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ABSTRACT

This work analyzes insertion/deletion cycles in binary search trees with
three and four elements, extending previous results of Jonassen and Knuth. We
compare the symmetric and asymmetric deletion algorithms, and the results
show that the symmetric algorithm works better, for trees with four elements,
in accordance with many empirical measures.

1. Introduction

This work extends results of Jonassen and Knuth [1] in connection with the behavior of
binary search trees (BST’s for short) with three elements under insertion/asymmetric-deletion
cycles. Our analysis yields information that refutes the hypothesis that the asymmetric algo-
rithm at the end of the cycles produces a more balanced tree. These results are consistent with
the empirical data of Eppinger [2] and Culberson [3].

In particular, we analyze symmetric algorithms and a degenerate asymmetric one in three-
element BST’s, obtaining the asymptotic probability of the shapes of the final tree, with a large
number of insertion/deletion cycles. In four-element BST’s, we make an exact analysis for the
asymmetric and the symmetric algorithms using a finite number of insertion/deletion pairs. Also
we show that the symmetric algorithm is asymptotically better. Part of these results are
included in [4].

In this work we use the terms random insertion, random deletion, and randomly buslt
tree. A good model in the case of insertions only is to suppose that the N! possible trees built
with the integers {1, ...,N} are equally likely. In other words, when the z-th key is inserted,
the probability of its falling in any of the ¢ intervals defined for the precedings ¢—1 keys is the
same. This type of insertion is called a random insertion, and a tree built with these insertions, a
randomly built tree (or random tree, for short).

In a random deletion, we choose one of the elements in the tree, each with equal probabil-
ity, and we delete it by some deletion algorithm. To delete an element in a binary search tree,
there exist several algorithms. If the element does not have sons, the solution is trivial. Different
ways appear when there is a son. The best known algorithms are:

(i) Asymmetric [5]: If the element to delete has a right son, it is replaced by the successor (i.e.
the leftmost element of the right son). Otherwise it is replaced by the left son.

t The permanent address of the author (where this work was done) is Departamento de Ciencias de la Computacién,
Facultad de Ciencias Fisicas y Matemdticas, Universidad de Chile, Casilla 2777, Santiago, CHILE.
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(i) Modified Asymmetric [6]: If the element does not have a left son, it is replaced by its right
son. Otherwise it is done as in (i).

(iii) Symmetric : If the element has two sons, it is replaced by its successor or its predecessor, in
each case with the same probability (or alternating). Otherwise, it is replaced by the existing
son.

The tree performance is measured alternatively by the number of comparisons in a search
(whether successful or not) or by the internal path length. In this work we use the latter.

2. Historical Background

The first theoretical result about deletions is due to Hibbard [5], who proved that if in a
randomly built tree we delete an element, the resulting tree is also random. A similar result was
encountered by Knott (7], who showed that if we randomly insert N+K elements in an initially
empty tree and then we delete the first K elements inserted, the result is also a random tree.

Besides, Knott proved that if we insert an element after the first deletion, the tree loses
its randomness. This is intuitively explained, by regarding the leaf resulting from the deletion as
one having twice the probability of the other leaves (having a ghost element inside). Also, he
obtains empirical results which make him conjecture that asymmetric deletion algorithms do not
worsen the behavior of a randomly built tree.

A thorough study of randomness in deletions considering different probability distributions
on the tree, in particular the assumptions used herein, was done by Knuth [8]. In the case where
the intervals have different probabilities due to a deletion, we still call the insertion random if
we choose a new key independently from a uniform probability distribution (without loss of gen-
erality).

In 1978, Jonassen and Knuth [1] proved Knott’s conjecture in trees of three elements by
using a complex mathematic development in order to find the expected number of comparisons
in a successful search after a great number of insertion/asymmetric-deletion pairs. The analysis
method used here is similar.

Supposing that deletions preserve the randomness of the tree (i.e. in any insertion the
leaves are equally likely), Mehlhorn [9] analyzed AVL trees. However, this is not a good model.

Eppinger [2] made extense simulations obtaining empirical results which show that in trees
of 128 or more elements the symmetric algorithm is better than the asymmetric one, and that
the latter is worse than the one of insertions only. In other words, Knott’s conjecture is seem-
ingly refuted. In particular, Eppinger’s data indicate that the expected internal path length (Ip!)
of a tree with NV elements (N>128) could be

Asymmetric Algorithm  0.028 N log?N — 0.392 N log®N

Symmetric Algorithm 122 Nlog N —25 N

More empirical results were obtained by Culberson [3]. In those the symmetric algorithm is
again the better one (Ipl = 2N log N), and the best fit in the data for the Ipl in the asymmetric
algorithm is w(N%? log N) (1) :

Ipl = 0.0869N% log N + 0.1784N%?

This last result would indicate that the behavior of the asymmetric algorithm is very bad.
Also, Culberson made an exact analysis of trees with a small number of elements in the case
where the number of keys used is the same as the number of elements in the tree after the inser-
tion (in other words, a finite number of keys) [3]. Recently, Culberson has extended the analysis
of this model, showing that the Ipl is O(NV N ) in the asymmetric case [10].



3. The Analysis Method

We show the method through an example: the symmetric algorithm in a three-element
BST in face of insertion/deletion pairs.

The five possible three-elements BST’s given z < y < z are:
A(x,y,2) B(x,y,z) C(x,y,2) (x,y,2)

(x,y,2)
and the two possibilities with two elements (given « < y) are:

F(x,y) G(x,y)

The usual insertion algorithm gives the following BST’s if we insert an element z in a tree
that contains z and y (z <y):

Initial Result Result Result
Tree fz<e r<z<y ify<z
F(xy)  Alzxy) B(x,z,y) Clx,y,z
G(x,y) Clzxy) D(x,z,y) E(x,y,2)

When deleting an element in a three-element BST by using the symmetric algorithm the
following cases may occur:

Initial Tree  Delete x Delete y Delete 2
A(x,y,z) F(y,z) F(x,z) F(x,y)
B(x,y,z) F(v,z) . F(x,z) G(x,y)
Cloys)  Glra) = (F(xe) +Glxz)  Flx)
D(x,y,z) F(y,z) G(x,z) (x,¥)
E(x,y,z) Gly,z) G(x,z) G(x,y)

In the central case above, we choose either the successor or predecessor with equal proba-
bility. To be able to study the tree’s behavior, we must select a sequence of operations (inser-
tions and/or deletions) upon it. One of the most adequate sequence of operations consist of
insertion/deletion pairs because they preserve the number of elements. This allows to compare
the initial and the final trees (at any given moment a search is valid, because it modifies noth-

ing).



Then, the process to be studied is:
(i) Random Insertion of three elements
(ii) Random deletion of one element
(iii) Random Insertion of one element
(iv) Return to (ii)

If we represent an insertion by I and a deletion by D, after repeating this cycle n times,
our sequence is I I I (D I)" --- and the tree’s behavior depends only on the relative order
of the insertions and the action of the deletion algorithm on it. One way of analysis is to con-

sider that the (n + 3)! 3" possible configurations (after n cycles) are equally likely. In the case
n =1 there exist 72 possibilities. This shows that this discrete approach is not useful.

A continuous approach is simpler. Let f(z,y)dzdy be the differential probability that the
tree is F(X,Y) at the beginning of step (ii) after n elements have been deleted. Then

<X <z+dr and y<Y<Y+dy
and let g, (z,y)dzdy be the corresponding probability that it is G(X,Y). Let
an(x’y’z)dzdydz’ ‘‘‘‘‘ b 67’4(z 7y,z)dxdydz

be the respective probabilities that the tree is A(X)Y,Z), . .. ,E{X,Y,Z) at the beginning of step
(iti), forsome ¢ KX <z +dr ,y <Y<y +dy, 2 <7<z +dz.

Now 1t is possible to write down recurrence relations for these differential probabilities by
directly translating the algorithm into mathematical formalism. First, from the insertion algo-
rithm we have

a,(2,y,2) = £(y,2)

bu(z,9,2) = f(z,2)

en(2,9,2) = fi(z,y) + 9.(y,2) for0 <a <y <z<1

do(2,y,2) = gu(x,2)

en(2,9,2) = gn(2,y) (1)

by considering the six possible actions of step (ii). The probability is zero if z <0,z >y, y > 2
or z > 1. At the boundaries =0, x=y, y==z, and z=1 there may be discontinuities, but, if so,
they would not affect the analysis.

Secondly, from the deletion algorithm we have

fanlz,y) = f a,(t,2,9) + byt ,2,y) + dy(t,2y) db

1 1
+ —é-f a,(z,t,y) + b,(x,t,y) + —2-cn(z,t,y) dt
z
1

+ %—f a,(z,y,t) + c (z,y,t) dt . (2)

The equation for g,,(z,y) are similar. Initially we have
folz,y) =golz,y) =1 ,for 0 <z <y <1 (3)

Now the interesting quantities are the probabilities of each tree shape at the end of n
pairs. In other words



1 zy 1 zy
fff a,(z,y,2) dedydz |-+ - - fff e, (z,y,2) dedydz (4)
000 000
are the probabilities that a tree of shape A,B, . . . ,E occurs after n cycles, and
1y
h= ffﬁz(x,y) dzdy , g, = [ [ 9u(z.y) dady (5)
00 00

the probabilities that the tree shape is F or G after n deletions and n—1 insertions in the loop.

“To simplify these recurrences, we can look for invariant relations amongst the preceding
functions. When the algorithm reaches step (iii), it is clear that the two numbers X and Y in the
tree are random, except for the condition that X <Y. Thus we must have

L(zy) + g.(z,y) = 2, for 0<2<y<1, and n >0 , (6)

since the probability of z < X <z + dz and y <Y <y + dy, given X <Y is 2dzdy. It is also
possible to prove this relation by induction in n using equations (1), (2), and (3).

Then, using relations (1), and last equation in (2), we have a recurrence in f,(z,y) only
fO(xyy) =1

Fanalz9) = 32+ 2 —y + hlzy -—fj; (t)+ £ (2t) dt) forn >0

It is possible to compute now the values of f1, o ete. If the process converges for large n,
the recurrence equation for fgis

fdey) =1+ 2 —f (£dt.y) + fidy,t)) dt (7)

To prove that the recurrence converges, we deflne rolz,y) = f(z,y) — fidz,y). Substract-
ing the equations for f, and f, we have

1
Tusi(z,y) = 3( (z,9) + —f (t,y) + rp(z,t) dt)
Now, if the absolute value of r, is bounded by o for 0<z<y<1, we have

Y
|Tn+1(x7y)|g'§'(a+fa’dt)= a(1+y_x)

C»le—l

The maximum of the bounding function above is attained in £ =0 and y =1, ie.
|7 1< %— a. Therefore r, converges rapidly { O( (%)n ) ) to zero (regardless of the initial
distribution) and then f, exists.
The equation (7) shows a clear symmetry, and its solution is very simple, namely
fdzy) =1,
and is the same for all n > 0. With this the probabilities are computed directly.
Theorem 1. The probabilities for each tree shape are

1 1
'4‘_2 y gn"'2)

n n

3
Il
Oo'»—-a
Y
=]
3
V
o

a, =b,=d, =e =-é—,c
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Proof: By computing the probabilities using equations (1), (4) and (5). O

Then, with this algorithm, a three-element BST is always random, and its distribution
equal to the initial one.

Finally, it is not necessary to compute all the probabilities because they are related.
Clearly we have

a, +b, +c, +d, +e,=1and f+g,=1(n>0)
and by using equations (1), (6), and the preceding relations, it is possible to prove that

L bn+dn='§_a'nd an+bn+_1'_cn=ﬁt(n20) [1].

7
4. ‘Three-element BST’s

Jonassen and Knuth [1] analize the behavior of three-element BST’s, using both of the
asymmetric algorithms. Their results for the stationary probabilities (n — od are shown in
Table I along with ours.

‘One way to compare these results is by looking at the probability of tree C, the balanced
tree. Note that this is greater in the asymmetric algorithm, and also the clear bias towards tree
F in the asymmetric cases. Intuitively, it is not clear how an asymmetry behaves better. More-
over, the exact solution to f, is not monotonic in n and depends on Bessel functions.

Now we analize another asymmetric algorithm (which we call particular asymmetric). It is
similar to the symmetric one, but if is possible, the predecessor is always chosen. In this case,
when we delete an element this the following may occur:

Initial Tree  Delete x  Delete y  Delete z
A(x,y,z) F(y,z) F(x,z) F(x,y)
B(x,y,2) F(y,z) F(xz)  G(xy)
C(x,y,z) G(yz)  Glxz)  Flxy)
D(x,y,z) Gyz)  Glxz)  Glxy)
E(x,y,z) Glyz)  Glxz)  Gxy)

By working as in the previous section, we find the recurrence equation for f,to be

y
ey =1=y +3 [ fo(ty)dt
4]

where the right hand side is not a function of z. The solution for this equation is
2(1—
fdzy) = —1#)' :

. . . . 2
The convergence is proved as in the preceding case (again |7, | <+

3 ).

Theorem 2. The resulting probabilities are
fo= 0227 and g,= 0773
a., = 0.0607, b, = 0.0607 , co, = 0.379 , d, = 0.2736 , €, = 0.227

Proof: By using equations (4), (5), and the preceding solution. O

Consequently, this algorithm is better than the preceding ones, in spite of the great bias
towards trees G, D, and E. Also, in this case [ is monotonic in . This strange behavior seems
to be a transient one, and suggests that for a larger number of elements the behavior should be
reversed. In the next section we present evidence supporting this conjecture.
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Algorithm Go b Coo do €oo o Foo
Asymmetric 0.150 0.196 0.352 0.137 0.164 0516 0.484
Modified Asymmetric 0.190 0.215 0333 0.118 0.144 0.595 0405
Symmetric 0.167 0.167 0.333 0.167 0.167 0.5 0.5
Particular Asymmetric | 0.0607 0.0607 0.379 0.2736 0.227 0.227 0.773

Table 1. Stationary probabilities of the different tree shapes.

A better way to compare the algorithms consist on using the Ipl of the tree, because it is
valid for any number of elements. In a three-element BST it is equivalent, because the probabil-
ity for tree C (p, = c,,) is linearly related to the Ipl by the equation 3( 1 —p, ) + 2 p,. Table II
shows the Ipl as n — ooover the initial Ipl for all the algorithms.

. — Ipl
Algorithm Ipl —
g pl(e9 T(0)
Asymmetric 2.648 0.9929
Modified Asymmetric 2.667 1
Symmetric 2.667 1
Particular Asymmetric | 2.621 0.9828

Table II. Final to Initial Expected Internal Path Length Ratio.

5. Four-element. BST’s.

In this section we analyze the symmetric and asymmetric algorithm in a four-element BST,
for some deletion/insertion cycles. In this case we iterate the recurrences because an exact solu-
tion seems to be difficult to find. This reason will be clear when these recurrences become
known. Howewer, we show that the process converges and then is possible to bound the error
with respect to the steady solution.

For the iteration we used a symbolic algebraic system called MAPLE [11] in a Unix system
and an ad-hoc program for the final iterations, due to the large amount of memory required.
With this program the tree process for 35 msertlon/deletlon pairs was computed and the numer-
ical results compared to the exact results obtained in MAPLE for the first ninth iterations. The
numerical error was less than 1075, A greater number of pairs was not possible because of the
size of the polynomials involved.

Here, we will go through the same steps as in the third section without making any com-
ments. The fourteen possible four-element BST’s given w <z <y < z are:

and their seven symmetrical ones, which we call F’, G’ , ..., and I’. Initially the probabilities

of each shape after randomly inserting four elements are ETY for H and H’, ry for K, L, K’, and

L’; and 51:1— for the rest. The probabilities of each type is defined the same as before, in this case

computed using quadruple integrals.
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When we insert an element w in a three-element BST the result is:

Initial Element w to insert is
Tree w<z r<w<y y<w<z z<w
A F G H K
B H I J L
C K L L’ K’
D L’ J’ r H’
E K’ H’ G’ F’
(z,9,2) | (wezyz) (zwyz) (zywz) (z,y2w)

Therefore, the relations amongst the differential probabilities for this problem are:

F.(w,zy,2) = A, (2,y,2) U (w,2,y,2) = C,(w,z,2) + D, (,y,2)
G,(w,z,y,2) = A, (w,y,2) K (w,z,y,2) = C,(w,z,y) + E,(z,y,2)
H,(w,2,9,2) = A, (w,2,2) + B,(z,y,2) T, (w,z,y,2) =D,(wy,z)
I"(w,x,y,z) = Bn(w,y’z) I,n(w’ny?z) = Dn(w’x7z)
Jo(w,z,y,2) =B, (w,z,2) H, (w,z,y,z) = D,(w,z,y) + E,(w,y,2)

Ln(w;xyy)z) = Bn(w;zyy) + Cn(wyyyz) Fln(wva")y)z) = En(w)xyy)

In this case the invariant relation amongst the three-element BST functions is
An(zlylz) + Bn(z9ylz) + Cn(x7ylz) + Dn(x!ylz) + En(m’ylz) = 6

When we delete an element the resulting tree is:

Algorithm Symmetric Asymmetric
Initial We delete We delete
Tree w x y z w x y z
F A A A A A A A A
G A A A B A A A B
H B La+m) A c B A A c
I B B B D B B B D
J B B B E B B B E
K c c -%—(A+C) A c c A A
L C C E(B+C) B C C B B
L D ?(D+C) c C D C c C
K’ E E(E+C) C C E C C C
J A D D D A D D D
r B D D D B D D D
ik c E %(EJFD) D C E D D
G’ D E E E D E E E
F’ E E E E E E E E
(wizlylz) (Iyyzz) (w,y,z) (w,a:,z) (w,:l:,y) (a:,y,z) (w:y;z) (w,x,z) T




~g_

Then the integral equations (using the preceding ones) for the symmetric case are:

z Yy Yy
Ap(z,y,2) = i—(Aﬂ(z,y,z) + fD,,(t,y,z) dt + fA,,(t,y,z) dt + %fA,,(z,t,z) + B,(y,t,2)dt +
0 0 z

z 1
JAaw.t.2)+ Ae.2) + Balu.t.2) + S Anlzt) + Calu.t,2)) dt + [ An(y,2.8) + Culy.2 ) dt)
Yy z

z v
Boilz,y,2) = %(B,,(z,y,z) + fB,,(t,y,z) + A,(t,z,2) + By(t,z,2) + Dy(t,z,2) dt + %fA,,(z,t,z) + B,(t,y,z) dt +
0 z

z z 1
[ Bu(z.t,2) dt + —;—fB,,(z,y,t) + Caln,t,2) dt + [ Ay(z.2,) + Culz,2.t) dt )
z y z

z v
Coni(2.4,2) = 1(Calz,3,2) + [Ealt.0,2) + Au(t2,9) + Balt.2,0) + Daltz,9) dt + [ Cult,2) dt +
o 0
v 1 1 z
JAdz.t,9) + Bulz,t9) + 5 (Dalt.,2) + Calzt,y) + Ealt,y,2) ) di + [ Calz,t,2) dt +
1 z 1
JCulzyt) dt + [ Au(z.9.) + Ca(u.t,2) + Ba(,9,8)) + Dalv.,2) + En(v.,2) dt +
y vy

1

fA"(I,y,t) + B,,(y,z,t) + Dn(y,z,t) + En(yrz:t) dt‘ )

T z Yy
D,iiz,y,2) = -lll—(D,,(:r,y,z) + fC,,(t,a:,z) + E,(t,z,2) dt + fD,,(a:,t,z) dt + —;—f Cplz,t,2) + Dylty,z) dt +
0 z z

z 1
%fD,,(x,y,t) + Ba(z,6,2) dt + [Dy(z,9,8) + By(2,2,t) + Dy(2,2,t) + Ep(z,2,£) dt )
y z

x
1
Enii(2,9,2) = {Ea(z,9,2) + [ Calt,z,9) + Eolt,2,0) dt +
0

8

%( Culz,t,y) + Eo(t,y,2) ) + Ex(z,t,2) + Eu(2,t,y) + Dy(z,t,y) dt +

z 1 1
—;—fD,,(z,y,t) + Eq(z,t,2) dt + fE,,(:c,y,t) dt + fB,,(a:,y,t) dt)
¥ vy z

and for the asymmetric case they are:

z ¥ z
A (zy,2) = %(Aﬂ(xyz) + fD,,(t,y,z) dt + fB,L(t,y,z) dt + fA,,(z,t,z) dt +
0 x z

z 1
JAL(z.9t) + Ady t,2) + Bu(y,t,2) + Culy,t,2) db + [ A(y,2,t) + Cyly,2,t) dt )
v z
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z z
1
B,i(z,y,2) = Z(B,,(:c,y,z) + fB,,(t,y,z) + An(t,2,2) + By(t,z,2) + D,y(t,z,2) dt + fB,,(:z:,t,z) dt +
0 z

z 1 1

JBalzyt)dt + [ Culz,28) db + [A(z,2,t) dt)
Yy y z

. z
: 1
Confz.9,2) = (Calz,9,2) + [ Calt,y,2) + Ealt,y,2) + Aa(t,2,9) + Ba(t,2,y) + Da(t,2,y) dt +
o}

Colz,t,2) + Culty,2) + Du(t,y,2) + Eu(t,y,2) + Ay(z,t,y) + Ba(z,t,y) + Culz t,y) dt +

N RS —a

I Da(y,t,2) + Calz,9,8) + Ealy,t,2) dt +
y

-1

[ Aa(z,4,t) + Calz,9,t) + Bu(y,2,t) + Dy(v,2,t) + Euly,2,t) dt)

2 .

z

z
Dpi(z,y,2) = —‘ll-(D,,(z,y,z) + fC,,(t,z:,z) + E,(t,z,2) dt + fD,,(z,t,z) dt +
1] z
1

z 1
fE,,(x,t,z) dt + fD,,(:t,y,t) dt + fB,,(z,z,t) + Dy(z,2,t) + Euz,2,t) dt )
Yy v z

xT

y

1

Enn(2,9,7) = J{Ea(z.9,2) + [ Calt,2.9) + En(t,2.9) dt + [Dyf(z,t,9) + Ea(z,1,2) + Enlz.t,y) db +
o z

1 1
fE,,(x,y,t) dt + fB,,(:c,y,t) dt)
¥ z

The initial conditions in both cases are:
Ay(z,y,2) = By(z,y,2) = Do(z,y,2) = Eo(z,y,2) =1 and Cy(z,y,2) =2

Using the invariant relation, we obtain a set of four integral equations with four unknown
functions of three variables. To solve this system for each case seems to be difficult, because the
order of the variables and the integration variable are never the same. Also, it seems to be
impossible to develop the equations in the same way as in Jonassen and Knuth, for if that calcu-
lation was intricate, this is even more.

However, it is possible to iterate the recurrences. The first functions for the symmetric
algorithm are:

1 1 1
A1=1—-8—y+-§~z , Bl——1+?x—§y——8-z , C’1=2——x+qz
5 1 1 3 3 5
D=— —_— —_— — — E=—_— _—
1=yttt gy Ty M=oyt
3 15 5 5 1 3 3 5
Co =92 — — —_—— — ———p? —_ = 222 2
2 s T3 Tt TPt TV TRy T n

and for the asymmetric one they are:
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3 3 3 1 1

Al——l—zz—-zy-i-qz ) Bl-—l-l-qx—'zy-i-'zz , C’1=2——x+—:y——z
5 1 1 1 3 1 1
Dl——-+—x——y——z , E'l__+_.y__z

The polynomials become larger and larger every time, and we were able to compute them
only up to the 35 iteration. However, it is possible to prove convergence, and then bound the
error of any of the probabilities with respect the steady state.

We deflne z,9,2) = |A,(7,9,2) —Afz,y,2) | In the same way, e define
W@ g2)

D

B < o and the same condition for 65, €, , and en; and let € < B, with

€8 ¢ P and F. Let ¢
a—pﬂforsomep >0.

Let
ae +be +de +ee

a+b+d+e ’

then r, is bounded by «, and if we bound r,,; by a function of ¢, then to prove convergence as
in previous cases, we choose adequately a,b,d, and e.

T, =

To find the best bound for the error, we choose the best linear combination and find the
minimum convergence constant (< 1) by solving the problem

Min (Coef( Max (r,41),@))

a,b,d,e>0 0<z<y<z<1
and using the minimum in the coefficient of B in the case of more than one solution. In the sym-
metric case a solution to the problemisa =e =1 and b = d = —. With this
B

and for prove convergence we choose p > ?, obtaining r,,, < ga with ¢ <1. Then r, con-
verges to zero.
Analogously, in the asymmetric case we found a = 1,6 =5,d = 3, ¢ = 7. With this

3 3
Tnt1 S Za + %’ﬂ
and we choose p > % to prove convergence.

In both cases C,(z,y,2) converges by the invariant relation. Using this equation we found

< e + 6 + e + GE’ Now we express the error in the probabilities using the preceding

relations We have B8 S 6 because the maximum probability is 1, then oo < 6p (if p > 1). Then in
general, if we let €(n) as the error in the probability, we have:

t . t
en)<(s+—)"p with s,t <1 and p >
() <(s+5) e
with s E t = 1 in the symmetric case and s = 3 t = 3 in the asymmetric case. Then
32’ " 8 y 1" T 20 y

for example
A4 bel + del + ec? <6 (a+b+d+e) ¢(n)
and then if Aa is the error in a,, we have

a+b+d-+te
a

Aa < €(n)

and similar relations for Ab,Ad and Ae. The estimation error in ¢, is
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Ac < Aa + &b + Ad + Ae
<ala +bAb + dAd +elde (abde >1)
<(a+b+d+e) €(n)

Now, it is possible to find the best p which minimizes the right hand side of equation for
€(n), that is

p = t(n —1) > L for n > 1
1—s 1-s
(in the two cases p > 1) and then ¢(n) is
nts™ !
€n) < ———
(1-1/n)

With this, the error of Ipl is the same error in ¢, for the case that the tree have three ele-
ments. And in the case of four elements the error is proportional to €(n) using the habitual error
relations , because the Ipl is obtain with the formula 6 — 2( pk + pl + pk' + pl' ) — ph — ph!
and all the preceeding probabilities is obtain with the addition of functions of the trees A, B, C,
D, and E.

Again, the comparison parameter is the ratio amongst the final and initial Ipl of the algo-
rithms. Of course, we also obtained the probability of each shape in each step, but an exhaustive
list is useless. Table III shows the probability of the three-elements BST’s when n —o0 using the
values after 35 cycles bounded with the error in ¢, (the greater).

Algorithm Go by Coo doo €0
Symmetric (+0.014) 0.150 0.158 0384 0.158 0.150
Asymmetric (£0.016) | 0.226 0.208 0.367 0.100 0.098
Initial Value 0.166 0.166 0.333 0.166 0.166

Table II. Asymptotic probabilities of the three-elements BST’s.

Table IV shows the four-element BST steady probabilities obtained bounding the values at
the end of 35 cycles.

In spite of the fact that some probabilities of balanced trees are greater in the asymmetric
case, the Ipl is worse. Table V shows the ratio Ip;lk , where Ipl(k) denotes the Ipl after k

Ipl(0
cycles, at end of step (ii) (three elements) and at endvog ltep (iil) (four elements) of the process.

The small variation in the last terms of the above results, allows to verify the trend. The
symmetric algorithm converges near 0.98 and the asymmetric one near 0.985. So far, the sym-
metric algorithm is the better one, and both improve over the initial tree. This is in accordance
with Eppinger’s results that show the same for small n. Then, in fact that Ipl(0) is a constant
the preceding ratio when n—ocois bounded by the values of Table VI.

Figure 1 shows the difference more clearly.

8. Conclusions

An analysis for five-element BST’s needs the 52 possible trees of this size, which entails 13
integral equations, with 13 unknown functions of four variables. Then, it is clear that is neces-
sary to find a better method of analisys for the case in which deletions exist. Then, a partial or
exact analysis for large trees is virtually impossible in this way.

These results are the first in accordance with the empirical data obtained recently [2,3] and
shows that at least for n = 4 the symmetric deletion algorithm is better. Therefore, we conjec-
ture that the case of n = 3 is a transient, and for large n the behavior is very good for the sym-
metric algorithm and poor for the asymmetric one (see [10]). Also, this work shows that if an
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Initial Symmetric = Asymmetric
Tree | Value Algorithm Algorithm
(£0.005) (40.006)
F 0.0416 0.033 0.046
G 0.0416 0.034 0.055
H 0.0833 0.084 0.124
I 0.0416 0.036 0.047
J 0.0416 0.039 0.058
K 0.1250 0.134 0.145
L 0.1250" 0.140 0.160
L’ 0.1250 0.140 0.108
K’ 0.1250 0.134 0.121
J 0.0416 0.039 0.018
r 0.0416 0.036 0.022
H 0.0833 0.084 0.050
G’ 0.0416 0.034 0.021
F’ 0.0416 0.033 0.025

Table IV. Asymptotic probabilities of four-elements BST’s.

Algorithm Symmetric Asymmetric
Number of 3 4 3 4
Elements
Cycle
0 1 1 1 1

0.99218 0.99181 0.99218 0.99181
2 0.98769 0.98708 0.98886  0.98793
3 0.98502 0.98427 0.98754 0.98611
4 0.98339 0.98256 0.98709  0.98529
5 0.98240 098152 0.98701 0.98496
6 0.98179 0.98089 0.98706 0.98484
7 0.98141 0.98051 0.98715 0.98481
8 0.98119 098028 0.98722 0.98481
9 0.98105 0.98015 0.98727 0.98482

10 0.98097 0.98007 0.98731 0.98483
11 0.98092 0.98001 0.98732 0.98483
12 0.98089 0.97999 0.98733 0.98483
13 0.98088 0.97997 0.98734 0.98483
14 0.98087 0.97996 0.98734 0.98483
15 0.98086 0.97996 0.98734 0.98483
20 0.98085 097995 0.98733  0.98482
35 0.98085 0.97995 0.98733 0.98482

Table V. Final to Initial I?J- Ratio after k cycles.

exact analysis is complicated, a numerical analysis is a good tool for trying to solve a problem,
bounding the error of the values.

Acknowledgments
The author wishes to acknowledge the helpful comments of Patricio Poblete.



- 14 -

Algorithm Symmetric Asymmetric
Elements El_(ﬁ _IE(_@_
in the tree I_pl-(O) TI-’T(O)
3 0.981 4 0.005 0.987 4- 0.004
4 0.980 + 0.004 | 0.9848 -+ 0.0003

Table VI. Final (n—0o9 to Initial Ipl ratio.

Ipl(k
11(0) |
1 Lereereerommee e et Symbols
+ Symmetric Algorithm at end of step (i)
0 Symmetric Algorithm at end of step (ii)
0.995 Freeree-Neerreerereremeenemierenieareeeereeseeeseserenasanes

X Asymmetric Algorithm at end of step (i)

e Asymmetric Algorithm at end of step (ii)

0.985

0.98 e
0 1 2 3 4 5 6 7 8 k D/I Pairs
| Figure 1. Ratio I—L’-@)— for k Deletion/Insertion Pairs
| 1(0)
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