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Abstract

Finite state transduction is a simple and effective tool for the effi-
cient analysis and transformation of large bodies of text. However, it
is sometimes difficalt or undesirable to specify single-valued transduc-
tions directly. Cases where multiple output values are generated can
then be handled in one of the following ways: (1) Consider the input
to be in error. (2) Select the shortest word and consider input in er-
ror if ties remain. (3) Select the genealogical minimum of the possible
outputs (minimum length with lexicographic minimum in case of ties).
(4) Select the lexicographic minimum of the possible outputs. (5) Re-
solve ambiguous union operations by selecting the first alternative.
These strategies are discussed in terms of a generic one-pass algorithm
which scans its input from left to right and writes output symbols as
they can be determined. The strategies are implemented by provid-
ing appropriate *-semirings as the implementation of an abstract data
type used in the generic algorithm. This approach suggests a number
of practical algorithms in addition to unifying the study of these mod-
els. For example, it leads to an algorithm for constructing minimum
state subsequential transducers satisfying the minimum delay property
as well as providing a new view of rational and subsequential functions.

1 Introduction

The lexical analysis of natural and artificial languages involves a great deal
of character-by-character processing which must be done efficiently. On the
other hand, the nature of the processing can be quite complex so that a high
level specification language would facilitate use, especially in an environment

*This work was supported by the Natural Sciences and Engineering Research Council
of Canada, Grant No. A0237.



2 J. Howard Johnson

where ad hoc requests need to be handled. Thus a model is needed which
(1) allows the specification of the transformations in a natural readable way
and (2) yields efficient implementations possibly after optimization.

Single-valued finite state transduction [AU72,Ber79] is one such model.
It allows the specification of many of the transformations occurring in prac-
tice as rational expressions [Ber79,Joh83]. The closure of finite transduction
under composition means that complex models can be made up of sim-
pler models cascaded together [EM65,Ber79|. They also subsume many of
the models based on regular sets which are commonly used in the lexical
analysis of programming languages or text editors [AU72,LS78, ASU86|. Al-
though they are incapable of counting or matching parentheses, they make
up for this defect by allowing the resolution of ambiguity through unbounded
lookahead. In this they behave like the class of LR-Regular languages
[CC73] but without some of the undecidability problems. Furthermore, in
cases where only bounded lookahead is required a particularly efficient im-
plementation (deterministic GSM mappings or subsequential transduction)
[Gin66,Sch77,Ber79] is available.

There is, however, another problem which comes up in the specification
of transductions. Rational expressions describe finite transductions which
are not necessarily single-valued but since we usually want our transforma-
tion to yield a single output for a given input, we have to make the trans-
duction single-valued or guarantee that this is not a problem. Of course,
single-valuedness of finite transductions has been known to be decidable
for some time [Sch75,BH77], but there are, as we will see, other solutions
possible which are slightly more general and yet efficiently implementable.

In principle, inputs which cause multiple output values to be generated
can be handled in one of the following ways:

(1) Consider the input to be in error.

(2) Select the shortest output. Consider input in error if there is more
than one output of the same length.

(3) Select the genealogical minimum of the possible outputs (minimum
length with lexicographic minimum in case of ties).

(4) Select the lexicographic minimum of the possible outputs if defined.

(5) Whenever the multiple valuedness is caused by a union of two cases
and the first alternative is single-valued, take this first alternative.
Consider the input in error if this does not make the output unique.
This modified union operation will be called an “elseor”.

Note that (1), (2), and (5) cause the domain of the transduction to be re-
defined to be that part which defined but does not cause an error. The
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domain can also be restricted in case (4) since the lexicographic minimum
is not always defined. Clearly, the power of these models now exceeds con-
ventional single-valued finite transduction, that is, finite transduction which
are always single-valued by themselves.

Of course, one would not like to be forced to compute the set of possible
outputs and then perform the selection, but would rather combine the se-
lection with the transduction process itself. In many cases this can be done,
resulting in huge savings. The technique for this is described as a generic
one-pass algorithm which scans its input from left to right and writes output
symbols as soon as they can be determined. The strategies are implemented
by providing appropriate *-semirings as implementation for an abstract data
type used in the generic algorithm.

This approach suggests a number of practical algorithms in addition
to unifying the study of these models. For example, it leads to an algo-
rithm for constructing minimum state subsequential transducers satisfying
the minimum delay property as well as providing a new view of rational and
subsequential functions.

Single-valued finite transductions have been used successfully in the com-
puterization of the Oxford English Dictionary, in particular, for the tag
enhancement and analysis of the raw text. It also promises to be a key
component in a query processing facility to allow efficient ad hoc access.

This paper is organized as follows: Section 2 provides the necessary back-
ground of *-semirings to fix notation and provide a basis for further discus-
sion. Section 3 describes a model for *-semiring automata again mainly to
fix notation. Section 4 outlines the generic one-pass algorithm which is used
to achieve all of the above procedures. Section 5 introduces the single-value
*-semiring which is used to implement strategy (1) in conjunction with the
method of section 4. Sections 6, 7, and 8 address strategies (2), (3) and (4)
by defining appropriate *-semirings. Section 9 explains how the technique
of section 8 can be modified to implement strategy (5). Section 10 briefly
addresses the side issue of how a truly on-line algorithm can be obtained for
traditional single-valued transduction and why it does not generalize to the
new models. Section 11 discusses deterministic transduction and how it can
be obtained from the models of section 4. Section 12 applies the techniques
of sections 10 and 11 together with the single-value *-semiring to yield an
algorithm for computing optimal subsequential transducers.

2 *-Semirings

An *-semiring is a system (S, ®,®,*,0,1) where S is a set closed under the
binary operations @ (addition) and ® (multiplication), the unary operation
* (asteration), and there are elements 0 and 1 such that the following laws



4 J. Howard Johnson

are satisfied for all a,b,c€ S:

(1) ad(d®c)=(a®b)Dec, @ is associative

(2) a®b=0bDa, @ is commutative

(3) a®0=a, 0 is an identity for @

(4) a0 (bOc)=(aGb) e, © is associative

(53) a®©1=10a=a, 1 is a identity for ®

(6) a©0=00a=0, 0 is a zero for ®

(7) a@(d®c)=(a0b)D(aOc), © is left distributive over &
8) (adb)eGc=(a0e)®(bOC), © is right distributive over &

9) a*=(a®(a*))®1=((a*)®a)®1. *isan asterate for @ and O
An idempotent *-semiring is one which, in addition, satisfies:
(10) ea®a=a & is idempotent

With slight variations *-semirings or idempotent *-semirings have been dis-
cussed by a number of authors [AHU74,BC75,Leh77,5578,AS85,KS86].
Multiplication will usually be indicated by juxtaposition and will be
assumed to have a higher priority that addition. Asteration is assumed to
have higher priority than multiplication. If no confusion will result @ will be
written as +. With these conventions law (9) becomes a* = aa*+1 = a*a+1.

Example 2.1 The Boolean %-semiring B = ({0,1},+,-,%,0,1) is an idem-
potent %-semiring where

0+0=0:-0=0-1=1-0=0

0+1=140=14+1=1:1=0"=1"=1.
Example 2.2 The class (Reg(Z*),U,-,* 0,{c}) of regular languages over
an alphabet ¥ is an idempotent x-semiring.

Example 2.3 The set Noo of non-negative integers extended with oo is a
non-idempotent *-semiring where for alla > 1

atoo=00+a=o00+c0o=04+00=00+0=0c
aoo = 00a = 0000 = a* = 0* =
Oco =000 =0 0*=1.

Example 2.4 The set of m by m matrices whose elements are from a *-
semiring K 1is again a *-semiring: (K™ ™ &,0,*0,I). Here ® and ®
applied to matrices are the usual definitions of matriz addition and mulli-
plication where the base elements use the operations from K. The matriz
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0 is an m by m matriz containing only the value 0. The matrizI is an m
by m matriz containing the value 1 on the principal diagonal and O else-
where. The asterate X = A* of a matriz A is the unique solution to the
system AX®I = X. The value of X may be found using a modified Gaus-
sian elimination or Gauss-Jordan reduction or using the idea of eliminants.
Algorithms for the finding the solution to the above system as well as its
uniqueness are discussed in [BC75,Leh77,Car79,AS85]. Note that K™*™
will be idempotent if K 1s.

A *-semiring morphism is a mapping between *-semirings which pre-
serves all of the operations. Thus if S; and S; are *-semirings and f is a
mapping from Sy to Sy then f must satisfy, for all a,b,¢c € S;:

fla@b)=f(a)® f()) f(a®b)=f(a)O f(b)
f@)=f(a* flO)=0 f(1)=1

Note that S; must be idempotent if Sy is. Any expression of the form
f(E) where E involves only elements and operations from S; can be then
replaced by an expression E' where each element from S; has been replaced
by its image in S; and each operator from S; has been replaced by the
corresponding operator in S;. If the structure of Sy is simpler than that of
S this can yield a saving in computation cost.

Example 2.5 The mapping from Reg(Z*) to B which maps § to 0 and
anything else to 1 1s a morphism.

Example 2.6 Morphisms from Reg(X*) to Reg(A*) can be specified by
tdentifying the tmage for each letter from £. These mappings can be used to
encode one alphabet into another, to alias letters from X, or to erase letters
from X.

Example 2.7 There can be no *-semiring morphism from Reg(Z*) to Noo
stnce the first of these 1s idempotent and the second 1s not.

Since we have a notion of multiplication, we can introduce a notion of
divisibility. We will say that u left divides v (written u | v) if there is a w such
that u©@w = v. If this value is unique then we will call w the left quotient of
u into v and write w = u\ v. Left divisibility satisfies the reflexive property
(u | u) and the transitive property (v | v,v | w => u | w). Any elements
u and v satisfying u | v and v | u are called associates. This defines an
equivalence relation of associates. If, on the other hand, there are no distinct
associates then | satisfies the anti-symmetric law (u | v,v | 4 => u = v) and
| defines a partial order.
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A common (left) divisor for two elements u and v is any element w such
that w | v and w | v. Note that 1 is always a common divisor. A greatest
common left divisor w of u and v satisfies:

wlu, w|ov, (z|u,z|v) =z |w.

Thus the greatest common divisor is a common divisor which any other
common divisor must divide. If it exists it will be unique up to associate
class. We can then introduce the operation w = u A v which yields for any
values u and v a distinguished associate, that is, one chosen to represent the
class.

Whenever A is defined, it will satisfy the laws:

(1) an(®dAc)=(anb)Ac, A is associative
(2) anb=bAa, A is commutative
(3) ara=a, A is idempotent
(4) anl=1. 1 is an zero for A

Since A is commutative and associative, it makes sense to talk about the
N of a set of elements. A *-semiring for which A is always defined will be
called a GCLD *-semiring.

Example 2.8 The class Ny, has the usual notion of integer divisibility with
the additional observation that any nonzero element divides oo and any ele-
ment divides 0. The A of two numbers is their integer GCD and aAoo = a
for any nonzero a.

In a number of cases the greatest common left divisor will not always
exist or will be inappropriate for our purposes. In such cases we will identify
a particular common left divisor for consideration. The designated common
left divisor of u and v will be denoted u A v. The only required property
of this operation will be that w = u A v implies that w | u and w | v and
that w is in some, perhaps weak, sense maximal for this property. Since this
operation will be applied to a set of values, commutativity and associativity
is desired. If these properties do not hold then the 7\ of a set of values will
depend on the order of evaluation.

3 *-Semiring Automata

A K-Nondeterministic Finite Automaton (K-NFA) T = (%, K,é,s,F) is a
5-tuple where ¥ is a finite alphabet, K is a *-semiring, §: Z U {e} — K™*™
is a mapping from T U {e} to square matrices over K, s € K'*™ is a row
vector of elements from K, and F € K™*! is a column vector of elements
from K.
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It is then possible to define the closure of & as §(z) = §(z)6*(e) for all
z € . Here 6§*(¢) is the unique solution X to the system of equations
8(¢)X + I = X and will usually be equivalent to the infinite sum

I+6(c) +68%(e) + 83(e) + 6%(e) + - - -.

The mapping é can be extended to £* by defining §(uz) = §(u)é(z) for
all u € £* and z € T and §(¢) = I. The closure of s will be defined as
§ = 86*(€). The behaviour |T| of T' is then defined to be a mapping from
>* into K: |T|(w) = 86(w)F for all w € £*. Thus T associates with each
word in X* a K value according to the above computation.

Note that for input z;z2z3- - -z, the computed value is exactly

86" (€)6(z1)6"(€)6(22)6" (€)6(z3)6% () + + - 6(xp )6 (€) F.

Because of the implied associativity of matrix multiplication there are several
ways in which this result may be computed.

Theorem 3.1 Let T = (X, K1,6,s, F) be a K1-NFA and f be a x-semiring
morphism from Ky to K3. Furthermore, let §' be a mapping from £* U {e}
to K; satisfying 6'(z)i; = f(6(x)i;) and let s = f(s;) and F! = f(F;) for
all i,7 < m. Findlly, let T' = (3, K3,68',8', F'). Then for every w € T*,
7)) = £(1T](w))-

Proof: For any w € I* the definition of T yields an expression E in
terms of elements of the *-semiring K;. The expression E can be trans-
formed to an expression in K3 equal to f(E) by replacing each K; element
by its image in K2 and each operation in K3 by the corresponding operation
in K. O

Note that when §(¢) = 0 we have that §*(¢) = I. The above expression
then simplifies to:

86(z1)6(z2)6(xs) -+ 6(zn)F.

Example 3.1 If K is the Boolean %-semiring, then the definition of B-
Nondeterministic Finite Automaton is ezactly the standard Nondeterminis-
tic Finite Automaton as described in [HU79,Har78]. The state set is the set
of m index values. The vectors s and F identify a set of start states and
final states, respectively. There i3 a path from state ¢ to state j not beginning
with ¢ and with label u ezactly when §(u);; = 1. The result |T|(w) will equal
1 ezactly when there is a path from a start state to a final state with label w.

A K-Deterministic Finite Automaton (K-DFA) T = (X,K,6,8,F) is a
K-NFA satisfying the additional constraints:

1. s has only one nonzero value,
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2. §(z) has only one nonzero value in each row for all z € I, and
3. §(e)=0.

Example 3.2 If K is the Boolean %-semaring, then the definition corre-
sponds to the standard notion of Deterministic Finite Automaton. The con-
dition on s tmplies a single start state and the condition on 6 implies that
no state has more than one outgoing transition with the same label. The
condition of 6(e) requires the absence of € transitions.

Example 3.3 Let K be No. The above models correspond to automata
which count the number of ways a word belongs to a set. This is often called
the ambiguity of a word and corresponds to the number of distinct parses
according to some grammar.

Example 3.4 Let K be Reg(Z*). Then these models correspond to differ-
ent models of finite state transduction (not necessarily single-valued). This is
closely related to the matriz representation of a finite transduction [Ber79].

4 Left to Right Recognition

Suppose that we are given a K-NFA T and an input word and wish to
compute |T|(z1z223: - z,). This can be done by forming the product from
left to right as in

(- (((s32)) B(z2)) 8(zs)) ---B(an)F) .

If the routine read_character obtains the input one character at a time,
yielding | when the input is exhausted, this may be represented by the
following algorithm:

Algorithm 4.1

z:%; v:K>Xm
v:=§;
z := read_character;
while z #- do begin
v := vé(z);
z := read_character
end;
write(vF);
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Note that vd (z) may be computed in a number of different ways depend-
ing on the properties of the %-semirings concerned. These details, though
interesting in themselves, are out of scope for this paper.

If K is a GCLD #-semiring, then the following observation can be used
to yield a modified algorithm that often has better performance without
sacrificing correctness. Suppose that at some point in the execution there
is a value z which left divides all of the components of v. Since one of
the components of v must left divide the result value and left division is
a transitive relation, we can immediately write out z and replace v by the
result of the left division of v by the scalar value 2:

Algorithm 4.2
r:%; z:K; v:K>m

v:=§;

while true do begin
z:= Av;
write(z);
v:i=2z\v;

x := read_character;
if 2 =- then exit loop;
v := v(z)

end;

write(vF);

Here A v is the value vy Av2 AvgA---A vy, and 2\ v is the vector formed by
left dividing each element of v by z. If K is not a GCLD #-semiring then A
may be replaced by A as discussed in section 2.

The approach taken in the next five sections will involve the definition of
a number of *-semirings which are each the image of a *-semiring morphism
applied to Reg(A*). Then, given a morphism from Reg(A*) to K, theorem
3.1 will allow any Reg(A*)-NFA to be be transformed to a K-NFA which
will behave like the original machine followed by the morphism. Then al-
gorithm 4.2 can be used to perform the computations in K, thereby saving
time since K has a simpler structure.

5 Censoring Multiple-Valued Outputs

The first approach to making a transduction single-valued is to simply throw
away the multiple-valued part, that is, report a domain error in cases where
an input value can produce more than one output. This will be achieved
using the Single-Value *-semiring SV (A*) together with theorem 3.1 and
algorithm 4.2.
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The algebra SV(A*) = (A*U {0,T},8,0,*0,¢) is formed by adding
to the free monoid A* the two elements

0: indicating the absence of a value, and

T: indicating a multiplicity of values.

The multiplicative operation @ is that of the free monoid for elements
from A*. Multiplication of elements from A* U {T} on either side by T
yields T and multiplication of elements from A* U {0, T} on either side by
0 yields 0. It is easily shown that © is associative, has ¢ as a identity (left
and right), and O as a zero (left and right).

The additive operation @ is idempotent so that any value added to itself
yields the same value. Addition of distinct values from A* yields T as does
anything added to T on either side. The element O is a left and right identity.
It is easily shown that @ is associative, commutative, idempotent, and has
0 as an identity.

The star of O and £ is £. The star of other values is T. The star property
((z*0 z)de = (20 z*) ® e = z*) is easily verified.

The following tables summarize @, ©, and *. Here u and v are arbitrary
distinct elements from A*.

&0 € u v T (0 & u v T *

0|0 € u v T 010 0 O 0 O 0] ¢
ele € T T 7T e|0 € wu v T €| €
ulu T u T T |0 u uu uwv T ul| T
vi|iv T T v T v{i0 v wvu wvv T v | T
TIT T T T T T|IO T T T T TI|T

Lemma 5.1 The distributive laws u® (vO w) = (L O v) ® (u O w) and
(vOw)Ou=(vOu)d (wou) hold for any u,v,w € SV(A*).

Proof: The left distributive law is easily established by case analysis:

v=worw=0: Both sides reduce to u @ v.
v=0: Both sides reduce to u ® w.
u=0: Both sides equal 0.

uFO0,vow="T: The left side is T. If v or w is T the right side is T.
If v,w e A*, v# w theright sideisuv Quw =T.

The right distributive law follows by an analogous argument. O

Theorem 5.2 SV(A*) is an idempotent *-semiring.
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Proof: The above discussion establishes that the additive structure of
SV (A*) is an idempotent commutative monoid, the multiplicative structure
is a monoid, the additive identity is a multiplicative zero, and the star
property holds. The distributive laws hold by Lemma 5.1. O

Let ¢ be the following mapping from Reg(A*) to SV(A*):

0 ifL=20
e(L)=4 u if L= {u} for all L € Reg(A*).
T || >2

Theorem 5.3 ¢ is a *-semiring morphism.

Proof: It is necessary to show that this mapping preserves the opera-
tions of a %-semiring:

p(0) =0: Given.
e({e}) =e: Immediate from definition.

e(uUv) = p(u) ® p(v): Both U and & are idempotent. The result fol-
lows immediately if ¥ = v or one of u and v is
the empty set. Otherwise, if 4 and v are distinct
singleton sets or one of u and v contains two or
more elements, then both sides yield T.

e(uv) = p(u) © p(v): The concatenation of singleton sets is a singleton
set. The concatenation of a set with two or more
elements with another nonempty set, on either
side, is a set with two or more elements. The
concatenation of the empty set with another set,
on either side, is the empty set. In each case both
sides agree.

p(u*) = p(u)*: Both sides yield € if ¥ = @ or u = €. Otherwise
both sides yield T.

]

If both u and v are from A* then u | v iff u is a (not necessarily proper)
prefix of v. Otherwise, any element in A*U {0, T} divides O and any element
in A*U {T} divides T.

If u | v where u,v € A* then u \ v equals the suffix of v which remains
after u is removed. Otherwise, any element in A*U{T} divided into O yields
0 and any element in A* divided into T yields T. The cases 0\Oand T\ T
are multi-defined and will be conventionally assigned the values 0 and T,
respectively.

The following tables summarize | and \. Here u, v, and z are arbitrary
elements from A* satisfying v = uz.
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10 e w v T \[ O € u v T
0|+ 0} (0)

elv v v v V el 0 € u v T
u | vV v Vv ul| O e z T
v |+ v v v| O e T
T|v v [Tlo (T)

We can define the A of elements of A* as their greatest common prefix.
The Aof Oor T with Tis T and 0A0=0.

The following table summarizes the A operation. Here u, v, and z are
arbitrary elements from At satisfying v = uz.

e e o o>
— e g o Ol
M M M M MM
g e ol
e e g eS|
— e g a -

Lemma 5.4 A defines a GCLD operation with respect to |.

Proof: Let u = v; A v2 and consider the following cases:

vy, v € A% If z divides v; and v it must be a common prefix and
must thus divide u.

v; € A*,v; € {0, T}: If z divides v; it must be a prefix of v;.
vy =T,v2 € {0, T}: If z divides top it must be in A* U {T}.
vi =0,v2=0: Any z divides 0.

The other cases follow by commutativity of the definitions. |
The above process can be summarized by the following algorithm for
computing A A where A is a possibly infinite subset of SV(A*):

If A has at least one element from A* then A A is the longest
common prefix of the A* elements. Otherwise if T € A then
ANA=T. Otherwise A= {0} and AA=0.

Theorem 5.5 SV(A*) is ¢ GCLD *-semiring. Furthermore A is defined
even for infinite sets.

Theorem 3.1 and algorithm 4.2 may then be used to transform any finite
transducer to a SV(A*)-NFA and apply it to an input. If a result from A*
is obtained then this is the output. Otherwise, a value of O or T is obtained
and a domain error reported. The overall effect is to take the single-valued
part of the transduction.
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6 Selecting the Shortest Output

The second approach to making a transduction single-valued is to throw
away all outputs which are longer than the shortest output. If this leaves
a multiplicity of values, a domain error is reported. Otherwise the single
output remaining is taken. This will be achieved using the Length-Minimum
+-semiring LM(A*) together with theorem 3.1 and algorithm 4.2.

First of all we will define the length partial order < on A* as follows:
u < v if and only if |u| < |[v|. Then u < vifand only if u < v or u = v.

The algebra LM(A*) = (A*U {0} u{T}*,®,0,*0,¢) will now be de-
fined. The elements are those of A* extended with 0 and non-empty strings
of T elements.

The multiplicative operation © is that of the free monoid for elements
from A*. Multiplication of any element by 0 on either side yields 0. Mul-
tiplication on either side of any element u € A* by a T* yields T*+l4l. The
product of T¢ and T7 is T*+7. It is easily shown that ® is associative, has
€ as a identity (left and right), and O as a zero (left and right).

The additive operation @ applied to elements u and v of A* U {T}*
yields the shorter of the two if they have different lengths and T4l if they
have the same length. The sum of T* and T7 is T™n(3), The element O is a
left and right identity. It is easily shown that @ is associative, commutative,
idempotent, and has 0 as an identity.

The star of any element is €. The star property ((z* @ z)®e = (z©
z*) @ € = z*) is easily verified.

The following tables summarize @, ®, and *. Here u, v, and w are
arbitrary distinct elements of A* where |u| = |v| ={ and |u| < |w| = 7.

&/ 0 € u v w T+ TI
0 0 € u v w T* 17
€ € €& € € € € €
u u € u T u T wu
v v € T v v T' w
w|lw € u v w T¢ TI
T|T e T T¢ T8 T8 T
TI|TI ¢ u v T T8 T
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© |0 € u v w Tt T *
00 O 0 0 0 0 0 0 |e
e |0 € u v w T T4 € | €
u |0 u uu uv uw T¥# T u e
v [0 v vu vy vw T T v | e
w |0 w wu wv ww T TH w|e
T lo T¢ T2 T2 Ti+7 T2 Ti+s T | &
Tilo T/ T T+ T2 T+ T2 Ti | e

Lemma 6.1 The distributive laws u @ (vO w) = (uO v) ® (v © w) and
(vow)ou=(vOu)® (wou) hold for any u,v,w € LM(A*).

Proof: The left distributive law is easily established by case analysis:

v<worw=0: Both sides reduce to u ® v.
w<vorv=0: Both sides reduce to u ® w.
u=0: Both sides equal 0.

u#0,v®w=TI: Both sides are Tlul*ll,

The right distributive law follows by an analogous argument. O
Summing up these observations we have the following theorem.

Theorem 6.2 LM(A*) is an idempotent *-semiring.
Let ¢ be the following mapping from Reg(A*) to LM(A*):

0 ifL=90
€(L)=¢ v ifuelandu<zforallzel
T¢ if Ju,v € L such that |u| = |v|=1{ and |z| >iforallz € L
for all L € Reg(A*).

Theorem 6.3 £ is a x-semiring morphism.

Proof: It is necessary to show that this mapping preserves the opera-
tions of a #-semiring:

£(0)=o: Given.
t{e})=e: Immediate from definition.

é(uuv) = €(u) ® €(v): Both U and @ are idempotent. The result follows
immediately one of u or v is the empty set or
contains a word shorter than any in the other set.
Otherwise, if u and v have shortest words of the
same length ¢ so that both sides yield T*.
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§(uv) = €(u) © &(v): Since the shortest words in uv will be composed
of the shortest words from u and v, consider only
the shortest words from u and v. The concate-
nation of singleton sets is a singleton set. The
concatenation of a set with two or more elements
with another nonempty set, on either side, is a set
with two or more elements. The concatenation of
the empty set with another set, on either side, is
the empty set. In each case both sides agree.

€(u*) = E(u)*: Both sides yield ¢.

(]

If both u and v are from A* then u | v iff u is a (not necessarily proper)
prefix of v. Otherwise, any element divides 0 and any non-zero element
shorter than ¢ divides T*. Any T* divides T7 if { < j.

If u | v where u,v € A* then u \ v equals the suffix of v which remains
after u is removed. Otherwise, any non-zero element divided into O yields O
and any element in u € A* such that |u| < ¢ divided into T* yields T*~Iul,
The case T¢\ T/ is undefined when ¢ > j. The cases 0\ 0 and T*\ T7 when
1 < 7 are multi-defined and will be conventionally assigned the values O and
T7—%, respectively.

The following tables summarize | and \. Here u, v, and z are arbitrary
elements from A* satisfying v = uz and such that |u] =1 and |v| = j.

| 10 € wu v T* T?
01V
elv v VvV VYV
u |V v Vv v
vV v
™IV v v
LR v
\[O0O € u v T* T
0 | (0)
€ 0 ¢ u v T TI
u 0 € z TI
v 0 €
T o e (T97)
Ti| 0 €

We can define the A of elements of A* or from T+ as their greatest
common prefix. The A of an element u € A* with an element T* € {T}* is
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u truncated to ¢ — 1 characters if |u| > i. The A of 0 or T* with T* is T*
and 0A0=0.

The following table summarizes the A operation. Here u, v, and 2 are
arbitrary elements from At satisfying v = uz and such that |u| = ¢ and
|v| = 7 and u' is the first s+ — 1 characters of u and v' is the first 7 — 1
characters of v.

A 0 € u v T* T?
0 0 € u v T¢ T?
€| € € € € € €
u | u € u u v wu
v|iv € u v d v
T[T ¢ o o T8 T
TI|T e u o T8 T

Lemma 6.4 A defines a GCLD operation with respect to |.

The proof follows a case analysis similar to lemma 5.4.
This process can be summarized by the following algorithm for comput-
ing A\ A where A is a possibly infinite subset of LM(A*).

If A has at least one element from A* then A A is the longest
common prefix of the A* elements truncated to length 1 —1 where
T* is the shortest element in {T}*NA. Otherwise if T* € A then
A A is the shortest T*. Otherwise A = {0} and A A =0.

Theorem 6.5 LM(A*) is ¢ GCLD x-semiring. Furthermore \ is defined
even for infinite sels.

Theorem 3.1 and algorithm 4.2 can then be applied, to allow the com-
putation of the shortest of the possible outputs for a given input. If a result
from A* is obtained then this is the output. If the value produced is a power
of T then there remains an multiplicity of values and a domain error is re-
ported. The overall effect is to disambiguate a transduction by selecting the
shortest word and report an error is a multiplicity of outputs still remain.

7 Selecting the Genealogical Minimum

The third possibility involves a refinement of selecting the shortest output.
If there is a tie, select that word which is earlier in lexicographic ordering.
This will be achieved using the Genealogical-Minimum *-semiring GM(A*)
together with theorem 3.1 and algorithm 4.2.

The genealogical order C on A* is defined as follows: u C v if and only if
either (1) |u| < |v| or (2) |u| = |v| and there are z,u’,v' € A* and a,b€ A
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such that u = zau', v = zbv', and a < b in some prespecified total order on
A. ThenuCvifandonlyifuC vor u=wv.

The genealogical minimum x of a set S C A* is then defined as the
unique value w € S which precedes all other valuesin S (u€e S = wC u).
Since C is a well order, the minimum is defined for all non-empty subsets of
A* and always yields a single value. For convenience, we will define x(#) = 0,
where 0 will indicate the absence of a value.

The algebra GM(A*) = (A*U{0},®,®,*,0,¢) will now be defined. The
elements are those of A* extended with the 0 element.

The multiplicative operation © is that of the free monoid for elements
from A*. Multiplication of elements from A* on either side by 0 yields 0.
It is easily shown that @ is associative, has ¢ as a identity (left and right),
and O as a zero (left and right).

The additive operation @ applied to elements of A* yields the genealog-
ical minimum. The element O is a left and right identity. It is easily shown
that @ is associative, commutative, idempotent, and has O as an identity.

The star of any element is €. The star property ((z*©z)® e = (z 0O
z*) @ € = z*) is easily verified.

The following tables summarize @, ®, and *. Here u and v are arbitrary
distinct elements of At and z = x({u,v}):

*

®|0 € u v 10 € u v

0]0 € u v 00 0 O 0 Ole
€el|le € € € e|0 € u v €€
u|lu € u =z u |0 u uu wuv ule
viv € z v v{0 v vu wvv v|e

Lemma 7.1 The distributive laws u®© (vO w) = (U O v) ® (4 O w) and
(vOw)Ou=(vOu)®d (wO u) kold for any u,v,w € GM(A*).

Proof: Since v® w must equal either v or w and addition is idempotent,
both sides of the left distributive law reduce to u ® v or u ® w, respectively.
Similarly both sides of the right distributive law reduce to v® u or w © u,
respectively. O

Summing up these observations we have the following theorem.

Theorem 7.2 GM(A*) is an idempotent *-semiring.
Theorem 7.3 x i3 a *-semiring morphism.

Proof: It is necessary to show that x preserves the operations:
x(#) =o0: By definition.
x({e}) =« Immediate.
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x(u U v) = x(u) ® x(v):

x(uv) = x(u) © x(v):

x(u*) = x(u)*:

J. Howard Johnson

Both sides yield the genealogical minimum ele-
ment from v U v.

The words of minimum length from uv are formed
by concatenating the shortest words from u with
the shortest words from v. Since all of the min-
imum length uv words then factor into v and v
words at the same point, the genealogical min-
imum of the uv words will be exactly the ge-
nealogical minimum u words concatenated with
the genealogical minimum v word.

Both sides equal €.

|

If both u and v are from A* then u | v if and only if u is a (not necessarily
proper) prefix of v. Then u\ v equals the suffix of v which remains after u
is removed. Any string divides 0.

The following tables summarize | and \. Here u, v, and z are arbitrary
elements from A" satisfying v = uz.

|10 € u w \[ 0 & u v
0+ 0] (0)

elv v v V el 0 € u v
u |+ v Vv ul 0 e =z
v+ 4 v| 0 €

We can define the A of elements of A* as their greatest common prefix
and the A of a u € A* with 0 is u.

The following table summarizes the A operation. Here u, v, and z are
arbitrary elements from A™ satisfying v = uz.

e e o Of>
e g o OO
momom ;m
g & m g
e g m el

Lemma 7.4 A defines a GCLD operation with respect to |.

The proof follows a case analysis similar to lemma 5.4.
This process can be summarized by the following algorithm for comput-
ing A A where A is a possibly infinite subset from GM(A*).
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If A has at least one element from A* then A A is the longest
common prefix of the A* elements. Otherwise A = {0} and
AA=0.

Theorem 3.1 and algorithm 4.1 can then be applied, to allow the compu-
tation of the genealogical minimum of the possible outputs for a given input.
That is for input w and finite transducer 7', we can compute x(|T'|(w)).

8 Selecting the Lexicographic Minimum

The fourth approach involves selecting the lexicographic minimum element.
This will be achieved using the Lexicographic-Minimum #-semiring XM (A*).

The lextcographic order <; on A* is defined as follows: u <; v if and only
if either (1) u is a prefix of v or (2) there are z,u’,v' € A* and a,b € A such
that u = zau', v = zbv', and a < b in some prespecified total order on A.
Then u <; v if and only if u <; v or u = v.

It will be convenient for our purposes to define a partial order < as the
second part of this standard definition: u < v if and only if it is possible to
write u = zau' and v = zbv' where z,u',v' € A*, and a,b € A where a < b.
u<vifu<voru=wv,

Then we will define a mapping % which maps a set of words S over A*
to the largest subset which are not preceded by other words in S:

u € ¥(S) if and only if u € S and there is no v € S such that
v<u

Note that then the following will always hold:

If u, v belong to 1(S) then either u is a prefix of v or v is a prefix
of u.

Thus all of the words in (S) will be prefixes of some possibly infinite word.

Lemma 8.1 If R € Reg(A*) then ¢(R) s an effectively computable regular
set.

Proof: If R is effectively presented, then we can construct a determinis-
tic finite automaton for it. If we then discard all transitions from any state
which correspond to letters which are not the lexicographic minimum letters
exiting that state. Then we can discard any states which are not accessible
from the start state of from which a final state cannot be reached. The
resulting trim DFA then recognizes ¥(R). To see this, note that it satisfies
the above prefix property since every state has only one successor so that
all words in the set must be a prefix of some, possibly infinite, word. Sec-
ondly, words are deleted as a result of removing transitions, and it is easy
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to see that every word removed as a result of breaking a particular transi-
tion is lexicographically greater than any word obtained by taking the one
remaining outgoing transition instead of the broken one. O

Note that the structure of the resulting deterministic finite automaton
will have one of two forms:

1. If the longest word in t(S) is finite, then the DFA will be a string of
states which recognizes this word with other states marked as final to
indicate the selected prefixes.

2. If there is no longest word in ¢(S), then the DFA will be a string of
states that loops back on itself with at least one of the states in the
loop marked as final.

Thus although the possible structures for ¢(S) is not as simple as in the
*-semirings introduced in preceding sections, it is still the case that it is
simpler than Reg(A*).

Before we introduce the %-semiring XM (A*) it will be useful to show
a number of technical lemmas. These together will show that we can drop
any t’s except the last from an expression involving U, -, *, and 1. These
results hold for any language although we will subsequently restrict attention
to regular languages.

Lemma 8.2 ¢(aUb) = ¢¥(¢(a) Ub) = ¥(aU (b)) for all a,b T A*.

Proof: We will prove directly ¢(a U b) = ¢(¢(a) U b). The equality
Y(a U b) = ¢¥(a U (b)) will follow from commutativity of U.

(C) Let z € Y(aUb). Then z € aUb and there is no y € a U b such that
y < z. If z € a then z € 9(a) since there is no y € a such that y < z. Thus
z € Y(a)Ub. Since there is no y € ¥(a) Ub such that y < z, z € ¢ ((a) Ud).

(2) Let z € ¢(p(a)Ubd). Then z € Y(a) Ub and there is no y € Y(a) Ub
such that y < z. Then £ € a Ub and the only way z could fail to be in
¥(a U b) is if there were a z in @ — 9(a) such that 2 < z. But then there
would be some y € ¢(a) such that y < z and thus by transitivity, this y in
y(a) U b satisfies y < z. This contradicts the hypothesis. O

Lemma 8.3 ¢(ab) = ¢((a)b) for all a,b C A*.

Proof: (C) Let z € ¢(ab). Then z € ab and there is no y € ab such
that y < z. Then z must be in ¢(a)b since otherwise z = z;z; where
z; € a — ¢(a) and z2 € b, so that there would be a z € t(a) satisfying
z < z1, and zz3 < z. Since z € ¢(a)b and there is no y € ¥(a)b such that
y < z it must be the case that z € ¢(1(a)bd).

(2) Let z € ¥(¢(a)b). Then z € p(a)b and there is no y € ¥(a)b such
that y < . Then z € ab and z € y(ab) unless there is a y € (a — ¥(a))b
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satisfying y < z. But then y = y;y2 where y; € a—t(a) and y2 € b and there
must be a z € ¥(a) such that z < y;. Since then zy; < = our hypothesis is
contradicted. ]

Lemma 8.4 y(ab) = ¥(ay)(b)) for all a,b C A*.

Proof: (C) Let z € ¢(ab). Then = € ab and there is no y € ab such
that y < z. Then z must be in ay(b) since otherwise z = z;z where z; € a
and z3 € b — 1(b), so that there would be a z € (b) satisfying z < z3, and
x1z < z. Since z € ay(b) and there is no y € ayp(d) such that y < z it must
be the case that z € ¥(ay(d)).

(2) Let z € ¢(ayp(b)). Then z € ayp(b) and there is no y € ayp(b) such
that y < z. Then z € ab and z € (ab) unless there is a y € a(b — ¥(b))
satisfying y < z. But then y = y;y2 where y; € a and y; € b—(b) and there
must be a z € (b) such that z < ya. Since then y;2 < z our hypothesis is
contradicted. ]

Lemma 8.5 ¢(a*) = Y(¢(a)*) for all a C A*.

Proof: (C) Let z € ¥(a*). Then z € a* and there is no y € a* such
that y < z. Then z must be in (a)* since otherwise £ = z;z; - - -z where
T1,%32,...,Zi-1 € P(a), z; € a — ¢¥(a), and z;41,...,2¢ € a for some 1 > 1,
so that there would be a z € y(a) satisfying z < z;, and zyz3 - -zi_12 < z.
Since z € ¢(a)* and there is no y € ¢(a)* such that y < z it must be the
case that z € ¢¥(¥(a)*).

(2) Let z € ¢¥(¢(a)*). Then z € (a)* and there is no y € ¥(a)* such
that y < z. Then z € a* and z € Y(a*) unless there is a y € ¢(a)~}(a —
y(a))a* satisfying y < z. But then y = yyy2 - -y where y1,42,...,¥%i-1 €
¥(a), yi € a — Y(a), and yit1,...,yx € a for some ¢ > 1 and there must
be a z € ¢(a) such that z < y;. Since then yiy;- -z < z our hypothesis is
contradicted. 0

The algebra XM(A*) = ($(Reg(A*)),®,0,* 0, {¢}) where ¥(Reg(A*))
is the set of regular sets over A* in the image of ¢, and @, ®, and * are the
images of U, -, and * respectively.

a®b=9y(aUd) a@b=14y(ab) a" =9¢(a*) Va,be p(Reg(A"))
Theorem 8.6 XM(A*) is an idempotent *-semiring.

Proof: This follows from the lemmas 8.2, 8.3, 8.4, and 8.5 and the
observation that that Reg(A*) is an idempotent *-semiring. For example,
to verify the left distributive law we can write:

4o (v w) = B(up(vU w) = P(u(vUw))
= ¢Y(uv U uw) = ¢Y(P(uv) U ¢(uw)) = (O v) ® (LO w)

Similar arguments work for each of the other 9 laws. O
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Theorem 8.7 v is a *-semiring morphism.

Proof: It is necessary to show that this mapping preserves the opera-
tions of a *-semiring:

¥(0) = 0: Immediate.

¥({e}) = {e}: Immediate.

P(uUv) = ¢(u) ® ¢(v): Immediate from $(u U v) = P (P (u) U ¢(v)).
$(w) = $(u) O $(v):  Tmmediate from P(uv) = H($(w)$(v)).
P(u*) = $(u)* Immediate from (") = (3 (s)").

Theorem 8.8 XM(A*) is not a GCLD *-semiring.

Proof: Let A = {a,b,c} with chosen order a < b < c and consider the
sets u = {¢,a} and v = {¢,b}. Then u and v are both divisible by the {¢, c}
and {e, cc}, neither of which divides the other.

{e,c}of{e,al={e,a} {e,c}o{eb}={c,b}
{e,cc}o{e,a} ={e,a}  {e,cc} O {¢,0} = {¢,b}

If w = {e,c} ® z, however, z must contain ¢ so that w must contain ¢ or a
word beginning with a or b. Thus {e,c} f{e,cc}. Similarly, we can show
{e,cc} J{e,c}. ) O

It will be useful for our purposes to let u A v to be the greatest common
prefix of the shortest words from u and v. Clearly the operation A is uniquely
defined and satisfies the commutative and associative laws.

Using theorem 3.1 and algorithm 4.2 with *-semiring XM (A*) will yield,
for a given input w and finite transducer T, a set of words as output. To
extract the true lexicographic minimum all that is needed is the selection of
the shortest word in this set. This can be achieved technically, by introduc-
ing a new symbol -1 which designates end of input and precedes all other
letters in the < ordering.

9 Implementing Elseor

One of the original motivations for this research is a quest for a good way of
implementing the following operation for finite transductions. Let f and ¢
be finite transductions. Define h = f || g to be the mapping which satisfies

_ | f(w) if wedom(f)
h(w) = { g(w) if w € dom(g) — dom(f)
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This operation has been called “elseor” because of it similarity to a union
operation and because it is used in situations where programming languages
would use “elseif”. For example, the following fragment also describes f || g:

if w € dom(f) then return f(w)
elseif w € dom(g) then return g(w)
else fail

The following is another definition which shows that f || g is a finite
transduction if f and g are:

f l'9 = f U (((dom(g) — dom(f)) x ran(g)) N g)

Here “dom” and “ran” indicate the domain and range, respectively. This
shows that f || g is a finite transduction if f and g are since (1) dom(f)
and dom(g) are regular languages, (2) dom(g) — dom(f) is then regular,
(3) the domain restriction of a finite transduction is a finite transduction,
and (4) the union of two finite transductions is a finite transduction. This
computation is in fact performed by INR, a program implemented by the
author for constructing large finite transducers [Joh86]. However, this is not
a very good solution, since experience has shown that this approach leads
to state explosion in transducers which are otherwise manageable.

Since elseor is extremely useful for describing single-valued transductions
in terms of more primitive ones, it is worth the effort of looking for a better
solution. So the question is how to mark the transducer minimally so that
the process can still be performed. The last section gives us most of the
answer. Suppose we wish to compute f || g as some subcomponent of a
finite transducer. Then we can replace this expression by (g, 4)f U (¢, B)g,
that is, we introduce new letters A and B, precede f by A4, and ¢ by B,
replace || by ordinary union. The new transducer will then write A if the
f alternative is possible and B if the g alternative is possible. Then if we
select the lexicographic minimum output assuming A < B, and suppress the
A and B we will have the answer we desire.

The main problem with this is that choosing the lexicographic minimum
is going to resolve ambiguities which we would rather report as errors. We
also have to consider more precisely the role of the A, B letters.

Let < then be a partial order on the alphabet A and define the partial
order < on A* as before: u < v if and only if it is possible to write u = zau'
and v = zbv' where z,u',v' € A* and a,b € A wherea <b. u Xvifu<v
oru=uv.

Then, as before, we will define a mapping ¢ which maps a set of words
S over A* to the largest subset which are not preceded by other words in
S:
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u € Y(S) if and only if u € S and there is no v € S such that
v < u.

Based on this we will define a mapping 8 which is equal to ¥ if it maps
to an element satisfying the prefix property:

If u, v belong to ¥(S) then either u is a prefix of v or v is a prefix
of u.

Otherwise # will map to the element T. Thus if not equal to T all of the
words in 6(S) will be prefixes of some possibly infinite word.

Lemma 9.1 If R € Reg(A*) then 0(R) is an effectively computable regular
set.

Proof: As before, ¢(R) is effectively computable. From a trim deter-
ministic finite automaton, it is possible to test whether it satisfies the prefix
property. O

It can then be shown that 8 is a #-semiring morphism. A technique based
on theorem 3.1, algorithm 4.2, and the comments at the end of section 8
will achieve the desired goal.

10 Minimum Delay Recognition

We will say that an algorithm is minimum delay if after reading any prefix
of the input, it has written the A of the outputs which can be produced
for inputs possibly beginning with that prefix. This is a property of the
behaviour of the automaton rather than the automaton itself.

If we denote by mx(u) the minimum delay output for a prefix u then

n(u) = A{IT|(u0) | v € 5%} #(u ) = |T|(w).

This leads to the following on-line algorithm:
Algorithm 10.1

z:3; u:X¥;
write(n(g));
while true do begin
z := read_character;
write(n(u) \ 7(uz));
u = uzx;
if £ =- then exit loop
end;
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Let o be a diagonal matrix satisfying

i = N{ITil(v) | v € =*}

where T; = (2, K, 8, s;, F) is formed from T by replacing s by a row vector
with 1 in the ¢ position and 0 in other locations. The matrix o~! is the
diagonal matrix formed by taking the formal inverses of the corresponding
elements from o. Note the this matrix is only used in the context 0~15(z)a
and so no inverse elements will be introduced by this process.

Algorithm 10.2
z:3; z:K; v:Kxm

z:= A éo;
write(2);
v:=z)\ §o;

z := read_character;
while 2 #- do begin
z:= /\va‘lg(:c)a;
write(z);
v =z \ vo~18(z)o;
z := read_character
end;
write(vo~1F);

Suppose that we are given a Reg(A*)-NFA. If we are only interested in
the answer to a transduction when it is single-valued, we can convert it into
a SV(A*)-NFA which yields a single value exactly when the original does.
This follows from theorem 3.1.

However, o is, in general, not effectively computable as the following
theorem shows:

Theorem 10.1 Let T be a SV(A*)-NFA. Then o is not effectively com-
putable.

Proof: Let uj,uz,...,up, v1,v2,...,vp be an instance of Post’s Cor-
respondence Problem. Then the following rational relations can be con-
structed:

U= {(ab, u'l)’ (azb» U,2), sty (a'pba uP)}
V = {(ab, v1), (azb, v2), ..., (a’b, vP)}
R=((e,a)(UTUVT))U(e,b)

If the instance of PCP has a solution then there is a non-¢ input w which
yields a single result. This result will begin with a and so w(¢) = €. If the
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instance of PCP has no solution then every input will yield a multiple result
and w(e) = b. If an automaton is constructed with a state ¢ which precedes
this set then o;; will not be computable. O
On the other hand, if we restrict attention to rational functions, that is,
to SV(A*)-NFA’s which never produce T, the process becomes effective.

Theorem 10.2 Let T be a SV(A*)-NFA. Then it is decidable whether there
is an input w such that |T|(w) = T. Furthermore, if T cannot produce T,
then o can be effectively computed.

Proof: The decidability of whether T can emit T is reducible to the
decidability of whether a rational transduction is single-valued. This is
known to be decidable [BH77,Ber79].

If T cannot be output the value of ¢;; can be computed by computing A
of the regular set of outputs possible from 1. O

11 Deterministic Left to Right Recognition

After any prefix of the input is read by algorithm 10.2, the vector v will
contain a vector of K values. This information is all that is required to com-
pletely characterize the “state” or current configuration of the computation.
It is possible to define an infinite graph of all configurations connected by
deterministic transitions. The accessible part of this infinite graph is that
part which can be reached from the beginning configuration, that is, the
configuration A §o. If finite this process defines a K-DFA equivalent to the
original K-NFA.

This is summarized in the following algorithm. Here indez(v) is a func-
tion which maps each configuration v to a distinct index value. Concep-
tually, it works by determining whether a configuration has ever been seen
before and returning the same index if it has. Otherwise an unused index
is found and returned. Every index is assumed to be unconsidered as soon
as it is used until it is explicitly considered. The function config(¢) returns
the configuration associated with a particular index. This algorithm takes a
K-NFA (3, K, §,s, F) and, if it terminates, produces an equivalent K-DFA
(,K,8,§, F').

Algorithm 11.1
z:3; z:K; v:K>xm

z
v:=2z\éo;
1 := indez(v);
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g'[t) == z;
while not all indezes considered do begin
1 := any unconsidered index;
v := config(s);
for z € ¥ do begin
z:= Avo~18(z)o;
J = indez(z\ 00'_15(1:)0'),‘

8'(z)ij = z;
F'(i) := vo~'F
end end;

This algorithm will run forever if there are an infinite number of acces-
sible configurations. A much better state of affairs would be to detect this
condition after a finite amount of time, report the condition, and quit. One
such test is based on Choffrut’s twinning property [Cho77,Ber79).

The resulting machine may have more states than necessary for the same
reason that the accessible subsets construction yields a non-optimal deter-
ministic finite automaton. It is possible, however, to use the same solution
based on Nerode’s theorem.

The technique involves constructing a conventional Deterministic Finite
Automaton over an alphabet formed from an appropriate finite subset of
¥ x K. This machine will have a transition from 1 to j with label (z, k) if
and only if §(z);; = k. Clearly this operation is well-defined and invertible
and only a finite alphabet will be used. Furthermore if the process is inverted
on any other automaton recognizing the same regular set, then an equivalent
K-DFA will be produced, i.e., one with the same behaviour. Thus one can
apply the usual DFA minimization, and invert to yield an automaton with
no more and probably fewer states.

The algorithm thus described, that is, algorithm 11.1 followed by the
minimization step will be called algorithm D and will be applicable to any
GCLD #-semiring.

12 Subsequential Transduction

The construction of section 11 may be used to compute a subsequential
transducer from a description for a rational function if possible. Furthermore
in a real sense this transducer will be optimal. Suppose that we are given a
SV (A*)-NFA T and if algorithm D terminates successfully a subsequential
transducer S is produced.

Theorem 12.1 Algorithm D may be used to compute a minimum delay
minimum state subsequential transducer for any subsequential function pre-
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sented as a rational function.

Example 12.1 Let T = ({z},SV({¢, 2,y}*), 6, s, F) satisfy:

0 tzy tz tzy €
00 z O 0
s=[e000] S@=|,, ¢ . F=|,
00 0 O €
Then
e 0 0O
o zy 00
“loo yo
0 0 0 ¢
The accessible configurations then are:
vy = [ € 0 0 0]
v = [ 0 2y € ¢ ]
v = [ 0 2y 2y € ]
yielding the result T'({z}, SV ({t, 2, y}*), 8", ¢', F')
0 tzy O €
s'=[e 0 0] §'z)=|0 0 ¢ F'l=|c¢
0 zy O €

There are no equivalent states so that the minimization will not decrease the
number of states.

The main result of this section will be proven in several steps. Here T
will indicate the input to algorithm D and S will indicate the output.

Lemma 12.2 If algorithm D terminates then |S| C |T|.

Proof: Suppose (u,v) € |S|. Then there is a path through S with label
(u,v). Each of the states visited corresponds to a configuration vector of
values from SV(A*). A path through T with the same label can be found
by tracing backwards from the final state of S using a “how did I get here”
kind of analysis. |

Lemma 12.3 If algorithm D terminates then |T'| C |S|.

Proof: Suppose (u,v) € |T|. Then there is a path through T with label
(u, v). There must then be a sequence of transitions with input label u using
a forward induction. a
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Lemma 12.4 If T is trim and |T| is subsequential then algorithm D terms-
nates.

Proof: If T is subsequential then there is a subsequential transducer
S' such that |S'| = |T'|. Consider the states reached in S' and the possibly
infinite machine S produced by algorithm 11.1 after reading some word w.
Suppose S’ is in state ¢ and S is in configuration v. Consider the longest
word in v. Suppose it is associated with state ¢+ from T'. Since T is trim,
there must be a path from ¢ to a final state, say with input label z. This
path can be chosen so that no state in T is repeated so that |z| < m. Thus
from ¢ the word z must also lead to a final state with the same output.
Suppose that all strings occurring in the § matrices and F vector for S’ are
bounded by a constant k. Then the additional output generated by S’ is
bounded by km. Since S can never be behind S’ in the quantity of output
generated, the 1th component of v must also be less than km. Since the 1th
component was the longest, all components must be shorter than km. But
there are only a finite number of configurations with no string exceeding a
given bound. Thus S can have only a finite number of configurations and
so algorithm 11.1 must terminate. Thus algorithm D must terminate. O

Lemma 12.5 If T) and T2 are two SV(A*)-NFA’a satisfying |T1| = |Te|,
then algorithm D yields subsequential transducers Sy and Sy that are tdentical
up to renaming of states.

Proof: Note that the transitions produced from any state depend only
on the function and not on the particular transducer provided. Thus the
only variation that can occur in algorithm 11.1 is that two or more states
may be created which have the same outgoing transitions and can occur in
the same right context. These will be combined in the minimization step.
O

Lemma 12.6 Algorithm D yields a subsequential transducer which has the
smallest number of states. Furthermore this transducer has the minimum
delay property and is canonical.

Proof: Suppose that algorithm D is given a transducer T and a mini-
mum state subsequential transducer S for T'. Since S is deterministic every
accessible configuration will contain exactly one state and the coefficient
must be €. Thus a subsequential transducer with no more states than S
will be produced. Since algorithm D always yields an isomorphic answer
for inputs having the same behaviour, it must yield a minimum state sub-
sequential transducer for T as well. O
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13 Conclusions and Further Work

The techniques outlined in the previous sections seem to be quite general and
unify a collection of ideas. The mechanisms of *-semirings and K-automata
allow several techniques for disambiguating (i.e., making single-valued) fi-
nite transductions and provide new insights into rational and subsequential
functions.

However, there are still a number of questions which remain:

1. The #*-semiring Reg(A*) is in some senses the simplest to study but
there remain a number of questions. For example, is it a GCLD #-
semiring?

2. The techniques were described as pure strategies. In practice, however,
a number of techniques need to be combined. How should this best be
achieved?

3. Are there any other %-semirings which are useful?

4. What are the best ways of actually implementing these algorithms?
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