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ABSTRACT

A number of problems in computer graphics reduce to finding
approximate real roots of quartic and cubic equations in one
unknown. Various solution techniques are discussed briefly.
The algorithms for analytic solution are discussed at length.

Methods are presented for controlling round-off error
and overflow in the analytic solution of such equations. The
solution of the quartic requires the solution of a subsidiary
cubic equation. The use of the cubic derived by Neumark is
shown to be the most stable of the techniques published for
solving quartics. An algorithm based on this is derived which
gives maximum stability.

An operation count of resulting algorithm is presented.
Films have been made of animation computed in single preci-
sion floating point on a PDP/11/34 demonstrating the effects
of before and after the use of the techniques described in the

paper.
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Introduction

This article addresses the problems of solving quartic and cubic
equations in computer graphics.

Quartic equations need to be solved when ray tracing 4th degree sur-
faces e.g., a torus. A number of problems in computer graphics which
involve the use of cubic splines require the solution of cubic equations in
computer graphics.

Quartics also need to be solved in a number of problems involving
quadric surfaces. Quadric surfaces (e.g. ellipsoids, paraboloids, hyper-
boloids, cones) are useful in computer graphics for generating objects wih
curved surfaces (Badler, 1979). Fewer primitives are required than with
planar surfaces to approximate a curved surface to a given accuracy
(Herbison-Evans, 1982).

Bicubic surfaces may also be used for the composition of curved
objects. They have the advantage of being able to incorporate recurves:
lines of inflection. There is a problem, however, when drawing the outlines
of bicubics in the calculation of hidden arcs. The visibility of an outhline
can change where its projection intersects that of another outline. The
intersection can be found as the simultaneous solution of the two pro-
jected outlines. For bicubic surfaces, these outlines are cubics, and the
simultaneous solution of two of these is a sextic which can only be solved
by iterative techniques. For quadric surfaces, the projected outlines are
quadratic. The simultaneous solution of two of these leads to a quartic
equation.

One simplifying feature of the computer graphics problem is that
only the real roots (if there are any) are required. The full solution of the
quartic in the complex domain (Nonweiler, 1967) is an unnecessary use of
computing resources. Another simplication in the graphics problem is
that displays have only a limited resolution, so that only a limited number
of accurate digits in the solution to the quartic are required. A resolution
of 1 in 1,000,000 should be achievable using single precision floating point
(32 bit) arithmetic, which is more than adequate for most displays.

Iterative Techniques

Roots can be obtained by iterative techniques. These can be useful in
animation where scenes change little from one frame to the next. Then
the roots for the equations in one frame are good starting points for the
solution of the equations in the next frame. There are two problems with
this approach.

One is storage. For a scene composed of n quadric surfaces,
4n(n —1) roots may need to be stored between frames. A compromise is
to store pointers to those pairs of quadrics which give no roots. This,
incidently, can be used to halve the computation for these quadrics within
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a given frame, for if quadric a has no intersection with quadric &, then b
will not intersect a.

The other problem is more serious: it is the problem of deciding
when the number of roots changes. There appears to be no simple way to
find the number of roots of a cubic or quartic. The most well-known algo-
rithm for finding the number of real roots, the Stiirm sequence, involves
approximately as much computation as solving the equations directly by
radicals (11). Without information about the number of roots, iteration
where a root has disappeared can waste a lot of computer time, and
searching for new roots that may have appeared becomes difficult.

Even when a root has been found, deflation of the polynomial to the
next lower degree is prone to severe round-off exaggeration (Conte and de
Boor, 1980).

Thus there may be an advantage in examining the techniques avail-
able for obtaining the real roots of quartics and cubics directly.

Quartic Equations

Quartics are the highest degree polynomials which can be solved
analytically in general by the method of radicals i.e., operating on the
coefficients with a sequence of operators from the set: sum, difference,
product, quotient, and the extraction of an integral order root. An algo-
rithm for doing this was first published in the 16th centry (Cardano,
1545). A number of other algorithms have subsequently been published.
Many use the idea of first solving a particular cubic equation, the coeffi-
cients of which are derived from those of the quartic. The root of the
cubic is then used to factorize the quartic into quadratics, which may
then be solved. The question arises: which algorithm is for best to use on
a computer to finding the real roots to the limited accuracy needed in the
computer graphics?

Very little attention appears to have been given to a comparison of
the algorithms. They have differing properties with regard to overflow
and the exaggeration of round-off errors. Where a picture results from
the computation, any errors can be seen. Figures 1, 2, and 3 show a com-
puter bug composed of ellipsoids with full outlines, incorrect hidden out-
lines, and correct hidden outlines, respectively. In computer animation,
the flashing of incorrectly calculated hidden arcs is most disturbing.

The algorithms may be classified according to the way the coeffi-
cients of the quartic are combined to form the coefficients of the subsidi-
ary cubic equation. For a general quartic equation of the form:

zt+azd+ b2’ +ex+d =0

the subsidiary cubic can be one of the forms:
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(a) Ferrari-Lagrange solution (Turnbull, 1947)

yi+by?+ [ac—4d]y+ [a2d+c2—4bd] =0
(b) Descartes-Euler Solution (Strong, 1859)
3 a? ab 3at ac
3, |p — 3 g2l 24 |22 _ 20 2 b 32 ac _
v s VTS T evtY e T s T 7O

(¢) (Neumark, 1965)
y®—2by?+ (b2 + ac —4d )y + (c?—abe ad) =0

The casual user of the literature may be confused by variations in
the presentation of quartic and cubic equations. Sometimes, the highest
degree term has a non-unit coefficient. Sometimes the coefficients are
labelled from the lowest degree term to the highest. Sometimes numeri-
cal factors of 3, 4 and 6 are included. There are also a number of trivial
changes to the cubic caused by the following:

if v+ py’+ay+r =0
then B—pzltqz—r =0 for z=—y
and 224 2p2°4492+8r =0 for z =2y

None of these changes affect the stability of the algorithms.

Of the three subsidiary cubics, that from Ferrari’s algorithm has the
least computation in the derivation of the coefficients of the cubic. This
is important not only for speed, but because every addition or subtraction
can cause round-off exaggeration by cancellation. For this reason,
attempts were made initially to use Ferrari’s method for finding quadric
outline intersections (Herbison-Evans, 1983). Unfortunately, the coeffi-
cients of the subsequent quadratics depend on two intermediate quanti-
ties, ¢ and f , where

~
(3]
|
N
<
™
|
o

The signs of each of the quartic coefficients a,b,c,d and the cubic

P ?
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signs. Of these, only 14 can be clearly solved in a stable fashion for e and
f by the choice of 2 out of the 3 equations involving them. In the
remaining 18 cases, the most stable choices are unclear.

More success has been obtained in stablizing the algorithm of Neu-
mark. In this, the coefficients of the quadratic equations are obtained via
parameters ¢g,G,h and H, where:

a:l:\/a2—4y
Grg = EEE
b—y a{b—y)—2¢c
H,h =
2 * 2Va?—4y

Any cancellation due to the + signs can be eliminated by writing:

V a2-—4y

a
G,9 = g) £ go; Where g1=7%5 9= 5

H,h = hy+h, where h, ="b—2:l s ho= Val—du
a " —43y

and using the identities

Gg=y
H-h=d

Thus if g; and g, are the same sign, G will be accurate but g¢
will lose significant digits by cancellation. Then the value of g can be
better obtained as

=y/G

If g, and g, are of opposite signs, then g will be accurate, and G
better obtained as

G=y/9

Similarly, A and H can be obtained without cancellation from
hy ,hyand d.

The computation of g, and h, can be made more stable under
some circumstances using the alterative formulation:
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Furthermore

ah,—c

TNy P-4
Thus g, and hy can both be computed either using
m = (b—y)—4d
or using
n = a2—4y
If y is negative, n should be used. If y and d are positive and b is
negative, m should be used. Thus 18 of the 32 sign combinations give
stable results with this algorithm. For other cases, the errors of each of
these expressions can be assessed by summing the moduli of the addends:
em = b2+ 21by | + y2+41d|

e, = a’+4 14yl

Thus, if

Im-e, 1> In-e,|

then m should be used, otherwise n is more accurate.

The Cubic
Let the cubic equation be

v+ +r=0

The solution may be expressed (Littlewood, 1950) using:

u=gq-p .
_,._ba 20"
V=TTt Yy
and the discriminant:
3
u 2
= 4 —
w 3 +v
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If this is positive then there is one root, y , to the cubic, which may
be found using

3 w-—-v
2

3

_ X _r
3 3

w—v

In this case, the quartic has two real roots.

This formulation is suitable if v is negative. The calculation in this
form can lose accuracy if v is positive. This problem can be overcome by
the rationalization:

3
2

'w+v

w—v w2—02_[u

2 =2(w+v)_ 3

giving the alternative formulation of the root:

y = 31\ VRN -p
2 3 w+v 3

A computational problem with this algorithm is overflow while calcu-
lating w , for

0(w) = 0(p°) + 0(¢°) + 0(r?)

= 0(a'?) + 0(b%) + 0(c®) + 0 (d®)

Before evaluating the terms of w , it is useful to test the coefficients
a,b,c,d,p,q,s, against the appropriate root of the maximum number
represented on the machine (‘max’). The values of v and v should simi-
larly be tested. In the event that some value is too large, various approxi-
mations can be employed: e.g.

3\/max

if 27 -
i p 1> 5

LYy~=-—-p,

if lv|>Vmax : y ~= Vo,

3\/_—— 3\/1
if |u|>3-—;n—2}2(-:y~=u~ 34.

If the discriminant w is negative, then there are 3 real roots to the
cubic, and either O or 4 real roots to the quartic equation. The roots to
the cubic may then be obtained via parameters s,t and k:
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s =V—-u/3
t = —v/2s°

k= -;)— arccos (t)

giving

s.cos(k)—p/3

Y1
yp = s(—cos(k) + V3. sin(k)) /2 — p/3
ys = s(—cos(k)— V3. sin(k))/2 — p/3

Note that if the discriminant is negative, then u must also be nega-
tive, guaranteeing a real value for s . This value may be taken as posi-
tive without loss of generality. Also, k will lie in the range 0 to 60 ° | so
that cos(k) and sin(k) are both positive.

The largest root of the cubic gives the most stable solution to the
quartic if it and & are both positive.

Unfortunately, & = p in Neumark’s algorithm, so although y, is
the largest root, it may not be positive. If & and d are both negative, it
may be advantageous to use the most negative root: y; .

The functions sine and cosine of arccos(t)/3 may be tabulated to
speed the calculation (Herbison-Evans, 1983) . Sufficient accuracy
(1 4n 107) can be obtained with a table of 200 entries with linear interpo-
lation, requiring 4 multiplications, 8 additions and 2 tests for each func-
tion. When ¢ is near its extremes, the asymtotic forms may be useful:

if t~=1, cos(k) ~= (8+1)/9

sin(k) ~= V2(1-t)/9

if t~=-1, cos(k) ~= 1,4_,+____._'t6+1
sin(k) ~= \gg - 2(é+1)

If the discriminant, w , is expanded in terms of the coefficients of
the cubic, it has 10 terms. Two pairs of terms cancel and another pair
coalesce, leaving 5 independent terms. In principle, any pair of subsets of
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these may cancel catastrophically, leaving not only an incorrect value but
even an incorrect sign for the discriminant. This problem can be allevi-
ated by calculating the 5 terms separately, and then combining them in
increasing order of magnitude (Wilkinson, 1963). Better still, when solving
quartics, the discriminant should be expanded in terms of the quartic coef-
ficients directly. This gives fifteen terms, which can be sorted by
modulus, and combined in increasing order.

Conclusion

There have been many algorithms proposed for solving quartic and
cubic equations, but most have been proposed with aims of generality or
simplicity rather than error minimisation or overflow avoidance. The
work described here gives a low rate of error using single precision float-
ing point arithmetic on a PDP11/34 for the computer animation of qua-
dric surfaces.

The work may be summarized in the following table of operation
counts:

additions and  multiplications  square and  tests
subtractions and divisions cube roots
cubic best 8 11 2 8
worst 24 30 2 14
quartic 18 27 1 12
quadratics 6 8 2 8
(X 2)
total best 38 54 7 36
worst 54 73 7 42

A further comment may be useful here concerning the language used
to implement these algorithms . Compilers for the language C often per-
form operations on single precision variables (‘float’) in double precision,
converting back to single for storage. Thus there might be little speed
advantage in using ‘float’ compared with using ‘double’ for these algo-
rithms. Fortran compilers may not do this. Using a VAX8600, the time
taken to solve 10,000 different quartics was 6.2 seconds, for Fortran single
precision (using f77), 15.5 seconds for C single precision (using cc), and
16.1 seconds for C using double precision.

A further check on the accuracy can be done at the cost of more
computation. Each root may be substituted back into the original
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equation and the residual calculated. This can then be substituted into the
derivative to give an estimate of the error of the root or used as a
Newton-Raphson correction.
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A polyellipsoid figure
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figure 2 A polyellipsoid figure with
hidden arcs calculated using a
simple quartic solver



figure 3
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A polyellipsoid figure with
hidden arcs calculated using
the quartic solver described
in this article



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

