of features
(Rumelhart and Abrahamson 1973). The similarity (a relative of analogy) between two objects, is sim-
ply the Euclidean distance between them. Close proximity in this feature space implied greater similar-
ity. The model has been largely criticized: it is not completely general nor sufficiently rich to encode all



types of semantic relation (made by Rumelhart and Abrahamson themselves), zero distance (for iden-
tity) is not realistic, a distance function is symmetric while many metaphors are not, and the triangle ine-
quality does not hold as it should (Tversky 1977). Lastly, selecting the features to use for indexing such a
space and the assignment of the actual spacial positions are both nontrivial problems. Along with criti-
cizing the simple Euclidean distance function, Tversky contributed a great deal towards developing a
more sophisticated model for judging similarity (Tversky 1977), his that attempted to overcome these
problems and others. Ortony extended Tversky’s research by looking in more detail at knowledge
representation and context/salience within an analogy (Ortony 1979). He suggests that attribute inequal-

ity arises because an analogy is a matching at a higher level of abstraction in some assumed taxonomic
structure.

On a different tact, Reed, Ernst, and Banerji (1974), looked at a specific form of analogy, analog-
ical reasoning in state-based problems (e.g. ‘“Missionary-Cannibals Problem’”). Their most interesting
finding was that students (in the several experiments they administered) had better success solving two
successive state-based problems of a "similar” nature when presented with the "more specific" problem
followed by the "more general" problem rather than the converse ordering. This suggests that apparently

the students could recognize a generalization more readily than they could a more specific instance of a
problem.

Sternberg looked at a third area of analogy, that of the proportion problem (Sternberg 1977). He
developed a model for proportion problems based on three operations: inference, mapping and applica-
tion, and discusses existing theories of the day in terms of these three operations. Probably his most cru-
cial contribution relates to whether the three operations are done exhaustively or are self-terminating.
Exhaustive means the operation is applied to all data, while a self-terminating operation applies some
test to each datum as it it produced. Through administering several experiments, Sternberg concluded
that mapping and application were probably self-terminating and had insufficient evidence whether infer-
ence was exhaustive or self-terminating.

By the late 70’s the schema developed as a popular memory model. Schustack and Anderson
(1979) were among several researchers who studied schema formation and the effects of analogy (past
experiences) on the development of new schemas through various experiments. Of note was their conclu-
sion that the process of using past experience seemed to be independent of the abstract-directness of the
material. Cues to both specific knowledge and general knowledge both improved problem-solving perfor-
mance.

Research that incorporated some form of analogy in a computer application remained rare unlike
the boom in Psychological research. Two examples are of note: the work by Kling (1971), and the work
by Moore and Newell (1974). Kling’s research involved first-order theorem proving and the connection
with analogy was the introduction of techniques to exploit past proofs deemed to be sufficiently similar.
The incredible potential of analogy in this regard was certainly recognized before the early 70’s but the
research on analogy had not progressed sufficiently to allow the introduction of such techniques until the
70’s. Although it was a major accomplishment of the time, it relied extensively on the user who had to
represent the past knowledge and direct the theorem prover to the most appropriate past problem and
solution. Moore and Newell are well-known for their program called Merlin, a program originally
intended to understand Artificial Intelligence but later restricted to just programs in that domain. One
operation provided by Merlin was the mapping operator (/) that could be used to ask whether an object
X could be viewed as another Y (as in X /Y ). They found something that is better understood today:
the more general the method (as in mapping), the less powerful it becomes compared to domain specific
techniques.



2.4. The 1980’s

With the coming of the 1980’s, the volume of research by Artificial Intelligence people has grown
almost as dramatically as research in psychology did in the 70’s. Analogy receives credit in several appli-
cations programs, and the distinction between the human models and the applications models has largely
vanished. The volume of research may have reached higher proportions, but it still remains diverse:
Mulholland, Pellegrino, and Glaser (1980) studied the encoding phase of Sternberg’s model to discover
that increased object complexity in an analogy did not increase error rates while an increase in transfor-
mational complexity did increase error rates. The limited human short-term memory was given credit for
this disparity. Rumelhart and Norman (1981) continued the schema theme started by Schustack and oth-
ers. They, and even more so by Halasz and Moran (1982), discuss the danger of analogy; analogies can
even be harmful since there are only a select number of inferences contained within an analogy that are
intended while the many other potential inferences can be dangerously wrong. Tourangeau and Stern-
berg (1981) briefly revived the feature-space/distance-function model of analogy in the context of
Ortony’s work on similarity by distinguishing within-domain distance and between-domain distance only
to achieve inconclusive and disappointing results with human subject experiments. Gick and Holyoak
studied human analogical reasoning (1980,1983) using story problems rather than the traditional propor-
tion problems, that are undeniably more artificial. They studied, using several well-described experi-
ments, how the use of one or more analogous problem/solutions could effect later problem solving in stu-
dent subjects. Their conclusions are interesting: they found that knowing of a single analogous
problem/solution produced remarkable success rates in solving later like-problems, and that the same

effect occurred only when presented with several analogous problem/solutions when the connection was
not made explicit.

Equally diverse are the various uses of analogy within a variety of applications (implemented and
suggested): Langley, Bradshaw, and Simon (1981) reference the effectiveness of analogy in their pro-
gram BACON, a system intended to discover elementary laws from empirical data. They employed past
solutions to reduce the amount of redundant computation, and at a higher level when a new law utilized
terms similar to a previous law, characteristics within the previous law where used to reduce the volume
of data examined. Lenat (1982) credits analogy as the most effective method for generating new heuris-
tics over generalization and specialization. Carbonell’s theoretic work (1981) on the use of past experi-
ence in problem solving uncovered the now obvious combinatorial explosion problem that exists in the
use of analogy in problem solving. He found that just remembering the problem and solution was not
sufficient, that the solution derivation was also necessary. This leads to a problem with representation
and complexity owing to the large volume of information that must be maintained. Unfortunately Car-
bonell does not deal with representation in sufficient detail. Along with Minton (1983), Carbonell also
considers the common-sense reasoning problem based on metaphor comprehension. Their model is based
on the belief that there exists only a moderate number of general metaphor forms that can be used as
templates for reasoning. Unfortunately the feasibility of this idea is difficult to determine due to insuffi-
cient detail.

Recent research has been directed at formalizing analogical inference and mapping constraints.
Kedar-Cabelli (1985) has proposed the specialized notion of purpose-directed analogy. Given a particular
task (or goal) in a problem-solving environment, use the underlying purpose to constrain the mapping
phase. Kedar-Cabelli proposes an explicit representation of the ‘purpose of an analogy’. What remains
is a technique for deriving the purpose of a task automatically. One may question whether it would be
simpler to provide the relevant mapping to begin with, rather than an analogy, but this may be impossi-
ble when the reasoner cannot expect external assistance (as in an independent robot). Indurkhya (1985)
presents a formal theory of analogical reasoning based on first-order predicate calculus, called Schema
Language (SL). On top of this language, Indurkhya developed two domain-independent theories called
Constrained Semantic Transference (CST) and Approximate Semantic Transference (AST). Consistency
is used as the central constraint for analogical mapping. Greiner (1985) also introduces a theory of ana-
logical reasoning using a formal basis. Greiner’s notion of analogical inference is similar to that of
Indurkhya’s, although Greiner introduces stronger constraints based on the use of abstractions. Both



Greiner and Indurkhya have set the stage for further research on formal theories of analogical reasoning.

2.5. Fundamental Research (Current)

Gentner is a researcher in Cognitive Psychology who has published several works in the 80’s that
defines the current model for analogy. Her structure-mapping theory of analogy provides a set of princi-
ples for the representation and derivation of analogies. Here is the definition of structure-mapping
(Gentner 1982):

attributes — predicates taking one argument,

relations — predicates taking two or more arguments.
T target containing object nodes 7 1,t5, - - -
B base containing object nodes b ,b,, - - - b,

A,R,and R’ predicates

Example :
““The hydrogen atom is like the solar system’’

Predicates:
sun ( hot ), sun ( massive )
revolves-around ( planets , sun )
more-massive-than ( sun , planets )
more-massive-than ( nucleus , electron )

Map object nodes of B onto object nodes of T
M: b —
(i.e. sun — nucleus , planet — electron )
Using node substitutions found above:
M: R (b; ,b;)] — [R (1 ,t;)]

where R (b; ,b; ) is a relation that holds in domain B .
and so on for higher order predicates...

(i.e. revolves-around(planets,sun) — revolves-around(electron,nucleus) )

A distinguishing characteristic of analogy (so claims Gentner) is that attributes from B tend not to be
mapped into T :

M: [A ()] -+ [A (6)]
(i.e. sun ( hot ) 4 nucleus ( hot ) ).

In addition to the structure mapping theory, Gentner adds the following principle:

‘“ ... Systematicity Principle: A predicate that belongs to a mappable system of mutually inter-
connecting relationships is more likely to be imported into the target than is an isolated predi-
cate.”’ (Gentner 1982)

Winston has done a wide range of work that, to varying degrees, has incorporated analogy. One
paper in particular (Winston 1980) is devoted to the study of learning by analogy via a computational
model. Winston deals mainly with representing story plots (such as Romeo and Juliet, and Macbeth) and
the determination of some measure of plot similarity. For example, the play Romeo and Juliet, and Cin-
derella have a lot in common. These stories are represented via a network of frames (i.e a graph), and
using a constrained matcher, a value representing the number of similar components is determined. An



exhaustive matcher would be far too computationally expensive, so Winston selected a set of constraints
to limit the combinatorial explosion; these constraints include: cause, importance, and classification. One
criticism of Winston’s approach is his reliance on well-bounded domains. The story plot is clearly a self
contained world about the story. A point worth noting is that Winston is looking at generalizing the tar-
get and base (i.e. schema induction) rather than transferring specific relations using some (supposed)
similarity between the domains. His approach is different from those people studying analogical reason-

ing; his task is somewhat easier, relying on some external source for accurate representation of the
domain knowledge.

Burstein takes a different approach. He is interested in the reasoning aspect; to extend incremen-
tally a small target domain with the aid of an external teacher and some knowledge about the base
domain (Burstein 1983). The method he employs is less clear than Winston’s but based on the structure-
mapping model of Gentner. Burstein criticizes the well-defined knowledge necessary for the work of
Evans and Winston as well as the complexity of a partial-pattern matching approach. Burstein suggests a
hierarchical knowledge structure to reduce the volume of potential pairings. He also deals with non-
identical mappings, something he claims is not embodied in Gentner’s model. A virtual relation is
created when a non-identical mapping occurs to preserve the other relationships in the mapping. Burstein
employs an incremental process of mapping so that any potential errors can be recognized and corrected
by the external instructor before making any further inferences. Work such as Winston’s is exhaustive;
the matcher goes through all of the data before returning any result.

2.6. Discussion

Research has come a long way from looking at analogy as just a scientific reasoning phenomena.
Analogical reasoning has been popular for many years as an accurate measure of human intelligence.
Computer programs that can solve these problems have been around for some time as well, but the ques-
tion remained, how do people use analogy? Simply writing an effective geometric-analogy intelligence-
test problem solver did not sufficiently address this question. Through the 70’s and up until today,
researchers have been struggling with this problem. A well accepted theory today is that analogical rea-
soning and the use of past experience can be a powerful processing tool. Cognitive Psychologists still
work at better models of how people use analogy, and researchers in Artificial Intelligence use these
models and their own to harness some of this power for use in various systems, such as Expert Systems.
This research is still far from complete, many areas remain largely untouched. It would seem without

question, that analogy must play a large role in any Learning System that really does learn and function
with inrelligent behaviour.

It is evident from the literature that research is as diverse and ill-defined as the notion of analogy
itself. The lack of a clear definition makes analogy a vast problem. The domains encompassed by anal-

ogy range from those in which precise mappings operate well, to domains in which even representation
of the knowledge is highly complex.

3. The Algorithm

The problem of detecting and applying analogies is very hard and although a great deal of work
has been directed at analogical reasoning, it remains an open problem (for a fuller discussion of analogy
and analogical reasoning, see (Wellsch 1985)). In the context of this paper, the subproblem of detecting
analogies is tackled using a simple, but powerful polynomial algorithm (Wellsch 1986b).

A method for modelling analogy consists of matching two bodies of knowledge (base and target)
obtaining pairwise correspondences between the two bodies (in order to determine the analogy). The
analogy (these pairwise correspondences) can be used to map relationships known to hold in the base
domain to the target domain (i.e. analogical reasoning).

If one accepts this matching paradigm for modelling analogical reasoning, then several key issues
remain to be formalized. An effective matching procedure and mapping procedure are two obvious
issues. A third, equally important issue is the form of knowledge representation (KR) to be used by



these two procedures. A proportion of existing analogy research has dealt with matching and mapping
trying to remain above actually selecting a KR form; unfortunately the computational feasibility of any
approach relies on selecting a form of KR and providing concrete procedures. The algorithms that pro-
vide matching and mapping rely on the KR chosen.

3.1. Knowledge Representation

The array of potential KR forms (frames, networks, and logic for example), all revolve around
one basic (fundamental) representation structure: a graph. A tree and a list are restricted forms of
graphs that are also used when the complexity associated with graphs is unnecessary and undesirable.
The disadvantage of an unrestricted graph in a matching situation is well-known: the subgraph isomor-
phism problem is NP complete (Gary and Johnson 1979) i.e. graph matching is computationally expensive
and potentially infeasible. Conversely, restricted forms of graphs are more computationally attractive, for
example, the tree isomorphism problem has a linear-time solution (Aho, Hopcroft and Ullman 1974).

In addition to computational superiority, a hierarchical representation has a basis in the current
Psychological research on knowledge structuring (Bourne, Dominowski and Loftus 1979; Dember and
Warm 1979; Reynolds and Flagg 1977). The fact that people have a limited short-term memory capa-
city has lead to the chunking model for short-term memory (Miller 1956). A limit of 742 chunks of infor-
mation as the human short-term memory capacity is well accepted and experimentally verified. For peo-
ple to remember more than such a restricted number of specific things requires some way of encapsulat-
ing the surplus within each chunk. The theory of chunking encorporates an explicit hierarchy by chunking
chunks to form larger and large units of information. Hierarchical recoding of information is a common
component in cognitive models for human memory; a tree structure provides such a hierarchical
representation.

A hierarchical representation is also used in Pattern Recognition. Scene and picture analysis are
two important applications of pattern recognition (and analogies in these visual domains are common in
human reasoning). Syntactic pattern recognition, one of the two general pattern recognition approaches
(Fu 1982), represents two and three-dimensional scenes using a hierarchical description.

It would seem that a hierarchical representation (without cycles and a specific rooted node) is an
attractive knowledge structure. The question of descriptive power immediately arises; do trees have suf-
ficient descriptive power compared with graphs? The most obvious disadvantage of a hierarchical struc-
turing is the problem of multiple representation. By this we mean that a given scene can be “ordered” in
several different ways within a tree. Gestalt psychology does provide what amounts to heuristics that
describe how people mentally order scene hierarchies, but these ‘““guides’ have not been tested in this
research area. This is one of the issues we will address herein.

3.2. Matching

Tree matching is an extension of the tree isomorphism problem. When a tree is used to represent
knowledge, the nodes of the tree correspond to objects and the relationships between the objects (i.e. the
tree has labelled nodes). The tree isomorphism problem requires that the structure and labels be identi-
cal between the two trees (with branch permutations) for them to be isomorphic; a strict form of equal-
ity. On the other hand, an exact match between the base and target of an analogy (assuming one would
call such a comparison an analogy) is of little value. To deviate from strict equality (to flexible equality)
relies on some additional knowledge about the labels. Clearly, if our model of equality relies on labels
being identical for equality and otherwise being not equal, then our model of analogy could not function.
The background information regarding labels provides a means of judging the similarity of two labels
(not just “equal’ or “not equal’’); strict equality is inadequate in this situation.

The area of judging similarity has received a reasonable amount of attention (Ortony 1979; Tver-
sky 1977); the method used here does not attempt to achieve the same level of sophistication of today’s
similarity models, but has proved adequate for developmental purposes. The relationships between the
various tree labels of the domain trees are represented in a single hierarchy called a background



Figure 1
General background knowledge hierarchy (BKT)

knowledge tree (BKT) (see Figure 1). The similarity function o, given two labels, computes a value from
the relative positions of the two labels within the BKT, i.e. a measure of distance. Greater ‘“distance”
implies lower similarity between the two labels. This form of measure is certainly not ideal, but whatever
metric is chosen, as long as it yields values such that a larger value signifies lower similarity, then the
exact definition of o will not effect the matching algorithm.

Returning once again to the idea of tree matching, given the function o, one can develop an algo-
rithm of “flexible’’ matching for trees. There are a variety of ways of combining the values of indivi-
dual node pairings (obtained from o) to judge the similarity of two trees. For example, the worst node-
pair rating, the best node-pair rating, and the sum of all the node-pair ratings (cost) are three such
measures; others certainly exist. In the research discussed here, the worst node-pair rating and the total
"cost” are used to judge tree similarity. Matching two trees r; and ¢, yields the ordered pair
<cost (1 1,1 5),worst (t1,t 5)>. Notice that the cost function pairs the most appropriate (least costly)
branches, and the overall cost is penalized for any remaining unmatched branches (the cosr function
presented here assumes, without loss of generality, that |7, |<|75]).

Consider now the subtree matching problem: given two trees, ¢ { and ¢ ,, is one tree isomorphic to a
subtree of the other? Note that a subtree s of a tree r can be the tree ¢ itself (i.e. s =r) and that we
are not considering the problem of matching all the subtrees of 7 ; with all the subtrees of ¢, (That would
be grim indeed!). Here we have a selection problem: which subtree of 7, best matches with 7, as given
by the <cost ,worst > rating? The selection strategy used is one that picks the matching with the lowest
worst node-pair rating (i.e minimize worst node-pair rating), and if there is more than one that has this
minimum rating, then break such a tie by minimizing the cost rating among the minimum worst node-
pair matchings (i.e pick the matching with the lowest cost rating). Subtree matching consists of selecting
the “‘best’” subtree pairing.

Finally, at the level of the base and target representation, is forest matching. Both the base and tar-
get domains are represented by forests, i.e. sets of trees. It is at this level of representation that we refer
to matching as that associated with analogy. Forest matching uses the same basic approach taken with
subtree matching (i.e. the selection technique) but with a few twists. Things become a bit more compli-
cated because the trees in a domain forest are significantly more independent than the nodes in a tree
(other than pertaining to the same domain, there isn’t necessarily any more of a connection). This
structure independence (and common-sense) implies that combining an unequal number of structures
(trees) taken from one domain with another has no basis. The natural approach might be to simply elim-
inate each of the already paired trees (obtained from ‘‘best’” matching) from consideration and use only
the remainder for later pairings (i.e. a process of elimination).



cost (t 1,t5) = if root (1) = root (t;) = nil then 0

else if 5 (oot (t1)) # & (root (t,)) then LARGE-CONSTANT X (|1 |+ |t2])
8 (root (¢ 1))
else o (root (t1),root (t3)) + Y,  cost (child (i ,t1),child (i ,t5)) endif.
i=1
worst (t 1, 3) = if root (t{) = root (t,) = nil then 0

else if & (roor (1)) # 6 (root (t,)) then LARGE-CONSTANT
8 (root (¢ 1))
else MAIX { o(root (t1),root (1)) , worst (child (i ,t{),child (i ,t;)) } endif.
i=

pair-min (<cost {,Worst {>,<cost 5,worst ,>) = if (worst (<worst ;) or
((worst ;=worst 5) and (cost (<cost 5)) then <cost {,worst ;>

else <cost 5,worst ,> endif.

o (l1,l) = if inconsistent (I {,l,) then LARGE-CONSTANT
else ( | depth (1 1)~depth (1) | + MAX( | depth (11)—depth (p) |,
| depth (15)—depth (p) | ))xMAX(priority (1,),priority (I,)) endif.

where
depth (n ) is the depth in the background knowledge hierarchy
of node n and p is the common ancestor of /; and /,.

tree-match (1 (,t3) = <cost (t 1,t,),worst (£ 1,t2)>.

subtree-match (t1,t,) = pair-min { tree-match (t ,t;) .
¢ subtrec of £,

orest-match = pair-min subtree-match (t ,1; L .
i (F 1f ) = pair { brcemaich (1) | .Efz}

Figure 2
Matching algorithm

Two obvious problems can occur using such a matching algorithm. The first is multiplicity, i.e. a
one-to-many mapping of an object or relation to another. In terms of a tree representation, this mani-
fests itself when a single leaf node is paired to a subtree composed of more than one node. The second
problem is inconsistency, i.e. a mapping that contains an object or relation that seems to map to more
than one distinct object or relation (or visa versa). This is much like multiplicity, but simpler to deal
with than multiplicity. The algorithm penalizes a matching that results in inconsistent mappings (in
function o). The algorithm (Figure 2) handles both of these problems (although there are undoubtedly
other approaches).



10

3.3. Mapping

The mapping process is straight-forward given the node-wise pairings obtained in the matching
stage. In most cases, the direction of the mapping is from the base domain to the target domain (a
characteristic of analogy). The mapping stage can be carried out by simply substituting the label names
in the base structures by their paired label names from the target structures. In this way the base struc-
tures can be looked upon in terms of the target domain. One question that immediately arises is: "What
happens when there are labels in the base structures that have no correspondence in the target structures
as determined by the matcher?". A second question relates to consistency: "What happens when there is
more than one possible substitution for a given label, i.e. a non one-to-one mapping of labels?". Figure 3
illustrates two examples that contain potential mapping conflicts. '

QO°ALT OO

(a) (®)

Figure 3
Pictures with mapping conflicts

Regarding the first question, these unpaired labels may be objects or relations that have some
equivalence in the target domain but the reasoner does not have sufficient knowledge of the target
domain. It is also possible that such objects and relations do not have any correspondence in the target
domain. Here is where analogical reasoning takes on its full characteristics. Analogies are prone to caus-
ing reasoning errors (lead to false conclusions); this is an accepted characteristic. Analogy is not a proof
technique, but merely a powerful guide. Thus it is necessary that some form of alias be established for
these unpaired objects and relations so that at some later time their existence in the target domain can be
tested and either verified, discounted, or left as still unknown.

relation(shape,...) — relation(shape,...)

T

relation(polygon,...) — relation(ellipse,...)

_ | T
@ @ relation(triangle, ...) — relation(circle,...)

subtree of general knowledge

Figure 4
Range of generalized substitutions
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As a means of dealing with the unpaired labels, the choice of determining a mapping union or a
mapping intersection is available. Union consists of ignoring the lack of a pairing and just directly
transferring the label into the target domain. On the other hand, the intersection climinates any labels
that are not integral within the portion of the structure that contains paired labels. For example, if a sub-
tree contains paired labels and the root label has no pairing, then the root label must has some
correspondence within the target domain. In such a case, an alias is established for the label.

Regarding the question of consistency, either the matching algorithm must take it into account in
the selection process, or should inconsistency remain in a matching, then some other strategy must be
followed by the mapping stage (such as ignoring the inconsistent pairings all together). It is straightfor-
ward to extend the node matching function to consult a list being maintained by the tree matching algo-
rithm to see if the node pairing in question is consistent with the preceding node pairings in the match. If
it is not, some large value akin to (LARGE-CONSTANT) can be assigned the pairing to indicate the
inconsistency.

One interesting extension to the simple substitution algorithm for mapping is a generalized mapping
(see Figure 4). Such a mapping consists of replacing the most-specific labels paired by the matcher with
successive generalizations obtained from the background knowledge tree (BKT). Since the background
hierarchy is based on abstraction, tracing successive generalizations until the common ancestor of the
two original labels is encountered is a simple task. By augmenting the simple substitution with general-
ized substitutions the wealth of potentially useful reasoning structures increases. The full use and implica-
tions of these generalized mappings remains to be studied.

4. Implementation and Testing using Two-Dimensional Shapes

The algorithm described in section 3 has been implemented and tested in several domains; the
major domain being two-dimensional shapes (as in geometric analogy intelligence test questions). Con-
sider, for example, the two pictures (1) and (2) in Figure 5. Each picture is representable by a tree
structure (shown for picture (1)) and can also be described by a nested predicate notation (shown for all
three pictures).

Does an analogy exist between pictures (1) and (2)? Applying the algorithm in Figure 2 by pairing
the root node (i.e. inside) of picture (2) to each node of picture (1) yields:

inside with lefr-of 7 <(1+4XLARGE-CONSTANT+1),(LARGE-CONSTANT)>
inside with inside = <(0+2+1),(2)>
all other pairings & <(4XLARGE-CONSTANT),(LARGE-CONSTANT)>

The pairing between picture (2) and the left half of picture (1) produces a strong matching (<3,2>) over
the other possible matchings. The resulting node-pairings are consistent: inside — inside, square — tri-
angle, and circle — square2, and picture (2°) is the result of the analogical inference.

Our second example (see Figure 6) is only slightly more complicated than the first; it consists of a
matching that results in consistent object pairing but an inconsistent relation pairing. Intuitively, the four
identical objects (the squares) are paired with four identical objects of a different form (the circles). The
problem is obvious, all of the circles are positioned along the horizontal, while the last square in the left-
hand picture lies below the horizontal. The two tree representations below each picture have the offend-
ing positional relation circled. The algorithm successfully matches corresponding circles with squares.
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M

2 @)

left-o
inside square

circle square

(2): inside ( square2 , triangle )

(1): left-of ( inside ( circle , square ) , square )

(2°): left-of ( inside ( square2 , triangle ) , triangle )

tree representation of (1)

predicate representation

Figure 5
Two simple pictures, (1) & (2),

and resulting analogical inference (2’)

OO0

BASE TARGET
left-of left-of
left-of @ lefi-of @
squa/re sq\uare square square circé >cle circle circle

Figure 6
Single relation mismatch
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This particular example also illustrates the problem of multiple representation of a scene using a
tree structure. One will notice in Figure 6 that the tree representations shown group the left pair and
right pair together, and then group these as a pair. Another possible ordering would be to group them
from left to right, or right to left (i.e. group the left pair, then group that with the next object, and
finally group that subtree with the last object on the right). Should different ordering strategies be

employed for the base and target scenes, the matching usually fails to produce anything. We will discuss
this problem in our concluding remarks.

Our third example is taken from a paper by Evans (Evans 1968); it represents the classic geometric
analogy intelligence test problem. One interesting application for the algorithm is to group the upper A
and C pictures into a forest, and the possible solution choices plus B into a second forest. The matching
obtained was that A matched ‘“‘best” with B and C matched “best” with 3, the solution. This remark-
able result must be qualified though; in order to obtain the correct solution to the problem, it was neces-
sary to take into account an important property of visual analogies. It has been suggested that in many
analogies, relationships are more important than objects, and in turn, objects are more important than
their attributes (Carbonell 1981). This is where the notion of prioriry comes from in the node similarity
function o. Relations can be given a higher priority than objects; providing this additional constraint
allows for the solution of a wider array of visual analogies. The use of a fudge factor is not very satisfac-

tory, but the notion of priorities and importance is not simply a fudge factor but a real characteristic used
in human visual perception (Gestalt Psychology).

O

O

O O

1 2 3 4 5

Figure 7
Geometric analogy intelligence test question (Evans, case 5)

Figure 8 is our first real look at object multiplicity. Multiplicity is the multiplication (or replication)
of an object in a pairing (i.e. one-to-many mapping). The simplistic belief that all matchings will be
one-to-one is unrealistic. Intuitively, the matching between the figures in the left picture have a mapping
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to those in the right-hand picture. Object consistency implies that we cannot pair one circle with a trian-
gle, and the other circle with the square; careful study shows that each pair (triangle-square) consistently
maps to a circle. This requires that a subtree of the left representation be paired with a leaf-node (circle)
of the right picture (matching multiplicity). Again, the algorithm found the forementioned solution.

BASE TARGET

Figure 8
An example of Multiplicity

Our last example illustrates more clearly regular multiplicity (irregular multiplicity exists when the
multiplication factor is not the same for each object-cluster pairing). Again, the algorithm obtained the
accepted matching (circle — circle X2, triangle — triangle X2, etc.).

OO0 O
XX 22X D

Figure 9
Example of Regular Multiplicity

5. Algorithm Adaptation to the Domain of CAI

Our second application concerns the detection of analogies within the domain of Computer-
Assisted Instruction (CAI). Reasoning by analogy is a common method of learning. It appears to be a
technique that humans find easy to employ, even when little data is available; in fact, it is a technique
that is often employed when nothing else works. For a discussion regarding the use of analogy with
instruction, see (Wellsch and Jones 1986a).

For the purposes of the discussion here, we have selected one representation scheme for a student
model, the genetic graph that was originally proposed by Goldstein (1982). There were many reasons
for selecting this particular representation scheme including its flexibility, the fact that it is has been suc-
cessfully employed in a variety of domains, and the fact that Goldstein’s original design included the
use of analogy links. Although we have initially restricted ourselves to testing our algorithm within one
framework, the algorithm is not constrained to this one framework and could, in fact, be adapted for use
within other student model representation schemes.



iti
position

leg
PO positions

G

G/,
G/

position

/S G/, /S
/S 5th 1st G/ /S 5th
/S position position 8 position
4th 2nd 4th
rd position position 3rd position

position

Figure 10

A subset of an introductory ballet genetic graph (Wasson 1985)
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The genetic graph is a directed graph in which the nodes represent knowledge (facts, subskills and
deviations thereof), the links represent relationships between the nodes (such as generalizations, speciali-
zations, refinements, components, analogies, deviations, corrections, tests). Moreover, the genetic graph
can be viewed as a multi-dimensional structure that is divided into various levels of difficulty. This is a
simple means of indicating the relative difficulty of subskills or concepts. Another useful means of
organizing the graph’s nodes is that of islands. An island is a cluster of nodes and the connecting links.
Such a cluster may represent a single skill or body of knowledge that constitutes a concept. In order to

represent both prerequisite skills and an ordering of steps within a procedural skill, pre and post links can
be employed.

In other words, the genetic graph is a structure in which all desired information about the domain,
deviations thereof, is stored. The student model is, in fact, an overlay on the genetic graph. One can
view the genetic graph as a search space and the student model as a selection of appropriate pieces of the
search space. The genetic graph approach has been successfully employed to model several diverse
domains: the simple adventure game WUMPUS (Goldstein 1982), subtraction (Wasson 1985), elemen-
tary ballet (Wasson 1985), division (Dundas and Stockdale 1985). For further explanation of the genetic

graph approach to student modelling, detailed examples, and a discussion of generating and maintaining
the genetic graph, the reader should consult (Wasson 1985).

5.1. Representing the Genetic Graph

We wished to base the testing of our algorithm within the context of student models on previously
published genetic graphs, rather than develop further examples that we might subconsciously tailor for
success. Wasson’s genetic graphs for the domain of elementary ballet were selected, because more infor-
mation was available for these examples than those of the other previously published domains. (It is also
a more interesting and challenging domain than WUMPUS, subtraction or division.) Sample genetic
graphs for introductory ballet are illustrated in Figures 10 and 11. Each ‘link’ is labelled with a symbol
that denotes its type:

C components A  analogy G generalization
D  deviation S  specialization  Corr  correction

Figure 11 represents six basic stances or positions in ballet, partitioned into separate arm and leg posi-
tions. The bras bas is an arm position only, while first to fifth positions are positions for the entire body
(see Figure 13).

Figure 11 highlights a decomposition based on maturity and the sex of the ballet student, the hand
and arm positions for a mature male. Notice that only first, second and fifth positions are presented;
this is based on the teaching approach of (Lawson 1973). The various symbols used in Figure 11 have
the following definitions:

curve 1 — follow the line of the shoulder, slightly downward
fingers 1 — fingertips level with the breastbone
fingers 2 — breadth of the forehead apart
hands not 2nd position — downward according to line required
curve 2 — above the ears and by lifting the eyes he can
see the insides of his hands
fingers 3 — fingertips over and just in front of crown of head
fingers 4 — width of his forechead apart
hand 2nd position — facing directly downward
shoulders — pulled outward and pressed downward
chest — fully expanded with easy breathing
handshake — natural position

too stiff — correct by softening
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There are two distinct levels at which one can detect analogies within a genetic graph. The sim-
plest level involves the individual nodes of the genetic graph. Detection of a strong analogy between two
nodes in the genetic graph indicates that an analogy link should exist between these two nodes. The
second level of representation is significantly more difficult to process as it involves the structure of the
genetic graph itself. The objective is to find analogous subgraphs contained within the genetic graph.

It is first necessary to determine a computational representation for the genetic graph. We employ
a common graph representation scheme, an adjacency-vector | linked-list structure. A vertex, that
represents a node in the genetic graph, has a ‘label’, a pointer to the knowledge that it represents, and a
pointer to a list of edges. An edge represents a link in the genetic graph. Each edge has a ‘type’ (anal-
ogy, refinement etc.), a pointer to an adjacent verrex (that the link is directed to), and a pointer to
another edge structure (to form a linked-list of edges). The adjacency vector is a list that contains
pointers to all of the vertices. There is only one physical structure created for each vertex , both the adja-
cency vector and any incoming edge have pointers to it. By indexing the adjacency vector, vertices can
be directly accessed. To access the adjacent vertices of a vertex requires following the edge-linked-list for
that vertex .

Secondly, we must determine an appropriate representation scheme for the knowledge represented
at each node of the genetic graph. As the genetic graph structure does not put any restrictions on the
representation of the knowledge contained at individual nodes, one may select the form of representation
(frame, relational logic, network, etc.) which is best suited to the application domain at hand. For our
purposes here, we represent the information at each node of the genetic graph as a forest (a collection of
trees). This allows distinct, but related facts and/or procedures, to be represented at each node if
desired. To illustrate this, consider the node that is to represent the location and characteristics of the
arms when held in first position. In this case, the following facts are represented by a single tree:

First position, Arms -

e Both arms are forward of the body wall
e Both arms are parallel to the floor

e Both elbows are rounded moderately

e Both wrists are bend in

e The hands are separated by six inches
e The palms are open toward the face

that has the syntactic representation:

node (1st_position_arms)
[ 1st Position - Arms ]
{
arms
(
direction(forward), parallel(floor),
wrists (bent(in)),
elbows (rounded(moderately)),
hands
(
separation{6inches),
palms (parallel(face))
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5.2. Extension of the Algorithm

The significant role analogy plays in learning and instruction makes it necessary to include analogy
within a student model, as seen with the genetic graph. Constructing a genetic graph for anything but
exceedingly simple-minded domains will be tedious and error-prone, if done by hand, due to size and

complexity. One step in automating the construction of a genetic graph would be by automated detection
and inclusion of the analogy links.

Figure 12 represents the extension applied to the original matching algorithm (in Figure 2). The
new cost function differs from the original in that it no longer requires that subtree branches have a par-
ticular ordering and it handles node matching between nodes of differing degrees. This modification
does increase the algorithm’s complexity but it remains polynomial.

cost (t1,t5) = if root (t{) = root (t,) = nil then 0
else if root (1) = nil or root (t,) = nil or {leaf (1) @ leaf (t,)} then

LARGE-CONSTANT X ( |t1 ]+ |72])

8 (root (1 1)) 6(root (t,))
else o(root (11)r00t (t3)) + Y, MIN { cost (child (i ,t),child (j ,t5)) }
i=1 J=t
b (root (1 5))
+ LARGE-CONSTANT X M | child (j ,t5) | endif.
J =8 (root (z ))+1

Figure 12
Modification to Matching algorithm

5.3. Testing

Applying the algorithm to the problem of detecting analogies for the automated construction of
genetic graphs is a major task. The testing that has been carried-out to date for this particular application
has been limited to analogy detection within a subset-of knowledge associated with introductory ballet

instruction. We describe here one particular test case; for a discussion of other test cases see (Wellsch
1985).

There are six basic body stances or positions that are taught to introductory ballet students (see Fig-
ure 13). The bras bas is a basic arm position; the arm motion to first position consists of moving the
arms upward from bras bas. The algorithm was first applied to the overall physical characteristics shown
in Figure 13, arm and leg positions are combined. Table 1A and 1B show the results. All of the possible
pairings resulted in a worst-case of LARGE-CONSTANT so the cost values are the only way of differen-
tiating between them. There are two points to be made about the numbers that appear in Table 1A.
First, they represent the accumulated ratings for each node pairing (or individual node when no pairing
was possible). Thus they are a function of the number of nodes used in the trees.

The second point is the basis by which the numbers are computed. The constant LARGE-
CONSTANT was assigned a value of 100. The remaining values that compose the cost are the rated simi-
larity for each node pairing. Conveniently enough, one can distinguish between the node similarity rat-
ings and the number of occurrences of LARGE-CONSTANT in the raw cost values in Table 1A. For
example, the matching between first position and second position has a raw cost of 703. This suggests
that there were 7 nodes that could not be matched, and those that did match had a total difference of 3.
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T

A

Bras Bas First Position Second Position
Third Position Fourth Position Fifth Position
Figure 13
Six basic body stances for ballet
Table 1A
Overall cost values (raw)
cost Bras 1st 2nd 3rd 4th 5th
values Bas position position position position position
Bras Bas 0 200 903 1508 1508 400
1st pos. 200 0 703 2818 2517 1108
2nd pos. 903 703 0 2615 2825 1110
3rd pos. 1508 2818 2615 0 706 2150
4th pos. 1508 2517 2825 706 0 2031
5th pos. 400 1108 1110 2150 2031 0
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Table 1B
Overall cost values (average)

cost Bras 1st 2nd 3rd 4th 5th
values Bas position position position position position
Bras Bas 0 4 18 24 25 9
1st pos. 4 0 11 36 33 18
2nd pos. 18 11 0 33 36 18
3rd pos. 24 36 33 0 7 29
4th pos. 25 33 36 7 0 27
Sth pos. 9 18 18 29 27 0
Table 2
Interesting Pairings
Position Average Cost Value Position
Bras Bas 5 100 1st position arms
Bras Bas 12 100 5th position arms
1st position arms 18 100 2nd position arms
1st position arms 18 100 5th position arms
1st position legs 0 1 2nd position legs
2nd position arms 17 100 5th position arms
3rd position arms 11 100 4th position arms
3rd position arms 43 2 5th position arms
3rd position legs 0 1 4th position legs
3rd position legs 3 100 5th position legs
4th position arms 41 2 5th position arms
4th position legs 3 100 5th position legs

The values in Table 1B represent the average computed by dividing the raw score (from Table 1A)
by the number of nodes involved. If the maximum value (that a node can be rated at) is one hundred,
the average values in Table 1B can range from zero to one hundred inclusive. Because this average is
independent of the number of nodes involved, it can then be used to compare the different pairings.

The results in Table 1(A&B) are in keeping with intuition. Bras bas is similar to first position.
The fact that bras bas is a position variation on the arm position of first position suggests that this a rea-
sonable result. First position is similar to second position and to a lesser extent, fifth position; the arms in
these three are symmetric. The leg position of fifth position accounts for the decrease in similarity with
both first and second. Third position appears to correspond best with fourth position; they both share an
asymmetry in the arm positions. Hence the results of the algorithm agree with an intuitive view of the
six stances.

A further refinement was tested that separates the arm and leg positions. Tables 3A, 3B and 4
contain the results of all possible pairings. Again, the results are intuitively acceptable. Table 3A and 3B
contain the total cost values for the detailed matching. The values have the same basis as those in Table
1A and 1B. The values in Table 4 are the worst-case values for the matching. The ‘¥’ entries represent a
worst-case occurrence of LARGE-CONSTANT. Since one cannot assign a value worse than this, the cost
value is the only way to distinguish between these cases. It is the matches that have a worst-case less
than LARGE-CONSTANT for which this value has differentiating capability. (Note that an exact match
has a worst-case value and cost of zero.) When the worst-case value is less than LARGE-CONSTANT,
there is an isomorphic matching of the two tree structures and the node symbols differ by at worst, that



value.

Looking at Tables 3A, 3B and 4, there are twelve interesting matchings. They stand out from the
other matchings, either because they have a low cost relative to the other matchings, or that they have a
worst-case value that is small (i.e. <LARGE-CONSTANT). These matchings are summarized in Table
2. In this example, costs below 20 were considered interesting. Whether an absolute value (such as 20)

exists for most or all cases or must be determined for each domain, is an open problem.

Again bras bas matches well with both first and fifth positions. First position - arms matches well
with second and fifth position arms, but it is the first position - legs match with second position - legs that
is interesting. Third position - legs and fourth position - legs matching also shares this strong similarity.
The effect is due to the fact that each pair differs only in the separation of the feet. Otherwise, they are

the same.
Table 3A
Detailed Cost values (raw)
cost 1st 2nd 3rd 4th S5th
values Bras Bas arms legs arms legs arms legs arms legs arms legs
Bras Bas 0 200 1504 903 1504 2413 1508 2209 1508 400 1508
1st arms 200 0 1704 702 1704 2310 1708 2009 1708 600 1708
legs 1504 1704 0 1509 1 2877 508 2677 508 1407 508
2nd arms 903 702 1509 0 1509 2107 1609 2317 1609 602 1609
legs 1504 1704 1 1509 0 2877 508 2677 508 1407 508
3rd arms 2413 2310 2877 2107 2877 0 2677 705 2677 2049 2772
legs 1508 1708 508 1609 508 2677 0 2577 1 1606 101
4th arms 2209 2009 2677 2317 2677 705 2577 0 2577 1929 2672
legs 1508 1708 508 1609 508 2677 1 2577 0 1606 102
5th arms 400 600 1407 602 1407 2049 1606 1929 1606 0 1606
legs 1508 1708 508 1609 508 2772 101 2672 102 1606 0
Table 3B
Detailed Cost values (average)
cost 1st 2nd 3rd 4th 5th

values Bras Bas arms legs arms legs arms legs arms legs arms legs

Bras Bas 0 5 51 25 51 50 50 47 50 12 50

1st arms 5 0 54 18 54 46 53 41 53 18 53

legs 51 54 0 45 0 63 18 60 18 50 18

2nd arms 25 18 45 0 45 40 47 45 47 17 47

legs 51 54 0 45 0 63 18 60 18 50 18

3rd arms 50 46 63 40 63 0 58 11 58 43 60

legs 50 33 18 47 18 58 0 57 0 55 3

4th arms 47 41 60 45 60 11 57 0 57 41 59

legs 50 53 18 47 18 58 0 57 o 55 3

5th arms 12 18 50 17 50 43 55 41 55 0 55

legs 50 53 18 47 18 60 3 59 3 S5 0
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Both third position - legs and fourth position - legs share a similarity with fifth position - legs. This
similarity is weaker than the two previously described leg matchings because they share the more general
notion of one foot in front of the other. An interesting matching exists between third position - arms and
fifth position - arms, and fourth position - arms and fifth position - arms. The matching costs are both
very high, yet their worst-case values are very low. This would seem to be an odd situation but, in fact,
does have a simple explanation. Consider Figure 13; both third and fourth position have one arm the
same as in fifth position. This leads to a strong matching. It is the lack of a match for the other arm in
both third and fourth positions that results in such a high cost.

Table 4
Worst-case values
worst-case 1st 2nd 3rd 4th 5th
values Bras Bas arms legs arms legs arms legs arms legs arms legs
Bras Bas 0 * * % * * * * * * *
1st arms * 0 * * * * % * * * *
legs * * 0 * 1 * * * * * *
2nd arms * * % 0 * * % * * * *
legs * * 1 * * * * * * *
3rd arms * * * P * 0 * * * 2 *
legs % % % * * * 0 * 1 * *
4th arms * % * * * * * 0 * 2 *
legs * ® * * P % 1 * 0 * *
5th arms * * * * * 2 * 2 * 0 *
legs * % * * * * * * % %

* indicates that multiplicity or inconsistency occurred

6. Concluding Remarks

As illustrated by the test cases presented in the previous section, the results do correspond with
one’s intuition i.e. the analogies detected by the algorithm are easily explained. This is also true of the
numerous test cases we employed within the domain of two-dimensional geometric shapes. At this point
the full power of the algorithm has not been investigated; the analogies we have investigated in the con-
text of instructional systems are as yet restrictive in nature. One would like to be able to detect analo-
gous learning situations (including concepts, techniques, instructional methodologies, examples), so that
this knowledge can then be employed to improve the diagnostic and instructional capabilities of a sys-
tem. We have not yet applied our algorithm to such extensive examples, but then again such extensive
student models have not yet been developed for any domain.

One of the potential advantages of an effective algorithm for detecting analogies is in facilitating
the development of dynamic student models. Generating a student model (regardless of the chosen
representation scheme) can be a slow and tedious task. Automating the creation of a student model (or
parts thereof) given some domain knowledge is a worthwhile goal. Moreover, one does not want a static
student model; after all large chunks of it may be unnecessary for a particular student. Rather, student
models should be dynamic. (This is especially true when working with a variety of student populations
or special populations such as learning disabled students where one expects more inter-student variation).
The development of dynamic student models is a major open research issue within the area of ICAL
Creating and maintaining the genetic graph by an automated process is one important aspect of a
dynamic student model that is then formed by an overlay on the genetic graph. One of the tasks neces-
sary for such automation is the determination of the analogy links within the genetic graph.
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During the course of this investigation, many interesting issues, both in regard to analogy detection
and student modelling, have risen. For example, how much information should be represented at a
genetic graph node? ICAI research has not yet addressed this question, either in the context of the
genetic graph or any other student model. Because the algorithm is not solely based on a node-to-node
matching, altering the amount of knowledge stored at a node should not effect the performance of the
algorithm, but we have not verified this.

With regard to more general issues concerning analogy testing, the handling of inconsistency and
multiplicity warrant further investigation. Again our initial results within both the domains of two-
dimensional geometric shapes and genetic graphs, are very encouraging; the current approach (although
simple) appears to be very effective. Although a more sophisticated method of handling these issues

may improve applicability, one does not want to increase the computational complexity of the algorithms
(which is polynomial in the size of the trees).

A variety of questions remain unanswered (i.e. open problems). One such question asks: “‘does
there exist one algorithm for all analogies?”” The likelihood of this remains remote; for one reason, the
rather open definition of analogy. As seen in section 2, researchers view analogy in a variety of ways.

Much like a definition for ‘intelligence’ or ‘learning’, a clear definition of ‘analogy’ remains to be firmly
established.

As suggested in section 3.1, one drawback to a hierarchical knowledge representation is the prob-
lem of multiple representations. If it is possible to represent a scene in several ways, which one should
we choose? Multiple representations are merely the implicit manifestation of the notion of importance
and can provide useful knowledge in this way. Gestalt psychology shows us that although a particular

representation of a scene may be formed, it may be necessary to re-represent the scene should it fail to
provide a matching.

The matching process has a variety of features to use as selection criteria (i.e. cost, worst-case
etc.). How important are each of these and how many are necessary in order to obtain an acceptable
domain-independent matching? For the algorithm given in Figure 2, matching cost, and worst-case were
used, with worst-case having a greater priority.

In addition to the various avenues for future research already mentioned, a heuristic rather than
deterministic approach is worth investigating. As suggested for scene analysis (§ 3.1), some use of
heuristics may be essential. Current research is already looking at heuristics for improving mapping con-
straints (Greiner 1985).
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