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The Orthogonal Convex Skull Problem *
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October 25, 1986

Abstract

We give a combinatorial definition of the notion of a simple orthog-
onal polygon being k-concave, where k is a non-negative integer (A
polygon is orthogonal if its edges are only horizontal or vertical). Un-
der this definition an orthogonal polygon which is 0-concave is convex,
that is, it is a rectangle, and one that is l-concave is ortho-convex in
the usual sense, and vice versa. Then we consider the problem of com-
puting an ortho-convex orthogonal polygon of maximal area contained
in a simple orthogonal polygon. This is the orthogonal version of the
potato peeling problem. An O(n?) algorithm is presented, which is a
substantial improvement over the O(n® logn) time algorithm for the
general problem.

1 Introduction

The general problem is the following: given a simple polygon, find a max-
imal area convex polygon contained in it. J. Goodman [3] called this the
‘potato peeling problem’; he also posed the question of finding a finite algo-
rithm for the problem. Independently, [7] considered the problem, dubbing
it the ‘convex skull problem’. Recently, [1] gave a finiteness criterion for the
maximal area convex polygon contained in a given polygon with n vertices
and solved the problem in O(n®logn) time. In this paper, we investigate
the orthogonal versions of this problem. Note that the finiteness of the
convex skull problem in the orthogonal case follows immediately from the
definitions. Figure 1 gives an orthogonal polygon that we can peel to ob-
tain ortho-convex polygons in various ways; see Figure 2 for two example
peelings. ’

*The work of the first author was supported under a Natural Sciences and Engineering
Research Council of Canada Grant No. A-5692 and the work of the second author was
partially supported by NSF grants Nos. DCR-84-01898 and DCR-84-01633.

tDepartment of Computer Science, University of Waterloo, Waterloo, Ontario,
CANADA N2L 3G1 .

¥Department of Computer Science, Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, NY 10012, U.S.A.
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Figure 1: An orthogonal polygon.

The paper is organized as follows. We begin, in Section 1, by pro-
viding a combinatorial definition of k-concave orthogonal polygons, where a
0-concave polygon is a rectangle and a 1-concave polygon is an ortho-convex
orthogonal polygon. This is followed, in Sections 3 and 4, by discussions of
two simpler problems, finding a maximal area enclosed rectangle in a simple
orthogonal polygon and a maximal area enclosed 1-convex orthogonal poly-
gon in a Manhattan skyline, respectively. In Sections 5 onwards, we then
consider the general problem. First, in Section 5, we provide a simple algo-
rithm that runs in O(n®logn) time. Second, in Section 7, we improve this
result with a more complex algorithm that is based on the approach taken
in Section 4. Both algorithms make use of the O(nlogn) algorithm, de-
scribed in Section 6, that computes a maximal staircase. The computation
of maximal staircases is of independent interest.

2 k-Concavity for Orthogonal Polygons

We assume that the plane has associated with it a fixed cartesian coordinate
system. An (orthogonal) polygon is a polygon whose edges are parallel to the
two axes. Thus, vertices are at 90 and 270 degree corners. An orthogonal
polygon is simple if it has no holes and its edges are nonintersecting. Since
we only deal with simple orthogonal polygons in the remainder of this paper,
we refer to them simply as polygons.

The usual definition of convexity clearly implies that rectangles are the
only orthogonal polygons that are convex. However, less restrictive defini-
tions are also known: for instance, following [5] define an orthogonal polygon
to be ortho-convez if its intersection with any horizontal or vertical line is
either a line segment or is empty. We provide an alternative approach to
defining convexity by considering the more general problem of trying to
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Figure 2: Two peelings of the example polygon.
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Figure 3: A U-shaped polygon.

quantify the ‘degree of concavity’. Indeed, we will define the notion of ‘k-
concavity’, for k = 0,1,2,..., such that rectangles correspond precisely to
O-concave polygons, and ortho-convex polygons to 1-concave polygons. Our
definition of k-concavity, though quite natural, is non-trivial to make precise.
We remark that a completely different approach to quantifying concavity is
used in [6] where the area of ‘concave pockets’ of a polygon is compared to
the total area of the polygon; in contrast, our approach is strictly combina-
torial.

Let P be a simple polygon represented by its vertices (v, v1, .. ., Vp—1, Un)
on its boundary path, listed in clockwise order. In this list, v = v, and
also v; = v; for other values of 1 # j whenever the path kisses itself at v;,
so there are only at most n distinct vertices. We assign a turning number r;
to each v; such that 7o = 0 and

rag =4 T +1 if v; is a right turn
1= 7 —1 1if v; is a left turn

In particular, if P is a rectangle the sequence of turning numbers is
(r0,...,m4) = (0,1, 2, 3,4). As another example, suppose P is the U-shaped
polygon displayed in Figure 3. Then the turning sequence is (r,...,73) =
(0,1,2,1,0,1,2,3,4). Clearly the turning numbers as defined depend on the
particular choice of initial vertex vo. One invariant property of these turning
numbers is:

Lemma 2.1 7, =4 .

Proof: This is equivalent to the more general claim that 7, — 79 = 4 for any
turning sequence where the initial value 79 can be any integer. We prove the
more general formulation by induction on n. Choose the coordinate system
such that the two edges incident at vy are on the positive z- and y-axes.
We may assume n > 4. Suppose that P does not lie entirely in the first
quadrant. Choose u* to be the point on the boundary of P such that the
horizontal segment [v, — 1,u*] or the vertical segment [v1, u*] separates P
into two (non-degenerate) polygons Py, P,. (At least one of these two pos-
sibilities must hold.) Without loss of generality, assume that P is separated
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by [v1, u*] into P; to its left and P; to its right. Write the turning number of
a vertex v in P (respectively Py, P;) as 7(v) (respectively o(v),o'(v)). Here
we assume the initial vertex of P (respectively P;, P;) is vy (respectively
vy, vo) with initial value r(vg) = O (respectively o(v1) = —1, o'(vo) = 0).
Note that this is unambiguous provided we agree to distinguish the multiple
appearance of a point on the boundary path of a polygon. By the induction
hypothesis for P, if v* is the node of P; preceding u* then o(v*) = 1. But
note that r(v*) = o(v*). Also, if w* is the node of P, following u* then
o'(w*) = 0'(u*) £ 1 =1+ 1 (depending on the nature of the turn at w*).
Therefore o'(w*) = r(w*). Thus r(v) = o'(v) for all v following w* and
in particular 7 and o' agree on their last vertex. Hence by the induction
hypothesis for Pz, we conclude that r(v,) = 4, as required. The other cases
where P is confined to the first quadrant can be proved similarly by choos-
ing u* such that the vertical segment [v, — 2, u*| or the horizontal segment
[v2, u*] separates P into two polygons. O

We now turn to another invariant of these numbers. Fort =1,...,n—1, we
say ¢ a local mazima (respectively minima) if r; > r;_; = 141 (respectively
7; < Ti—1 = Ti+1). We extend this definition to ¢ = 0 by defining 0 to
be a local maxima (respectively minima) if ro > 7y = 7,1 — 4 (respectively
7o < Tp—1 —4). Note that this definition makes sense because of the previous
lemma. Clearly the number of maximas and the number of minimas are
equal. Also P is a rectangle if and only if there are no maximas. Let I be
the set of integers of the form

i — 15 —46(5 <9)

where { is a local maxima, j is a local minima, and §(7 < 1) is equal to 1 or
0 depending on whether 5 < ¢. If P is a rectangle then I is defined to be
the empty set.

Lemma 2.2 The set I is an invariant of the polygon P.

Proof: Let r4,7},...,7, be another sequence of turning numbers for the
polygon P associated with a different choice of the initial vertex vo. The set
I' is defined for this sequence in an analogous manner. The lemma amounts
to the claim that I = I'. Note that for some h, 1 < h < n, for each 1,

= Tivh-n —A+4 for t=n—-h,...,n-1

' {r.-+;,—A for +=0,...,n—h-1

where A = r;4p. Forany i,5=0,...,n—1,let a;; = v — 75 — 46(5 < 1)
and a} ; = 7] — 1} — 48(j < ¢). It suffices to show that a;; € I if and only if
ai; €.
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If0 <1,j < n—h, then a} ; = a;1p j+n, and i (respectively j) is a maxima
(respectively minima) of the r'-sequence if and only if i-+h (respectively j+h)
is a maxima (respectively minima) of the r-sequence. Hence a); € I' if and
onlyifa; ; € I. Hn—h < 1,5 < n then we similarly have az,j = @ith—nj+h-n

and af ; is in I' if and only if the @;tr—n,j+r—n is in I. Finally, suppose

0<it<n—-h<ji<n

In this case, a}; = 7/ — 7} (since §(j < ¢) = 0) = 7Hyp — Tjgh-n + 4

= Tith — Tj+h-n +46(j +h —n < i+ h) (since §(j+h—n <i+h) =1)
= @ithj+h-n- Again, 1 (respectively j) is a maxima (respectively minima)
of the r'-sequence if and only if ¢ + h (respectively 5 + h — n) is a maxima
(respectively minima) of the r-sequence, we conclude that al; € I' if and
only if @;4pj+n-n € I. Similarly, we can show that a;; € I' if and only if
@+h-ni+h € I. O

In view of this lemma, we may define the concavity of P to be
maz{|m|: me I}

By definition, the concavity of a rectangle is 0. A polygon is k-concave if it
has concavity at most k. (Remark: a more refined measure of the concavity
of P is to take two parameters, the minimum and maximum integers in I.)

We now characterize the k-concave polygons for k < 2. A rectangular
polygon is naturally represented by four parameters:

(zmc'na Tmaz; Ymin, ymax)

We call the rectangle semi-infinite if exactly one of these four parameters is
infinite. So semi-infinite rectangular polygons are essentially 3-sided figures.
The relatively easy proof of the following theorem is omitted.



The Orthogonal Convex Skull Problem 7

Theorem 2.3 a) The 0-concave polygons are precisely the rectangular poly-
gons.

b) The 1-concave polygons are precisely the ortho-convex polygons.

c) The 2-concave polygons are precisely those connected polygons each hav-

ing the form
k

R — interior(| } i),k >0
=1
where P is a rectangular polygon, and the S;’s are semi-infinite rect-
angular polygons whose interiors are pairwise disjoint.

Note that strictly speaking, the rectangle P in (c) of the theorem is not
necessary: 2-concave polygons can also be characterized as the bounded con-
nected sets that are complements of a finite union of semi-infinite rectangles.
Figure 1 illustrates a 2-concave polygon.

3 Maximal Rectangles

It should be clear from the definition that the concavity of P can be de-
termined in linear time. Furthermore, the largest O-concave polygon, that
is, rectangle, contained in P can be found in time O(n log®n) using the al-
gorithm of [2] or in time O(n log® n) using the elegant divide-and-conquer
algorithm of [4]. The more interesting question is to ask for the largest 1-
concave polygon contained in P. This will be the subject of the rest of this

paper.

4 The Manhattan Skyline Problem

To begin, we consider a simple case that will give some insight into the
general problem. Let P be an orthogonal polygon that is a histogram or a
‘Manhattan skyline’.. See Figure 4 for an example of such a polygon. It is
not hard to verify that P is 2-concave (using our characterizaton in the last
theorem).

Theorem 4.1 A largest 1-concave subpolygon of a Manhattan skyline can
be found in O(nlogn) time and O(n) space.

Proof: Partition the skyline P into rectangles by introducing a minimal
number of horizontal line-segments. It is easy to characterize these segments
— each segment may be regarded as the extension of some horizontal edge
of the skyline. It is easy to see that there are O(n) horizontal segments and
hence O(n) rectangles (called slabs) in the partition. We can form a slab tree
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Figure 4: A Manhattan skyline.

Figure 5: Segmenting the skyline.
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where each node corresponds to a slab, the root of the tree corresponding
to the (unique) bottommost slab and the children of a node v consists of all
those nodes whose slab sits directly on the slab corresponding to v. (Figure
5 should make the intent clear.)

We associate a ‘weight’ with each node of the tree: the weight of a leaf
is the area of the slab it represents. The weight of each internal node is
the sum of the area of its own slab and the maximum of the weights of its
children. The weight of the root gives the maximum area of a convex subset
of P. The computational effort can be seen to be O(nlogn) and the space
requirement is O(n).

5 Maximal 1-Concave Subpolygons

For brevity, a subpolygon of a polygon always means a 1-concave (or ortho-
convex) subpolygon of the polygon. (For emphasis we may still refer to a
‘1-concave (or ortho-convex) subpolygon’.) A subpolygon is mazimal if it
is not properly contained in another subpolygon, and it is mazimum if no
other subpolygon has a strictly larger area. (Thus ‘maximal’ means locally
maximum) We now prove two simple properties of maximal subpolygons
that can be exploited algorithmically.

Let D € {N, S, E,W} be any of the four compass directions, and let e
be any edge of a polygon P. If the vector normal to e and outward pointing
from P is in the direction D, then we say e is a D-edge. Two directions C
and D are called opposite if either {C,D} = {N,S} or {C,D} = {E,W};
if they are not opposite directions, then they are adjecent directions. For
adjacent directions C, D € {N, S, E,W }, the common endpoint of a C-edge
and a D-edge is called a CD-corner. Note that there are no CD-corners
if C and D are opposite; conversely if C and D are adjacent, then each
polygon has at least one CD-corner. (Note: It is possible for edges of all
four directions to meet at a point. In this case we may want to define the
notion of C'D-corners more carefully; this is not needed here and we leave
it to the reader.) A corner is convez if a sufficiently small disc about it
intersects the polygon in a convex set. For example, the Manhattan skyline
in Figure 4 has 1 S-edge, 14 N-edges, 8 W-edges, and 7 E-edges; it also has
8 convex NW-corners and 7 non-convex NW-corners, and a unique convex
SW-corner.

We call an edge e extremal if, in a clockwise traversal of the boundary of
P, the turning number increases both times that we pass the endpoints of
e. If e is an extremal E-edge, we call it an ‘easternmost’ edge; and similarly
for ‘northernmost’, etc. For instance, the Manhattan skyline of Figure 4
has 5 northernmost edges and 1 extremal D-edge for the each of the other
three directions D. It is not hard to verify that a polygon is 1-concave if
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Figure 6: A 1-concave polygon with empty SE-staircase.

and only if it has a unique extremal D-edge for each D € {N,S,E,W}. If
en and eg are the extremal N- and E-edges of a 1-concave polygon then
the boundary from ey to eg is monotonically nondecreasing in the southern
and eastern directions. We call this portion of the boundary (not including
en and eg) the NE-staircase. Note that the N E-staircase is empty if and
only if the northernmost and easternmost edges meet, if and only if the N E-
corner is unique. Similarly we can define the SW-staircase, etc. Therefore,
the boundary of a 1-concave polygon can be decomposed into the following
parts: the four extremal edges, and between any two adjacent extreme edges,
the ‘staircase’ connecting them. Figure 6 illustrates these definitions. Two
line segments are said to overlap if their intersection is a line segment of
positive length.

Lemma 5.1 Let C be a mazimal (1-concave) subpolygon of P and e be any
edge of C.

1. Then the edge e must overlap some edge of P.

2. Let e overlap edge f of P; then e is a D-edge of C if and only if f is
a D-edge of P.

3. If e is extremal, then e is contained in some (not necessarily extremal)
D-edge of P.

Proof: The proof of this lemma is easy: (2) is immediate. If either (1) or
(3) is violated, we can extend C to a strictly larger subpolygon. O

This simple lemma can be the basis of an O(n°logn) algorithm for find-
ing a largest 1-concave subpolygon of a polygon P: for each quadruple
(en,es,er,ew) of edges of P, where each ep is a D-edge of P, find in
O(nlogn) time the maximal 1-concave subpolygon C of P such that the
extremal D-edge of C is contained in ep, for D € {N, S, E,W}; this is done
by constructing in O(nlogn) time the ‘best’ staircase between ec and ep
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Figure 7: A maximal staircase.

for each pair of adjacent directions C, D. This can be done using the plane-
sweep technique; the details are given in the next section. In Section 7 we
improve this simple solution to the skull problem.

6 Computing the Maximal Staircase

Let P be a polygon, ey be an extremal N-edge of P, and e be an extremal
W-edge of P. Let S be a staircase joining ew and ey, an (ew, en)-staircase.
Note that there may be no such staircase. S is said to be mazimal, if there is
no other (ew, en)-staircase having a point to the northwest of S. See Figure
7 for an illustration of this concept. Hence, if there is an (ew, en)-staircase,
then there is a unique maximal one.

To compute the maximal staircase we use the plane sweep approach.
A horizontal line is swept.upwards from the bottommost endpoint of ew
until it reaches ey. From this viewpoint, candidate partial staircases from
ew appear, disappear, are modified, or are unaffected when edges of P are
met. In a maximal staircase each horizontal edge must meet a N-edge of
P and each vertical edge must meet a vertical edge of P. If this were not
so, an edge of the staircase could be moved either farther west or north.
Some of the difficulties in finding the maximal staircase are to be seen in
Figure 8. Non-convex parts of the polygon become obstacles to the tracing
out of the maximal staircase. For this reason we may have more than one
candidate partial staircase at each position of the sweepline. These are
shown in dashed lines in Figure &. Fortunately, from the sweepline’s point
of view each candidate staircase is a point and each obstacle is an interval.
Vertical edges have no effect on them, but new horizontal edges do. We
enumerate the situations that occur on meeting an horizontal edge below.
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Figure 8: The difficulty of finding a maximal staircase.
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Figure 9: On meeting a S-edge.

1. H is an S-edge.

(a) It equals the interval of an obstacle, that is, the obstacle is a hole.
Remove the staircase to its immediate right, if there is a staircase
to its left; see Figure 9(a).

(b) It adjoins an obstacle’s interval. This causes the obstacle to
shrink, but it has no effect on the neighboring staircases; see
Figure 9(b).

(c) It falls within an obstacle’s interval. This causes the obstacle to
split into two obstacles, but it has no further effect; see Figure

9(c).

2. H is an N-edge.
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Figure 10: On meeting a N-edge.

(a) It is disjoint from all obstacles; hence, it creates a new obstacle.
The staircase immediately to its left (if there is one) is cloned.
The clone follows H to its right endpoint and up the vertical edge
that is to be found there; see Figure 10(a).

(b) It adjoins an obstacle’s interval. This causes the obstacle to ex-
pand. If it is to the left of the obstacle, it terminates any stair-
cases that hit it. If it is to the right, then all staircases that hit it
are terminated, except for the leftmost one. This latter staircase
follows H to its right endpoint and up the vertical edge that is
to be found there; see Figure 10(b).

(c) It joins two obstacles into one; see Figure 10(c). Any staircases
that hit it are terminated.

(d) H is en. If there are staircases that hit it, take the leftmost one;
see Figure 10(d).

We can keep track of obstacles, that is intervals, and staircases, that is,
points, using two balanced search trees. The case analysis above demon-
strates that we need to insert and delete intervals, perform intersection
queries with intervals, insert and delete points, and perform range queries
with points. Since, the obstacle’s intervals are disjoint we can represent them
by their endpoints in a search tree. Similarly, we can represent staircases as
points in a second search tree. This ensures logarithmic performance, if the
trees are balanced. There are two remaining subtleties. First, it appears
that arbitrarily many staircases can be terminated in Case 2. However, be-
cause there can be at most n staircases introduced (one for each horizontal
edge), there can be at most n staircases terminated during the algorithm.
This contributes O(nlogn) time to the running cost. Second, each partial
staircase needs to be kept in its entirety. This appears, at first glance, to
require O(n?) space; however, we keep only one copy of common portions
of staircases. This ensures that O(n) space is sufficient for all staircases.
There remain a number of technical details that are left to the interested
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reader, for example, the algorithm has to take into account the obstacles that
already exist when the plane sweep begins.
To summarize, we have:

Theorem 6.1 Given a polygon P with a total of n edges and two edges ew
and ey in P, the mazimal (ew, en)-staircase can be found in O(nlogn) time
and O(n) space.

7 Algorithm for Maximal 1-Concave Subpolygon

Let P be an arbitrary but fixed polygon in this discussion. We now describe
an algorithm to compute the area of a maximal area 1-concave subpolygon
of the polygon P. It should be relatively straightforward to convert our de-
scription to an algorithm that actually computes a maximal area 1-concave
subpolygon.

As in Section 4, we introduce a minimal number of horizontal line seg-
ments sufficient to partition P into rectangles that we call slabs (of P). A
slab B is tmmediately below another slab B' if the S-edge of B’ overlaps the
N-edge of B. The reflexive transitive closure of this relation is the below
relation. The inverse of the ‘(immediately) below’ relation is the ‘(imme-
diately) above’ relation. Again, we can form a directed graph with nodes
representing the slabs and directed edges from each slab to those slabs imme-
diately below it. This digraph is a generalization of the slab tree previously
defined for the Manhattan skyline. Our algorithm processes one slab at a
time, starting from slabs that have no slabs above them, in the order of any
topological sort of the digraph.

A simple but useful concept is that of ‘illumination’. Let X be any set
of points within P. A point p is said to be illuminated by X (from below)
if there exists a point ¢ € X vertically below p such that the line-segment
[p, q] lies in P. We can similarly talk of p being illuminated from the west
if ¢ is west of p, etc. Typically, X = B is a slab and the part illuminated by
X from below is thus a Manhattan skyline, denoted Mg, with B C Mp as
its ‘base’. Now let B be fixed and consider a point p ¢ B in the boundary
of Mp. If p is not in the boundary of P then p must be in some eastern or
western edge of Mp. A maximal connected set of such points forms a line-
segment called a window of Mg. The window is either eastern or western
depending on the edge of Mp that contains it. Let w be any window. A
subpolygon C is said to abut a window w if the easternmost or westernmost
edge of C overlaps w. The non-illuminated component of C' that abuts a
window w is called the pocket outside the window w.

Let M C P be a Manhattan skyline obtained by illumination from its
base B. We will associate an induced slab tree Tp with M where the induced
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Figure 11: An eastern flank.

slab tree is similar to, but not necessarily identical to the slab tree associated
with M in Section 4. More precisely, Tg is induced by P in the sense that
each slab of T'p has the form M N S, where S is a slab of P. Therefore Tg
is in general a refinement of the slab tree defined for M in Section 4, since
what would be a single slab in the slab tree may be split into a number of
slabs in the induced slab tree. It is convenient to speak of a node of Tg
interchangeably with the slab it represents. With each node v in T, we
associate the following values

a(v), B(v),

and
€(v), wi(v), (1=10,1,2,3)

defined as follows:

e An eastern flank of v is an ortho-convex subpolygon C C M such that
C has unique NW-, SW-, and S E-corners, with the NW-corner lying
in the ray projecting vertically downwards from the S E-corner of v.
€o(v) is the area of the largest eastern flank of v. Note that the largest
eastern flank of v is unique. See Figure 11 for an example of an eastern

flank.

e An eastern wing of v is an ortho-convex subpolygon C C P such that C
has unique NW- and SW-corners and has its NW-corner lying in the
ray projecting vertically downwards from the N E-corner of v. €;(v)
is the area of the largest eastern wing of v. Unlike the flank above, C
need not be contained in M. Note that since an eastern flank is also
an eastern wing, we have €p(v) < €1(v). This is illustrated in Figure
12.

e Suppose v abuts an eastern window w. A hidden eastern wing of v is
an eastern wing that is additionally restricted to lie within the pocket
outside w. Now define e3(v) as the #rea of the largest hidden eastern
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Figure 12: An eastern wing.

hidden

Figure 13: Au iudden eastern wing.

wing of v; if the window w does not exist then define €;(v) = 0. Clearly
€2(v) < €1(v). This is illustrated in Figure 13.

An eastern chamber of v is an ortho-convex subpolygon of C C P such
that C has a unique SW-corner and its westernmost edge contains the
eastern edge of v. e3(v) is the area of the largest eastern chamber of
v. Note that a chamber is 1-concave and it is necessarily contained in
a pocket (and thus completely hidden); again e3(v) = 0 if v does not
abut an eastern window. This is illustrated in Figure 14.

wi(v), for i =0,...,3, is the western analogue of ¢;(v).

B(v) is the area of the ‘rectangle below v’, that is, the unique largest
rectangle in M whose N-edge coincides with the N-edge of v; see
Figure 15.

For lack of a better word, an ortho-convex subpolygon C is called
v-centered if it contains the rectangle R below v and C — R has two
components that are either both wings or a wing and a chamber. Note
that the components can be empty and it is necessarily the case that
one component is eastern and the other western. Finally, a(v) is the
area of a largest v-centered ortho-convex subpolygon.



The Orthogonal Convex Skull Problem

chamber

1

Figure 14: An eastern chamber.

rectangle beiow v

Figure 15: Rectanglé below v.
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A stage of the algorithm is defined as the period during which a particular
slab is being processed. At each stage of the algorithm, we have a set B of
base slabs of P such that

(a) every slab processed up to this point is above some slab in B and

(b) for every unprocessed slab B that is ready to be processed next, if
B' is immediately above B, then B' € B.

(Note: The slabs in B need not be pairwise incomparable with respect
to the ‘above/below’ relation. To see this, suppose B in B has two slabs B’
and B" immediately below it. After processing B', we now have B' in B
but we still cannot remove B from B until B" is processed.) For each base
slab B, we store the induced slab tree Tp. At each node v in Tg we have
the values ¢;, w;, etc., described above. We claim:

Lemma 7.1 By the time all the slabs of P are processed, the area of a
mazimal area ortho-convez subpolygon of P is equal to the largest a(v) en-
countered over the course of the algorithm.

Proof: Suppose P* is a maximal area ortho-convex subpolygon. Consider
those points of P* that are illuminated by the southernmost edge of P*.
Among these, the points with the highest altitude form a horizontal line
segment ¢ on the boundary of P*. Define R to be the largest rectangle in
P* whose N-edge coincides with o . Let B be the slab of P whose S-edge
contains the S-edge of R. Consider the induced slab tree Tp constructed
during the algorithm: if v is the node of Tp whose N -edge coincides with
the N-edge of R (note that v is well-defined) then we see that P* is indeed
a v-centered polygon. So by definition, a(v) is the area of P*. O

It remains to show how the values described above can be maintained. The
set of values {eo(v),wo(v),B(v) : v € Tp} are straightforward to compute
in linear time from Ts. Just do a horizontal sweep from the base of the
Manhattan skyline upwards. Consider how to determine €g (v). Assume the
sweepline is at level y = yo. If the line y = yo intersects the Manhattan
skyline in k > O sections then we must maintain m different values corre-
sponding to k possible forms of (staircase defining) the eastern flank. Next,
when the sweepline rises to the next level, the number of sections will in-
crease from k to some k' > k. There are also k' new values of € to be
computed, but they are easily done using the k previous values. Note that
€i(v) and w;(v), for ¢ = 2, 3, are values that depend only on the pockets out-
side the windows of the Manhattan skyline: for this reason we call these the
hidden values. Assuming these are (recursively) available, we can compute
the rest of the values as shown next:

Lemma 7.2 Let Tg be the induced slab tree rooted at B. If the values
e2(v), e3(v), wa(v), and ws(v), for each node v in Tp, are available, then all
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the values for €;,w;, and o can be computed in O(n) time.

Proof: The value €;(v) (and w;(v) similarly) can be computed by the fol-
lowing formula:

€1(v) = maz{eo(v), e2(v), e1(v') + 6(v)}

where v' is the node immediately below v, §(v) is the area of the (possi-
bly degenerate) rectangle whose NW-corner (respectively N E-corner) co-
incides with the S E-corner (respectively N E-corner) of v (respectively v')
and whose S-edge lies in the S-edge of B. (If v = B, then v' is undefined,
but we let €;(v') be 0 in the formula.) To justify the formula, note that the
maximum eastern wing is either fully illuminated (¢; = €) or is contained
in the eastern pocket abutting v (€1 = €2) or is entirely south and east of
the S E-corner of v. This last case gives a recursive expression in terms of
€1(v') and the area §(v) described above.
The formula for a(v) is:

a(v) = B(v) + maz{wi(v) + e2(v), w2(v) + €1(v), w1(v) + e2(v)}.

It follows almost immediately from the definition of a(v). Again we have
three cases for the maximum v-centered subpolygon P*: the first case is
where the northernmost edge of P* is in an eastern chamber of v, the sec-
ond case is where the northernmost edge is in a western chamber, and the
last case is where the northernmost edge is (partly) illuminated. O

Our next task is to show how to update the hidden values ¢;, w;, fori = 2, 3,
assumed in the above lemma. Updating is necessary whenever the windows
of the Manhattan skyline change, more precisely, whenever a new window
is formed. Suppose B’ is the new base being processed in the current stage.

(a) The current slab B’ is immediately below a single base B € B. Then a
new eastern window is formed if and only if the eastern edge of B is
to the east of the eastern edge of B'. For simplicity, let us first assume
that no new western window is formed. Let w be the new eastern
window (w is aligned with the eastern edge of B'). Let vq,...,v; be
the slabs of Tp that intersect w, where v; is immediately above v;;;
and vy = B. Let w split v; into a western slab u; and an eastern u].
The tree T'g is then split into a western T and a eastern T'. Note that
the new slab tree T is just T appended with a new root B'; also T
will be useful for the computation to be described next but it can be
discarded after that. It is not hard to see that using any reasonable
representation (such as pointers for edges) for Tg, we can construct 7
and T’ from T'p in linear time. Clearly to compute the hidden values
of T it is sufficient to compute e3(u;) and €3, (u;), fori=1,... k.
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Figure 16: Formation of a new eastern window.

Consider the Manhattan skyline corresponding to T (this is just the
part illuminated by u}). For each v in T", the values ¢;(v), for i = 2,3,
are intact from Tp. If we ‘seal’ off the window w (that is, treat w as if it
were part of the boundary of P), then the values of w;(v), for { = 2,3,
are also available for all v € T', because these values are the original
values plus the area of a suitable rectangle. By the previous lemma,
the other values (a(v), €o(v), €1(v), etc.) can be computed from ¢; and
wq, for £ = 2,8, in linear time. It is easy to see that

e2(us) = B(ui) + ex(w).

To determine es(u;), we proceed as follows. For each v € T', it is
easy to see that the largest western flank P of v abuts the window
w. Furthermore, the northern endpoint of P Nw is the NW-corner of
some uj, for j = 1,..., k: we say v belongs to u in this case. If v has
an empty western flank then v is one of the u;- and we say v belongs

to itself. We claim that e3(u;) is the maximum value of the expression

wo(v) + B(v) + maz{e1(v), es(v)} (1)

where v ranges over the nodes belonging to u} for some j < ¢ (Note
that ¢; and e; are intact). To see this, let P* be a maximum east-
ern chamber of u;. The southernmost edge of P* is contained in the
southern edge of u}. As in the proof of Lemma 6, consider the points
illuminated by the southernmost edge of P*: the subset o of these
points with the highest altitude forms a horizontal segment. Let v be
the node of T whose northern edge is o (this is well-defined). Clearly
v belongs to some u}; with j <. The area of P* is given by equation
(1) for this choice of v, proving the claim. Computationally, it is easy
to partition the nodes of T' according to the u] that they belong to.
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Then for each ¢, determine the largest value of expression (1) among
those v belonging to some 7 < 1. All this can be done in linear time.

This completes the discussion of updating the hidden values of each
slab v in the case where one new window is formed when we process
B

(b) The current slab B' is immediately below a single base slab B in B,
but now the E-edge of B’ is west of the E-edge of B, and the W-edge
of B' is east of the W-edge of B (so a new eastern and new western
window are formed). Now we have to split the slab tree T into three
trees T" T, and 1" corresponding to the eastern, central and western
portion of the split, respectively. We can apply the previous method
using T" to compute the ¢; values for the new eastern window, and T
for the western window.

(c) The current slab B' is immediately below a single base slab B in B, but
its N-edge contains the S-edge of B. This case is also trivial.

(d) The current slab B’ is not below any other slabs. This case is trivial.

(e) The current slab B’ is immediately below two or more base slabs in 8.
At most two windows are formed and these can be treated as in (a).

We have now completely described the algorithm and conclude with our
main result.

Theorem 7.3 A mazimal area 1-concave subpolygon of a simple orthogonal
polygon with n vertices can be found in O(n?) time.

Proof: Using the above algorithm, there are O(n) slabs to process and each
slab can be processed in linear time. The algorithm as described only keeps
track of the area but it is not hard to modify them to remember the actual
subpolygon with the remembered area. Alternatively, we can proceed in
two stages as follows: In the first stage, proceed as described except that we
also keep track of the extremal N-, E- and W-edge of the various maximum
1-concave polygons (flanks, wings, etc.) connected with each of the numbers
€i(v), etc. At the end of the first stage, we have the extremal edges of the
maximum subpolygon. It is now quite easy to find the connecting staircases
between adjacent extremal edges in O(nlogn) time. O

Finally, if we consider the convex skull problem for nonsimple polygons,
we find that the above approach still works. Indeed, the only time our
algorithm must take account of holes is when finding a maximal staircase,
see Section 6. However, even there the algorithm performs correctly within
the same time bounds. Therefore, we conclude that the following theorem
holds.
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Theorem 7.4 A mazimal area 1-concave subpolygon of an orthogonal poly-
gon with n vertices can be found in O(n?) time.
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