|

ERARTMENT
EPARTMENT
EPARTMENT

SEENGE B
ENGE 5

ER
ER
ER 3G

MBUF
MPUT

3 &

WATERL
WATERL

3

10
§II¥
Ty

IVERSITY OF WATERLOO COMPUT

N

Programming the
Electrohome QUICKPEL
Graphics Board

Darrell R. Raymond
Vilhelm Boggild
Data Structuring Group

CS-86-62

November 1986

Programming the Electrohome QUICKPEL
Graphics Boardt

Darrell R. Raymond
Vilhelm Boggild

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

The Electrohome QUICKPEL is an IBM PC compatible
graphics board designed primarily for decoding and displaying
NAPLPS graphics. The board can also serve as a powerful
coprocessor for custom graphics software, but its coprocessor
capability has been neither adequately described nor sup-
ported. This document is a tutorial for programming the
QUICKPEL, and it contains a substantial collection of facilities
that simplify the writing of such programs.

November 20, 1986

+ This research was funded by grant G1154 of the Natural Sciences and Engineering Research
Council of Canada.

Programming the Electrohome QUICKPEL
Graphics Boardt

Darrell R. Raymond
Vilhelm Boggild

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

1. Introduction.

The Electrohome QUICKPEL is a powerful IBM PC-compatible graphics
board whose main function is the decoding of NAPLPS (North American
Presentation Level Protocol) graphics, fully defined in the CSA T500 stan-
dard ! and more commonly known as videotex graphics. The board can
deliver a resolution of 200 x 256 pixels, and shows up to 16 of a possible
512 colours at any one time. The main functionality of the board is pro-
vided by an 8088 CPU, a ROM-based NAPLPS decoder, and a ROM-based
multitasking executive known as ETEX. These and other details are
described further in the QUICKPEL User’s Guide,2 Programmer’s Guide,3
and Technical Reference Manual 4

The QUICKPEL board is based on a standalone videotex decoder which
has the ability to run “telesoftware” — locally-executed but remotely-
accessed code which is downloaded over the communications link when
requested. In the QUICKPEL board this is really the capability to run
“coprocessor” software, since the board is more likely to receive its pro-
grams directly from the PC in which it is resident than from a more
remote site. The ability to execute graphics-related programs without
consuming the PC’s own processor time is an attractive feature, since 1t
frees the PC to do other kinds of processing during the display and modifi-
cation of graphical data.

Writing programs for the QUICKPEL requires knowledge of graphics,
data transfer, 8088 assembler, PC-DOS, and ETEX, as well as a strong toler-
ance for the host of quirks and bugs that accompanies this collection of
software and hardware. We have not attempted to provide a formal
description of the board or its utilities. Such a description would almost
surely be erroneous in many places, but more importantly, even a correct
reference manual isn’t very helpful when writing the “first” program.
Instead we present a series of example programs for the QUICKPEL, and
try to illustrate different features and problems of programming the board
as we go along. Not all of our assumptions or methods are optimal (or
perhaps even completely correct), but by following them it is possible to
get programs running fairly quickly. This document is not meant to

ts equ 04h
ec_stop equ 026h
tele_ram equ 0c000h
video_ram equ 010a0h
teleso ft segment para public
assume cs :telesoft, ds : telesoft, ss : telesoft
org 100h
begin: Jmp start
dw 64h dup (Oh)
stack dw Oh
start proc near
sti
mov ax,tele_ram ; ds = ss = telesoftware ram
mov ds,ax
mov $s,ax
mov sp,offset stack ; sel up this task’s stack area
mov ax,video_ram ; es = video ram
mov es,ax
mov 81,0
mov di,256%200 ; set di to last pizel
dec di
row: mouv cles:[s1] s swap the pizels
mov al,es:[di]
mov esbyte ptr [si],al
mov esbyte ptr [dif,cl
dec di
inc st
emp di,st
Ja row
mov bats
int ec_stop
start endp
telesoft ends
end begin

Figure 1. Mirror.

replace the documentation, which should be read by every programmer
with great caution and much skepticism. Instead, we want to draw your
attention to some of the fine and nasty points about programming the
QUICKPEL,.

We assume the reader has written some assembler code, though not
necessarily for the 8088. Hence we will elaborate on features of the 8088
assembler and architecture which are common knowledge to those who
have programmed this CPU, but which would seem odd or cause difficulty
to those who have only programmed more orthogonal architectures.

2. A simple standalone program.

First we examine a simple coprocessor program in some detail. The
program shown in Figure 1 flips the video display about the central hor-
izontal and vertical axes; thus, the pixel in the top righthand corner is
moved to the lower left, the top lefthand corner is moved to the lower
right, and all other pixels are moved accordingly. This program can be
used to invert a NAPLPS page or any other graphics that is currently being
displayed.

ts equ 04h
ec_stop equ 026h
tele_ram equ 0c000h
video_ram equ 010a0h
telesoft segment para public

assume ¢s :telesoft, ds : telesoft, ss : telesoft

The program begins with definition of important constants. tele_ram
and video_ram identify the start of the program segment and the start of
the display RAM, 1 respectively. The pixels of the display are accessed by
reading and writing a contiguous 210 x 256 block of bytes in RAM. The
lower nibble of each byte contains the value of the colour map used to
display the corresponding pixel. The upper nibble is ignored on writing
and is returned as zero on reading. ec_stop is the name of an ETEX sys-
tem call which stops a task. In this case, the program uses ec_stop to halt
itself.

8088 assembler programs exist in segments of size 64K. Since the
QUICKPEL board has only 16K RAM for telesoftware programs, all pro-
grams and subroutines will fit in one segment, which we will refer to as
telesoft for all programs in this document. The segment definition is para
to indicate that the segment should start on a paragraph boundary, and
public to indicate that source for the segment need not be completely con-
tained in this file. In this case the source is contained within the file, but
most of the programs in this document employ subroutines which are in
different files. The assume statement is an assembler pseudo-op; it pro-
duces no code but instructs the assembler to assume that certain registers

t Video ram actually begins at 01000h, but we ignore the first ten rows of pixels since they are used
for status display.

have given values, thus permitting the assembler to generate the most
compact code. However, it is the programmer’s responsibility to ensure
that what the assembler is told to assume is in fact true. Strange and
wondrous bugs will occur if the assembler assumes segment register values
which the programmer did not intend.

org 100h
begin: ymp start

dw 64h dup (Oh)
stack dw Oh

start proc near
stt
mov azx,tele_ram ; ds = ss = teleso ftware ram

mouv ds,ax

mov ss,ax

mov sp,offset stack ; set up this task’s stack area
mov ax,video_ram ; es = video ram

mov es,azx

mov 81,0
mov dt,256%200
dec di

The next section is initialization of registers and data storage areas.
All telesoftware programs in this document begin at 100h, although other
addresses are deemed possible in the manual. The begin label is the entry
point of the program.

After definition of the entry point, execution jumps over the data
definition area, which in this program consists solely of the stack. It is
important that stack space be allocated, even if the program never
accesses the stack. ETEX automatically uses the stack area of the
currently executing task to save context during interrupts, hence tasks
must always have stack space available.

The program is defined as a near procedure, which means that all
jumps will be within the same segment. Interrupts should be enabled,
since the task is started with interrupts disabled (otherwise the processor
will never be able to respond to any more data from the PC). The seg-
ment registers are initialized to the values indicated in the assume
pseudo-ops. The extra segment register es is set to the start of video
ram; since segment registers can’t be loaded directly, we must use ax as
an intermediate. It is our convention to set es to video ram and ds to
telesoftware ram in the main procedure of the programs in this document.
Next we initialize the registers to be used in the main loop. The index
register si is given the offset of the first byte or pixel in video ram, and di
1s given the offset of the last pixel in video ram. The low-order nibble of

these pixels contains the colour map entry for the pixel, so by switching
corresponding pixels we can invert the image.

row: mov cles:fsi] ; swap the pixels
mov ales:[di]
mov es:byte ptr [si],al
mov es:byte ptr [di]el

dec di
inc st
cmp di,si
Ja row

In the main loop of the procedure, the pixels pointed to by si and di
are swapped. This is done by moves in and out of the al and ¢l registers.
Note that the es register is used to override the segments the assembler
would normally assume (i.e., es for the di register, ds for the si register).
After the swap the di and si registers are adjusted to point to pixels one
step closer to the middle of the display; the process is repeated until si
equals di.

mov bx,ts

int ec_stop
start endp
telesoft ends

end begin

The coprocessor program is halted by invoking ec_stop with the task
number in the bx register. If the program doesn’t halt itself, it may be
difficult or impossible to halt it, to communicate with the other tasks, or
to load a new telesoftware program. The last statements conclude the
definition of the procedure. Note that the end begin statement is the
means by which the assembler determines that the statement labelled
begin is the entry point of the program, so it is important that this be
specified as shown.

There are several important points to note about the linking and
loading of this program. Executable files can be either EXE files or .COM
files, where .EXE files use multiple segments and .COM files use a single
segment. See sections 3-6 to 3-22 of the IBM Macro Assembler manual 5
for more details about .EXE and .COM files. Though our programs will fit
in one segment, the coprocessor loader requires that the program be in
EXE format. Further, we must ignore the IBM Macro Assembler
manual’s exhortation to define a segment of type stack, as is stated on
page 13 of the Programmer’s Guide3 Presumably this is because ETEX

would ignore the stack segment that the programmer defines, preferring
instead to assume that the programmer has set up ss:sp to provide
enough stack space for all subroutine calls. Note also that the the .EXE
file need not be exe2bin’d, as suggested on page 13 of the Programmer’s
Guide, nor does it need the extension .COP.

Mirror can be loaded with the LCS program, or the programmer may
wish to look at Appendix 2 for source code that should help him to write
his own loader.

3. Subroutines.

Programming efficiency is significantly improved by creating modules
that can be used in many programs.

3.1. Blit.

A simple task that most programs perform is stopping themselves.
Figure 2 shows the procedure Stop which halts its invoking program.t

ts equ 04h
ec_stop equ 026h

telesoft segment public
assume cs : telesoft
public Stop

Stop proc near
mov bx,ts
int ec_stop
ret

Stop endp
telesoft ends
end

Figure 2. Stop.

The main points to note about Stop are that the end statement does not
refer to a label, a public entry point is defined, a single assume statement
is used, and ret is used at the end of the procedure to return to the calling
procedure. The definition of a public label permits other programs to use
this subroutine; note that the subroutine is in segment telesoft and is not
the only source code in this segment.

The proper use of Stop is seen in Shrink, shown in Figure 3. Shrink
is a program that produces a 1/4 size replica of the current display in the
upper right hand corner. It does this by taking every other pixel on every
other row and moving it to the appropriate position in the upper right
hand corner of the display.

1 More accurately, Stop will halt the task numbered ts. This will be task number for every program
in this tutorial. Programmers should consult the Programmer’s Guide if they feel brave enough to
write multiple-task applications.

video_ram
tele_ram

telesoft

begin:
stack

start

again:

done:
start
telesoft

equ
equ

segment
assume
extrn

org
Jmp
dw
dw

proc
sti

mov
mov
mov
mov
mov
mov
mov

mov
dec
mov
dec
mov
mov

std
movsb
dec
dec
mnz
sub
mov
sub
dec
dec

nz

call
endp
ends
end

010a0h
0c000h

para

cs :telesoft, ds : telesoft, es : telesoft, ss : telesoft

Stop : near

100h
start

64h dup (Oh)

Oh

near

az,tele_ram

ds,ax
ss,ax

sp,offset stack
az,video_ram

€s,ax
ds,ax

di,256%200
di

st,di

81

cx,128
bx,200

st

cx
again
de,128
cx, 128
81,256
bx

bx
again

Stop

begin

; IRQs must be on
; ds = ss = telesoftware ram

; set up this task’s stack area
; es = video memory

; ds = video memory

; counter initialised

; move a byte
s skip a pixel
; 1f not done half one row, continue

; skip a pizel

; stop mysel f

Figure 3. Shrink.

std

again: movsb ; move a byte
dec st ; skip a pizel
dec cx ; tf not done half one row, continue
mnz again
sub di, 128
mov cx,128
sub 81,256
dec bz ; skip a row
dec bx
Jnz again

The key part of Shrink is the above loop. di points to the current
pixel of the shrunken display; si points to the current pixel of the display
being shrunk. ex keeps track of whether a row is finished, while bx keeps
track of whether the whole of video ram has been shrunk.

es and ds had been set to point to the start of video ram before this
loop (see Figure 3), while di and si are offsets to the end of video ram.
movsb automatically moves the byte pointed to by ds:si to es:di and
decrements both si and di (std specifies decrement; if we had used cld
then si and di would have been incremented). We dec si to skip a pixel
and then continue. The rest of the statements in the loop merely check
for the end of a row and move to every other row.

3.2. Blit.

A more complex subroutine is Blif, which copies one rectangular sec-
tion of video memory to another. Blit requires as parameters the coordi-
nates of the top left corner of the source rectangle, the coordinates of the
top left corner of the destination rectangle, and the height and width of
the rectangle. The coordinates of the top left corner of the source and
destination rectangles are passed in the bx and ax registers, respectively.
The dx register contains the height and width of the rectangle with the
height in dh and the width in dl. The coordinates are passed as 16-bit
quantities with the y coordinate in the high order byte and the x coordi-
nate in the low order byte. This arrangement is possible because one byte
contains just enough discrimination for the 256 pixels along the horizontal
axis of the video display. Incrementing the high order byte corresponds to
incrementing a row in video memory. The code for Blit is shown in Fig-
ure 4.

Blit saves the registers it modifies, as subroutines should generally do
(unless there are significant costs in doing so). In order to copy data from
one section of video ram to another, both the ds and the es must point to
video ram. Blit adjusts ds to point to video ram.

The main reason for adjusting ds is so that a rep mouvsb instruction
can be employed. rep movsb is a very fast means for moving blocks of
data, but requires that the source segment be given by ds, the source

10

video_ram equ 010a0h

telesoft segment public
assume cs . telesoft
public Blit

Blit proc near
push cx
push st
push di
push ds
mov czvideo_ram ; make data segment point
mov ds,cx : to video memory
onerow: mov st bz ; source address
mov di,ax ; destination address
mov ch,0
mov cldl ; number of columns
rep movsb ; copy one row
dec ah ; go down one row in both
dec bh ; source and destination
dec dh ,; decrement row counter
cmp dh,0
Jne onerow ; do another row
pop ds
pop di
pop st
pop cx
ret
Blit endp
teleso ft ends
end

Figure 4. Blut.

index by si, the destination segment by es, the destination index by di,
and the size of the block by cx. If these five registers are properly initial-
ized (as in Blit), rep movsb will automatically move a byte from ds:si to
es:di, increment si and di,} and decrement cx, repeating this until ex is
zero. It is very important to keep track of the ds and es registers, and

t di and si are incremented if the direction flag is cleared by cld; auto-decrement is used if the the
direction flag is set with std.

11

to know which assembler instructions use them by defauls, either alone or
with the si and di registers. Ignorance of these architectural peculiarities
can be the source of inexplicable behaviour.

After initialization, each row is copied and the registers are re-set for
the next row. After all the rows have been copied to the new location, the
registers which were altered during the execution of the routine are
restored to their original values.

3.3. Scroll.

Scroll scrolls rows of pixels in a specified rectangle or window on the
screen. Scrolling is achieved by moving each row to the one above it; the
top row is moved to a temporary location and then moved to the bottom
before termination. As in Blst, the coordinates of the top left hand corner
of the window to scroll are passed in the bx register, and the height and
width of the window are passed in the dx register. Scroll is shown in Fig-
ure 5.

Scroll first saves the working registers and then stores the passed
parameters in local variables. The es and ds registers must be exchanged
so that the top line of the window can be copied and saved to a tem-
porary location in telesoftware ram. Alternatively, the top line of the
window could have been saved in a part of video memory which is not
visible on the display device.

After the first line has been moved, the main loop moves each line to
cover the one above it. This requires resetting the es register to point to
video ram, and setting di and si for each row. After all the lines have
been moved up, the temporarily-stored top line is copied to the bottom
row, requiring ds to be set to telesoftware ram again. Finally, the original
values of the registers are restored.

Blit and Scroll are used in the program in Figure 6 to copy a section
of video ram to another area and start both the source and destination
windows scrolling continuously. This is not a terribly useful program, but
it illustrates again how to incorporate subroutines with a main program in
the QUICKPEL environment.

12

video_ram
tele_ram

telesoft

window_width
window_height
zpos

ypos

zout

yout

count
temp_line

Seroll

loop:

equ
equ

segment
assume
public
db

db

db

db

db

db

db

db

proc
push
push
push
push

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

mov
lea
mov
mov
rep
mov
dec
mov
mov

mov
mov
mov
mov
mov
mov

010a0h
0c000h

public
cs : telesoft
Seroll

00N N D N

256 dup (?)

near
cx
st
di
ds

window_width,dl
window_height,dh
ypos,bh

xpos,bl

yout,bh

zout,bl
dxvideo_ram
ds,dz

dz,cs

es,dx

st,bx
ditemp_line
ch,0

el window_width
mowvsb

count, 1

ypos
dz,video_ram
es,dx

dh,yout
dl,xzout
di,dz
dh.ypos
dl,xpos
si,dx

; save the working registers

; save the top line

; set the variables

; make data segment point
; to video memory
; €8 needs to point to data

; move to the temp line...
; set row counter

; set es to same as ds

last_row:

Seroll
telesoft

mov ch,0

mov clwindow_width
rep mowsb

ine count

mov al,window_height
cmyp count,al

Je last_row

dec ypos

dec yout

Jmp loop

mov dh,ypos

mov dl,zpos

mov di,dx

lea si,temp_line
mov ch,0

mov clwindow_width
mov dztele_ram

mov ds,dz

rep movsb

pop ds

pop di

pop st

pop cx

ret

endp

ends

Figure 5. Scroll.

13

, move a row

;s if not last row, do another

;s reset ds
; move from the temp line...

; restore the working registers

14

video_ram
tele_ram
ht_width
source
dest

teleso ft

start:
stack

begin:

loop:

teleso ft

equ
equ
equ
equ
equ

segment
assume
exirn
extrn
org

Jmp

db

dw

stt

mov
mov
mov
mov
mov
mov

mov
mov
mov
call

mov
mov
call

mov

mov
call

Jmp

ends
end

010a0h

0c000h

03232h

05032h ; coords for source window
0a032h ; coords for destination window

para public
cs s telesoft, ds : telesoft, es : telesoft, ss : telesoft

Blit : near
Seroll : near
100h
begin
64h dup (Oh)
9090h

s IRQs must be on
azx,tele_ram ; ds = ss = telesoftware ram
ss,ax
sp,offset stack
ds,az
az,video_ram

es,ax

; set up this task’s stack area.

; es = video ram

ba,source ; copy one window
da,ht_width
az,dest

Blit
ba,source s scroll windows forever
dx,ht_width

Scroll
bx,dest
da,ht_width
Seroll

loop

start

Figure 6. Program using Blit and Scroll.

15

4. Communications.

The next type of coprocessor program we examine is one which
transfers data between the QUICKPEL and the PC. The QUICKPEL board
contains an 8255 communications chip which presents four ports to the
PC: a two-way serial port, a one-way keyboard port, a read-only status
port, and a write-only control port. Most of the communications with the
board is done through the two-way port; the keyboard port is reserved for
slow data such as might be transmitted by a typist. In Section 5 we
present a program which uses the keyboard port. The control port can be
written on to enable or disable interrupts, and the status port can be read
to determine the status of the board. More information on these ports can
be found on pages 8-11 and page 30 of the Technical Reference Manual.4

sesston_tn equ 01h
spare equ Oah
ec_switch equ 024h
telesoft segment public

assume cs : telesoft
public Init_Rax

Init_Rzx proc near
push azx
push bz
mov ax,spare
mov bx,sesston_in
int ec_switch s redirect Rz port
pop bz
pop az
ret

Init_Rx endp
telesoft ends
end

Figure 7. Init_Rx.

These physical ports are mapped to logical ports by ETEX. In order to
communicate, a coprocessor program must first logically switch the
required port so that its input or output is appropriately directed. If the
port is not switched, data that is intended for the coprocessor program
will be sent elsewhere (probably to the PLPS task). For example, in order
to read data from the serial I/O port, the routine Init_Rz in Figure 7
must first be invoked.

16

ec_recv equ 022h
ec_wirecv equ 023h
spare equ Oah
telesoft segment public
assume cs : telesoft
public Rz
Rx proc near
push b
push dx
loop: mov ba,spare
int ec_recv ; get a byte from Rx process
cmp dh,1
J€ done
mov bx,0400h ; ean t? then wait
int ec_wtrecv
Jmp loop
done: pop dx
pop ba
ret
Rz endp
teleso ft ends
end

Figure 8. Rx.

Data transmitted from the PC to the serial I/O port is accepted by
the Session_in task, which writes the data on the logical port session_in;
by means of the ec_switch call the data will be switched to the port
spare. The port numbers are given on page 10 of the Technical Refer-
ence Manual 4

If the port has been properly switched, a data byte can be accepted
by invoking Rz as shown in Figure 8. Rz invokes ec_recv, looking for a
byte. If no byte is found, Rz invokes ec_wtrecv to wait for one. This is
repeated until a byte is found; the returned byte is passed back in al.

Transmitting data from the QUICKPEL to the PC occurs in much the
same fashion, except that it is not necessary to switch the logical port for
transmission. Hence bytes can be sent by simply calling T2 as shown in
Figure 9.

The Rz procedure will work for most simple ASCII data, but will not
receive raw binary data. This is because certain bytes are interpreted by
the Session_in task as requests to do flow control, start telesoftware
loading, etc. In order to pass raw binary data to a telesoftware program
we must encode any bytes which could be intercepted by Session_in; this
is done by BinRz as seen in Figure 10.

17

ec_send equ 020h
ec_wtsend equ 021h
sesston_out equ 05h
telesoft segment public
assume cs :telesoft
public Tx
Tx proc near
push ba
push dz
send: mov bx,session_out
int ec_send ; try to send to T process
cmp dh,1
Je done
mov bx,0020h s cant? then waidt
int ec_wtsend
Jmp send
done: pop dx
pop bx
ret
Tx endp
telesoft ends
end
Figure 9. Tx.

Special bytes interpreted by Session_in have a value less than $20;
hence the core of our binary transparency transmission is is to flag all
such bytes by sending first an SOH ($01), then adding $20 to the byte and
sending it. BinRx looks for an SOH, and then subtracts $20 from the sub-
sequent byte; otherwise it simply passes the byte on.

The “correct” (and suggested by Electrohome) flag character to
employ is Data Link Escape ($10). However, in our QUICKPEL boards this
is not completely safe, and the odd escaped data byte still appears to be
interpreted by Sesston_in, even when $20 has been added. We have
experienced no problems with using SOH as the flag byte.

Two useful programs which employ these communications procedures
are Load and UnLoad, which transfer pixels between video ram and files
on the PC. UnLoad takes a “snapshot” of the contents of video ram and
sends it to a program on the PC, which can store this information in a file.
The “snapshot” can be redisplayed by sending it to Load.

There are 51200 pixels in the display area of video ram (excluding the
status line). Sending each of these individually would require more than a
minute of data transfer time, plus a significant amount of storage space
on the PC’s hard disk. In order to make Load and UnLoad more eflicient,

18

ec_recv
ec_wirecv
spare

teleso ft

BinRx

done:

BinRzx
telesoft

telesoft

BlockTx

done:

BlockTx
teleso ft

equ
equ
equ

segment
assume
public
extrn

proc
call
cmp
Jne
call
sub
ret

endp
ends
end

segment
assume
public
extrn

proc
or
mov
call
mov
mov
call
ret

endp
ends
end

022h
023h
Oah

public

cs : telesoft
BinRx

Rz : near

near -
Rz ; get a byte

al,01h ; 1f not SOH, done

done

Rx ; else get the real data byte
al,20h

Figure 10. BinRx.

public
cs : telesoft
BlockTx

Tx : near

near
al,0f0h s don't send a zero byte
ah,0 ; send a block

Tz

alcl

ah,0

Tx

Figure 11. BlockTx.

19

ts equ 04h
ec_resume equ 02ch
teleso ft segment public

assume cs :telesoft
public Synch

extrn
Synch proc near
call Init_Rx ; set up for synchronization
mov ba,ts
int ec_resume ; start myself
mov al,0
call Tx ; synchronize : send value
call Rz ; get value
ret
Synch endp
telesoft ends
end

Figure 12. Synch.

we use run-length encoding to reduce the number of bytes to be sent.
Run-length encoding reduces data transmission by sending only two bytes
to describe a block of consecutive pixels with the same value. A pair of
bytes will completely describe the block; the first byte gives the value of
the pixel, and the second byte gives the number of pixels in the block.
Since a byte cannot contain a value larger than 255, large blocks must be
sent as multiples of 255.

UnLoad is shown in Figure 13; it invokes the new procedures TxBlock
and Synch, which are shown in Figures 11 and 12, respectively. Synch is
designed to overcome a bug in the QUICKPEL which causes an indeter-
minate delay between the startup of a task and the time when it is able to
receive data (this bug is documented on page 21 of the Technical Refer-
ence Manual). Synch merely exchanges a zero byte with the PC program
in order to initialize communications. Synch invokes Init_Rx, which frees
us from having to do this in the main procedure.

UnLoad’s main activity is to look for blocks of consecutive pixels of
the same value. When it has identified such a block, or when the max-
imum block size of 255 has been reached, it calls TxBlock with the value
of the pixel in al and the number of bytes in the block in ¢l. TxBlock
then sends these two bytes to the PC program waiting to receive the data.
At the end of video ram a single zero is sent to indicate the end of the
data. Note that TxBlock masks the upper nibble of the value block so
that a zero byte is not sent by accident (i.e., when the value of the pixel is
zero).

20

video_ram
tele_ram

telesoft

begin:
stack

start

loop:

next:

done:

equ
equ

segment
assume
extrn
org

Jmp

db

dw

proc
sti
mov
mov
mov
mov
mov
mov
call

mov
dec

mov
mov

dec
mov
inc
cmp
Jz
cmp
N
call
mov
mov

Jmp

cmp
Je
call
mov
mov
Jmp

call
mov
mov

010a0h
0c000h

para public

cs - telesoft, ds : telesoft, es : telesoft, ss : telesoft
Tx : near, BlockTx : near, Synch : near, Stop : near
100h

start

64 dup (Oh)

Oh

near
s IRQs must be on
axz,tele_ram ; 88 = teleso ftware ram
ds,ax ; ds = teleso ftware ram
8s,ax
sp,offset stack ; set up this task’s stack area
az,video_ram ; es = video memory
€s,ax
Synch ; synchronize with PC program

di,256*200 ; counter initialised
di

al, esbyte ptr [di]

cx,0

di

ah, es:byte pir [di]

cx

de,0h

done ; done all video ram?
cx,255 ; maximum block size?
next ; 1f not, keep going
BlockTx ; otherwise send a block
ales : byte ptr [di]

cx,0

loop

ah,al ; different pizel?

loop s 1f not, keep going
BlockTx ; otherwise send a block
al, es:byte ptr [di]

ca,0

loop

BlockTx
cx, 1
al, esbyte pir [di]

call
mov
call
call

start endp
telesoft ends
end

BlockTx
al,0h

Tx

Stop

begin

; indicate end of video ram

; stop mysel f

Figure 13. UnLoad.

Load accepts run-length encoded data from a PC program and sets the
appropriate nibbles in video ram. Load is shown in Figure 14.

Depending on the complexity of the graphics to be displayed, Load
can require less than half the time of execution of the NAPLPS code; gen-
erally the storage space required for the display is comparable to the
space required for NAPLPS.

22

vetdeo._ram
tele_ram

teleso ft

begin:
stack

start

again:

done:

start
telesoft
end

equ
equ

segment
assume
extrn
org

Jjmp
dw
dw

proc
st
mov
mov
mov
mov
mov
mov
call
mov
de

std
call
cmp
Je
mov
call
mov
mov
rep
Jmp

call

endp
ends
begin

010a0h
0c000h

para public

cs :telesoft, ds : telesoft, es : telesoft, ss : telesoft
Synch : near, Stop : near, BinRzx : near

100h

start
64 dup (0h)
Oh
near
; IR@s must be on
ax,tele_ram ; ds = ss = teleso ftware ram
ds,az
ss,ax
sp,of fset stack ; set up this task’s stack area
azx,video_ram ; es = video memory
es,ax
Synch ; synchronize with PC program
di,256%200 ; counter initialised
di
BinRz s get a byte
al,0 ; null indicates eof
done
bl,al ; Jirst byte ts value
BinRx
clal ; second byte 1s size
al bl
stosb
again
Stop ; stop mysel f

Figure 14. Load.

5. A cursor managing program.

As the last application in this tutorial we present Cursor, a program
used to manipulate a custom cursor. A custom cursor is desirable for
several reasons, including the slow speed of the cursors supplied by
NAPLPS, the inability to change the standard cursor’s shape or colour, and
the fact that NAPLPS code affects the position of the cursor and thus com-
plicates cursor control.

Cursor uses the keyboard port of the QUICKPEL, which is a one-way
port (PC to QUICKPEL). The advantage of using this port is that it is nor-
mally ignored by the PLPS task, and hence cursor input is automatically
disambiguated from other input. The disadvantage of using this port is
that it doesn’t have flow control, and hence it possible to lose bytes. This
has not been a problem for us because of the low data rate common to a
mouse-driven cursor.

kybd_in equ 03h
ts_kybd_in equ 08h
ec_switch equ 024h
telesoft segment public

assume cs : telesoft

public Init_Ky

Init_Ky proc near
mov azx,ts_kybd_in
mov ba,kybd_in
int ec_switch ; redirect Ky port
ret

Init_Ky endp
teleso ft ends
end

Figure 15. Init_Ky.

In order to use the keyboard port we must observe two conditions.
First, it is necessary to turn off local echo so that bytes sent to the board
are not displayed on the status line. If local echo is used then other
NAPLPS conditions become important, such as the definition of protected
fields. Second, certain byte sequences are interpreted as local function
requests, and hence the PC program must be careful not to send these
sequences inadvertently. A list of the sequences which invoke local func-
tions is given on page 3 of the Technical Reference; bytes in the range
$0-$7f should not be interpreted as local function requests, so we will con-
fine our program to these bytes.

24

The keyboard port must be switched from the PLPS task so that the
coprocessor program receives the keyboard port data (as was done for Rx
by Init_Rzx). Keyboard port initialization is performed by Init_Ky in Fig-
ure 15.

After the port has been switched, Ky can be invoked. Ky is a
straightforward modification of Rz and is seen in Figure 16.

ec_recv equ 022h
ec_wtrecv equ 023h
ts_kybd equ 08h
teleso ft segment public
assume cs :telesoft
public Ky
Ky proc near
push bx
push dx
loop: mov bx,te_kybd
int ec_recy ; get a byte from kybd
cmp dh,1
Je done
mov ba,0100h ; ean t? then wait
int ec_wtrecv
Jmp loop
done: pop dz
pop bx
ret
Ky endp
teleso ft ends
end

Figure 16. Ky.

Our main routine Cursor is shown in Figure 17. Cursor repeatedly
calls Ky to obtain a byte and then passes the byte to Test_in (shown in
Figure 18) to determine the new position of the cursor.

Bytes sent to Cursor (and passed to Test_in) indicate the direction of
movement in the upper nibble and the displacement in the lower nibble.
The PC program controlling the cursor must also send a cursor off com-
mand before any NAPLPS code is sent to the board; this ensures that the
cursor is invisible when drawing operations are being executed. After all
the NAPLPS code has been sent, Test_in invokes ec_resume on the PLPS
task to allow it to finish executing any pending NAPLPS code; finally, the
cursor is redrawn in its current position. The external variable zor_count

video_ram equ 10a0h

tele_ram equ 0c000h

teleso ft segment para public
assume cs :telesoft, ds : telesoft, es : telesoft, ss : telesoft
extrn Ky : near, Init_Ky : near, Test_in : near
org 100h

start: Jmp begin
db 64h dup (Oh)

stack dw 9090h

begin: sty s IRQs must be on
mov ax,tele_ram ; ds = ss = teleso ftware ram
mov ss,ax
mov sp,offset stack ; set up this tasks stack area.
mov ds,ax
mov ax,video_ram ; es = mdeo ram
mov €s,ax ; NOTE: ignore the status lines
call Init_Ky

get_next: call Ky ; pass input bytes to Test_in
call Test_in
Jmp get_neaxt

teleso ft ends
end start

Figure 17. Cursor.

is used to keep track of the number of times to XOR the cursor (twice to
move it, once to either hide or display it). The external variables zout
and yout contain the new position of the cursor, and are accessed by the
subroutine Draw_cur.

The subroutine Drew_cur produces an XOR cursor at the position
indicated by zout and yout. It does this by XORing the pixels that define
the cursor; when the cursor is moved, the pixels are restored to their ori-
ginal value by XORing again. The cursor is defined as a contiguous set of
bytes 240 bytes in the shape of a 12 x 20 rectangle. In Figure 19 the cur-
sor shape is a hand with a pointing finger; because the background is
defined as zero, only the hand will show on the display (XOR of a pixel
with O produces no change). The pointing finger lies on the middle of the
screen at (125,100). If the public variable zor_count is set to 3, then the
cursor is moved to the new position indicated by xout and yout. If
zor_count is set to 2, then the cursor is XORed once (i.e., toggled) in place.

26

north
south

east

west
cur_on
cur_off
ec_resume
naplps

telesoft

Test_in

test_south:

test_east:

test_west:

test_on:

equ
equ
equ
equ
equ
equ
equ
equ

segment
assume
extrn
public
dir

proc
mov
and
and

cmp
Jne

add
Jmp

cmp
Jne
sub
Jmp

cmp
Jne

add
Jmp

cmp
Jne
sub
ymp

cmp
Jne
mov
int
mov
call

Jmp

80h
40h
20h
10h
70h
90h
02ch
08h

public

cs :telesoft, ds : nothing, es : nothing, ss : nothing
Draw_cur : near, wout : byte, yout : byte, xor_count : byte
Test_in

db 0

near

dir,al

dir, 111100006 ; upper nibble indicates direction
al,00001111b ; lower nibble indicates displacement

dir,north
test_south
yout,al
draw

dir,south
test_east
yout,al
draw

dir,east
test_west
zout,al
draw

dir,west
test_on
xout,al
draw

dir,cur_on

test_off

b naplps

ec_resume ; allow PLPS to finish
zor.count,2

Draw_cur

return

test_off:

draw:

return:
Test_in
telesoft

cmp
me
mov
call
Jmp

mov
call

ret
endp
ends
end

dir,cur_off
return
xor_count,2
Draw_cur
return

zor_count,3 ; move the cursor
Draw_cur

Figure 18. Test_in.

28

video_ram
cursor_width
cursor_hetght

teleso ft

cursor

count
zor_count
zout

yout

Tpos

ypos

Draw_cur
repeat.

first:

zor._it:

loop:

equ
equ
equ

segment
assume
public

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

proc
dec
cmp
Je
emp
Je
mov
mov
mov
mov
Jmp
mov
mov

mov
mov

mov
mov
mov

10a0h
20
12

public
¢s : telesoft, ds : nothing, es : nothing, ss : nothing
zor_count, rout, yout, Draw_cur

00,00,00,00,00,00,00,15,15,15,15,15,00,00,00,00,00,00,00,00
00,00,00,00,00,00,15,15,15,15,15,15,15,00,00,00,00,00,00,00
00,00,00,00,00,15,15,15,15,15,00,00,00,00,00,00,00,00,00,00
00,00,00,00,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15
15,15,15,15,15,15,15,15,15,15,15,15,15,15,00,00,00,00,00,00
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,00,00,00,00
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,00,00,00,00
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,00,00,00,00,00
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,00,00,00,00,00
15,15,15,15,15,15,15,15,15,15,15,15,00,00,00,00,00,00,00,00
00,00,00,00,00,15,15,15,15,15,15,15,00,00,00,00,00,00,00,00
0

2

124

87

124

87

near

zor_count ; outer loop. Do two XOR’s
xor_count,0

return

zor_count,2

first

al,zout s ah = y coord
ah,yout ;al = x coord
ypos,ah

apos,al ; reset xpos,ypos
zor_it

al,xpos

ah,ypos

st,0f[set count-1
count,0h ; set row counter

dh,ah
dlal
di,dz

once_more.

return:
Draw_cur
telesoft

mov
mov
xor
ine
dec
dec
Jne

inc
cmp
Je
inc
Jmp

ret
endp
ends
end

cx,cursor_width

bh,ds:[si] ; XOR the pixels
es:byte ptr [di]bh ; for the cursor
di

st

cx

once_more

count ; 1f not last row, do another
count,cursor_height

repeat

ah

loop

Figure 19 Draw_cur.

30

6. Acknowledgements.

We would like to thank Frank Tompa for providing the hardware and
permitting us to play with the QUICKPEL when we really should have been
doing something else. Steve Williams implemented coprocessor software
which helped us test several of our programs and proved quite useful in its
own right. Finally, thanks to Chris Howlett of Co-Triple who revealed the
magic byte $c4, which makes everything possible.

31

7. Appendix 1.

This section contains a short list of “gotchas” to watch out for when
programming the QUICKPEL. If you write a program and it doesn’t seem
to work for some unfathomable reason, you might try thinking about
some of the problems in this list.

e the NAPLPS what-are-you-waiting-for gotcha — since NAPLPS code is
treated as a stream of data, the PLPS task will not immediately display
the result of an instruction. Instead, it waits until it gets the next instruc-
tion before completing execution of the previous sequence, as described on
page 26 of the CSA T500 standard.! Hence if you send the code to draw a
circle you will not see a circle until at least one more byte has been sent.
One way to do this is to set the drawing point to its current position after
each sequence of instructions.

o the missing-bytes gotcha — this can occur in at least two forms. First,
rapid data transfer to the serial port without paying attention to the
XON/XOFF protocol will often result in overflow of the 2K buffer and a
consequent loss of bytes. Secondly, rapid data transfer to the keyboard
port is just not recommended, since there is no flow control to this port
and we don’t know how big the buffer is.

o the segment-register gotcha — some assembler programs are so simple
that there is no good reason for them not to work — except that the seg-
ment registers don’t contain the values you thought they did. If the pro-
gram starts space-walking, and especially if weird tartan patterns are
showing up on the display, it’s likely that the segment registers es or ds
have been set to some unexpected value.

o the assume gotcha — this is closely related to the segment-register
gotcha. You were careful to avoid telling the assembler to assume any-
thing. Surprise, it assumes things by default anyway. You must specifi-
cally indicate assume xs : nothing for segment register x if you want to
be sure it isn’t used.

e the .EXE gotcha — coprocessor programs must be linked together to
produce .EXE files, not .COM files. See 3-6 to 3-21 of the IBM Macro
Assembler 5 manual for details about the distinction between .EXE and
.COM files. Ignore the documentation on page 10 of the Programmer’s
Guide® which tells you to exe2bin the .EXE file, and just load it directly
with starting address at 0100h.

32

8. Appendix 2.

This appendix contains a set of programs and utilities that make up a
simple driver package for the QUICKPEL. The programs are written in
PORT, a language very similar to C. Translation to C or your favorite
applications program should be simple.

The basic component of the driver is Send, which writes a single byte
to the QUICKPEL’s main [/O port. Send tests to ensure that the QUICKPEL
is ready for another byte, and then searches for an XOFF which signals if
the QUICKPEL’s 2K input buffer was full. Send uses the PORT primitives
IO_out and IO_in, which invoke 8088 assembler out and in.

send a byte

ch : unsigned[8])

AT

~

epeal

if (I0_in($8382) > 127)
break;

repeat

if (IO_in($8380) I= $13)
break,

{O_out($ 8380, ch);

Figure 20. Send.

It is often necessary to reset the QUICKPEL to an initial state. This can
be done by Reset as seen in Figure 21. Reset first sends the magic byte
$c4, which causes the right magic to be invoked. Next, the board itself is
given a cold start command, which reinitializes the telesoftware and other
internal tasks. Interrupts are disabled, and finally the NAPLPS initializa-
tion is invoked.

In order to load raw binary data (such as coprocessor programs) we
must send it in binary transparency mode. As described earlier, all bytes
greater than or equal to $20 can be sent unchanged; bytes less than $20
must first be flagged, and then be added to $20 before being sent. The
function Send_Bin_Trans in Figure 22 uses DLE as a flag. Why did we
use SOH as a flag character earlier, and DLE now? We find it necessary to
use two binary transparency protocols, one for loading coprocessor pro-
grams and one for transmitting data to these programs. Send_Bin_Trans
is used for loading coprocessor programs and uses DLE because the copro-
cessor loader on the board expects DLE as the flag character. A similar
function (which we call BinSend) is used to communicate with programs
that invoke BinRx; this function is identical to Send_Bin_Trans except
that it uses SOH ($01) as the flag byte.

34

Though the QUICKPEL is supplied with a program for loading copro-
cessor software, it may be desirable or necessary to write your own loader
because of differences in the operating system or the need to incorporate
the loader in another program. Figure 23 contains the source for
Load_Teleso ft, our loader; its associated functions are found in Figures 24
through 28. Load_Telesoft takes a .EXE file as produced by the linker,
sends its starting address and size, strips off the first 512 bytes and then
sends the program to the QUICKPEL. The program is followed by a com-
mand to start the telesoftware.

Other driver routines can be written by following the pattern shown
in the loader’s associated functions. Most driver utilities are merely three
or four Sends of the appropriate bytes.

\ Load coprocessor program
import(Data_types, IO_characters, IO_descriptor, IO_modes)

file : &char
fp : 8I0_descriptor
size : unsigned

Obtain_command_line();
file = Next_arg();
+f (fo = Open(file, READ, UNSPECIFIED_TYPE, 0) == 0)

Print f("File %s doesnt exist.*n", [file]);
Flush();

return;

}
size = Size_Of_File(fp);
Eight_Bit_Mode();
Telesoft_Address(0);
Teleso ft_Size(size - 512);
Send_Telesoft(fp, size);
Close(fp);
Teleso ft_Start($ 100);

Figure 23. Load_Teleso ft.

35

send starting address of coprocessor software

o

(start : unsigned[16])

Send($ 1B);

Send($ 26);

Send($3A);
Send_Bin_Trans(start >> 8);
«}S'end_Bz'n_Trans(start & $00ff);

Figure 24. Teleso ft_Address.

start coprocessor software

o o

(start : unsigned)

Send($ 1B);

Send($ 26);

Send($ 8F);
Send_Bin_Trans(start >> 8);
,}S'end_Bin__T rans(start & $00ff);

Figure 25. Teleso ft_Start.

send size of coprocessor software

o

(size : unsigned)

Send($ 1B);

Send($ 26);

Send($3D);
Send_Bin_Trans(size >> 8);
Send_Bin_Trans(size & $00ff);

Figure 26. Telesoft_Size.

set erght bit mode

P

()
{

Send($ 1B);
Send($ 23);
Send($ 32);
Figure 27. Fight_Bit_Mode.
\ send teleso ftware program

tmport(IO_descriptor, Seek_origins)
(fp : &IO_descriptor

size : unsigned)

1 unsigned

{

Seek(fp, 512, BEGINNING_OF_FILE);

Select_input(fp);

for (1=512; 1<size; ++1)
Send_Bin_Trans(Get());

}

Figure 28. Send_Telesoft.

37

9. References

1.

Videotex/Teletext Presentation Level Protocol Syntax, T500-1983,
Canadian Standards Association, Rexdale, Ontario (October 3, 1983).

Quickpel User’s Guide, Electrohome Ltd., Kitchener, Ontario (June
1984).

Quickpel Programmer’s Guide, Electrohome Ltd., Kitchener, Ontario
(June 1984).

Quickpel Technical Reference Manual, Electrohome Ltd., Kitchener,
Ontario (June 1984).

Macro Assembler Version 2.00, International Business Machines
Corp. (August 1984).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

