BERARTMENT

DEPARTMENT
DEPARTMENT

E
E
CE

N

2E:
f

|
T
T

-
caMEL
COMPU

3

E WATERE
F WATERL

NVERSIFY 8
UNIVERSITY
UNIVERSITY OF WATERLOO

Graphical Specification
of Keyword Queries
to Videotex Databases

Vilhelm Boggild
Data Structuring Group

CS-86-63

November 1986

Graphical Specification of Keyword
Queries to Videotex Databases?

Vilhelm Boggild

Department of Computer Science
University of Waterloo
October 19, 1986

ABSTRACT

Information systems must continue to improve their
query facilities as the needs and expectations of our
information-based society grow. This need is perhaps felt
most acutely in videotex and other public database systems.
However, such systems have in general not exploited their
graphics capabilities to aid in information retrieval.

A recognition experiment was conducted to test the
understanding of Venn diagrams. The results indicate that
people’s understanding of Venn diagrams is more complete
and complex than had been previously recognized. In partic-
ular, the use of negation in descriptions was surprisingly
prominent.

A prototype keyword system was developed for a
videotex database that allows for the graphical specification
of queries via Venn diagrams. The system was developed in a
distributed, multi-process environment. Various aspects of
process structuring and features of the hardware configura-
tion are examined.

As a result of these two activities, it can be concluded
that systems employing a graphical keyword interface for
page retrieval should be further investigated.

October 19, 1986

t Originally a master’s thesis presented to the Faculty of Mathematics at the University of
Waterloo.

Acknowledgements

Produced by = Frank Wm. Tompa

I would like to thank Frank Wm. Tompa for being my supervisor dur-
ing my stay at the University of Waterloo. He knew when to let me
investigate areas on my own and when to focus my attention on a cer-
tain area (like getting the thesis done).

Financed by = NSERC, U of W

Financial support came from various sources throughout the course of
this work and was very much appreciated: NSERC strategic grant
G1154, NSERC post graduate scholarship, and the University of
Waterloo in the form of teaching assistantships.

Directed by = Darrell Raymond

I would like to thank Darrell Raymond for his continued support and
suggestions throughout the development of this thesis. Life would
have been quite a bit rougher than normal without his help.

Edited by = Doug Dyment and Frank Safayeni

I would like to thank my readers for their helpful suggestions and
comments.

The following people have also contributed in ways too numerous to men-
tion.

Supporting cast

Steve Williams R.A. student
Paul Boggild Father
Faye Boggild Mother
Paula Boggild Sister
Michelle Dunkley girlfriend
Greg Johnston roommate
Waterloo Warriors Basketball Team themselves
Lou chef at Renison College

Elsa dog

i

Table of Contents

1. Introduction.

2. A keyword interface based on Venn diagrams.

2.1 Michard’s graphical query language.
2.2 Logic diagrams.

2.3 Experiments.

2.3.1 Michard’s evaluation.

2.3.2 Venn diagrams.

2.3.2.1 Description.

2.3.2.2 Results.

2.3.2.3 Conclusions.

2.4 Keywords in videotex.

2.5 Description of keyword system.

3. Graphics and workstation considerations.
3.1 Hardware configuration.

3.2 Software configuration.

3.2.1 Terminal I/O.

3.2.2 Quickpel board.

3.2.3 The cursor.

3.2.4 Implementation of graphics primitives.

4. Software development environment.
4.1 Waterloo Port.

4.2 Process structuring,

4.3 Process manager.

5. Design of the keyword system.
5.1 Overview.

5.2 Process structure implemented.
5.2.1 Kybd_in.

5.2.2 Quickpel.

5.2.3 Keyword_list.

5.2.4 Venn.

5.2.5 Result.

5.2.6 Serial_in.

5.2.7 Vax.

6. Problems and prospects.

6.1 Appraisal.

6.2 Improvements to the interface.
6.2.1 Keyword list.

6.2.2 Venn diagram.

6.2.3 Output.

6.2.4 Cursor.

6.2.5 Remote database communication.

6.3 Conclusion.
References.

Appendix
A.1 Experimental instructions.

A.2 Data collected from experiment.

49.

50.

55.
56.

1ii

Introduction

What is videotex? Videotex was originally viewed as a simple infor-
mation retrieval system for the home, using an adapted TV set with a key
pad. The kinds of information a person might retrieve using a videotex
system vary from news, weather, and entertainment, to interactions with
banks and stores. Now public terminals also exist in places such as shop-
ping malls and bus stations to provide information about attractions, din-
ing, maps, transportation schedules, and so on. This simplistic view is
changing because customers expect better information retrieval and access
methods, and systems are evolving by the introduction of more complex
features.

There are three features common to most videotex systems. First,
there is an extensive use of computer generated images or graphics.
Second, the information is displayed in a page format, one screen at a
time. Third, the pages of information in the videotex database are struc-

tured in a hierarchy and are typically accessed by a set of hierarchical
menus.

Menu-based access to information means that users who know little
about computers or the available database can still find information.
However, menu hierarchies can be confusing. People view the world in
different ways and so seldom agree universally how information should be
categorized. Miscategorization of information is a most serious design
defect, leading to errors or an inability to find information at all [DOC
8la]. Several alternative access methods exist, such as labels and lists,
keywords, cross-links, multiple contexts, lattices, and multi-menus [Ray-
mond 84].

The need for simple and powerful access methods and query
languages for public information systems such as videotex is clear. How-
ever, the proper design of a suitable method and language to meet these
criteria is not as clear. The main contribution of this thesis is to highlight
one approach to reduce retrieval disadvantages of videotex by exploiting
its graphical advantages:

“Why is it that simple graphic schemes (Venn diagrams, boxes,
arrows, etc.) are so popular in scientific and educational contexts?
Their popularity, it is proposed, is linked to their ability to help us
grasp generic properties and underlying relations not directly observ-
able in the surface features of physical phenomena.” [Mills 81]

A graphical query language has been developed for a relational data-
base that employs Venn diagrams in the construction of boolean queries
[Michard 82]. Michard’s use of Venn diagrams in the query language and
his favourable ergonomic evaluation of the system prompted further
investigation into the possible use of Venn diagrams for querying videotex
databases.

The prototype keyword system utilizes windows, graphics, and a
mouse to assist the user in specifying a query. Existing videotex systems
do not allow for the combination of keywords using the rules of boolean
logic, nor do they use graphics and a pointing device to aid the user.

Section 2 outlines the background material relevant to the develop-
ment of the keyword system. Michard’s GQL is described and his
ergonomic evaluation is examined. The history of logic diagrams and
some of their interesting characteristics are noted. A recognition experi-
ment was carried out to test if people could use natural language to
describe queries that had been given in Venn diagram form. The results
from this experiment supported the development of a prototype keyword
system employing Venn diagrams for querying a videotex database. The
use of keywords in videotex systems is discussed, followed by an overview
of the prototype system.

The implementation of the keyword system required the local process-
ing power of a microcomputer in addition to that associated with the typi-
cal videotex environment. The hardware configuration and associated
issues are discussed in Section 3.

The keyword system was designed and implemented with a multi-
process, message passing operating system and programming language.
Various features of this environment are examined including anthropo-
morphic programming models and a new process manager model. The
design and implementation of the prototype system with the process
manager model is contained in Section 5.

Section 6 reviews the problems encountered during the development
of the system and contains suggestions for further enhancement of the
system and concluding remarks.

A Keyword Interface Based on Venn Diagrams

2.1. Michard’s Graphical Query Language

Michard discusses a new query language, known as the Graphical
Query Language or GQL, suitable for naive users of a single relation (one
table) database [Michard 82]. The main feature of GQL is the replace-
ment of formal boolean expressions by Venn diagrams.

In the pilot GQL system the user is presented with a screen contain-
ing soft buttons and a display area for a Venn diagram, as shown in
Diagram 2.1. Among the soft buttons are the attribute names of the sin-
gle relation which are contained in the long horizontal box at the top of
the display area. Four possible attribute value buttons are available
including a numeric keypad, relational operators (>, <,=3,><) and a
command area, containing functions such as enter, cancel, memorize,
search and end.

“ Name H Addr “RNBRH Rate ” First H Last ” Duration

BB o
EI Foreigr

2 |75‘7|
IIIIIIIEI FRé;
o py)| =

Enter HCancelH End I
[Memorl l Search “ I

J

| today

B
[A][A]
(VL]

Diagram 2.1

To pose a query, the user formulates a query criterion, such as
“RATE = FULL”. Each time a criterion is formulated, a numbered cir-
cle appears in the Venn diagram area with the corresponding legend indi-
cating the selection to which it corresponds. When another criterion is
selected, an additional circle appears overlapping the first, as would be
expected in a Venn diagram. By pointing, the user is able to select vari-
ous regions within the Venn diagram and these areas become hatched.
The user can then select the search command to invoke the query
represented by the hatched region in the Venn diagram.

Diagram 2.2 shows the construction of the query “Select everyone in
the database living in region 75 or in regions 78 and over, and who is sub-
scribing at the full rate.”

1. RNBR=T75
2. RNBR >=78
3. FULL RATE 3

Diagram 2.2

The Venn diagram has been limited to a maximum of three circles in
GQL. For complex queries involving more than three criteria, the com-
mand MEMOR allows the currently selected subsets to be represented by a
single circle in the diagram. Further selection criteria may be chosen, and
these can be encapsulated in turn and re-used in a more complex query.

Michard identifies the following important features that are present in
the design of GQL:

O non-procedural — the user constructs a diagram representing the
desired result as opposed to specifying how to find the result.

O free order — the user can construct the Venn diagram in different
ways with the same items to achieve the same result.

O immediate feedback — all actions initiated by the user have an
immediate effect on the display.

O aid in the manipulation of boolean operators for set operations —
Venn diagrams are utilized to “visualize” the contents of selected sub-
sets.

O menu-oriented dialogue — all commands are evoked by selecting
soft buttons on the display device.

O external representation of the data structure — similar to QBE
(Query-By-Example), the relational scheme is itself a significant com-
ponent of the display.

Immediate feedback and menu-oriented dialogue design features are
desirable for any system for use by casual users. The other design
features are worthwhile, but the most intriguing feature is the use of
Venn diagrams to construct queries. While such a method is intuitively
appealing, Michard does not address the complex mechanism underlying
comprehension of Venn diagrams.

Michard’s system lacks a description of how query results should be
handled and displayed; there does not appear to be a window for this pur-
pose. A visually-oriented query facility such as this should have a graphi-
cal feature for manipulating query results.

The use of Venn diagrams in interactive graphical query systems
should be examined more closely to see how they are more expressive or
understandable than boolean expressions, and where the power of this
alternative form lies.

2.2. Logic diagrams

John Venn was born in Hull, England, on August 4, 1834, and died in
Cambridge, England, on April 4, 1923. Venn’s volumes on probability and
logic were highly esteemed textbooks in the late nineteenth and early
twentieth centuries [Dict. Sci. Biography 76]. The use of geometric
diagrams to represent syllogistic logic has a long and interesting history
and has been succinctly outlined by M.E. Baron, “A Note on the Histori-
cal Development of Logic Diagrams: Leibniz, Euler and Venn” [Baron 69].
Syllogism refers to a form of reasoning in which two premises are made
and a logical conclusion drawn from them [Webster Dict. 83].

It was Gottfried Wilhelm Leibniz (1646-1716), who first devoted seri-
ous study to the analysis of logical propositions by means of diagrams
rather than using them as casual illustrations. He explored the possibility
of representing syllogistic arguments by means of geometric figures
developing the familiar circle diagrams attributed to Venn and Euler, as
well as an alternative linear form [Baron 69]. The popularization of circle
diagrams was largely due to Euler from a paper he wrote in 1795. In
describing the diagrams he thought they would be of great assistance to
comprehending and would exhibit the nature of the problems to the eye.
The value of having a visual graphical notation was recognized, but not
necessarily understood.

Venn examined logic diagrams carefully and surveyed the contribu-
tions of his contemporaries. Venn brought about a clarification of sym-
bolic logic and the algebra of classes developed previously in 1847 by
George Boole. Venn thought that the Eulerian scheme was weak and
developed a more general framework to which the regular system of class
subdivision would correspond. For one term, two compartments are
needed (z,7); for two terms, four compartments are needed (zy,7y,zy,7y);
and in general for n terms there are 2" compartments. The convex closed
figures in Diagram 2.3 represent one, two, three and four terms.

One should note that the figure with four terms is comprised of
cllipses and considerably harder to interpret, not being as regularly sym-
metric as the previous figure. Such a figure is impossible to draw with
four circles where only thirteen of the fifteen regions can be shown.

From Diagram 2.4 it is apparent that the symmetry of the figures
does not allow for the two extra regions where only the two diagonally
opposite circles intersect. The missing regions are attributable to the fact
that circles can intersect at a maximum of two points (they could

uw
X X v X ¥
y
z

n=—1 n=—2 n=—313 n—4

Diagram 2.3

a b

d c
Diagram 2.4

intersect at all points, but then only one of the two circles would be visi-

0-0 @ O

(a) (b) (c)
Diagram 2.5

When an additional circle is added to a diagram, the new circle will
create at most two new regions with each of the existing circles. There-
fore 2(n-1) more regions are created for each additional circle. With four
circles, only 13 regions are possible. However, two ellipses can intersect at
four points to form five regions, though some of the regions represent the
same subset (see Diagram 2.5.¢c). This feature allows for the construction
of the four term figure in Diagram 2.3. Diagrams with more than four
terms are very complex and involve non-convex figures, so no attempt will
be made to illustrate them here. For a discussion of these and other
diagrams, see pages 122-124 of Baron’s article {Baron 69].

It was therefore a wise decision to himit GQL’s Venn diagram to three
circles to balance completeness and comprehensiveness. Michard

dismisses instances of greater than three circles within GQL with the
casual observation that :

“The number of simultaneous criteria that can be treated in an ele-

mentary query has been limited to three, for pointing on a Venn

diagram involving more than three circles would become quite

involved.”

More importantly, complete diagrams of more than 3 criteria are not
possible using circles. The scheme employed by Michard to encapsulate
previous selections into a single circle in order to continue with complex

queries of greater than three criteria is one means of avoiding the prob-
lem.

2.3. Experiments

2.3.1. Michard’s evaluation

Michard investigated the virtues of GQL compared to traditional
boolean query languages for casual users [Michard 82]. An ad hoc query
language was implemented in the same style as GQL except that boolean
expressions were constructed with traditional symbols (AND, OR, MINUS
and PARENTHESES) and grammar. Twelve college students with no
previous computer experience (but a knowledge of basic boolean algebra
and Venn diagrams) were used as subjects. All subjects learned both
languages to control the transfer of learning; half the subjects learned
GQL first while the other half learned the “test” language first. Each
subject was given a training session involving a series of 18 query prob-
lems of increasing complexity. During the training session, subjects were
given extensive help; each error was corrected and explained as it
occurred. The experimental task involved translating eight natural
language specifications into an appropriate boolean query for each
language.

Incorrect set operations were counted as errors. Also, missing brack-
ets In the “test” language expressions were considered as errors even if
the correct selection was made from the expression due to the left to right
parsing of the implementation. Bracket misuses formed the main differ-
ence in error scores between the two languages. As a result, the data
show that subjects using the GQL for set operations do much better than
those using the “test” boolean query language.

2.3.2. Venn diagrams

Michard’s experiment showed that subjects made fewer querying
errors using GQL, but he did not explain the power of using a Venn
diagram in the GQL interface other than it being an interactive graphic
assistance to subset selection. Michard’s data support the observation
that constructing boolean expressions is difficult [Cooper 82] [Vigil 83].
Although part of the difficulty stems from the complexity of querying, the
human factors aspects of the language are also significant. For example, a
common misconception is that (A and B) contains more than A, because
“and” can be easily misinterpreted as union. However, correct identifica-
tion of (A and B) in a Venn diagram is supported by the diagram’s

graphical message that (4 and B)is smaller than either A or B.

Venn diagrams intuitively seem to be a better way to create a boolean
specification for a query. The popularity of simple graphic schemes in sci-
ence and education is proposed to be linked to their ability to help us
grasp generic properties and underlying relations [Mills 81]. In an attempt
to explore the nature of Venn diagrams further, another experiment was
designed with an application for a keyword querying facility in mind.
This experiment differs from Michard’s in that subjects were asked to
describe in natural language various regions that were marked on Venn
diagrams. It was thought that this would eliminate bias resulting from an
experimental design requiring the experimenter to describe the query with
boolean operators in natural language, as in Michard’s experiment.
Another benefit from this approach is that many descriptions would be
generated that could be given to subjects in a follow-up experiment. It
would be interesting to see if other subjects would be able to identify the
correct regions from the generated descriptions. In particular, logically
incorrect descriptions that are subsequently interpreted correctly could be

contrasted with logically correct descriptions that are subsequently falsely
interpreted.

2.3.2.1. Description

The experiment involved thirty-two undergraduate students who were
given seven Venn diagrams, each with one or more shaded regions. The
subjects were asked to describe the shaded regions in such a way that
another person could identify the regions in question on a similar diagram
which did not have the shaded regions. The subjects were shown a sam-
ple diagram and sample solution. See Appendix A.1 for the specific
instruction stimuli used in the experiment. The subjects had an unlimited
time to perform the task, and were paid a small sum for their participa-
tion. All subjects indicated that they had seen Venn diagrams before.

To test diagrams of varying complexity, two of the seven Venn
diagrams had two circles and the remaining five contained three circles.
Also, the number of shaded regions in the diagrams ranged from one to
four. Relational attribute expressions were used as labels in Michard’s
experiment; in this experiment plausible keywords were used as labels for
each circle. Two types of labels were used on the diagrams: labels were
either general categories (science, history, and art) or they were specific
(music, transportation, and shops). Half of the subjects received general
labels on the two-circle diagrams and specific labels on the three-circle
diagrams. The other sixteen subjects received specific labels for the two-
circle diagrams and general labels on the remaining three-circle diagrams.
The data retrieved from the experiment are in Appendix A.2 organized by
diagram.

The descriptions for each diagram were judged to be either correct or
incorrect according to boolean logic despite having the descriptions in
natural language. This stringent scoring scheme was used because it was
very difficult to decide for some descriptions which were right or wrong.

9

Some people used the rules of boolean logic and, as expected, some people
used “and” for union within their descriptions instead of boolean ‘“or’”.
Still others avoided the “and/or problem” by using other connectives and
phrases. A less stringent scoring scheme could be used to differentiate
those descriptions which were reasonable from those which were incongru-
ous, and this would increase the score for the number of correct descrip-

tions. Alternatively, a multi-valued scoring scheme could be used to rank
the descriptions.

Diagrams were chosen for perceived difficulty as well as the need to
use negation in a description. Wason and Johnson-Laird describe negation
as a fundamental cognitive process that is intrinsic and indispensable to
reasoning [Wason 72]. However, they state that negation is the most diffi-
cult of the three logic operators to comprehend and support this with
experimental data using negation in true and false questions. Vigil reports
that users of online literary search systems rarely use boolean NOT and
that instructional manuals for these systems caution against its use [Vigil
83]. The experiment uses two diagrams representing the queries with the
most errors in Michard’s experiment. Diagram 2.7 represents the query:
(A or B) and not (A and B). Diagram 2.8 represents the query: (A and
not B) and C. Other diagrams represent queries not used by Michard
such as coordination-level match queries of the type “find all documents
with at least two of these three keywords.”

2.3.2.2. Results

Since each diagram had its own potential for difficulty, different tal-
lies were made for each that would not be applicable to the whole set.

The following paragraphs discuss each test diagram and the results
obtained.

The first diagram is a simple case of one shaded region in a two circle

diagram. The corresponding boolean representation for this diagram is : A
and not B.

history science music shops

Diagram 2.6 Stimuli for condition 1

As expected, no one made an error in either the general or specific
label group. Only two of the subjects did not use negation in their
description. Of the rest, a wide variety of negation words were employed:
excluding, doesnt include, except, eliminate, everything but, only, other
than, ‘“non-""and omit. Such words are used 36% of the time in five of

10

Results for condition 1
[abel use of
type correct | incorrect | negation
general 16 0 14
specific 16 0 16
Table 2.1

the seven test conditions where a description required the use of negation.
The remaining 649 comprised descriptions that explicitly used not and
those that used examples.

The second diagram was more complex than the first, and the sub-
jects made errors half the time. Two possible boolean representations are:

(i) (A and not B) or (B and not A) { disjunctive form }
(ii) (A or B) and not (Band A) { conjunctive form }

history science music shops
Diagram 2.7 Stimuli for condition 2
Results for condition 2

abel use of AND/OR

type correct | incorrect | negation problem
general 7 9 14 3
specific 8 8 16 4

Table 2.2

Seven of the seventeen errors made were a direct result of confusion
about which of “and” and “or” is union and which is intersection. One
fifth of the subjects assumed that the negation of the intersection implied
the selection of the two remaining regions. This seems to indicate that
people feel comfortable with the notion of relative complement, but do
not understand how it differs from universal complement.

The third diagram was the first of the group of five with three circles.
A boolean representation is: not A and B and C

Descriptions were counted as being wrong if they were not restrictive
enough, even if the indicated region was contained in the description.
This strict rule affected the specific group where five descriptions could
potentially be considered correct. Over half of the subjects had incorrect
descriptions in the specific label diagram, but only three had an error
when general labels were used. Those subjects who had the general labels

history science

11

music shops

& @

art

transportation

Diagram 2.8 Stimuli for condition 3

Results for condition 3
label use of
type correct | incorrect | negation
general 13 3 13
specific 6 10 10
Table 2.3

were able to use them as adjectives in their descriptions quite easily. The
subjects with the specific labels could not do so as easily and instead
attempted to describe the region by use of a sample element. These sam-
ple elements tended to be too general and hence could possibly include
more than the selected region.

The fourth diagram contained two shaded regions and three criteria,
of which only two were needed in the description. The boolean represen-

tation for this diagram is: A end B

history science

music shops

& &

art

transportation

Diagram 2.9 Stimuli for condition 4

Results for condition 4
label
type correct | incorrect | combination
general 13 3 4
specific 10 6 8

Table 2.4

The most common errors were descriptions that were too restrictive,
and attempts to incorporate the third label in the description.

The fifth diagram was again another example of a single region that
was marked on the diagram, but it is different from Diagram 2.8 because
it represents a query where the two other labels should be excluded from
the set. Also note the drop in errors from Diagram 2.8 to 2.10. A
boolean expression for this is: B and not (A or C) {“and not” is the same
as MINUS}.

history science music shops

art transportation

Diagram 2.10 Stimuh for condition 5

Results for condition 5
label use of
type correct | incorrect | negation | examples
general 16 0 13 2
specific 14 2 6 7
Table 2.5

All sixteen subjects in the general label case had correct descriptions.
In the specific case, seven subjects attempted to use examples whereas
none did in the general case. As a result of using examples, fewer people
in the specific group used negation in their descriptions.

The sixth diagram has four marked regions and is representative of a
coordination-level match query where the user is trying to find documents
with two or three of the indicated keywords. An equivalent boolean
expression is: (4 and B) or (B and C) or (C and A)

13

history science music shops

art transportation
Diagram 2.11 Stimuli for condition 6

Results for condition 6
Tabel coordination
type correct | Incorrect level query examples | confusing
general 13 3 7 2 2
specific 8 8 2 7 7
Table 2.6

The general label group performed significantly better than the
npecific group. Almost half of the descriptions in the general group indi-
cated that the diagram was representative of a coordination-level match
query, whereas only two recognized this in the specific label group.
Almost half of the specific group still attempted to use examples for their

descriptions which resulted in very confusing and rather bizarre descrip-
Lions.

The seventh diagram was very similar to the sixth except that it was
missing the area of intersection between all three keywords (e.g. a coordi-
nation level match for exactly two criteria). Two possible boolean expres-
stons are:

(1) ((A and B)or (B and C) or (C and A)) and not (A and B and CO)
(1) (A and B and not C) or (A and not B and C) or (not A and B and C)

The results are similar to the previous diagram except that some peo-
ple were unable to give a description. Again, some of the descriptions of
the specific group were very confusing.

2.3.2.3. Conclusions

There was a difference in performance between the subjects with gen-
eral labels and those with specific labels. General labels such as science
and history can be combined to form phrases such as scientific history and
historical science, which identify the same region of the diagram. How-
ever, with labels such as music and shops, one can construct “musical
shops” but shop cannot be easily converted to an adjective to modify
music. When specific labels were used, more subjects felt it necessary to

14

history science music shops
art transportation
Diagram 2.12 Stimuli for condition 7
Results for condition 7
label no coord.
type correct | wrong | answer | query | examples | confusing
general 12 3 1 7 1 1
specific 7 7 2 3 6 6
Table 2.7

employ examples to describe regions. This method caused some problems
in the more complicated diagrams and as a result, the group with the gen-
eral labels performed better. The subjects with the specific labels were
more restricted in their possible descriptive phrase constructions and were
attempting to describe a smaller domain. It seems as if the perceived size
or significance of the intersections plays a role in deciding which descrip-
tive method to use. Another factor is the meaningfulness of the
categories relative to each other. In any case, the significant differences
in performance requires a closer analysis of the meaning of “general” and
“specific” categories.

On the whole, the subjects were quite successful in describing the
indicated regions in the Venn diagrams. Some subjects avoided the confu-
sion with the words “and” and “or” between boolean logic and English by
separating their phrases with commas. It was surprising to see the use of
negation in many of the descriptions. Subjects used negation in 80% of
their descriptions when it was needed. This result is contrary to results
mentioned previously by Vigil and by Wason. The results of this experi-
ment indicate that it is the language used to express the concept which
promotes errors, and not the misunderstanding of the concepts.

Despite this being a recognition experiment, there is evidence to sug-
gest that users would be able to generate the required diagram from a
natural language description of a query just as successfully. Therefore,
Venn diagrams would be a more powerful and natural means of expressing
boolean queries and should be used and tested in a keyword query inter-
face in place of relying on post-coordinate boolean expressions. Possibly
formal or natural language query systems could generate such diagrams in

15

response to a query for verification and subsequent modification by the
user.

2.4. Keywords in Videotex

Keywords are used as a means of retrieval in many database and
document retrieval systems. The following definitions were obtained from
IE.H. Brenner’s “Indexing in Perspective” and are used by Ball and Gecsei
in their discussion of keywords and keyword systems for videotex data-
bases [Brenner 79] [Ball 81].

O keyword — grammatical element which conveys the significant
meaning in a document. Word indicating a subject discussed in a
document. In record oriented databases a keyword may be the value
of an attribute, or an attribute-value pair.

O tndex — systematic guide to items contained in a collection. These
items are represented by entries (e.g. keywords, descriptors) arranged
in a known searchable order, such as alphabetical, chronological or
numerical.

O pre-coordinate indexing (processing) — documents that enter the
database are classified according to a fixed (authority) list of descrip-
tors; this i1s usually done by qualified human indexers. On retrieval,
the response (documents) is found in one particular place of the index.
The term pre-coordinate indicates that keywords are combined (coor-
dinated) into subject descriptors prior to the search process. Examples
are back-of-the-book indexes or the fixed arrangement of menus in
typical videotex databases.

O post-coordinate tndexing (processing) — documents entering the
system are described typically by a set of single words, determined by
the author of the document (or by a computer algorithm). These
words enter the index. Coordination of index words is performed at
search time by forming logical products, sums and complements on
the sets of documents found under individual index entries. The
retrieval is controlled by user-supplied queries, often in interactive
mode.

There are four major ways of accessing videotex databases: menus,
keywords (pre-coordinate), alphabetic index, and printed directory. The
menu approach is the most widely used access method, but studies suggest
that even a crude pre-coordinate keyword system can reduce search time
and the number of pages accessed as compared to the other three
methods mentioned above [Stewart 80|.

Many videotex systems permit direct access to known pages by letting
the user specify a unique keyword for a given page as an alternative to
traversing the menu structure. Variations of this scheme allow for dif-
ferent keyword dictionaries to be searched depending on the user’s loca-
tion in the database [Bochman 81]. The Danish videotex system also
allows for alphabetic menu access by entering a keyword for a page as
opposed to a numeric selection from a menu. This system permits the

16

corr}bination of several keywords in one request, but they are interpreted
as If they were individual requests. Despite having to use an awkward

syntax, users in field trials preferred this type of access over menus
[Orsnaes 82].

Pre-coordinate keyword systems are relatively easy to implement, but
indexers must anticipate search patterns of users when constructing the
keyword dictionaries. In a study done by Furnas et al. examining the
potential performance of keyword information systems, it was found that
random pairs of people used the same word for describing an object only
10-20% of the time [Furnas 82]. Furnas et al. state that the difficulties
arise from a severe and fundamental lack of consensus in the language
community on what to call things. They also found that experts do not
describe things any better than others do. These results imply that pre-
coordinate indexers do not have an easy task.

In post-coordinate systems indexers simply describe the content of the
database rather than anticipate a user’s search strategy. This allows the
indexer or computer program to assign various descriptive keywords to a
page independent of other pages, thus simplifying the indexing process at
the expense of more complicated search methods. These query languages
allow for dynamic generation of response information as opposed to fol-
lowing predetermined paths. User requests that return too many or too
few documents can be modified until satisfactory results are produced.

Search strategies may be more complicated because the user may
have to consider variants of potential keywords. In order to maximize the
amount of information retrieved for a particular keyword, one may have
to include its variants as in computer, computing, micro-computer.
Online library catalog systems employing the post-coordinate keyword
scheme use query languages with explicit and sometimes complicated syn-
tax, usually based on boolean algebra and requiring the kind of logical
thought that is known to be difficult [Wason 72].

Existing post-coordinate query languages have not taken advantage of
graphics or pointing devices in order to simplify query specification. How-
ever, Venn diagrams seem to be a likely device to reduce the query specif-
ication problem in post-coordinate keyword systems. With Venn diagrams
in mind, a post-coordinate keyword access system could be implemented
as a more powerful interface to existing videotex systems. A prototype
system has been developed that combines these features together with a
graphics interface and a pointing device into an alternative access method
for a videotex database.

17

2.5. Description of Keyword System for the UW 25th
Anniversary Database

The main goal of this thesis was to develop an alternative keyword
access method to a 3000 page videotex database located at the University
of Waterloo. The database is stored on a DEC VAX 11/780 running
Unix. Each page is stored as a file within a hierarchical file structure
based on the existing menu access to the database.

Present post-coordinate keyword systems have command-based inter-
faces that involve query specification with boolean expressions. A more
powerful interface that would combine modern methods of specifying key-
words and handling results was desired. Features of Michard’s GQL have
been used to implement a prototype system, which involves selecting key-
words from a fixed vocabulary and constructing post-coordinate queries
with Venn diagrams.

The prototype interface was implemented with the emphasis on sim-
ple, useable features so that an initial working version could be produced.
For a discussion of the interface design decisions made and possible alter-
natives, see Section 6.

The interface is composed of three positionally fixed or “tiled” win-
dows as shown in Diagram 2.13, which remain displayed during an entire
session. Each window is responsible for managing a certain logical aspect
of the interface. One window is responsible for managing the list of key-
words, another for presenting the Venn diagram, and the third for
displaying the query result.

Keywords
1 accounting alcohol

alcohol

aviation

basketball

biology ' '

boats
Canada '
cars

—ﬂ chemistry

|| computer Canada boats

2 pages returned

1 || uw.sports.sailing.safety.01
uw.kinesiology .studies.drugs.02

Diagram 2.13 Keyword system interface

18

The window responsible for the presentation of the keywords contains
a list of alphabetically sorted keywords which can be scrolled by the use
of soft buttons within the window. The Venn diagram is constructed
dynamically by selecting words from the keyword list. By pointing to and
selecting a keyword, the word becomes highlighted (by changing its
colour) within the list, and a new circle is added to the Venn diagram with
the word attached to it as a label. If three keywords have already been
selected and the Venn diagram is full, then newly selected keywords are
not added to the diagram. A specific keyword may be removed from the
query by selecting it either from the list, or from the diagram. The
corresponding word is removed from the Venn diagram and the word in
the list is returned to its original colour.

In order to specify a query with a selected set of words, the user must
point to and select one or more areas within the Venn diagram. Selected
areas are indicated with a red “X” which may be toggled off by reselect-
ing the corresponding area. Kach time a word is added to or removed
from the diagram, the Venn diagram is cleared of previously selected
regions and redrawn.

When the user is satisfied with the composition of the query, the
query processing is invoked by selecting the FIND soft button in the Venn
window. This passes the query to the keyword database where the query
is processed. The query result is then sent back to the keyword system’s
result window to be displayed.

The query result appears in the result window. At the top of the win-
dow there is an indication of the number of pages in the solution. The
names of those pages matching the query are displayed in the result win-
dow. The result window can display up to five page names, and there are
soft buttons, as in the keyword window, for scrolling through longer lists.
By pointing to and selecting a page name in the result list, the user can
display the particular page on an accompanying videotex terminal. When
subsequent queries are invoked from the Venn diagram window, the result
window is cleared to receive the next list of results.

19

Graphics and Workstation Considerations

3.1. Hardware Configuration

The keyword graphical query language was developed on an IBM
PC/XT with 640K of RAM and a three-button Hawley mouse. The
operating system used was Waterloo Port Version 2.3, a multi-process,
message passing operating system [WMI 86b]. Sample programs are
shown in the Port language which is similar to C; important points are
explained as necessary.

The user interface is displayed on a Sony KX-1901A Trinitron com-
ponent TV, and the user interacts with the system using a mouse and
keyboard attached to the Port workstation. A NAPLPS (North American
Presentation Level Protocol Syntax) intelligent decoder and 8088
co-processor board known as a Quickpel was mounted in the IBM XT and
used to produce videotex graphics on the Sony monitor. The Quickpel
has several features :

0 256 x 200 pixels

O ability to display 16 colours simultaneously from a possible 4096

0 RGB or composite output

O 16K on-board RAM

O ability to run coprocessor programs independent of the host

O ability to manipulate the graphic display memory and colour map
directly

The IBM PC/XT communicated with a DEC VAX 11/780 running
Unix, which maintained the videotex pages and the keyword database.
An Electrohome Integrated Videotex Terminal was connected to the VAX
and was used as the output display device for the videotex pages.

Two monitors were needed for this application because the database
contained pages that were encoded with the Telidon 699 standard, and
these could not be displayed with the Quickpel board used for the user
interface. This is because of the minor incompatibilities between the two
standards used. Also, the interface would have been more involved and
slower if both the interface and the pages were displayed on the same
monitor because of the slow speed of NAPLPS drawing. See Diagram 3.1
for a layout of the configuration.

3.2. Software Configuration

3.2.1. Terminal I/O

During normal operation, a cursor is displayed on the monitor of the
Port workstation under control of cursor keys and the mouse. However,
the user interface for the keyword system was designed to be used with a
mouse for pointing to and selecting items on the Sony display device.
Unfortunately, Port only gives the cursor’s position to an application win-
dow process when a key on the keyboard has been depressed and not

20

Quickpel

Sony Electrohome
monitor terminal

Diagram 8.1 Hardware Configuration

when the mouse is moving about. Therefore, it was necessary to take
control of keyboard I/O from the Port operating system in order to con-
trol a cursor on the Sony monitor. This involved taking over monitoring
the serial line connected to the keyboard and mouse from the Port pro-
cess normally responsible. The lines of code in Diagram 3.2 are necessary
to take over keyboard I/O and later give it back for normal operation
after the application has terminated.

Note that when taking over the terminal, the field WHICH in the
IO_request template must be set to 1 so that the system knows which
window number is being taken over. Care must also be taken to have a
reply message variable of type unsigned/1/ when giving control back to
the terminal master process. The action of taking over terminal 1/0O is
undocumented and not considered normal procedure in Port application
development.

3.2.2. Quickpel board

As mentioned previously, a separate monitor was used for the user
interface because of the Incompatibility between NAPLPS and Telidon
699. The Quickpel board mentioned in Section 2.1 is a NAPLPS decoder;
therefore, its graphics capabilities were used rather than writing graphics
routines for the video memory on the board. The Quickpel is a peripheral
device normally used with an IBM PC running DOS. However, the IBM
PC used for the keyword system was running the Port operating system
and as a result, there was a problem with the drivers for the Quickpel.
Port uses interrupt line 2 for a network expansion card. Since our Port
workstation was configured as a stand-alone system, interrupts on line 2
would be ignored. The Quickpel drivers also use interrupt line 2 for an

21

import(I0_request, IO_requests, Server_names,...)
0

terminal_request : IO_request

Junk : unsigned|[1]

{

REQUEST fterminal_request]| = TAKE_OVER_TERMINAL;

WHICH fterminal_request] = 1,

send(terminal_request, terminal_request,
Get_registered_id(TERMINAL_MASTER));

REQ UEST[termi nal_request| = TAKE_BACK_TERMINAL;

send(terminal_request,junk,Get_registered_id(TERMINAL_MASTER));
Destroy(My_id);
}

Diagram 3.2 Keyboard I/O

interrupt driven keyboard interface. Unfortunately, the drivers for the
board were only available as object code and could not be altered even
slightly. Therefore, a driver written in Port was required to use the
board. The Port driver operates in a polling manner as opposed to being
interrupt driven. However, this was not a problem because of the multi-
process structure used. It was unnecessary to have a complete driver for
the board (coprocessor software loading, remote database access, receiving
data from the board) because only NAPLPS commands were sent to it.

The Quickpel has its own multi-tasking executive running in the
board and has a PLPS process that waits for input on the serial line.
(Refer to Electrohome’s user manual on the Quickpel for further details
[Electrohome 84].) Input received by the PLPS process is decoded into
NAPLPS commands, and. output is written to the display memory of the
visible screen. The Port work station transmits and receives data from
the Quickpel through a bidirectional, eight bit parallel port. The port
interface consists of four registers which are located in Port’s address
space relative to a base address set on the Quickpel board. The base
address is set to hexadecimal ‘8380°, henceforth written 8380H to follow
Electrohome’s notation and coded as $8380 in the Port language. The
four registers are numbered O through 3 (e.g. 8380H, 8381H, 8382H and
8383H). Register O is a bidirectional, eight bit data port. To this register
one can pass NAPLPS codes, and special commands to be interpreted by
the board (e.g. cold start, display graphics cursor, etc.). Received from
this register are locally echoed data, transmitted unprotected field con-
tents, or the xon/xoff protocol. Register 2 is a uni-directional, eight bit
status port that is read only and returns the present status of the Intel
8255A programmable peripheral interface microprocessor on the Quickpel

[
(3]

board. When bit 7 of register 2 is set to 1, this indicates that the Quick-
pel board has accepted the previous byte and is ready to receive another
character. The code in Diagram 3.3 is the Send function used in the
application to send data to the Quickpel board.

\ DESC: This function waits until the ready to

\ receive bit 1s set and that an Xoff signal is not present
\ be fore transmitting the byle to the quickpel board.

(ch :unsigned/8])
r

epeal
of (I0_in($8382) > 127)
break;
repeat
if (IO_in($8380) 1= $13)
break;

IO_out($ 8380, ch);

Diagram 8.3 Send function

The Quickpel board has a 2IC buffer for input. An xon/xoff protocol
1s observed in the Send function because the 2K input buffer may become
full, although this is unlikely since only individual NAPLPS commands are
sent to the board. However, for robustness, register 0 is checked to make
sure that an xoff byte has not been sent from the board hefore transmit-
ting a character to it.

Register 3 is an eight bit control port that is used for setting and
clearing interrupt enable bits associated with the 8255A. In order to ini-
tialize the Quickpel board and put it into a known stable state, one must
send the magic byte C4HT to the 8255A in register 3. A non-selective
reset is also sent (1FH) to reset NAPLPS to its default values. Diagram
3.4 shows the Qpel_inut function used to initialize the Quickpel board.

\ DESC: This function initializes the quickpel board.
?

I0_out($8383, $C4); magic byle

Send($ 1F); non-selective resel

Diagram 3.4 Qpel_init function

t+ This magic byte was undocumented and known only to gurus,

23

3.2.3. The Cursor

NAPLPS systems are not well-suited for mouse controlled cursors
that move about the entire screen. As a result, it was difficult to get a
cursor working for the keyword system as well as extract the necessary
information on how to attempt it from the CSA standard for NAPLPS
|CSA 83]. The following definitions obtained from the CSA standard will
be useful in discussing features of cursors in the videotex environment.

Cursor — a logical indicator (having character field dimensions) of
the screen position at which the next character is to be deposited.
This position may or may not be marked by a cursor symbol.

Drawing point — a logical indicator of the position at which the
next geometric graphic primitive will commence execution. This is
normally not marked by a drawing point symbol.

Logical picture element (logical pel) — a geometric construct
associated with the drawing point whose size determines the stroke
width of the graphics primitives.

NAPLPS systems contain a text cursor and a graphics point, each of
which could be used as a general cursor for an application such as the
keyword system. With the Quickpel, it is also possible to display a graph-
ics cursor. The graphics cursor consists of an exclusive-or cross-hair cen-
tered on the current graphics drawing point. The cursor’s height is 20
pixels plus the height of the logical pel and the width is 20 pixels plus the
width of the logical pel. At the intersection of the cross-hair is a hole
which is the size of the logical pel. Initially the graphics cursor is off.
The command (1BH,3EH) will turn it on and the command (1BH,3FH) will
turn it off again. There are problems associated with using each type of
cursor as the general cursor for the keyword system.

In order to have the mouse drive the text cursor, the following steps
must be taken. By default the entire screen is considered a protected
field. One must use the unprotect command from the Cl1 code set
(1BH,5FH) to unprotect the entire screen so the text cursor will move
about on the screen when given cursor movement commands. By default
the text cursor is invisible, and one can set it to visible and solid
(1BH,5CH) or flashing (1BH,5BH). To control the movement of the text
cursor, there are commands that can be used from the CO control set that
move the text cursor left, right, up, down, and set its position on the
display device [CSA 83 (p.97)]. Alternatively, the following bytes could be
sent to the keyboard port (register 1) of the Quickpel as opposed to the
NAPLPS command port (register 0):

up: C1H down : C2H left : C3H right : C4H

However, there are no commands that can be sent to the keyboard port
to position the text cursor at a particular location. The text cursor is
moved the dimension of a character upon receipt of either type of com-
mand and comes in four different shapes, each of which can be either solid
or flashing. The four shapes are : underscore, block, cross-hair, and

24

custom. The definition of the shape of the custom cursor symbol is
implementation-dependent and Electrohome uses an outlined box for the

Quickpel.

There are two major problems with using the text cursor. The most
annoying is that it is not possible to display a string of text on the screen
using proportional spacing for the characters when the entire screen is
unprotected, as it must be to give the cursor the freedom to move over
the entire area. Also, it is not possible to vary the precision or number of
pixels the cursor moves.

It would be possible to use the drawing point as a general cursor but
it would require modifying the logical pel size from a single pixel to a size
more readily visible, such as 10 x 10 pixels. As a consequence of this, one
would have to toggle the size of the logical pel back and forth when a
geometric figure had to be drawn, otherwise the geometric figures would
have excessively large boundaries. Also, whenever a geometric figure was
to be drawn, the current location of the drawing point would have to be
saved and later restored because picture drawing instructions alter the
location of the drawing point. Modification of the logical pel does not
alter the style in which text is displayed.

Another alternative is to use the graphics cursor supplied by the
Quickpel as the general cursor for the keyword system. There are no
explicit commands for moving the graphics cursor up, down, left and right
as with the text cursor. However, one can move this cursor to any pixel
location on the screen by using the Poinl geometric drawing primitive as
would be needed for the drawing point style of cursor described above.
The graphics cross-hair cursor does not require modification of the logical
pel size, but its location is altered by picture drawing instructions. How-
ever, it is always shown at the second most recent position of the drawing
point because of the character look ahead options available with NAPLPS.

The graphics cursor has been used in the keyword system because it
was desirable to have proportional text displayed within the windows.
However, the cursor does not behave as well as would be desired. It lags
behind the movement of the mouse for gross mouse movements and flick-
ers considerably. This is because of the continual need to set the drawing
point for each movement. To compensate for this, a variable cursor step-
size has been implemented so that gross mouse movements will cause the
cursor to cover a larger distance. Slower mouse movement keeps the fine
stepsize for precise positioning. This technique has helped somewhat, but
further improvements would be desirable.

3.2.4. Implementation of graphics primitives

Only three of the basic geometric drawing primitives and some attri-
bute control functions available in NAPLPS were needed for constructing
the keyword interface. The picture drawing instructions used were:
Point, Arc, and Rectangle. The Point primitive is nceded to set the loca-
tion of the drawing point for the cursor and before drawing geometric fig-
ures if' the relative displacement option is used. Diagram 3.5 shows the

25

NAPLPS format for the four byte Set Point (Absolute, Invisible) com-
mand.
b8 b7 b6 b5 bds b3 b2 bl

byte 1 X 0 1 0 0 1 0 0
byte 2 | X 1 + x8 x7 | £ y8 y7
byte 3 [X 1 x6 x5 x4 | y6 y5 y4
byte 4 | X 1 x3 x2 x1 }y3 y2 yl

Diagram 3.5 Command format

The eighth bit in all four bytes, marked with an X in the diagram, is
used as a parity bit or an extension to another code table. For this appli-
cation the seven bit coded character set was used so the eighth bit would
be set to one for all bytes. The first byte is the command byte for the
instruction. The next three bytes contain the x,y coordinates at which to
set the drawing point. If the seventh bit in a byte is zero, this indicates
that the byte is a command, otherwise the byte is data. The x,y coordi-
nates must be encoded into the data bytes in the order indicated in the
diagram. This byte sequence is typical of the format used for commands

in NAPLPS.

The code from the Set_Point function in Diagram 3.6 shows how the
Send function is used to implement the Set_Point (Absolute, Invisible)
command in the keyword system.

(x : unsigned[8]
y : unsigned/8])

set_point : unsigned/[8/
datal :unsigned/8]
data? :unsigned[8/
data8 :unsigned[8]

{
datal = 192 + (x & 192)>>8 + (y & 192)>>6:;
data2 = 192 + (x & 56) + (y & 56)>>3 ;
data8 = 192 + (2 8 7)<<3 + (y 8 7);
set_point = $A4;

Send(set_point);
Send(datal);
Send(data?);
Send(data3);

Diagram 8.6 Set_Point function

Other functions were implemented to draw circles, rectangles, text,
and set the current drawing colour. Rectangles can be drawn either out-
lined or filled with a colour. To draw text is simply a matter of setting
the drawing point and sending the characters in the string.

Software Development Environment

4.1. Waterloo Port

Waterloo Port, a network operating system for personal computers
marketed by Waterloo Microsystems Inc., encourages the use of multiple
inter-communicating processes for applications programming. Port runs
on IBM-PC and compatible microcomputers and has a powerful network-
ing capability. Port also has an interesting iconic user interface employing
a room metaphor as opposed to the desktop metaphor common to systems
such as the Apple Macintosh and Xerox Star. Interaction with Port is by
means of a mouse for pointing and selecting items to execute.

Port is not only an operating system, but also a programming
language. The Port operating system and programming language were
developed in 1980 by the Software Portability Group at the University of
Waterloo. The Port programming language is closely related to the C
programming language: it has an expression syntax similar to that of C
but is quite different from C in many respects. Port makes use of a tree-
structured file system and source programs are also tree-structured [Car-
gill 79]. For complete details of the Port programming language refer to
Waterloo Port’s Port Development System Manual [WMI 86al.

A program is a sequence of instructions that can exist as source code,
load module and executable module. A program does not run or execute,
but is simply a sequence of instructions to be followed. A process is an
active invocation of a program. At any point in time, a process has a
state (blocked, ready, active) and is said to execute a program. It is possi-
ble, and often desirable, to have more than one process executing the
same program [Malcolm 85].

Multiple process systems are useful in environments where multiple
tasks need to be accomplished concurrently. Such a situation will become
increasingly common in public databases such as those provided by
videotex. Multi-process systems can also yield simple solutions to non-
concurrent problems as well.

In a Port application program there is usually one process which is
responsible for creating all of the other processes needed for the applica-
tion. Any process can create another process using the system function

new_process_id = Creale(pathname, priority);

where pathname is a string that specifies the file in which the new pro-
cess’ executable code image is stored, and priority specifies the priority of
the new process on a scale of 0 (low) to 255 (high). A process can be
referenced by other processes using its assigned unique process identifier.
A process may similarly be destroyed by another process using the system
function

Destroy(process_id);

The system library external variables Creator’s_id, My_id, and
My_priority exist so that a process may know who its creator was, what
its process identifier is, and what its priority is. These values may be
passed on to other processes or functions.

Processes are always in one of three states. A process is considered
ready when it is able to perform the next action of its program. The pro-
cess currently executing is considered active. If a process is not ready,
then it is blocked. A process becomes blocked when it does any one of the
following :

O sends a message to another process

O waits to receive a message from another process
0 delays for a specified period of time

O requests a system service such as creation

When a process becomes ready, it is placed in the ready queue.
Processes in the ready queue are ordered from highest to lowest priority,
and within each priority level, by their times of arrival. When the proces-
sor becomes available, the process at the front of the ready queue
becomes active. Active processes relinquish control of the processor when
they block or when a higher priority process becomes ready (for example,
as a result of an external device interrupt). When active processes are
" preempted they are returned to the ready queue and will be resumed
when they reach the front of the queue. A process that is blocked on a
message-passing operation may become ready when the message-passing
transaction is complete. Processes communicate with each other using
the system primitives:

send(message, reply_message, receiver_id);
receive(message, sender_id);
reply(reply_message, sender_id);

There are four different modes of blocking that result from message
passing. When a process executes the send operation, it becomes
send_blocked until the receiving process receives the message, at which
point it becomes reply_blocked. When a process executes the receive
operation it becomes receive_blocked if the sending process has not
already sent the message. If a process wants to receive messages from an
unspecified process it can execute the system primitive :

sender_td = receive_any(message);

If there are no messages waiting for a process which executes this opera-
tion, then the process becomes recerve_any_blocked until a process sends a
message to it. A process does not block when executing the reply opera-
tion. .

So as not to be overwhelmed by the complexity of programming large
multiprocess systems, it is convenient for the programmer to use meta-
phors to aid in the design and understanding of the program structure.

29

The attribution of human characteristics to processes is known as anthro-
pomorphic programming, and it is a proven technique for building systems
that work using multitask structuring and message passing schemes to
simplify the analysis of complex systems [Booth 84].

Some examples of anthropomorphised process structures commonly
used in Port applications are :

O proprietor

0O administrator
O worker

O client

O courzer

These models were developed based on behavior patterns of individuals

within organizations and how problems are solved by organizations in
society.

A proprietor is a process that is considered to own a resource and has
exclusive access to it. This type of process implements operations on the
resource, in a first-come-first-served manner. At most one client is
reply_blocked at any one time, but many clients may be send_blocked. A
typical example would be a process that was responsible for access to a
piece of hardware such as the display device. Diagram 4.1 shows how
processes interact with a proprietor. In each of the process diagrams or
blocking graphs, the arrow indicates the direction of the send primitive.

Proprietor

Diagram 4.1 Proprietor

An edministrator process does not hecome tied up processing a single
request as a proprietor process does. It has worker processes which per-
form the required service on its behalf so that it may serve many clients
at once. Requests are not necessarily handled first-come-first-served, and
more than one client or worker can be reply_blocked at a time. Imple-
mentation of an administrator is more complex than that of a proprietor
because the administrator has to maintain queues of workers and client
processes and manage them effectively. However, the use of the adminis-
trator increases the amount of parallelism in the design because it is only
busy when there is work to delegate, otherwise it is available to process
additional client requests.

30

A worker is usually a special purpose process that performs a certain
action for an administrator. A worker sends a message to its administra-
tor when it is ready to do some work. The worker will remain
reply_blocked until the administrator later replies with a message indicat-
ing what work is to be done.

A client is usually a process in the application that requires certain
tasks to be carried out on its behall. It usually sends requests to an
administrator or a proprietor, and may itself be a proprietor or adminis-
trator for some other resources. Diagram 4.2 shows an administrator with
three worker processes and three clients.

Administrator

Diagram 4.2 Administrator

A courier 1s a special process that is used to pass messages on behalf
of a process that does not want to block waiting for a reply. This type of
process can be used by an administrator when it needs to communicate
with another process outside of those which it is supervising. Diagram 4.3
shows a scenario where a courler is used to pass messages from adminis-
trator A to administrator B. Diagram 4.4 shows some sample code that
could be used to implement the courier in this example. It is assumed
that the courier is created by administrator A and that administrator A
replies to the courier the process identifier of administrator B so that the
courier knows the destination of the message.

31

Diagram 4.3 Administrators with Courier

\ sample code for a courier
tmport(Message_type, Courier_Requests)

admin_B : pid
msg : Message_type

send(WHOIS_TARGET, admin_B, Creator);

repeat {
send(READY, msg, Creator);
send(msg, msg, admin_B),
}
¥

Diagram 4.4 Code for a Courier

4.2. Process structuring

Developing an application using multiple processes requires attention
to problems in combining the various processes that do not exist in a sin-
gle process application. These problems include process structuring,
deadlock, prioritization, inter-process communication and synchronization.

Deciding how to structure a problem using several processes is not
trivial, even in an anthropomorphic model. Usually proprietors are
assigned to handle I/O for serial lines, keyboard input and display devices.
Proprietors are generally fairly easy to code, but deciding how to struc-
ture the rest of the application program can involve significant effort.
Lack of experience in developing applications in this type of environment
may result in process structures that are hard to debug. Unfortunately,

32

there is limited literature that discusses anthropomorphic programming or

process structuring at all. Therefore, there are few guidelines or general
rules to follow.

A major concern when developing the keyword system was to avoid
deadlock among the various processes involved. Deadlock can generally
be avoided by examining a blocking graph of the process structure. In a
blocking graph, all processes are drawn with an arrow from the sending
process to the receiving process. If a cycle exists in the graph, then there
is potential for deadlock. Couriers can be used as previously mentioned to
break such cycles.

Although a process in Port may be assigned a priority from 0 to 255,
the development system manual recommends that application programs
should only have priorities between 0 and 127 so as to not interfere with
the operating system. There are no additional guidelines for selecting
priorities for processes. The performance of an application can be
severely affected by changing the priorities of the processes involved. An
application programmer attempting to employ the abstract process
models previously discussed within a design will undoubtedly have to
decide on their priorities. How should the priorities of administrators,
workers, couriers, proprietors, etc. be related? In real time systems (e.g.
controlling a nuclear power plant), certain events require “urgent’ atten-
tion, but user application programs (e.g. a spread sheet) seldom have
these constraints. In general, “urgent” processes should be given higher
priority over ‘“less urgent’” ones, but often it is not clear in user applica-
tion programs whether urgent processes are those with more work to do
(e.g. workers) or those that manipulate user-perceptible system parame-
ters (e.g. proprietors).

Careless use of communication primitives can easily lead to trouble.
A common error during initial system development is forgetting to reply
to a process after having received a message from it or after having ser-
viced a request for it. This type of error causes the sending process to
block indefinitely. Another common error occurs when a process sends a
message of a different type than the receiving process is expecting. This
causes the sending process to be destroyed and a system message is
presented to the programmer. Debugging applications is quite difficult
because of the non-sequential nature of the execution of the processes.
However, this may be true in general of systems that must interact with
many external devices and service them appropriately.

Application development with multiple processes and process struc-
turing is a non-trivial task requiring a thorough understanding of the
abstract models and some experience. Software support should be pro-
vided for those programmers unfamiliar with this area, but wish to exploit
the design possibilities available for user application development in a
multiprocess environment. Automatic restrictions on structuring of con-
trol flow is common.in high level programming languages because it
enforces what is considered to be good programming methodology.
Enforcement usually consists of providing a compiler that rejects

33

unacceptable control structures and checks for parameter passing errors.
Although one could write a well structured assembler program, one may
prefer to use a higher level language such as PASCAL, since the compiler
will automatically reduce the chance of simple errors in control flow. A
similar need exists for restricting high level process structures and control
of message-passing to allow for robust structuring of processes.

4.3. Process manager

A structure known as the process manager can be used to monitor
and control processes [Raymond 86]. By restricting the process environ-
ment, it simplifies the programming involved in developing an application.
This was a reasonable approach to follow for this project, since there were
no excessive performance requirements and a flexible development would
be beneficial. The process manager was first successfully used in develop-
ing a structure editor, which is a graphical tool for manipulating files in
an information system. The process manager was used in the develop-
ment of the keyword system to test the structuring model further, and to

allow for greater ease in combining the structure editor and the keyword
system in the future.

The main characteristics of the process manager are as follows :

O a restricted set of subordinates known as managers

O a non-blocking communication scheme

U monitoring of communication between managers by using couriers
O detection of “runaway’” managers and restriction of their communi-
cation

O automatic creation and destruction of manager processes involved
in the application

Managers resemble proprietors in that they are responsible for some
resource or set of activities, but managers differ from proprietors because
they are able to communicate with other managers without blocking while
servicing a request. Most managers consist of two parts: a main routine
that obtains requests from other managers, and a set of functions that
perform the requested actions. The function chosen to service the request
may generate a request to another manager as well. Diagram 4.5 shows a
typical main routine for a manager that obtains requests and services
them with the appropriate functions.

The major difference with respect to process structuring with the pro-
cess manager is the use of a non-blocking “send” function: Request. This
deviation from the synchronous communication scheme employed in Port
inherits the problems associated with asynchronous communication in real
time systems such as queuing of messages and management of finite
resources. However, systems that do not have real time constraints or
need processes to synchronize temporally could use this communication
scheme. The process manager only guarantees that requests are eventu-
ally delivered and will be serviced in the order in which they were made.
For a more indepth discussion of the process manager and communication
considerations see pages 5-9 of Raymond [Raymond 86].

34

import(Request_Types)
request : Request_Type
Initialize();

repeat {
request = Get_Request();
select(request) {
case REQUEST_A : Service_A();
case REQUEST_B : Service_B();
case REQUEST_C : Service_C();
case REQUEST_D : Service_D();

Diagram 4.5 Manager’s main routine

Managers can communicate with other managers by using the
request:

Request(ACTIVITY, MANAGER_NAME),

The parameters passed in the primitive are constants or manifest values
as opposed to variables. (Within the Port language, manifest values are in
upper case.) ACTIVITY is a manifest constant indicating a service desired
from the list that the manager MANAGER_NAME offers. The execution
of the function actually sends a message to the process manager, who then
allocates a courier for the message. Thus the process manager monitors
communication between managers. Get_Request is the only other com-
munication function: this blocking function behaves similarly to the
recetve_any primitive in Port.

Functions servicing a request do not use Get_Request. This rule is
followed so that managers will only block in their main routines; this
makes the process communication more easily understood. Activity
within a manager happens sequentially whereas activity between
managers happens concurrently. Hence the question “should I use a
manager or a function here?”’ can be answered by answering the simpler
question ‘“‘should this activity happen in parallel with other activities?”

Since managers do not use the Port message passing primitives, the
process manager can monitor the communication between the various
managers within the application. For each request, the process manager
allocates a courier from a list of maintained couriers. Therefore managers
can communicate with each other without having to worry about simple
deadlock. Because the process manager is allocating the couriers to facili-
tate the message passing, a manager that generates requests faster than
they can be serviced can be detected and restrained. To further aid
development, the requests that each manager services are manifest con-
stants from a central file that can be checked at compile time when

35

developing a new manager process. An unknown request received by a
manager at run-time will be ignored by simply falling through the select
statement and will therefore not cause any major problems. This feature
also facilitates incremental development of the process structure by the
use of program stubs.

The first activity of the process manager is to create its couriers and
then the other managers in the application. The process manager also
automatically assigns highest priority to itself, the couriers next, and the
other managers have equal and lowest priority. When the application is
finished, one of the managers will make a request to the process manager
to destroy the application. The process manager will then invoke an
application specific destruction module to destroy the managers in an ord-
erly fashion.

36

Design of the Keyword System

5.1. Overview

The emphasis of this project was to develop a powerful and simple
keyword interface for a videotex database; therefore interaction with a
menu system or other browsing methods were not considered. The size
and implementation of the keyword database was not a major concern.
The prototype system was tested on the the 25th Anniversary Videotex
Database stored on a DEC VAX 11/780 running Unix at the University of
Waterloo. The database is stable and unchanging, so the keyword dic-
tionary could be simply generated once. This eliminated many problems
associated with maintaining the keyword dictionary in a volatile environ-
ment. Given that this is only a prototype system, many features were
implemented in a simple fashion.

Keywords
1 accounting basketball
alcohol
aviation
basketball
biology
boats
Canada

n cars
} || chemistry
L_I| computer Canada Waterlo

2 pages returned

) uw.sports.basketball.warriors.01
uw.financial.revenue.sports.04

Diagram 5.1 User Interface

Users do not enter keywords; instead they are selected from a list of
valid words. This strategy reduces input time and error.

In order to handle multiple page matches for a query, the system
required a result window for displaying the path names of those pages
found. The result window initially returns a number indicating to the
user how many pages were found and then the page names. For queries
that return too many pages the user may continue, without examining
any of the pages, by refining the query to be more restrictive. This stan-
dard method was considered superior to one in which all matching pages

37

are displayed regardless of the number returned.

Since the keyword list comprises valid keywords from the database,
there will always be a match in the case of a single keyword selection.
This is not true for systems where keywords may be input by the user.
When a multi-keyword query fails, a zero is returned in the result window
indicating that no pages were found. The only option for the user is to
modify the query to make it less restrictive.

When the Venn diagram changes due to an addition or deletion of a
keyword (see Section 2.5), it is not clear what to do with previously
selected regions because the regions of intersection change when adding or
deleting a circle. The user’s previous work in selecting regions should
probably not be thrown away and a reasonable approach would keep all
selected regions allowing the user to remove undesirable ones. However,
because it was the easiest to implement for the prototype system, the
diagram is cleared of selected regions and completely redrawn in the case
of a deletion. Also for ease of implementation, the circles are drawn in
the order of left, right and above, and are always drawn in that order. If
the left circle of a two circle diagram is removed, the right circle moves
to, and replaces the left circle. A more intelligent scheme would leave the
circles in their respective positions so as not to reconfigure the diagram
each time and disorient the user.

The prototype system does not include a feature like Michard’s
MEMOR to encapsulate queries into a single circle to accommodate com-
plex queries with more than three keywords. This feature would be
advantageous, but was not included because of the added complexity and
limited time for development. It was also speculated that a manageable
number of pages could be found by specifying a maximum of three key-
words and the user could scan through the list of pages returned in order
to find the desired page(s).

The page names that are returned in the result window correspond to
the Unix filenames for the pages. These names were adequate for
development work. For a further discussion of this and other points, see
Section 6.2.2 which describes alternatives for an improved system.

5.2. Process structure implemented

The process manager model, as discussed in Section 4.3, was used to
control the process structuring and to simplify the development of the
application. The user interface as described in Section 2.5 and shown in
Diagram 5.1 was modularized into the managers shown in Diagram 5.2.
The arrows in Diagram 5.2 show the paths of potential requests in the
keyword system.

The activity of the keyword system is governed by the user’s input
from the mouse and the keyboard. Serial input to the system from the
mouse and the keyboard are dealt with by the Kybd_in manager. The
Kybd_in manager is similar to a proprietor except that it only generates
requests and services none.

38

Quickpel

Diagram 5.2 Manager communication

There are three window managers (Keyword_list, Venn, Result) to
manage the three windows in the interface and a display manager (Quick-
pel) which controls all output to the display device. Each window
manager initializes by obtaining its window coordinates from a file and
making a request to Quickpel to draw the initial window. Once the sys-
tem has been initialized, each window manager must be able to handle a
request from Kybd_in, determine if and where in the window a selection
was made, and handle it appropriately. Each of the window managers
evaluates requests to determine if they are applicable to the manager’s
associated window. If the request is applicable, then it is serviced, usually
involving an update to the window. All modifications to windows are
made by making a request to Quickpel, which is a proprietor controlling
the display device.

Communication with the remote database is handled by two
managers. The Vaz manager is the main process responsible for the com-
munication protocol between the keyword system and the remote data-
base system. The Serial_in manager is really a worker process for Vaz
and only gathers input from the communications line and passes 1t on to
Vaz for processing. We now turn to consider each manager in detail.

39

5.2.1. Kybd_in

Kybd_in handles all serial input from the mouse and the keyboard
attached to the IBM PC/XT Port workstation. In the current implemen-
tation, the only keyboard input recognized is the ESC key which is used to
terminate the application. When this key is detected, a request is sent to
Vaz to terminate the session with the remote database system and to
notify the process manager that the application should be destroyed.

Due to hardware restrictions discussed in Section 3.2.3, Kybd_in
maintains the current cursor position on the display device as determined
by the mouse. When the select button is depressed on the mouse, a
request is made to the three window managers specifying the current cur-
sor position. It is the responsibility of each window manager to determine
if the selection was made in its window, and if so, how it should be ser-
viced. Diagram 5.3 shows the main module for Kybd_in.

tmport(Characters, Process_List, Process_Requests)

0

ch :char
{
repeat {
ch = Get_A_Key();
select(ch)

case EXIT : Request(TERMINATE, VAX);
case SELECT_M : Select();
¥
}
}

Diagram 5.8 Kybd_in main routine

5.2.2. Quickpel

Quickpel handles all requests to produce visible effects on the display
device. Each such request specifies the type of graphical object to be con-
structed and its (x,y) position in the display area. Hence, Quickpel essen-
tially defines a small, high-level graphics package that interfaces to the
board’s NAPLPS capability. Quickpel services 18 different requests vary-
ing from drawing a single character to drawing the initial layout for a
window. Diagram 5.4 shows the main module for Quickpel.

40

import(Dimensions, Process_Requests, Qpel_Mani fests)

0

request : unsigned

{

Inat();
Get_initial_coords();
Clear_Screen();
Draw_Screen();

repeat

{

request = Get_Request();

select(request)
case ADD_CIRCLE : Circle(HIGHLITE),
case DELETE_CIRCLE : Circle(ERASE),

case DRAW_WINDOW_V : Draw_Window_V{);
case DRAW_WINDOW_KW : Draw_Window_KW();

case DRAW_INIT_RES : Draw_Window_R();

case DRAW_INTER_RES : Draw_Inter_Res();

case FLASH_COMMIT : Flash_commit();

case ADD_MARK : Draw_char(HIGHLITE),
case DELETE_MARK : Draw_char(ERASE);
case DRAW_STRING : Draw_string{ NORMAL);
case ERASE_STRING : Draw_string(ERASE);

case HIGHLITE_STRING : Draw_string(HIGHLITE);
case WORKING_MESSAGE : Display_Working();

case CLEAR_KW_LIST : Clear_kw_list();
case CLEAR_NAME_LIST : Clear_name_list();
case FIX_CURSOR s Fix_cursor();

case CLEAR_LINE : Clear_line();

case CLEAR_SCREEN : Clear_Screen();

}

Diagram 5.4 Quickel main routine

5.2.3. Keyword_list

Keyword_list manages the window that contains the keywords.
When a keyword is selected from the keyword list, a request is made of
Venn to display the word and a circle in the Venn diagram. Keyword_list
initially reads the file containing its window coordinates and then reads a
file of alphabetically ordered keywords to be stored in an array. The
name of the file containing the keywords is specified when the keyword
system is invoked from Port, and is passed to Keyword_list by the pro-
cess manager. For the prototype system, a maximum of thirty keywords
was permitted. After the keywords have been retrieved, a request is

41

made of Quickpel to draw its window. The keywords are then displayed
in the window by successive requests of Quickpel.

Keyword_list scrolls the list of keywords when either the up or down
scroll button is selected in the window. The current implementation uses
a scroll height equal to the window height (ten words). When a word is
selected, a request is made of Venn to display the word with an accom-
panying circle. Selected words are also highlighted in the keyword list. If
a highlighted keyword is selected, then a request is made of Venn to
delete that word from the diagram, and the word is restored to its original
colour. For a further discussion of the implementation and improvements
for this window, see Section 6.2.1. Diagram 5.5 shows the main module
for Keyword_list.

tmport(Process_Requests, Process_List)

request : unsigned

{

Get_initial_coords();

Get_Keywords(),

Request(DRAW_WINDOW_KW, QPEL);
Print_list();

repeat {
request = Get_Request();
select(request) {
case SELECT : Check_cursor_position();
case REMOVE_WORD : Change_word_to_normal();

}

Diagram 5.5 Keyword_list main routine

5.2.4. Venn

Venn is responsible for managing the construction of the Venn
diagram, and the generation of the query when the diagram is complete.
Queries are constructed by selecting keywords from the keyword list,
resulting in a request to Venn. Venn stores the keywords in an array for
easy manipulation and modification to the diagram when words are
selected for deletion.

The selected regions of the Venn diagram are maintained with a
status byte. Each bit in the status byte corresponds to an area in the
Venn diagram. When a region of the diagram is selected, the appropriate
status bit is set accordingly.

42

When the FIND button is selected, a query is generated based on the
status byte and the number of keywords in the diagram. A request is
then made of Vax to transmit the query to the remote database. A query
has the format :

< # keyword { keywords } query >

where # is the number of keywords in the query, the keywords are given
separated by spaces, and the query is a list of disjuncts representing
boolean expressions for the areas selected in the diagram. The boolean
expression consists of boolean connectives and symbolic names (numbers)
representing the keywords for compactness. For example, a query with
three keywords would look like :

3 Canada drugs computer (1&72&3) (1&2&3)

When a request is made of Vaz to transmit the query, another request is
made of Result to indicate that a query is in progress, as shown in
Diagram 5.6.

import(Process_List, Process_Requests)

0

request :unsigned

Get_initial_coords();
Set_expression_list();
Request(DRAW_WINDOW_V, QPEL);

repeat {
request = Gel_Request();
1f(request == SELECT)
Check_cursor_position();
else Service_kw_mgr(request);

ki
ki

Diagram 5.6 Venn main routine

5.2.5. Result

Result manages a window that displays the pathnames of the pages
that are returned as the result of a previous query. When Venn has sub-
mitted a query to Vazx, the result window is cleared and a message is
displayed informing the user that a query is being processed. A message
is later received from Vaz indicating the number of pages found in the
query. This information is displayed for the user while Result gathers the
page names from Vaz. Result will receive a maximum of fifty page
names, that are stored in a linked list (extra page names are discarded in
the prototype). Once all the page names have been received, they are
displayed in the window, that can display a maximum of five page names.

43

These page names can be scrolled in a manner similar to that of
Keyword_list. If a page name is selected, it is highlighted and a request is

made of Vazx to display the given page on the Electrohome monitor.
Diagram 5.7 shows the main module for Result.

import(Process_List, Process_Requests)

0

request : unsigned

Get_initial_coords();

Request(DRAW_INIT_RES, QPEL);

repeat {
request = Get_Request();
select(request) {
case SELECT : Check_cursor_position();
case START_MESS : Display_Working();
case RECEIVE_NUMBER : Get_Result();
case RECEIVE_PATH : Get_New_Name();

Diagram 5.7 Result main routine

5.2.6. Serial_in

Serial_in monitors the serial line from the remote database system
and copies characters into a buffer until a line feed is encountered. When
the line feed is detected a request is made of Vaz to process the data
received. Serial_in can be considered as a proprietor that works for Vaz.
Diagram 5.8 shows the main module of Serial_zn.

5.2.7. Vax

Vaz handles the protocol between the keyword system and the remote
database system. Vax passes messages on the serial line to the remote
database system when it receives requests from Venn and Result to do so
(Result makes requests to display pages). Messages sent to the remote
database system are unintentionally echoed back to the keyword system
in the same way that keyboard characters are generally echoed to the
display device so that a user may see what has been typed in. The echoed
messages are not to be considered as results to be passed on to Result.
Vax also receives a terminate request from Keyboard_in. When this is
received, a message is sent to the remote database system requesting ter-
mination of the current session. When verification of the remote termina-
tion is received, a request is made of the process manager to destroy all of
the processes in the application. Diagram 5.9 shows the main module of

Vazx.

44

import(Process_List, Process_Requests)
ch :char
Initialize();

repeat {
ch = Get_a_char();
select(ch){
case LF : { Prepare_to_send();
Request({ RECEIVE_DATA, VAX);

case * 77 . Buffer_ch();
\ check for a non-control (printable) character

Diagram 5.8 Serial_in main routine

tmport(Process_List, Process_Requests)

request : unsigned

{

repeat {
request = Get_Request();
select(request) {
case RECEIVE_QUERY : Get_query();
case DISPLAY_PAGE : Display_page();
case RECEIVE_DATA : Recetve_from_serial();
case TERMINATE : Terminate();

Diagram 5.9 Vax main routine

45

Problems and Prospects

6.1. Appraisal

To date, the prototype system has not been fully completed. The
keyword interface functions as described, and the keywords have been
generated for each videotex page in the database, but the keyword data-
base query software is still being developed. Therefore, performance test-
ing with the complete system has not been carried out. However, a stub
keyword database interface program has been produced to test all other
components of the system.

The enforcement of modular design on the system by process struc-
turing allows various components of the system to be modified and tested
without affecting the rest of the design. This system can therefore be
used as a test-bed for further experiments on the user interface features
and configuration.

6.2. Improvements to the interface

Various components of the user interface have been examined for
future improvement. Areas of concern include:

O management and manipulation of the keyword list

O display of the query results and their manipulation

U means of giving more information regarding the potential interac-
tion of keywords in the Venn diagram

O improved cursor performance

6.2.1. Keyword list

In the pilot system, the keywords are read from a file on the Port
workstation. The specification of which file of keywords to use is made
when invoking the keyword system. The words in these files are stored
one per line and in alphabetical order. With the current implementation
of the system, it is impractical to have a keyword list longer than about
sixty to one hundred words, because of the excessive amount of time
needed to scroll through the list when searching for words. The window
responsible for displaying the keyword list currently displays ten words.
Scrolling moves the list by ten words up or down depending on which soft
scroll button is picked.

The scrolling of the list is accomplished by erasing the current block
and then drawing the next block of words to be displayed. It would be
desirable to have a smoothly scrolled list in either direction, but this is not
possible with NAPLPS. The only alternative would be to write a copro-
cessor program to manipulate the video display memory on the board in
the desired manner.

46

If a feature were available to move the user to either the top, bottom
or middle of the list, presumably a longer list of words could be handled
just as easily. Similarly, a list of any size could be handled with a feature
similar to the scroll bar on the Macintosh. Skyvington states that “it is
imperative that this powerful scrolling device should exist, in order to
enable users to "wander through" lengthy Macintosh documents in the
most efficient manner” [Skyvington 84]. The scroll bar allows the user to
position a box representing the window anywhere within a vertical bar
which represents the document. A feature such as the scroll bar would
allow the user to position the keyword display window at any point in the
list of keywords. The task of finding a keyword would then be similar to
searching for a word in a dictionary or a name in the phone book.

An improved system would allow for user input from a keyboard for
pattern matching within the list of words. Various schemes could be
employed for unsuccessful matches. The user could be simply told that
the search failed. It might be better to place the user in the list at the
location where the word would have been located, either alphabetically or
phonetically. More elaborate schemes could involve approximate string
matching [Johnson 83].

The best alternative would allow user input for pattern searching in
combination with a graphical means such as the scroll bar for moving
about large keyword lists.

6.2.2. Venn Diagram

In the present implementation of the system, the circles in the Venn
diagram are all the same size and appear in the same pattern for all
queries. Suppose each keyword in the keyword list obtained from the
videotex database had associated with it the percentage use of the word
on the pages or some other frequency measure. When keywords are
selected from the list, proportionally sized circles could be displayed which
would graphically represent the word’s frequency in the entire set of
pages. This feature would convey more information to the user about the
interaction of the words selected. Diagram 6.1 shows two queries. One
query uses the regular size circles while the other uses proportionally sized
circles and intersection areas. The size of the intersection in the diagram
would however not necessarily reflect the number of pages in the intersec-
tion of the sets.

Alternatively, a numeric value for the frequency or percentage for a
word can be displayed in the Venn diagram, or in the keyword list. How-
ever, this technique fails to exploit the graphical aspect of the interface.
It may be that this information is difficult to display graphically and
easier numerically. If absolute sizes are desirable, then the entire display
window could be considered equivalent to the database and circles drawn
proportionally to that. This would require some mechanism to enlarge
the view for small circles and the need for a corresponding scale. What is
potentially misleading to the user in this scenario is the amount of overlap
between circles. What would be ideal would be the ability to show the

47

Waterloo
physics chemistry

math

(a)
(b)

Diagram 6.1 Proportional circles

proper overlap, but this is not known beforehand in a post-coordinate key-
word system. The overlap region would have to be calculated by actually
executing the query each time for each pair or group of circles in question.
However, a reasonable approximation could be calculated by examining
the inverted lists. Another simple approach could have the circle’s size
drawn on a scale from 1 to 10 based on the distinctiveness of the key-
word. The intended purpose of giving this extra ‘“size” information is to
give the user a better idea about how many pages would be retrieved for
the given query before processing.

For simplicity, the prototype system uses “X”s to indicate which
regions in the Venn diagram were selected. NAPLPS is capable of filling
in closed figures, such as circles, with colours and patterns. This would
have been desirable but difficult to implement because of the unusual
regions produced by the overlapping circles.

6.2.3. Output

In the prototype system, the Unix pathnames for the pages are
returned for display in the result window. The user selects from these file
names which pages are to be displayed. Because of the hierarchical struc-
ture of the database of pages, the path names are fairly informative.
However, in general this is unacceptable. Some other type of naming
scheme is needed here but it is not clear what that should be.

The problem is differentiation between the pages retrieved. If a query
returns less than ten pages, then a numbering scheme could be employed
and this method could be just as good as any other. Possibly representa-
tive keywords for that page could be used to identify it. Even miniatures
of the actual pages could be used [Feiner 82].

If more than some threshold number of pages were returned, then the
user would probably want to refine the query to reduce the amount of
pages found. Cooper suggests that output from a boolean retrieval
language should be ranked in some way so that the user can examine the
more promising documents first [Cooper 82] . What is meant by “promis-
ing”’ could differ significantly depending on whose perspective is used: the
user’s or the information provider’s. Ranked output would be very

48

attractive especially when the number of pages retrieved is larger than
some comfortable threshold. Cooper suggests that “Several of the draw-
backs of conventional information retrieval systems can be overcome by a
design approach in which queries consist of sets of terms, either
unweighted or weighted with subjective term precision estimates, and
retrieval outputs are ranked by probability of usefulness estimated in
accordance with the so-called "maximum entropy principle™. This idea
could be implemented in the system if the keywords were weighted with a
best guess as to what fraction of the pages containing that term would be
useful if retrieved. If no weighting were given, then equal weighting could
be assumed. Including this feature would probably require another input
window for assigning the weights to the keywords or some means of
selecting a word in the Venn diagram and attaching a weight. In either
case, the trade-off between interface complication and the ability to have
ranked output would have to be examined.

When a query is invoked, the only indication the user gets that the
query is being processed is a “working” message in the display window
after the display window has been cleared. It would be very informative
and reassuring to have some type of indication as to how the query was
progressing. Myers has shown that percent-done progress indicators
appear to be an important aid to users in various ways and that systems
with progress indicators are preferred [Myers 85]. An example of a
percent-done indicator would be a graphical representation of an hour-
glass or thermometer which would show the percentage of the task com-
pleted by having the sand fall or the mercury rise. These graphical indi-
cators help novices feel better about the system by showing that a com-
mand has been accepted and the task is progressing successfully. They
also provide experienced users with enough information to estimate com-
pletion times and therefore allow for better planning and use of time in a
multi-process environment. Since the keyword system has been developed
in a multi-process environment, the user might form another query while
the existing one is being processed. However, a user would typically wait
for the response to a query before continuing. If there were a convenient
way to save queries for later recall and modification, then the user could
take advantage of the parallelism that the system has to offer, and would
probably want a percent-done indicator for each query.

6.2.4. Cursor

The current cursor implementation, as discussed in Section 3.2.3, is
the best of the alternatives examined, but still does not move well. As
mentioned previously in Section 3.1, the Quickpel board has 16K of RAM
for coprocessor programs. Coprocessor programs must be written in 8088
assembler language and downloaded to the Quickpel for execution. (See
the Quickpel user’s guide for details [Electrohome 84].) A test coprocessor
program has been written for the Quickpel board to draw and control a
personalized cursor different from those discussed previously. A second
test program on the Port workstation monitors the movement of the
mouse and sends control bytes to the program on the Quickpel board.

49

This cursor behaves much more nicely and can be varied in shape, size,
and colour. However, the test program only moves the cursor in four
directions and does not have the flexibility to position it anywhere on the
screen in one command as with the NAPLPS drawing point. With further
modification and testing, these programs could replace and improve the
appearance of the cursor in the next version of the keyword system.

6.2.5. Remote Database Communication

Before starting the prototype keyword system, the user must first use
the terminal icon from the Port interface to access the remote keyword
and videotex database. Once the user has logged onto the remote system
and has started the keyword database application program the keyword
system is started on the Port workstation. After quitting the terminal
icon, the serial line is still connected and can be used by the keyword sys-
tem to transmit data to the remote database system. This method was
used so that software duplicating the actions of the terminal process
would not have to be developed.

The remote keyword database interface is 2 Unix “csh” program that
expects commands and queries from the standard input and writes the
query results to the standard output. Queries are in the format generated
by the Venn manager as discussed in Section 5.6. The Vax manager adds
a carriage return and line feed to the query when sending it to the remote
database system. Because of this arrangement, the Vax manager must be
able to receive and discard the echoed query sent to the remote system.
The session with the remote database is terminated when the unique ter-
minate command is sent and acknowledged. No other protocol system is
used and for test purposes this arrangement has been satisfactory. If this
system should go past the prototype stage, then a proper protocol should
be used to transmit and receive data from the remote database system.

6.3. Conclusion

Keyword interfaces have potential for information retrieval systems if
queries can be expressed in a more natural means than boolean expres-
sions. Thus, keyword systems based on Venn diagrams may be useable by
infrequent users.

Some tests need to be performed with the prototype keyword system
once the query processing software has been completed to evaluate its
feasibility. Also, the modularity of the design of the keyword system facil-
itates experimentation with different front ends to a videotex database.
Therefore various tests should be conducted to determine which features
are desirable and conducive to retrieval.

Basic rules or guidelines for system design using anthropomorphic pro-
cess models need to be identified and evaluated. The use of the process
manager model in the keyword system design and implementation was
successful and should be explored more thoroughly.

50

References

[Ball 1981]

User Inter faces for Future Videotex Systems
A.J.S. Ball and J. Gecsei

Publication #412, Départment d’informatique et de recherche opérationelle,

Université de Montréal, May 1981

[Baron 69]

A Note on the Historical Development of Logic Diagrams
M. E. Baron

The Mathematical Gazette, 53 (May 1969), pp. 113-125

[Bochmann 1982]

Keyword Access in Telidon: An Experiment

G.V. Bochmann, J. Gecsel and E. Lin

Videotex 82, New York, N.Y. June 28-30, 1982, pp. 321-332

[Booth 84]

Anthropomorphic Programming

K. Booth, J. Schaeffer, WM. Gentleman

University of Waterloo, Department of Computer Science
Technical report CS-84-47, February, 1984.

[Bradley 84]

Assembly Language Programming for the IBM Personal Computer
David J. Bradley

Prentice-Hall, Inc., 1984

[Brenner 79]

Indexing in Perspective
E.H. Brenner
Unesco/Unisist, 1979.

[Cargill 79]

A View of Source Text for Diversely Con figurable Software
T. A. Cargill

University of Waterloo, Department of Computer Science
Technical report CS-79-28, 1979.

51

[Cooper 83]

Exploiting the Maximum Entropy Principle to Increase Retrieval Effectiveness
William S. Cooper

Journal of the American Society for Information Science, 34(1):31-39; 1983

[CSA 83]
Videotex /Teletext Presentation Level Protocol Syntax
Canadian Standards Association, Rexdale, Ontario, December 1983.

[Dict of Sci Bio 76]

Dictionary of Scientific Biography
Volume 13, pp 611-613

Charles Scribner’s Sons, New York, 1976.

[DOC 81a]
Telidon Behavioural Reasearch 2: The Design of Videotex Tree Indexes
Department of Communications, Ottawa, May 1981.

[Electrohome 84]
Quickpel User’s Guide
Electrohome Limited, Version 1.0, June 1984.

[Feiner 82]

An Experimental System for Creating and Presenting Interactive
Graphical Documents.

Steven Feiner, Sandor Nagy, and Andries van Dam

ACM Transactions on Graphics, Vol. 1, January 1982, pp. 59-77.

[Furnas 82]

Statistical Semantics: Analysis of the Potential Per formance of
Keyword Information Systems.

G.W. Furnas, T K. Landauer, L.M. Gomez, S.T. Dumais

1982

[Gecsei 1983]

The Architecture of Videotex Systems
Jan Gecsei

Prentice-Hall, 1983

(Intel 83]
1APX 86/88, 186/188 User’s Manual
Intel Corporation, 1983

[Johnson 83]
Formal Models for String Similarity
J. Howard Johnson

Ph.D. dissertation, University of Waterloo, Department of Computer Science,
Technical report CS-83-32, November 1983

[Malcolm 85]
Real Time Programming — class notes from CS 652
M. A. Malcolm

University of Waterloo, Department of Computer Science
Spring term 1985

[Michard 82]

Graphical presentation of boolean expressions in a database query language:
design notes and an ergonomic evaluation

A. Michard

Behavior and Information Technology, 1982, Vol. 1, No. 3, pp. 279-288

[Mills 81]

Telidon Behavioural Reasearch 3: A study of the human response to
pictorial representations on Telidon

Micheal L. Mills

Department of Communications, Ottawa, May 1981.

[Myers 85]

The 1mportance of Percent-Done Progress Indicators for
Computer-Human Inter faces.

Brad A. Myers

Proceedings of the 1985 ACM SIGCHI, April 85, pp. 11-17

[Orsnaes 1982]

User Reactions to Keyword Access Videotex

Jorn Orsnaes

Videotex '82, New York, N.Y., June 28-30, 1982, pp. 315-320

[Raymond 84]

Personal Data Structuring in Videotex

Darrell Raymond

Masters thesis, University of Waterloo, Department of Computer Science
Technical report CS-84-7, Feburary 1984

53

[Raymond 85]

Videotex Fact Retrieval

Darrell Raymond, Frank Tompa

University of Waterloo, Department of Computer Science
unpublished technical report

[Raymond 86]

Structuring Processes with Managers

Darrell Raymond

University of Waterloo, Department of Computer Science
unpublished technical report

[Simonds 84]

Database Limitations and Online Catalogs
Michael J. Simonds

Library Journal, Feburary 15, 1984, pp. 329-330

[Skyvington 84)]

Mastering Your Macintosh

William Skyvington

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 25-31

[Stewart 79]

Prestel - How Usable is it ?

T. Stewart

Proceedings of the Conference in Human Aspects of Telecommunication:
Individual and Social Consequences,

Munich, Springer-Verlag, October 1979, pp. 107-117

[Stewart 80]

Human Factors in Videotex

T. Stewart

Proceedings of the 4th International Online Information Meeting,
London 9-11, December 1980, pp. 87-95

[Vigil 83]

The Psychology of Online Searching

Peter J. Vigil

Journal of the American Society for Information Science, Vol. 34, No 4,
July 1983, pp. 281-287

54

[Wason 72]

Psychology of Structure and Reasoning: Structure and Content.
P.C. Wason and P.D. Johnson-Laird
Harvard University Press, Cambridge, MA.,1972

[Webster 83]
Webster’s New World Dictionary
Simon & Schuster, Inc., 1983

[WMI 86a)

Waterloo Port’s Port Development System Manual
Waterloo Microsystems Inc., Waterloo, Ontario, 1986

[WMI 86b]

Waterloo Port User’s Guide
Waterloo Microsystems Inc., Waterloo, Ontario, 1986

i
[

Appendix A.1 : Experimental Instructions

In this task you will be given some pages with Venn diagrams on them. You
will be asked to describe the areas that have been shaded in. Your description
should enable someone else to identify the given arcas on a similar Venn diagram
which does not have the shaded portions.

The following is an example :

religion literature

Possible descriptions :
1) religious literature
2) writings by holy men: bible, koran.

56

Appendix A.2 : Data Collected from Experiment

Each page includes the test condition and results from the subjects
for that condition. Corrections in spelling or grammar have not been
made to the results obtained from the subjects. Those lines beginning
with an) denote responses which were considered to be incorrect.

Condition 1 (general)

history science

1. history only

2. history not including the sciences (ie. not science)

3. non-scientific history (ie. the battle of Waterloo)

4. history that is not related to science

5. pure historians

6. historical but not scientific (not dealing with science)

7. Descr: (1) history of fictional literature (2) history of non-scientific
discoveries (3) history of chronological facts/occurences

8. A pure historian not concerned with scientific discovery

9. non-scientific historic occurences

10. Examples: World War 1 & 2, yesterday, birth of Christ

11. the area pertaining only to history; no scientific data or information
included, nor any overlap or combination of scientific and historical infor-
mation. ie history of WW’s; history of English literature

12. history eliminating the history of science

13. all of history that is not dealing with science

14. history, no science

15. all parts of history that doesn’t include references to science

16. That portion of our history which does not involve scientific advance-
ment or discovery

57

Condition 1 (specific)

music shops

17. All stores that don’t play music

18. those things (ie. retail stores, producers) which are not involved in the
sale or production of musical instruments, music books, and other things
associated with music.

19. shops not selling anything related to music

20. shops which are not in the music industry ie. they don’t sell music, or
musical instruments etc.

21. shops not selling musical things (instruments, etc) grocery,
clothing,shoe stores books,...

22. shops that don’t sell music

23. shops that don’t sell instruments or any music related articles ie
records

24. place where you would buy something not related to music

25. stores other than music stores ie not record stores etc.

26. shopstores that don’t sell musical equipement of any type

27. There are no music shops

28. All shops that have nothing to do with music. ie the portion of shops
which does not intersect with music

29. all shops which don’t sell music

30. shops that don’t sell or play music

31. shops only, no music whatsoever

32. non-musical shops, pure shops, no musical instruments sold

58

Condition 2 (general)

history science

1. & omit history of science

2. history or science, but excluding their overlap ie Not(science and his-
tory)

3. ® the mutually exclusive aspects of science and history (eg We don’t
want to hear about Galileo’s invention of the telescope)

4. all relating to history and all relating to science but NOT anything
relating to both history and science

5. & Not interested in historical science.

6. history or science but not history and science

7. ® Descr: (1) Reviews of actual occurrances and scientific happenings.

8. ® The study of history and science but not the history of science or
the science of history

9. ® non-scientific history and non-historic science

10. ® Examples: type 1: birth of Chirst; type 2: computers, Exclude :
space shuttle disaster

11. areas including historical and scientific info. separately. history con-
tains no scientific info and likewise, the scientific info does not contain any
historical info. (eg history --> history of Canadian politics, science -->
the anatomy of the human body)

12. ® everything but the history of science

13. all of history that is not dealing with science plus all of science that
does not deal with history.

14. history or science no historical science

15. & everything in history and science except historical science.

16. Recorded history and scientific knowledge as it exists today. The his-
tory of scientific advancement is excluded.

59

Condition 2 (specific)

music shops

17. & all music except music played in shops and all shops where music
isn’t played

18. ® the things related to music which have nothing to do with shops
AND the things related to shops which have nothing to do with music. -
19. ® Everything about music and shops but not about music shops

20. All music which is not sold in a shop or all shops that do no sell music
OR everthing BUT music sold in a shop.

21. shops selling either music supplies or other things, but not both. ie
instrument store, record shop.

22. & Anything but music shops

23. All the shops and all the music but not the music shops (shops that
sell music related articles ie records, instruments, etc)

24. Areas which deal only with music and only with shops, NOT with the
intersection of the two.

25. & All shops other than music shops and all aspects of music other
than music shops

26. X not musical shops

27. @ There are some shops that do not deal with music in any way.

28. those portions of music and shops that do not intersect with each
other.

29. anything associated with either music or shops, but not music shops.
30. & the opposite of shops that sell or play music

31. shops and music except for musical shops

32. Not music shops; music or shops but not both; anything but musical
shops

60

Condition 3 (general)

history science

art

17. students taking science and art but not history

18. the things which are related to science AND art excluding the things
which are related to art and science and history

19. All information on art and science that is NOT of historical nature

20. all art about science which is not historical

21. X scientific and technical drawing/modelling, illustrated book on ana-
tomy.

22. looking at science and art but ignoring history

23. The things in common between art and science that have nothing to
do with history

24. intersection of art and science - no involvement of history

25. the overlapping of science and art without history

26. & bag pipes are a science and an art

27. & scientific art

28. the portion of intersection between art and science that does not
intersect with history

29. In a university context, students taking art and science but not history
30. topic that contains both science and art but not history

31. scientific art having nothing to do with history

32. non-historical scientific art; modern computer art/graphics

61

Condition 3 (specific)

music shops

transportation

. music transportation without shops

. ® (music and transportation) or (not shops)

. & wierd --> driving music that a mechanic wouldn’t play

. a mode of transportation on which you hear music

. ® A van with Alpine speakers. Not for sale.

. intersection only of transportation and music, but not shops

. ® Descr (1) car-radio

. ® listen to the radio in the car

. &) car stereo

10. ® Examples : merry-go-round, car with a radio

11. area of interest: overlap between music and transportation ONLY (ie
exclude any ideas about shops, stores,etc.) eg. info on car stereos, walk-
mans, etc.

12. Musical transportation, no shops

13. all of music that deals with transportation excluding anything to do
with shops but no more

14. musical transportation - no shops

15. ® places where one must travel to hear music,write,record music not
including travelling to buy music at a shop

16. @ Music you listen to on your car stereo while driving or on your
walkman while walking.

OO~ U W=

62

Condition 4 (general)

history science

art

17. students taking history, science and art OR just history and science
18. the things related to history and science

19. Everything about the history of science

20. all history about science

21. & Books: on evolution of man from cave art; illustrated book on his-
tory of a science topic (eg discovery of insulin, electricity, etc.) How art
has evolved in time. Leonardo da Vinci.

22. & The history of art and science

23. @ The part of art that only deals with the intersection (part in com-
mon) of history and science

24. intersection of history and science

25. the overlapping of history and science

26. the printing press made a contribution to history, science and art, and
is part of history and science

27. historical science that may contain art

28. the intersection between all three (history,science and art) plus the
intersection between history and science which does not intersect with art.
29. In a university context, any student taking both science and history,
regardless of whether he/she is taking art.

30. topic involves history and science, not just one, and may also involve
art.

31. scientific history

32. historical science, possibly artistic; scientific history including that
relating to art

63

Condition 4 (specific)

music shops

transportation

1. music shops and music shops with transportation

2. (music and shops and transportation) or (music and shops)

3. music shops eg. stereo stores, music stores, dance school (is sort of
"music shop") - portable music store ? (for transportation) - music played
in a repair shop.

4. ¥ music shops accessible by some mode of transportation

5. a music store

6. intersection of music and shops

7. @ Descr: (1) Record stores and records-on-wheels companies

8. the tapes in the car were purchased in a shop

9. ® car radio stores

10. Example: A&A records, Sam the Record Man

11. X are a of interest: info pertaining to music in stores and how tran-
sportation has any affect on this relationship.

12. music store

13. all of music that deals with shops but no more

14. X transportation within musical shops and musical shops

15. & shops where you can buy music, transportation does not play a
role.

16. music stores which sell records etec plus those music stores which sell
portable music stations such as walkmans and ghetto blasters

64

Condition 5 (general)

history science

art

17. all students taking only science (no history or art)

18. all the things related to science excluding those things which are also
related to history OR art

19. Everything on science which is not historical in nature and does not
have to do with art

20. all science which has nothing to do with art or history

21. chemistry formulas; physical properties of matter; lab experiments

22. looking at science and how it is distinct form history and art

23. the part of science that does not overlap any of history or of art

24. area of science not affected by any intersections; ONLY science

25. the independent aspects of science not overlapped with history or art
26. star trek is science fiction not art or history

27. science that deals with neither history or art

28. the part of science which does not intersect with any part of art or
any part of history

29. In a university context, students who take science but who do not take
history and/or art.

30. topic is only science, does not contain either history or art

31. science only, no art, no history

32. non-historical science which is not considered art; pure science

Condition 5 (specific)

music shops

transportation

1. transportation only

2. transportation or not music or not shops

3. hard to find an example of this. - travelling by train (no music but the
train still has to be serviced) - travelling by foot.

4. 3 mode of transportation on which you would NOT hear any music and
NOT pass by any shops

5. strictly transportation

6. transportation not dealing with music or shops

7. Descr: (1) tranquil canoe trip (2) bicycle ride (3) personal car - no noise
ride

8. The train or bus are queit.

9. bus

10. Examples: bicycle, skateboard, windsurfer

11. info pertaining only to transportation (ie. exclude any ideas about

music and shops) eg. info about community transit, future developments
in transport.

12. & no music and no shops

13. all of transportation that doesn’t deal with music of shops and nothing
else

14. transportation, no music or shops

15. places to go using transportation where no music and no shops are
present.

16. driving, walking or taking the bus.

66

Condition 6 (general)

history science

art

17. all students taking at least two of history, art and science

18. all things which are related to history and science OR all things which
are related to history and art OR all things which are related to science
and art

19. Everything that has to do with any two of science, art and history

20. all history about science OR all history about art OR all art about sci-
ence

21. art history; technical drawings; evolution of science; evolution of
art; illustrated book on history and/or science; (scientists,
historians,artists) any combo thereof.

22. @ Examining the similarities between every subclass of history, art
and science

23. The parts of history, science and art that overlap at least one other of
the mentioned categories.

24. areas shown by the intersections of : history and art; science and art;
history and science

25. & the overlapping of history, art and science

26. at least two of history, science and art

27. any art, history or science that deals with one or both of the others
28. all of the intersecting areas between the three groups. le. all of the
area other than the part of each of history, science and art which does not
intersect with any part of the other two. The shaded area looks like a
three leaf clover.

29. In a university context, students taking any two or three of science,
art and history

30. topic contains at least two of history, science and art.

31. scientific history and art history and scientific art

32. historical art, scientific art or historical science including items which
are scientific, historical and artistic in nature.

67

Condition 6 (specific)

music shops

transportation

1. music shops with transportation, shops with transportation, music
shops, music with transportation

2. (music and shops) or (shops and transportation) or (music and transpor-
tation)

3. & none of these are included { "music to sleep by",walking, computer
repair shop that doesn’t play music} In real life, the non-shaded areas are
very small. (mechanics shop, music about the road, music repair shop.)

4. @ a mode of transportation that will bring you to the shop where there
is music playing both in the shop and while you are travelling.

5. @ Employment at "Records on Wheels" includes driving

6. intersection of the following : (1) transportation and music and shops
and (2) music and shops and (3) transportation and shops and (4) music
and transportation

7.) Descr: (1) musical instrument delivery van

8. X a band travels to many places to play music, they also travel to vari-
ous stores, some are music stores

9. & store selling only musical equipement for automobiles

10. @ Examples: (1) car with radio (2) A&A Records (3) escalators in
Eatons, elevators in Sears

11. info including any combination of the three variables or even just a
combination of only two. eg music is stores and transportation or music is
stores to create atmosphere or transportation and shops

12. music and shops , shops and transportation , music and transportation
13. anything dealing with at least two of music , shops , and transporta-
tion

14. X music , shops and transportation all equal where they connect

15. Places to go using transportation where one can buy music in shops .
Also places to travel for shopping. Also travel to hear music and also
music shops in general.

16. Contained in this group are music stores, bike and car dealers, and
music stores which specialize in offering music for the traveller. Walk-

mans, car stereos ghetto blasters and tapes to play constitute the stock of
the latter store.

68

Condition 7 (general)

history science

art

17. all students taking at least two of but no more than two of history, art
and science

18. those things which are related to history and science OR those things
which are related to history and art OR those things which are related to
science and art but excluding those things which are related to history
and science and art (ie related to all three)

19. Everything that has to do with any two out of history, science and
art, but not with the three of them.

20. all history about science OR all history about art OR all art about sci-
ence BUT NOT any historical art about science

21. @ art history; history of science; scientific methods applied to history
research; scientific drawing; how to draw.

22. - NULL -

23. The sections of two overlapping circles but not three overlapping cir-
cles.

24. get area of intersections of art and history, art and science, history
and science and subtract the area in which art, history and science all
intersect.

25. & the overlapping of history, art, and science other than the area
where all three overlap.

26. & two of history, science and art

27. matters dealing with any pair of art, history or science

28. the intersection bewteen history and art, plus the intersection between
art and science, plus the intersection between science and history with the
intersection between all three at once removed. The shaded area looks
like a three leafed flower with the centre removed.

29. In a university context, students who take any two of science, history
and art but who do not take all three.

30. topic contains exactly two of history, science and art but not all three.
31. scientific history and art history and scientific art except for scientific
art history

32. historical art, scientific art, historical science but excluding items
which are considered historical scientific art

69

Condition 7 (specific)

music shops

transportation

1. ® music shops without transportation, shops with transportation
without music and music transportation without shops

2. (music and shops) or (shops and transportation) or (transportation
and music) or not (music and shops and transportation)

3. same as previous page except things like a mechanics shop that plays
music are not included

4. ® there is music playing in the shop and on your mode of transporta-
tion that is bringing you to the shop but the music is not the same in both
places.

5. @ I'm a taxi driver who loves to frequent music stores. But I'll never
work there.

6. @ intersection of: (music and shops) and (transportation and shops)
and (transportation and music) but not (transportation,music and shops)
7. @ Descr: car radio or radio shop or shop car.

8. @ I like to travel and listen to music. When I drive to the store I don’t
listen to music, but I like it playing in the store.

9. - NULL -

10. - NULL -

11. info pertaining to the overlap of only two variables eg (music and
transportation) or (shops and transportation) or (music and shops). Each
excludes the third variable

12. music and shops, shops and transportation, transportation and music,
without intersection of music, shops and transportation

13. anything dealing with only two of music,shops and transportation.
(Does not include the intersection of all three)

14. @ music, shops, and transportation all equal but only two shaded
areas within each circle

15. All music-shops where transportation is not needed Musical experi-
ences requiring transportation but not at any shops. All shops where
transportation is required not including music-shops

16. music stores, motorcycle and car dealers and portable music stations
belong to this group. However, stores which sell portable music stations
are not included.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

