EbARTMENT
EPARTMENT
EPARTMENT

AERR &8

WAL
W
ITY OF WATERLOO CO

SOENGE B
CIENCE D

S

ER
ER

I
Ut
UT
Ut

Mb
MP
MP

N

I
1

The Expected Behaviour
of Bt -Trees

Ricardo A. Baeza-Yates

Research Report
CS-86-68

December 1986

Expected Behaviour of B*-Trees

Ricardo A. Baeza-Yates 1

Computer Science Department
University of Chile
Blanco Encalada 2120
Santiago, CHILE

ABSTRACT

Fringe analysis is used to study the behaviour of B¥-trees (B-trees where
all the records are stored in the leaves) under random insertions. We obtain
bounds for the expected memory utilization of trees built using the usual inser-
tion algorithm, the B* overflow handling technique, and other techniques derived
from the latter. Several other performance measures are also derived, such as
bounds for the number of index nodes, the expected height, the expected inser-
tion cost in the lowest level and the probabilities of 0, 1 and 2 or more splits per
insertion. Special emphasis is place on 2-3 trees. A technique for concurrency in
B*-trees is also analyzed.

1. Introduction

Search trees, in particular balanced trees, (e.g. B-trees, 2-3 trees, height balanced trees) are
efficient structures for storing and retrieving information. They are particularly suitable when a
combination of requirements is considered, such as efficient access, ease of insertion and deletion
of keys, memory utilization, and use of memory in two levels (main and secondary). Further-
more, they allow sequential access in key sequence.

The worst-case behaviour of m-ary search trees in their different forms (for instance
B-trees, [4]) is well known [15]. However, few analytic results about their expected behaviour are
available, even fewer if deletions are allowed. For the case of trees built by successive random
insertions, Yao [22] introduced an analysis technique known as Fringe Analysis, which he used
to find bounds for the expected number of nodes in B-trees. Such an analysis can be regarded as
the first step in the study of the expected case. For the analysis in this paper, we also assume
that the trees have been built by successive random insertions. This means that at each step
there is an equal probability of inserting a new element in any of the N+1 intervals, where N is
the number of keys in the tree. Fringe analysis only considers the lower part of the tree. Since
part of the tree is not analyzed, this approach gives exact results only for those performance
measures that depends only on the fringe, and bounds for other performance measures.

Yao’s results were slightly extended by Brown [7], improved by Eisenbarth et al. [11], and
by Baeza-Yates and Poblete [3]. In addition, Ziviani et al. [23] analyzed symmetric binary
B-trees, while Culik et al. {10} introduced dense multiway trees, and studied a variant of these
by using fringe analysis. An independent work [19] similar to Yao’s paper also analyzes the tran-
sient behaviour of B*-trees.

t Author’s current address: Department of Computer Science, University of Waterloo, Waterloo, Ontario, CANADA
N2L 3Gl

.

By using a different technique, Kuspert [16] carried out the first theoretical study of B*-
trees using a generalized overflow technique, somewhat similar to the one used here.

This paper obtains a number of new results for B*-trees built with or without overflow
techniques: exact values for the expected number of buckets, the expected insertion cost at the
bucket level, the probability of 0, 1 and 2 or more splits, and bounds in the expected storage
utilization, the expected number of splits and the expected number of nodes in the index. Many
of these results are new also for standard B-trees.

2. Basic definitions
We will define a B-tree of order m (m > 1) as follows:
(i) The root has between 2 and 2m + 1 descendants.

(i) Each internal node, except the root, has between m + 1 and 2m + 1 descendants (hence
the node contains from m to 2m keys).

(iii) All the leaves are at the same level.

The case m=1 defines 2-3 trees. Several important variants of B-trees have been proposed.

Bt-trees:
In a B*-tree, all the keys are stored in the leaves. We use the notation introduced by
Comer [9] to distinguish between B*-trees and B*trees. The keys can be easily scanned
sequentially. The internal nodes contain information directing the access to the leaves
(index). We will use the term bucket for external nodes and the term indez node for inter-
nal nodes. Figure 1.1 shows a B-tree of this type.

B-index

L L JL _JL | Bfie

Figure 1.1. General B*-tree.

B*trees:
A B*tree [16] is 2 B*-tree with the following modification to the insertion algorithm: when
overflow occurs, before carrying out a split, we inspect its neighbouring brothers. If are
not both full, we reorganize two buckets so that a split is avoided; otherwise we take one
brother and together with the original one we turn them into 3 buckets so that each one
contains 2/3 of the keys. If we let b be the maximum number of keys that a bucket holds,

then we have the process in Figure 1.2. In this way the minimum memory utilization is
2/3.

b b + 1 —— | 2b/3 2b/3 2b/3+1

Figure 1.2. B* overflow technique.

Prefix BT-trees:

Prefixes (separators) of the keys contained in the buckets are stored in the index nodes [6].
This saves space in the internal nodes, and we can accommodate more prefixes in an index
node. Hence the order grows and, potentially, decreases the access time (height of the
trge). If prefix setting is done only in the lowest level, the tree is said to be a simple prefix
BT -tree.

Figure 1.3 shows a prefix Bt-tree of order 1 with b = 3.

-

ant apple attic aware ball ballet chair day death duck finger star

Figure 1.3. A Prefix B™-tree.

3. Fringe Analysis

Fringe analysis has been formalized by Eisenbarth et al. [11], and the results from that
paper are summarized in this section.

Let C be a finite collection {Ty,...,T, } of trees. Each tree T; €C is said to be a type.
The fringe of a tree is defined as a disjoint set of one or more subtrees isomorphic to elements
in C. The fringe of a tree is hence not unique but generally includes all the subtrees fulfilling the
above condition.

Ezample 3.1: Let C be the collection of all possible non-empty 2-3 trees of height 1. That is,

Type 1 Type 2

where each point represents a key. Using the above class, a fringe in a 2-3 tree is shown in Fig-
ure 3.1. The height of the fringe in a 2-3 tree is defined by the height of the elements in C.

The composition of a fringe can be described in several ways. Yao [22] did it in terms of
the expected number of trees of each type in it. A more suitable description consists of using
the probability of finding a leaf belonging to a type in the tree fringe {11]. Thus, if we have m
types the above probability is expressed for the ¢-th type in an N-key tree as:

Expected number of leaves in type 7 subtrees

As an illustration of the method, example 3.1 produces the following transitions when an
insertion is performed in each type:

i=1,- - m (3.1)

O
M adie R

Figure 3.1: A 2-3 tree and the fringe defined by the set in Example 3.1.

Pr{ Type 1 => Type 2 } =p;(N)
Pr { Type 2 =>Type 1 + Type 1 } = py (N)

Let X;(N) be the expected number of leaves belonging to type ¢ subtrees after the N-th
insertion. Since the set is closed, the numbers of leaves depends only on what has previously
happened. Hence X;(IN),i=1,2 are random variables making up a Markov Chain, and so the
process is a Markov process [11]. Therefore for type 1

X4(N) = X3(N-1) — 2py(N-1) + 4py(N-1)
Expected number Expected number Expected number Expected number
of leaves after of leaves before of leaves of leaves

the insertion the insertion lost gained

Likewise for type 2
Xo(N) = Xy(N—1) — 3py(N—-1) + 3py(N—-1)

X;(N) . . . :
But p,(N) = NAl for 7=1,2; then in matrix notation we have
—_— 1
N)y=(I+ —— —1 3.2
P(N) = (1 + 77 H) FN-1) (32)

where P(N) = (Py(N), PoN)) and

10 -3 4
I=01 zde=3__4

The matrix H is called the transition matriz.
The solution to a general fringe analysis problem is given by the following theorem.

Theorem 3.1. [11,p.134] Let H be the m X m transition matrix of a fringe analysis problem_.iLet
N, ... ,Ay be H eigenvalues, with A; =0 > Re(X\y) > - -+ 2 Re(\,) [11, p. 134], and let z; be
the eigenvector corresponding to A;. Then for any vector P(0) there exist a constant ¢ such
that

—

|P(N) = ¢ 7 [= O(N*)
where P(NN) is defined as in equation 3.2.

In other words, P(IN) converges to the solution of H T, = 0, where 7, is an m component
vector not depending on N, when N—oa Then

-5~

P(N)=a7, + O(N¥C) (3.3)

where « is obtained from the condition @ | ;] = 1. Notice that Re(\o) is less than zero; in the
following analysis this term will not be written explicitly. The numbers of subtrees of each type,
A;(N), in the fringe can be obtained by rewriting equation 3.1 as

pi(N) (N + 1)
L.

H

Ay(N) = (3.4)

where L; is the number of leaves (intervals) of the type <.

4. Assumptions and Basic Formulas

In this section, we will state the assumptions made in the analysis and the basic formulas
that will be needed later on.

We made the following additional assumptions:

(1) Keys are of fixed length. The keys may be of varying length if the order of the tree does
not vary. For instance, the keys could have a maximum length. The analysis cannot be
performed if prefixes are used in the internal nodes. This is because the intervals fail to be
equally likely with prefixes of different lengths (i.e. short prefixes will imply higher proba-
bility of insertion into its associated interval).

(i) The initial tree has only one key x = —og which is less than any other key. This is done to
prevent the leftmost bucket from having an extra interval, if we use the convention that all
keys greater than or equal to a given one lie to the right. Hence, when there are N keys in
the tree, there are N possible intervals where the next key to be inserted may fall. This
alters the recurrence equation to

PN) = (I + % H)P(N-1)
which also converges to the solution of equation 3.2. Notice that here the number of inter-
vals for a bucket equals the number of keys stored in it.

We will study several cases of a general overflow technique for the last two levels. The
insertion algorithm works as usual, except when an overflow occurs. In such a case it does not
split the affected bucket but searches for free space among its brothers (if they exist) on both
sides. A maximum number of bucket’s brothers in each side may be examined. If available
space is found, some keys are shifted, and a split is avoided. If not, a fixed number of buckets
will form a new group one bucket larger. When forming the new group, keys are distributed as
evenly as possible.

The technique is formalized as follows. Let £ be the maximum number of brothers to be exam-
ined on either side of a bucket in overflow when searching for available space (£ > 0). Let k be
the number of buckets grouped together for reorganization when performing a split (k > 1). We
say that a BY-tree is of type B'Z if it has been generated by random insertions using the overflow
technique defined by £ and k. Clearly, the inequalities £ < 2m and k <2£ + 1 must hold. The
parameter k is called the split factor by Kuspert [16], using £ = k—1. For example, B}
corresponds to a standard B¥-tree and B} to a B*tree.

The minimum memory utilization (used space over total space) is then
k
min — k‘_+1
Next, we introduce some properties of B*-trees and the performance measures to be con-
sidered. Given the type 7, let L; be the number of keys at the bucket level, nn(z) the number of
index nodes, nk(z) the number of keys in the index nodes, and p; the probability of insertion into
type ¢.

U

—6 -

Definition 4.1. Given a B*-tree of order m and buckets of size b keys, we shall define expected
storage utilization as

E[used space]

total space
We denote the expected bucket, index node, and total memory utilization when N — coby Wb,
Un,, and Ut,,, respectively.

Theorem 4.2. In a B¥-tree Ut,, converges to Uf, when b—oq where b denotes the size of a
bucket in keys.

Proof: We may write
Ut,=acUy+(1—a)Un, .
We shall now find an explicitly expression for a. We have
o= Occupied space in the buckets
Total space
Let N, be the number of buckets and N, the number of index nodes. Then,

bN[1
TV N,+2m N, _ om N,
b N,

In a p-ary tree we have that N, = (p—1)N, + 1. But the number of descendants of each
index node i1s bounded by m+1 and 2m+1, and therefore

1 1 No _ 1 1
—(1+)< <=1+ —
Qm(* Nl)_ Nl - m(+ Ne)
Ny is bounded by N /b and N /U, and hence

1

2 2 nChs 1 1
1+= 14—
TN MY
which implies that lim o =1, and therefore

N-—+00,b—+00)
Utm '—wa .

From the preceding theorem and because %m is bounded by % and 1 we have

Corollary 4.3. For finite b, _U—tm is bounded by:

VUL, +1 b UL, +1

o SUm ST
The bounds for ﬁm and ﬁm can be improved by finding closer-fitting bounds for «, particu-
larly for the lower one.

Theorem 4.4.

sz___l_
th‘ P
L;

where ¢; is the maximum number of keys that buckets of type ¢ can hold.

-7

Proof: W,, is the product of the expected occupied memory (denoted by J_\ZO) and the expected
reciprocal of the total mlemory used in the buckets. We denote the total expected memory by
M,. Since in general E(Y) #

we use I{antorovich inequality [8]
(Xmax - Xmin)2
4‘Xmin)(max
In our case X, = (N+1)/b and X, ,, = (N+1)/bU_;,. Hence we have
0 - Umin)2) Mo
M,

E(X)

1 < E(X) E(—}(-) <1+

M<’U7<1 (1
= SUL s+ 4U

t min

We are interested in the minimum value, so we will use

i 3 Li A(N)
Ul, > — = —

b= M, E t; Ai(N)
1

Substituti A(N)L;
ubstituting p; = NIl gives
(N'H)Z p;
Wb _>_ ! = 1 . 0
Pi b by

N+1 ¢ —_—
VS e S

Lemma 4.5. [11,p.163] Let n€,, be the number of nodes at level £ in a B-tree of order m con-
taining N keys. Then, the number of nodes above this level, nafl,, is bounded by
nl,, —1 nl,, —1
Proof: Consider level £ as being the nf,, leaves of a B-tree with nf,,—1 keys. (Each leaf
represents a node.). The minimum and the mazimum number of nodes above level £ is
obtained when_each node above the level £ contains 2m and m keys respectively. (That is
2mXnal ,, =nl, —1 and mXnal, =nf, —1 respectively.). O

Lemma 4.5. and equation 3.4 lead to the following theorem:

Theorem 4.6. The expected number of index nodes in a random B*-tree of order m and N keys
is bounded by
. 1 b
% (rnli) +5,-) 7
Lemma 4.7. [3] Let fh denote the height of the fringe (buckets included). The expected proba-
bility that fh or more splits occur due to one insertion is

(N+1) = 5= < Tu(N) S 5 (nnfi) + -) TH(N+1) — =

Pr{fh or more splits} =3, hji%

i,j J
where hj; is the conditional probability that an insertion in type ¢ splits the root producing a
type j. Analogously, the expected probability that fh—1 splits occur due to one insertion is

Pr{fh—1 splits} = 3 h'ﬁ%
1,7]

J
where h'j; is the conditional probability that an insertion in type i increments in one the
number of elements in the root producing a type j.

8

Proof: If a root splits, we know that fh splits must have occurred. Given our unawareness of
events above the root, this number may be larger. Analogously if a root of a subtree in the
Tr}nge becomes larger by one key, then we know that a split has occurred at each level below it
3]. O

Note that Pr{l split} is the probability of one split at the bucket level. The next split will
occur at the index nodes. It is known that the expected number of splits at any level, in one
insertion, is

Pr{split at level j} < L
m

and that for large values of N and m the expected number of splits in a B-tree approaches the
probability of one split [21]. The last equation gives us an upper bound for the expected number
of splits in a B-tree of order m (m >1)
1
Esplits] < ————=L=——+Om_2.
Elsplits]]E_Jlm, 1 m (m™)

In a B*-tree, the only difference is that

Pr{split at the bucket level} < —i
and hence
] am? 2 1
[splits] < 2 T bm—1f b + (bm)

This can be further improved using the exact values of Pr{j splits}, for j from 0 to fh—1, and
the value of Pr{fh or more splits} That is, for m>1

El[splits] < 2 J Pr{j splits} + Pr{fh or more splits} E —(j]-/h) ;
J=1 "

for fh=2, and for m>1
E|splits] < Pr{l split } + Pr{2 or more splits} m(2m—1) 2m1)21
< Pr{l split } + 2Pr{2 or more splits} + O(1/m)

Let ¢(Iﬂm_ll Table 4.1 shows how c¢(m) converges to 2.

(m—1)?
2 3 4 5 6 7 8
c(m) 6 375 311 281 264 253 245

Table 4.1. Values for ¢(m).

Let I,,, be the expected number of accesses at the buckets level for one insertion. This cost
depends on Pr{l split or more}. At the buckets level two accesses to secondary memory are
needed. If a split is required at least four accesses are needed: one read, two writes for the new
buckets and one write to update the index, i.e.

I,,. =24 2Pr{l split or more}

For B*f-trees with overflow techniques the number of accesses in one insertion will be
between 2 and 3¢ + 2 if splitting does not occur (read 2¢ +1 and write £+1 buckets). If a split
occurs, 2 + k + 3 accesses are performed (read 2¢+1 and write k-+1 buckets plus one access
to update the index). Therefore

-9

2+ (20 + k + 1)Pr{1 split or more} < I, <30 +2 4 (k — ¢ + 1)Pr{1 split or more}

Hence, overflow techniques improve storage utilization but require more accesses. It is pos-
sible, but laborious, to compute the expected number of accesses when a split does not occur.
Also, if we know the probability of a split at the index level, we can compute additional accesses
in the index. However, this cost is insignificant compared with the cost at the buckets level.

Lemma 4.8. The expected number of keys of the index nodes in the fringe of an order m B*-
tree with NV keys is

T(N) = Sk() T-(N + 1)

and the expected total number of keys in the index is

— - — . Pi
nky,(N) = [(N) +nl,,(N)—1=73 (nk(s) + 1) L—' (N+1) — 1
; i
where nf,,(N) denotes the expected number of nodes at the level of the roots of subtrees in the
fringe.

Proof: The total number of keys of the index nodes in the fringe is

3 nk(i)A;(N).

The total number of keys in the index will be equal to the number of keys in the fringe plus the
number of those above it, namely nf,,(N) — 1 (as in Lemma 4.5).0

Lemma 4.9. The expected height, ,,(IV), (buckets included) of a B*-tree of order m and N
keys is bounded by

= Di
hm(N) _<_ 1Ogm+l(N+1) + l0gm+l(E L.) + fh' +1
i ¢

Note that the second term is always negative.

Proof: Let nal,, be the number of keys above level £ of the fringe’s roots of height fh. Then we
have (considering a binary root)

nal, +1

—2-) + fh+1

h-m(N) S ‘logm+1(

Considering the expected value of the right hand side of the above inequality then

— nal, +1 nal,, +1
hin(N) SE[[logm (=5)| + fh + 1] < Ellogpyy(————) + /b +1
Using Jensen’s inequality [13, p.180] we obtain
— Elnaet,, +1
hm(N) < l0gm+l([- l) + fh+1

2
But E[nal,, + 1] = nl,,. Substituting nf,, in the above equation we obtain the result.0
The above bound should be compared with the one given by
- 1, N+1
in(N) < [logman(5T35—1) 1 +2
2 b Uy

N+1
b Umin. . .
2 appears considering that the level of the buckets is counted in and that the root of the tree
could be binary.

where |] is the highest number of buckets that a B*-tree can have. The added constant

-10 -

Theorem 4.10. Memory utilization in the index nodes is bounded by

nk,(N)/2m| 9 lnk,,(N)/2m
LW—] S Unn(N) < i—fm]

where ninf(N) and nsup(N) are the lower and upper bounds of theorem 4.6 respectively. The
factor 9/8 appears because we are using Kantorovich inequality with U, = 1/2.

Proof: The memory utilization in a B-tree of order m and N keys is defined as U_V (2]7\7)]

n
[11,21], where [N /2m] is the smallest number of nodes (when all the nodes contain 2m k:;rs). In
a B*-tree there are nk,,(IN) keys in the index and 7, (V) is bounded by theorem 4.6. O

5. The simple B* case.

The first level analysis is independent of the order of the tree, because it is performed on
the bucket’s level. Here the transitions depend on whether the bucket size, b, is odd or even.
However, the asymptotic results are the same for both cases.

Let b=2r+1 be odd. Then the first type has r+1 keys in one bucket and the (r-+1)-th
type has a full bucket. After an insertion type ¢ transforms into a type #+1 and type r+1
transforms into 2 of type 1 (split).

(2)
7

Type 1 Type r+1
Hence the transition matrix becomes
—(r+2) 2r+42
r+2 —(r+3)
H = .
—(2r+1)

2r+1 —(2r+2)

1 1
(7‘+i+1) (Hr+2 - Hr+1) .

which gives the solution p; =

order [14, p.73] defined by

H,, are the harmonic numbers of first

n
H, =53, l,=lnn +’7+—1-+O(n_2)
i1t 2n
where 7y is the Euler’s constant (0.577..). It is important to note that the probability distribution
is proportional to the reciprocal of the number of keys in the bucket. This distribution will be
similar in the other cases. Hence the assumption of a uniform distribution made in Leung [17] is
incorrect. This distribution is different from the distribution resulting from the assumption that
all possible configurations of B-trees are equally likely [12]. Hence we find
. 1 1 2
Pr{0splits } =1 — =1-— + O(b™9)
(6+1) (Hyyy — Hip1)0) bln2
1 1

(b+1) (Hyyy — H(b+1)/2) "~ bln2

Pr{1 or more splits } = +0(b7?)

— 1
nk,,(N) =
) (0+1) (Hyqy — Hp41)0)

(N+1) = (75 + 0(™)) (N+1)

=2 -2
Toee =2+ 25 + O™
1 (N+1) 1 1 (N+1) 1
— <n,(N)< ——
2m(b+1) (Hyy1 — Hpqr)p) 2m — mN) < m(b+1) (Hypq — Hpppyp) m
- N+41
hon(N) < 10gm 41 (N+1) — log,, 1(2(0+1) (Hy4y — H(b+1)/2)) +2~ logmﬂ(m)
1 1 —_ 1
5 TO(-) S Unp(N) <1 -0(--)
— b+1 1
Uty 2 == (Hy1 — Hpyn)p) =102 + O(4)

When b is even the results are almost identical. The term (H, “H(b+1)/2) is replaced by
(Hy — Hb/2), which has the same asymptotic value. We have

lim Ut,, = lim U€, = In2 ~ 0.6931

b—ro0 b—roo
the same as in B-trees [11,19,21,22]. Table 5.1. shows the values of the measures that do not
depend on m for a few different bucket sizes

b T 2 3 1 5 6 7 .. ©

Ue, 1750 777 729 740 719 725 .. 6931
) 0 666 .429 343 270 232 197 0
N : .

Pr{0 splits } 0 333 571 657 730 768 803 1

Pr{1 or more splits ; | 1 666 429 343 270 232 197 0

I 4 333 286 269 254 246 239 2

Table 5.1. Measures of a simple B*-tree depending on b.

Note that U€, is non monotone and tends to In 2 from above (see figure 8.1). Hence it is con-
venient to use b odd and not too large (for example, the size given by an I/O operation in secon-
dary memory).

The total memory utilization is therefore bounded by
— b+1) (Hyyy — H +1
T > (0+1) (Hyy1 — Hpp1)0)
b+2

For example, for a Bt-tree of order m =9, with 6 = 9 and NN = 10000, the expected
height is less than or equal to 4 (the maximum is 5), the memory utilization exceeds 67.8%, and
the probability that a split occurs due to an insertion is near 0.15.

The results above can be improved with a second order analysis. However, a general
analysis cannot be formulated for arbitrary values of m and b since the number of types
increases rapidly and transitions can only be formulated in terms of specific values of m and b.
For that reason the analysis was done only for some small values of m and b. The case m =1
(2-3* tree), b = 2 is shown in more detail.

The possible types are

Type 1

Type 2

Each bucket indicates the number of keys that it contains. For a k-ary type in a second-

Type 3

~12 -

Type 4

69

Type 5

Type 7

Type 6

order analysis, with & = m+1, - - - ,2m 41, the notation n,, . ..,n; will denote the number of
keys in bucket 1, ...,k of the type. In the preceding set, symmetry (e.g. type 12 behaves like
type 21) and structure (type 121 is similar to type 112) was used. The associated transition
matrix is
-3 1 25 1
3 -4 3/2 18/ 3
43 —5 45 245 4
H = 8/3 -5
52 15/4 -6
5/2 5/4 —6
6/5 6/5 7

which gives the solution
P = {0.07936, 0.35754, 0.14135, 0.19068, 0.11848, 0.07876, 0.03381 }

Hence we find

. Ps Py 1 1
Pr{0splits } =p; + 7 + o + +ps + ps) = 7

Pr{1 split } = %p + pg = 0.3797

. p
Pr{ 2 or more splits } = -—25- + -g-(pg, + pg) + p7 = 0.28695

nk,(N) = %(N+1)

hi(N) <logo(N+1) + 0.1989
0.43043 (N-+1) — % < 7y(N) < 057391 (N+1) — 1
0.58706 < Un, < 0.87122 , Ul, >0.75
Ut, > 0.67173

The upper bound in the memory utilization is computed multiplying the lower bound by
9/8 (Ui = 1/2). Tables 5.2 to 5.5 show the results of selected variables for some values of m
and

-13 -

b 1 2 3 4 5 6 7 8
Prii splits] F714 3797 2465 1975 1554 1335 1130 .1007
Pr{2 or more splits} 4286 2870 1821 1454 1149 0982 .0840 .0744
Pril splits] 7207 4866 3137 2510 .1980

Pr{2 or more splits} | .2703 .1800 1149 0919 .0720

E|[splits) 2.3515 1.5667 1.0031 .8024 .0630

Pr{l splits} .8030 .5355 .3447

Pr{2 or more splits} | 1970 .1312 .0838

E|[splits) 15418 1.0275 .659)

Pr{l splits} .8451 .5635

Pr{2 or more splits} | .1549 .1031

E|splits] 13270 8843

Pr{l splits} .8724

Pr{2 or more splits} | .1276

E[splits] 1.2310

Table 5.2. Probability of 1 split, 2 or more splits and upper bound on E{splits].

m \ b T 2 3] 5 6 7 g
1 6420 4304 2731 2180 1723 1472 1261 .1117
8571 5739 3642 2907 2298 1963 .1681 .1489
2 3378 2250 1436 1148 0904
4054 2700 1723 1378 .1084
3 2298 1531 0978
2627 1749 1118
4 1742 1160
1936 1289
5 1403
1531
Table 5.3. L d bound i ()
able 5.3. Lower ana upper bound on (N+1)'
m \ b 1 2 3] 5 6 7 8
1 5833 5808 5884 5897 5881 5901 5860 5881
8750 8712 8827 8846 8821 .8851 8790 .8821
2 6167 6171 6219 6221 6232
8325 8331 8395 .8398 .8413
3 6345 6352 6390
8158 8167 8216
1 6456 6463
8070 8079
5 6532
8017

Table 5.4. Lower and upper bound on Wm‘

~14 —

m \b 1 2 3 1 5 6 7 8
1 7368 6717 7003 6877 7015 6909 6779 6918
3 7629 6905 7234 6985 7116
3 7764 6995 7302
1 7847 7048
5 7902

Table 5.5. Lower bound on Ut,,.

6. B*-trees with Overflow Techniques

In this section we use a second-order analysis, which makes up the minimal fringe for stud-
ding the effect of our overflow techniques. Three cases, representatives of the generalized tech-

g

nique defined previously, will be studied, namely BZ, B, and B3m+1,

6.1. The B? case.

Here, we study the simplest technique (B*trees) for small values of m and b, since the
transition matrix cannot easily be generalized. For the value of b, we use a multiple of 3 (see
figure 1.2). The simplest case is for m =1 and b = 3 and the types are: 22, 23, 33, 223, 232,
323, 233, and 333.

The associated transition matrix is:

-5 32 4/3

5 —6 15/8 20/3

6 —} 3

14/3 —8
H= 7/3 -8
16/7 —9
8 40,7 —9
9 458 —10

The solution is:
P = (0.0714,0.2250,0.2240,0.1307,0.0653,0.0332,0.1411,0.1092)

Hence we get

. 9863
Pr{o lits } = = 0.6138
{0 splits} = J6068
. 300
g lit} = = —— = 0.2240
Pr{l split} = ps 1339
. 3 2605
== = =72~ 0.1621
Pr{2 or more splits} s P + ps 16068 0.162
= 16 20 7 17
Lyoe = 2p1 + P2 + 63 + Py + Ps + g + 8p7 = 4.28

nk,(N) = 0.3862 (N+1)
"71

0.2432 (N+1) — % < 7, (N) <0.3442 (N+1) — 1

0.5955 < Un; < 0.8932

0.86317 < Ul; < 0.89914

— 15—

Ut, >0.7671

Here, the right side of the Kantorovich inequality is 25/24 because U, = 2/3. Tables
6.1.1 to 6.1.5 show the results of selected variables for some values of m and b.

m | b 3 6 9 12 15 18
Pr{0 splits} .6138 8023 .8671 .8999 9197 .9330
1 Pr{1 split} 2240 1160 0784 0591 0476 .0398
Pr{2 or more splits} | .1621 0816 .0545 .0409 .0328 .0273
L. 393 299 266 250 240 2.34
Pr{0 splits) 6109 8053 8680 9011
o | Pri1 split} 2790 1430 0962 0725
Pr{2 or more splits} | .1011 .0517 .0349 .0264
Elsplits] 8856 4532 .3056 .2309
Lo 390 297 266 249
Pr{0 splits} .6222
3 Pr{1 split} 3044
Pr{2 or more splits} | .0734
E[splits] 5797
I, 3.89
Pr{0 splits} .6235
4 Pr{1 split} .3188
Pr{2 or more splits} | .0576
E(splits] 4980
Lo 3.88

Table 6.1.1. Probabilities of 0 splits, 1 split, and 2 or more splits,

upper bound on E|[splits] and lower bound on I,,.

m \b 3 6 9 12 15 18
1 2432 1225 0818 .0614 0491 0409
3242 1633 1091 0819 0655 .0546
2 1264 0647 0436 0320
1517 0776 0524 0395
3 0856
.0979
1 0648
0720
i (IN)

ble 6.1.2. L d bound .
Table ower and upper bounds on N+
6.2. The B2, case

In this technique, we seek over all the brothers for free space. When there is no free space,
we take two buckets to turn them into three, just as in the B* method.

The types are:
2. 2
Lp =
373

m—+1 m—+1 2m+1

Hence, we have from mb + b/3 + 1 to (2m + 1)b buckets, ie. (m+1)b —b/3 types. For b=3,
we have 2b/3 + 1 = b, which modifies the transition matrix. However the formulae are also

b1, b — - —>-_§—b,b,"',b — bb, - b

- 16 -

m \b 3 6 9 12 15 18
1 5955 6053 6093 6115 6130 6141
8932 9080 9140 9173 9195 9211
2 6266 6273 6262 6253
8459 8469 8454 8442
3 6434
8272
1 6532
8165

Table 6.1.3. Lower and upper bounds on Uﬂm

m \b 3 6 9 12 15 18
1 8632 8431 8359 8322 8300 .8286
2 8770 8559 8473 8425
3 .8823
4 .8854

Table 6.1.4. Lower bounds on UZ,

m \b 3 6 9 12 15 18
1 7671 7918 8009 .8058 .8088 8108
2 .7900 8079 8140 8170
3 .8008
4 .8070

Table 6.1.5. Lower bound on Ut,,

valid in this case.

Let h; =mb+b/3+1, h, =mb+2b/3, and h; =(2m + 1)b, then the transition

matrix is:
—(h; +1) h;
h,‘ + 1
H= ~(h,, +1) hon
hy, +1

whose solution is (numbering the types starting from h; instead from 1 in order to let the

number of buckets of each type be more easily noticed):
(mb +b/3 42"

Pn, =
& Hmb+2b/3 - Hmb+b/3+1 + 8 (H(2m+1)b+1 — Hmb+2b /3)

L mb +b/3 + 2
bi 1+1
o mb +b/3 +2 8

bi i+1

P t=h;.,h, —1 and

1

P, t=h

2

m""’hf ,

with

~17 -

_(em +1)b+1
p= mb+b/B3+1 "
Thence
Pr{o splits} = 1 — = (1 + —~—) + O(m‘Q, b2)
b 2min2

Pr{l split} = B (mb + % + 2) (¥(2m+1+1/0) — (m+1+1/b))

where ¥(z) is the function defined by [1, p.258]
d 1
Y(z) = — In(T = -4 -2
(2) 1 In(T' (z)) =In 2 " O(z7™)

LI % +0(m™2, b7

U —2 -2
Pr{2 or more splits} = Phy =g+ o(m™,b79)
4m 2
Ie 22+ -+ b(3+) + O(1/mb)
— N+1

nl (N) =
(N) (mb +b/3 + 1)(Hmb+2b/3 - mb+b/3+l) + ((2m+1)b+1)(H(2m+1)b+1 - mb+2b/3)
1 \— — 1 . —
(1 + ST () < (V) < (14)l (V)

= __ 1 —2 -2
m = Gplng T O(m)

— Al¥(2m+2+1/b) — ¥(m+1+1/b))

nk,, (N
() b (Hmb+2b/3 T mb+b/3+1 + /B(H 2m+1)b+1 - mb+2b/3))
in(N) < logyrs (Gis) +2 + O()
— ((2m+1)b+1)(¥(2m+2+1/b) — Y(m+1+1/b))
Un,, 2
(2m +2)b
— In2 1
Un, >In2+ (1— 5)+O(mb)

e, > Hinpas/s = Hmb+b/3+1 + B(H gm+1)p+1 — Hmp425)
B(¥(2m+2+1/b) — ¥(m+1+1/b))
lim T, > (m+1/3)(In(m +2/3)~In(m +1/3)) + (2m +1)(in(2m +1)—In(m +2/3))
(2m +1)(Hop 41— Hyp)
1

bh—I;noo ut, = 11m Ut,, = T o +O0(m™?

lim U, =1
m-—+00

lim 0%, >1 -~ (In"'2 — 1) + O(b™?)
m —+00 b

For the same Bf-tree mentioned in section 4 (m=9, 6=9) the memory utilization will
exceed 92%. Again, as in section 6.1, the upper bound in U, is the 25/24 times the lower
bound. Tables 6.2.1 to 6.2.5 show the values of selected measures for some values of b and m.

~18 -

m | b 3 6 9 12 15
Pr{0 splits} 6238 8055 .8687 9009 .9204
1 | Pr{1 split} 22213 1155 0782 0591 .0475
Pr{2 or more splits} | 1549 0790 .0530 .0399 .0320
Loce 4.63 3.36 2.92 2.69 2.56
Pr{0 splits} .6388 8155 8760 9067 .9251
9 Pr{1 split} 22669 1369 .0921 .0694 .0556
Pr{2 or more splits} | 0943 .0477 .0319 .0240 .0192
Esplits) 8327 4231 2835 2134 1708
Loce 5.97 4.03 3.36 3.03 2.82
Pr{0 splits} .6460 8202 8794 .9093 9273
3 Pr{1 split} 2862 1457 0977 0735 .0589
Pr{2 or more splits} | 0677 .0341 .0228 0171 .0137
Esplits) .5400 2796 1832 1376 .1103
L. 731 470 381 336 3.09
Pr{0 splits} .6502 8229 8814 .9109 .9286
4 Pr{1 split} 2969 1505 .1008 .0758 .0607
Pr{2 or more splits} | 0529 .0266 .0178 .0133 .0107
E/splits) 4615 2333 1562 .1172 .0940
1. 8.65 5.36 4.25 3.69 3.36
Pr{0 splits} .6530 .8247 8827 9119 .9294
5 Pr{1 split} 3036 .1535 .1028 0772 .0618
Pr{2 or more splits} | .0433 .0218 .0145 .0109 .0087
E[splits] 4254 2148 1436 .1079 0863
I, 9.98 6.03 4.70 4.03 3.62

Table 6.2.1. Probabilities of 0 splits, 1 split, and 2 or more splits,
upper bound on E|[splits] and lower bound on I,,,.

m \ b 3 6 g 12 15
1 2323 1185 0796 .0599 .0481
3098 1580 .1061 0799 .0641
2 1179 0596 .0399 0300 .0240
1414 0715 .0479 .0360 .0288
3 0790 0398 .0266 .0200 .0160
0903 0455 0304 0228 .0183
4 0595 .0299 .0200 0150 .0120
.0661 0332 0222 .0167 .0133
5 0478 .0239 .0160 .0120 .0096
0520 0261 0174 0131 .0105

Table 6.2.2. L d upper bound (V)
able 6.2.2. Lower and upper bounds on (N—H)'

6.3. The BI"*! case

This is the limiting case for the set of overflow techniques considered in this paper. Here,
the free space is distributed among all the brothers. In fact, when there is overflow in the 2m -1
buckets of the type bb ---bb this turns into two subtrees with m-+1 buckets of type
(b—a)(b—a) - - - (b—a) each, where a = 3 —

m+2
(b will be odd). Hence, there will be types having from b(m+1) — (b—1)/2 to (2m+1)b keys. Let
B = (m+1)(b—a). The transition matrix becomes

. Then, we choose b—1 to be a multiple of 2m +2

whose solution is:

-19 -

m\b | 3 6 9 12 15
1 6071 6154 6184 6200 6210
8095 8205 8246 .8267 .8280
3 6385 6453 6477 6480 6497
7662 7743 7772 7787 7796
3 6532 6687 6606 6616 .6622
7465 7528 7550 7561 .7568
1 6616 6662 6678 6686 6601
7352 7402 7420 7429 7434
5 6672 6711 6724 6731 6735
7278 7321 77335 7343 7347

Table 6.2.3. Lower and upper bounds on -f]_;m

m\b | 3 6 9 12 15)
1 8862 8570 8465 8411 .8378 .8244
2 9229 9031 8963 8928 8906 .8820
3 9416 9267 9216 9190 9175 9111
4 9530 9411 .9370 9350 9337 .9287
5 9607 9507 9474 9456 9446 .9405
10 9784 9729 9711 9702 9696 9674
20 9886 9858 9848 9843 9841 .9829
30 29923 9903 9897 9894 9892 9883
40 9942 9927 9922 9920 9918 .9912
50 9953 9941 9937 9935 9934 .9929

Table 6.2.4. Lower bounds on UZ,

m \b 3 6 9 12 15 00
1 7873 8055 8118 8149 8168 8244
2 8253 8502 8599 .8650 .8682 .8820
3 .8442 8726 8840 8902 8941 9111
4 8554 8861 8986 9054 .9097 9287
5 8629 8951 9084 9156 9202 9405
10 8799 9157 9306 9389 9441 9674
20 8897 9275 9435 9523 9579 9829
30 8931 9317 9480 9570 .9628 9883
40 8948 9338 9503 9595 9653 .9912
50 8959 9351 9518 9610 .9668 .9929

Table 6.2.5. Lower bound on Ut,,
—8 + 1) (2m+1)b+1
B+
H =

@m+1)b —(2m+1)b+1)

- 20 -

B+ 1

with
1 ~
P = ﬂ+—1 (H(2m+1)b+l— Hﬂ) !
Hence
. 1 1
Pr{o splits} =1 — — (1 2 m™?
r{0 splits} b(+2mln2)+0(b ,m™*)

Y(2m+1+1/b) — ¥(m+1+1/b)
b (Hgmep+1 — Hp)
1 1

Pr{l split} = = % + 072 m™?)

Pr{2 or more splits} = = +O(b™% m™?
(2m+1)b (H(2m+1)b+1 — Hﬁ) 2mb ln2 ()
Lo>2+2m Yy 24 0@1/mb)
ace = b b In2

: (N+1) L__ 0@, m=2)) (N+1)

7 N = =
nem(N) (2m+1)b +1 (Homprp+1 — Hp) (2mb In2

(1 + 3=) W (N) < () < (1 + =) 7 (N)

2m
— 0 W(@m4241/b) — Y(m+1+1/b)
km(N) b (H(2m+1)b+1 - Hﬂ)
Tn,, > ZmAbHl o 001) — Y(m+1418))

ftm = (2m+2)b
Un,, >In2 + 21

m

+0(=)

Homirpe1 — Hp

ve, >
b= w(em42+1/6) — U(m+1+1/b)
lim UC, > In{2m+1) — In(m+1/2)
b—»00 H2m+l - Hm
. T . T 1
= lim Ut e -2
blgnmUEb bl—I>I<1>o m 21 2m In 2 +0(m™)
lim UL, =1
m—00
lim U7, >1 -~ (In"'2 — 1) + O(6™?
m =00 b
Here the upper bound in W,, is 1+ 8(m+1)1(2m+1 times the lower bound. This is using the

Kantorovich inequality and that U, = (2m+1)A{2m+2). Tables 6.3.1 to 6.3.5 show some

values of the measures.

7. Deepest Safe Nodes

This section is based in Eisenbarth et al [11]. An index node of a B*-tree of order m is
insertion safe if it contains fewer than 2m keys. Analogously, a bucket is insertion safe if it con-
tains fewer than b keys. A safe node is the deepest one in a particular insertion path, if there
are no safe nodes below it. When considering concurrency of operations on B*-trees, one tech-
nique to permit simultaneous access to the tree by more than one process, is to lock the deepest
safe node (dsn) on the insertion path.

—921 -

m | b 3+2m 5+4m 7+6m 94+8m 114+10m
Pr{0 splits} .8392 .9096 9371 9518 .9609
1 | Priz split} 0603 0356 0252 0105 .0150
Pr{2 or more splits} | .1006 0548 0377 0287 0232
L. 329 272 250 2.39 2.31
Pr{0 splits} .9036 .9475 .9639 9725 9778
9 Pr{1 split} .0543 .0301 .0208 0159 0129
Pr{2 or more splits} | .0421 0224 0153 0116 .0094
E|splits] 3069 .1645 .1126 0855 0693
L. 335 274 250 2.39 2.31
Pr{0 splits} 9310 9631 9748 .9809 .9846
5 | Priz split} 0459 0247 0169 0128 0103
Pr{2 or more splits} .0232 0122 0083 .0063 .0050
E|splits] 1329 0705 .0480 0364 .0291
L., 338 274 250 238 2.31
Pr{0 splits} .9462 9716 .9807 .9854 .9883
o | Priz split} 0391 0207 0141 0107 .0086
Pr{2 or more splits} | .0147 .0077 .0052 .0039 .0031
E|[splits] .0848 .0447 0303 0228 .0182
L. 340 274 250 2.38 2.30
Pr{0 splits} 9560 9770 .9844 9882 19905
5 Pr{1 split} .0339 .0178 0120 .0091 .0073
Pr{2 or more splits} | .0101 .0053 .0036 0027 .0022
E|[splits| 0623 0327 0221 0167 0135
L., 341 274 250 2.38 2.30

Table 6.3.1. Probabilities of 0 splits, 1 split, and 2 or more splits,

upper bound on E|[splits] and lower bound on I,,.

m\b [3+2m 5+4m T+6m 948m 11+410m
1 1414 .0793 .0551 0422 0342
1886 1057 .0734 .0563 0456
2 .0511 .0276 .0189 .0144 .0116
.0613 0331 0227 0173 .0139
3 .0266 0141 .0096 0073 .0059
.0304 0161 .0110 .0083 .0067
4 .0163 .0086 .0058 .0044 .0035
0182 .0095 .0065 .0049 .0039
5 0111 .0058 .0039 .0029 .0024
0121 .0063 .0043 .0032 .0026
m(N)

Table 6.3.2. Lower and upper bounds on VA1)

Let Prob{dsn at 7" lowest level} be the probability that the deepest safe node on 2 ran-
dom search is located at the j% (;2>1) lowest level of a random B*-tree with N keys. In the
same way, let Prob{dsn above 7% lowest level} be the probability that the deepest safe node on
a random search is located above the j** (52>1) lowest level of a random B*-tree with NV keys.
The 1% lowest level is the buckets level.

It is clear that the probability that the deepest safe node is located at the jth lowest level
is equal to the probability that exactly j—1 splits occur on the (N+1)* random insertion. There-
fore '

~99 _

m\b | 3+2m 5+4m T4+6m 9+8m 11+10m
1 .6136 .6184 .6204 .6214 .6221
8182 .8246 8272 .8286 .8295
2 .6463 .6492 .6503 .6509 .6513
7755 7791 .7804 .7811 7815
3 .6606 6624 .6631 .6635 6637
7550 7571 .7579 7583 .7585
4 .6684 .6697 .6701 .6703 .6705
7427 7441 .7446 .7448 .7450
5 .6733 .6742 .6745 .6747 6748
7345 .7355 7358 .7360 .7361

Table 6.3.3. Lower and upper bounds on E{m.

m\b [3+2m 5+4m 7+6m 948m 11+10m 0o
1 .8642 8497 .8442 .8412 .8394 8318
2 9011 .8936 .8909 .8894 .8885 .8849
3 9223 9177 9161 9152 .9147 9126
4 .9360 9329 9319 9313 .9310 9296
5 .9456 9434 .9427 .9423 .9420 9411
10 9690 9683 9680 9679 9678 9676

Table 6.3.4. Lower bounds on UZ,.

m\b | 34+2m 5+4m T+6m 94+8m 11+410m 00
1 .8026 .8145 8195 8222 .8240 8318
2 .8550 8677 8728 .8756 8773 .8849
3 .8846 .8969 9017 .9042 .9058 9126
4 .9040 9155 9199 9222 .9236 9296
5 9177 9284 .9323 9344 9357 9411
10 9519 9593 .9620 9633 9641 .9676

Table 6.3.5. Lower bounds on Ut,y,.

Prob{dsn at j** lowest level} = Prob{j~1 splits} and
Prob{dsn above j** lowest level} = Prob{j or more splits}.
For example, in a simple B*-tree of order 2 and b=>5, we have
Prob{dsn at 1° lowest level} = 0.730 ,
Prob{dsn at 2" lowest level} = 0.198 and
Prob{dsn above 2" lowest level} = 0.108 .

In other words, 89% of the time we lock a bucket or an index node in the last level. For a
B*-tree of greater order and bucket size the solution analyzed here will lock a bucket most of
the time. This shows that complicated solutions for concurrency are rarely of benefit.

- 93 -

8. Conclusions

The most important measure for comparing the performance of B*-trees is memory utiliza-
tion, mainly represented by bucket memory utilization. Other measures, such as the number of
comparisons and the number of accesses to secondary memory, turn out to be similar for all
cases (O(log,,(N))). Figure 8.1 consists of a graph of Uf, for m=1, for all the techniques

analyzed. The main conclusion that can be drawn from the graph is that the simplest overflow
technique (B*trees), gives a memory utilization of over 81%.

For the other techniques, the improvement is much less. Furthermore, the cost of an
insertion increases by adding an O(m) term to the number of accesses to secondary memory.
Consequently, these more sophisticated techniques may not be warranted since, even for a small
value of m, the number of accesses may double. For example, in a tree with m=2 and b=06 the
expected insertion cost is 2.46. This cost is near 3 for B*trees and over 4 for the other overflow
techniques. In other words, the insertion time is doubled, resulting in only a 25% increase in the
storage utilization.

UL,

1(... Symbols
B + Standard Bt-tree
0 B} (B*-tree)
X Bin
0.0 oo e s . pin+l
() . Ki) —e °
0.8 beeo ettt X...
0.7 b e T e ettt ert st e e araenneas
+
0.65
1 3 5 7 9 11 13 15 -- - oob

Figure 8.1. Lower Bound on the expected bucket memory utilization (m=1).

The memory utilization in the index does not improve by using a more elaborate overflow
technique at the bucket level and remains constant at In2 (as in B-trees). See figure 8.2 (m = 1).
This value could be improved if overflow techniques were also used in the index. Figure 8.3
shows the graph of total memory utilization for m = 1.

In comparison with standard B-trees, the performance of B¥-trees is similar for asymptotic
results as b—00 [11]. For small values of b, however, memory utilization is better. Furthermore,
when overflow techniques are used, as can be seen, for example, by comparing with the case
m=1 [3]. Memory utilization for the B* case seems to be a little better than 81% [17], for large
m. Comparing with dense multiway trees, a Bt-tree proves to be better; for example for m=2 a
B*tree with b=3 has an expected utilization of 87% in the buckets whereas for a dense multi-
way tree the value is 82% ([10].

Un,,
0.8 | eemerime ettt sttt e et e a e e be e e e e e e areeeaan Symbols
+ Standard B*-tree
O B} (B*tree)
X B,
2m+1
0.7 b et ee e aee e Bj, »

0.55 >~
1 3 5 7 9 11 13 15 -+ oob
Figure 8.2. Lower bound on the expected memory utilization in the index nodes (m=1).

Uty

1 --- Symbo]s
+ Standard B*-tree
O B3 (B-tree)
X Bi,
0.0 b oottt ae e eare e e aaen g Bg:nnﬂ

1 3) 7 9 11 13 15 -+ oob

Figure 8.3. Lower bound on the expected total memory utilization (m=1).

— 95 -

Our analysis, albeit different, shows similar results to those of Kuspert [16] as far as
memory utilization is concerned. Our analysis, however, yields other measures that go unmen-
tioned in that paper. Table 8.1. shows the values obtained by Kuspert contrasted with ours.

Split | Kuspert [16] This work

factor Lower bound Upper bound m,l
1 .6931 .6931 7798 >1,0
2 8109 > 8170 >8510 >2.2

> 8244 > 8588 >1,.2m

3 .8630 8318 .8491 1,2
5 9116 .8849 .8923 24
7 9347 .9126 9167 3,6
9 9482 .9296 9322 48
11 9571 9411 .9429 5,10
13 9634 .9493 .9506 6,12

Table 8.1. Memory utilization versus split factor.

The main difference between Kuspert’s study and ours, is that the former obtains expected
values of the utilization at the bucket level (assuming that 1/E(z) = E(1/z)), and we obtain
lower and upper bounds. Also, his analysis does not consider the order of the tree. I uspert’s
values are higher for split factors greater than two, because are for large order m.

A B-tree analysis including deletions, based on a continuous model was developed by Quit-
zow and Klopprogge [20]. They made the simplifying assumption that deletions preserve the
randomness of the tree, which is clearly not entirely correct. If only insertions occur, their
analysis yields figures similar to ours (69.2%). When an overflow technique is used, which instead
of splitting, first tries to compensate the contents of the bucket with their brothers, the value
becomes 91.8% . If the insertion rate equals that of deletions, these figures decrease to 59.2%
and 82.6% respectively. Hence, deletions appear to worsen the behaviour of B-trees.

The theoretical values obtained from the analysis are consistent with empirically observed
results. Figures between 67% and 71% have been obtained for the simple case [2]; around 85%
for the B* case [5]; and between 81% and 82% for variable-length keys [18].

Finally, it is important to note, that all the results are valid for a B-tree of order m when
b=2m++1 in a B*-tree (when the size of a bucket is equal to the size of an index node). Then,
the second order analysis for simple B*-trees, and for the B* and B27m*! overflow techniques, are

also new results for B-trees.

The effect of the initial state is studied in [19]. The iteration of equation (3.2) shows similar
results for BY-trees, i.e., oscillations before reaching the steady state solution. The oscillations
decrease when b or m is increased and depends on the initial state.

We have shown how fringe analysis can be applied to B*-trees to study the effects of the
order of the tree and the bucket size on several performance measures. The results are con-
sistent with those of previous theoretical and empirical analysis. Problems that remain open are
the influence .of variable-length keys and the expected value of the height of the tree, and,
finally, the problem of the effect of deletions on performance for search trees in general.

Acknowledgments

The author wishes to acknowledge the helpful comments of Gaston Gonnet and Per-Ake
Larson.

— 926 —

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

Abramowitz, M. and Stegun, 1.: Handbook of Mathematical Functions. New York: Dover,
1972.

Arnow, D. and Tenenbaum, A.: An Empirical Comparison of B-Trees, Compact B-Trees
and Multiway Trees, ACM SIGMOD 14, 2 (1984), 33-46.

Baeza-Yates, R. and Poblete, P.: Reduction of the Transition Matrix of a Fringe Analysis
and Its Application to the Analysis of 2-3 Trees (in Spanish), 5** International Conference
in Computer Science, Santiago, Chile (1985), 56-82.

Bayer, R.: Binary B-Trees for Virtual Memory, Proceedings of the 1971 ACM SIGFIDET
Workshop, San Diego (1971), 219-235.

Bayer, R. and McCreight, E.: Organization and Maintenance of Large Ordered Indexes,
Acta Informatica 1, 4 (1972), 173-189.

Bayer, R. and Unterauer, K.: Prefix B-Trees, ACM Transactions on Database Systems 2,
1(1977), 11-26.

Brown, M.: Some Observations on Random 2-3 Trees, Information Processing Letters 9, 2
(1979), 57-59.

Clausing, A.: Kantorovich-Type Inequalities, The American Mathematical Monthly 89, 5
(1982), 314-330.

Comer, D.: The Ubiquitous B-Tree, Computing Surveys 11, 2 (1979), 121-137.

Culik, K., Ottmann, T. and Wood, D.: Dense Multiway Trees, ACM Transactions on
Database Systems 6, 3 (1982), 486-512.

Eisenbarth, B., Ziviani, N., Gonnet G.H., Mehlhorn K. and Wood, D.: The Theory of Fringe
Analysis and Its Application to 2-3 Trees and B-Trees, Information and Control 55, 1-3
(1982), 125-174.

Gupta, G. and Srinivasan, B.: Approximate Storage Utilization of B-Trees, Information
Processing Letters 22, 4 (1986), 243-246.

Jensen, L.W.V.: Sur les Fonctions Convexes et les Inegalites Entre les Valeurs Moyannes,
Acta Mathematica 30 (1906}, 175-193.

Knuth, D.E.: The Art of Computer Programmaing, Vol. 1: Fundamental Algorithms, 2nd
ed. Reading, Mass.: Addison-Wesley, 1973.

Knuth, D.E.: The Art of Computer Programmaing, Vol. 3: Sorting and Searching, 1st ed.
Reading, Mass.: Addison-Wesley, 1973.

Kuspert, I{.: Storage Utilization in B*-Trees with a Generalized Overflow Technique, Acta
Informatica 19, 1 (1983), 35-56.

Leung, C.: Approximate storage utilisation of B-Trees: A simple derivation and generaliza-
tions, In formation Processing Letters 19 (1984), 199-201.

Mec Creight, E.: Pagination of B*Trees with Variable-Length Records, Communications of
the ACM 20, 9 (1977), 670-674.

Nakamura, T. and Mizoguchi, T.: An Analysis of Storage Utilization Factor in Block Split
Data Structuring Scheme; Proceedings VLDB, Berlin, 4 (Sept 1978), 489-495.

Quitzow, K. and Klopprogge, M.: Space Utilization And Access Path Length in B-Trees,
Information Systems 5, 1 (1980), 7-16.

Wright, W.: Some Average Performance Measures for the B-Tree, Acta Informatica 21,1
(1985), 541-557.

Yao, A.: On Random 2-3 Trees, Acta Informatica 9, 159-170 (1978).

Ziviani, N., Olivié, H. and Gonnet, G.: The Analysis of an Improved Symmetric Binary
B-Tree Algorithm, The Computer Journal 28, 4 (1985), 417-425.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

