EbARTMENT

EPARTMENT
EPARTMENT

aaalal

MBU
MPU

WAT

S &
SITY O

IVER
VER
VER

\
J

Using B-Splines

for
Re-Sizing Images

ATERIGE €3
F WATERLOO COMPU

R. Victor Klassen
Richard H. Bartels

CS-86-55

November, 1986

Using B-Splines for Re-Sizing Images

R. Victor Klassen

Richard H. Bartels

University of Waterloo
Department of Computer Science
Computer Graphics Laboratory
Waterloo, Ontario
N2L 3G1

Abstract

Raster-image pixels are used as control vertices to
construct B-spline surfaces. The resulting surfaces
may be sampled at different densities to provide raster
images at different resolutions. This can be made
efficient, and it has good filtering behaviour. When
the re-sampling density is non-uniform, various
distortion effects can be achieved.

Contents

Introduction
SPHNES ..eieiii
DOMAINS ceiuiviiiiiiiiiiiiienenierirecrtnenrenenenrrenreasarertasnsarssnessasans
Precomputing the basis functions
The Enlarging Algorithm
Reducingccoiiiiiiii
Non-Uniform Sampling
SUMIMIATY .oviitiiiiiiei ettt tee et e st e s e e e s e anes
Acknowledgements
References

..
...
R N N A A AR]
...

..

...

(ii)

Introduction

Consider the problem of re-sizing an image, which we assume to be
presented as a raster file of some width and height that is to be reproduced at
some new width and height. One could merely use pixel replication for
enlargement — this is implemented in hardware on some frame buffers — and
subsampling for reduction. The problem with such simple techniques is that
they may leave the new image much more aliased than was the original. It
would be preferable to provide some filtering while changing the size of the
original image.

One can think of the pixel values in the original raster file as a discrete
sampling, V; ; =V (x;,y;), of a height field, V (x ,y), which for lack of
other information will be assumed continuous between the sample points. In
effect, by making this assumption we ignore the existence of edges in the
image, but as our examples will show, the consequences of doing so are not
serious. The basic idea to be presented is that of constructing a spline surface
from the pixel data to “‘recover,” approximately, the original height field as a
spline surface S (x ,y). This will provide us with a representation that can be
resampled at any density, giving a new picture of greater or lesser detail than
the original raster image.

It is possible to use interpolation to construct the spline surface. One
problem with doing this, however, is that interpolation is computationally
intensive. Another is that maxima and minima of an interpolating spline are
not necessarily bounded by the maxima and minima of the sample points,
which can cause problems when pixel values exist at the upper and lower limits
of the displayable range. In addition to this, for any sufficiently smooth
interpolation, the value of any given pixel has an influence on the entire
surface, which may not be desirable.

The alternative that we propose involves using the pixel values as control
vertices to construct the surface from tensor-product B-splines. Not only is this
- a fast method of approximation, but it also is local, variation diminishing, and
possesses the convex hull property. The locality guarantees that individual pixel
values have an influence over a restricted area of the spline surface; the convex
hull property guarantees that each surface value will fall between the extremal
pixel values, and the variation-diminishing nature of this method of
approximation will provide some damping of high-frequency components in the
image during re-sizing.

2 R. Victor Klassen, Richard H. Bartels

More precisely, the surface can be constructed and sampled in time
proportional to the sum of the sizes of the input and output images. The time
requircd to compute a sample value in a region of the surface influenced by a
given number of pixel values is proportional to that number. The number of
pixels of the original raster that influence a region is given by the orders of the
B-splines making up the tensor product. For the typical choice of bicubic
splines, for example, no point on the surface is influenced by more than 16
pixels, arranged in a 4x4 pattern. The variation-diminishing property implies
that high frequency information in the original image is reduced. Indeed, if the
image is “enlarged” by a factor of one, the result is the same as filtering using
the repeated box kernel of [Heckbert1986].

As in the work just cited, the method presented here can be generalised to
arbitrary filter kernels of finite size, in place of using B-splines as filter kernels,
though some of the properties of B-splines will be sacrificed. The summed-area
method used in the cited work reduces the cost slightly over that in our
proposed technique, however space limitations can make that method
intractable. In rendering and processing very large (4096x4096) images,
scanline algorithms are the only choice, since the entire image does not fit in
the memory of most processors in common use.

Splines

A B-spline curve of order k with knots at integral values | & | of the
parameter 4 may be computed from the following formula:

k-1 '
S(u)=2b—i(u)vl_izj_i+1a ey
i=0
where
u =i —|a],
and where the functions b _; are the segment polynomials of the uniform
B-splines of order k ; e.g., in the case when k = 4 (cubics):
b_ou) = -}; u3

b_1u) = %(1+3u +3u?—3u3)

Using B-Splines for Re-Sizing Images 3

b_u) = %(4—-6u2+3u3)
b_3(u) = %(1—314 +3u?—ud).

The notation follows that used in [Bartels1987]. In two dimensions the above is
simply iterated for the second dimension to produce a tensor-product surface.
A different order, £, may be used for the second dimension, yielding:

e -1
SWw)= S by) S b)V yaiarisiiers @

j=0 l=0

where v = v — | v]. In this way the bivariate spline, S , is defined over a
rectangular domain of much the same extent as the domain of V. §
approximates the pixel values, V, , at integral values of its arguments and it
fills in the _gaps between the plxel values in a smooth manner (C =2 with
respect to ¥4 and C £=2 with respect to v). Changing the size of an image is
achieved by sampling S at any grid-oriented sampling of values for ¥ and v,
yielding a new raster image V '; | je

Equation (2) can be viewed as a one-dimensional formula with “derived”
control vertices:

k-1
E b—l(u)W[uJ-z+1
i =0
where
L -1
Wigl-iv1= X2 b—J(v)V[uj—1+1[J-j+1
J=

If the usage of this formula is on a scanline-by-scanline basis, as it is in our
proposal, these derived control vertices need be computed only once per
scanline.

4 R. Victor Klassen, Richard H. Bartels

Domains

Control-vertex approximation by B-splines allows some freedom in selecting
end conditions; e.g., see [Bartels1987]. We have chosen to fix the intensities
around the border of the new image to the same values as in the original image.
This dictates that the bordering pixels be treated as if they were replicated
outward to infinity (or as far as the spline of the chosen order requires). Using
these end conditions, it is desirable that the input and output images be aligned
at both ends (symmetrically). Arranging to get the end conditions met correctly
is subtle enough that it is worth discussing here in detail. To simplify, we will
use the one-dimensional setting and splines of order X . The discussion will be
incorrect when k = 1; i.e., for constant splines (stcp functions). However,
since this corresponds to subsampling and pixel replication, there is no need to
use spline techniques.

Suppose that the input raster consists of m pixel values
Vo, .. -V,

The raster is considered to have an extension by k-1 pixels to the left of the
range, for which the pixel value V (will be replicated, and to have an extension
by k-1 pixels to the right of the range, for which the pixel value V,, _1 will be
replicated. On each interval i <u <i +1, the value of S will have the
value

bol@—i)Vigi+ - +b 1@ =) Vigy2
When 4 =i, b _g will be zero, and the spline will be an average of the
values V; , ..., V;_p 47 Similarly, when & =i 41, b_; ;1 will be
zero, and the spline will be an average of the values V; .1, . . ., V; 3.

Because of the extensions to the left and right, this will have the result of
making S equal to V3 when ¥ =0 and equal to V, _1; when
u = m +k —3. This determines the range of # values over which the spline
S will approximate the original m pixels. The parameter & is considered to
vary from O on the left to m +k —3 on the right to cover the distance from V
to V,, _1. In Figure 1 below we take the specific case of m = 7 and k =4

(a cubic spline). Note that the range of & correspondingto Vg, . . ., Vgis
0<u <8.

Using B-Splines for Re-Sizing Images 5

VO 'VO Vo VO V1 Vz V3 V4 V5 V6 V6 V6 V6

| NN

-3 2 -1 0 1 2 3 4 5 6 7 8 9

Figure 1

Precomputing the basis functions

Since S is only to be evaluated at a finite number of discrete values of its
arguments, clearly b _; and b _ j may be precomputed at those values of
u=u) v =v0)for which § is required to produce the new image V '. If
b_; orb_; were only required once for a particular value of u) or v (),
no saving would be obtained. For each row and column of the output image,
however we expect the same values of the basis polynomials to be re-used, so
we consider how they may be precomputed.

In the one dimensional case, if V is given by m pixel values, yielding a
range of 0 to M = m +k —3 for u as described above, and if V ' is to be
defined on N points, then u (") will take on a well defined set of values:

(N —1)
(M —1)

u(’)=frac[r] r=01,---N —1. (3)

Unless N — 1 and M — 1 are mutually prime, u (") will take on less than
N — 1 distinct values. For the purposes of illustration, suppose that we
continue using the above example with 7 input pixels and cubics, yielding the
effective range of 9 pixels for the spline, S , and suppose 11 pixcls are required
for output, as in Figure 2 below. We require that the Oth output pixel be
aligned with V , and that the 10th output pixel be aligned with V ¢, which is
taken on when &4 = 8. It follows that output pixels 0,1,2,3... are aligned with
values 0, 4/5, 8/5, 12/5... of u .

6 R. Victor Klassen, Richard H. Bartels

Figure 2

In this case the only values of u (r) which occur are 0/5, 4/5, 3/5, 2/5 and
1/5. In general, the wvalues of u (r) may be found as follows: let
G =GCD(M—1,N—-1); in our example G = 2. Then there are
(N —1)/G , in this case 10/2 = 5 distinct values of u) evenly spaced
through the [0 , 1) interval.

In the one-dimensional case this precomputation gives no improvement
over evaluating the segment polynomials on the fly; however, in the two-
dimensional case each value of u \"/ will occur on every row, and every value
of v &) will occur for every column. Here O(N_ N;) multiplications will be

spared for an N xN; output image at the cost of O(Nl7 + N)
multiplications at the start.

At this point it is interesting to note that the above computation does not
depend on M being less than N . This implies that the same computation may
be applied to image reduction as is applied to enlargement. Aliasing artifacts
may still result from the subsampling involved, but the reduction capability is
available “free” and, if a spline of order higher than 1 is used, the aliasing is
less than that obtained by using a simple subsampling tcchnique, since the
averaging window is more than one pixel wide. Aliasing may be further
reduced using the stage-wise reduction method described later.

Using B-Splines for Re-Sizing Images 7

The Enlarging Algorithm

Determine the input and output dimensions and the spline order.
Compute the basis functions where required.

Initialise ring buffer of scanlines, including any replicated lines.
for(outRow +— 0; outRow < output height; outRow++)
Adjust ring buffer so the necessary input scanlines are in place.

Compute derived control vertices.

Apply endpoint multiplicity to the control vertices.
Compute output scanline from the control vertices.
Write out the scanline.

The choice of the order of the spline is a compromise. Lower order splines
are faster to compute, but produce more aliasing artifacts. High order splines
take longer and have a tendency to blur the image. In most cases the best
choice is either a quadratic (order 3) or cubic (order 4) spline in each
dimension of the two. Figure 3 shows most of an enlargement of a 128x124
image to 170x170 using each of the first four splines. An order-one spline
(corresponding to pixel replication) is almost never good enough, as is clear
from the image in the top left. In this case the best choice is either linear (top
right image) or quadratic approximation (bottom left). Cubic approximation is
shown in the image on the bottom right. Figure 4 shows a section of each of
four enlargements made by the same methods but with final resolution 512x512.
Here linear interpolation is definitely not good enough, and the fourth order
spline is probably the best choice.

Reducing

The most obvious way to reduce image size is to apply the enlarging
algorithm with output dimensions smaller than input dimensions. Since the
filter kernel averages together k pixels, this will result in some input data being
totally ignored if the ratio of the output to the input dimensions is greater than
k . To overcome this problem, the reduction should be performed in stages.
-~ To go from input width M to output width N (<N / k), compute
L =log; (M / N), then let f be k raised to the fractional part of L (f
will be less than k). Reduce the original image by a factor of f , and then
reduce the result (recursively) by a factor of k , L times. In this way, at no

8 R. Victor Klassen, Richard H. Bartels

time will an image be reduced by more than a factor of k. The smaller
reduction should be performed first to minimise the loss of information. Figure
5 shows an original 420x420 image, along with successive reductions to 128x128
and 32x32 and 8x8. The 8x8 image of the cat is just discernable in the top left-
hand corner.

Non-Uniform Sampling.

If, rather than being sampled on the grid, the surface is sampled at points
that derive from some function of output grid position, a distorted image
results. Within some restrictions, this may be done in nearly the same time as
filtering or re-sizing the image.

Let f :(x,y) = (u,v), the function mapping pixel locations to
surface points be separable into g (x), and & (y). And further restrict & to
be monotonicly increasing. With these restrictions on f , we can, with very
little modification to the re-sizing algorithm, produce a distorting algorithm.

In each column the spline is evaluated at an arbitrary value of ' , but for
each row the value of & is constant. Similarly, in each column v is held fixed.
Pre-computing the basis functions and the knot indices as given by g and h
can be done in time proportional to the output image perimeter. The economy
of finding the greatest common divisor and thence the number of points at
which the spline must be evaluated is lost, but the precomputation is still fairly
inexpensive.

The requirement that A be monotonic and increasing preserves the
scanline nature of the algorithm. Except for the computation of the knot
indices and the basis functions the algorithm is exactly the same as that
presented for enlarging and contracting images.

The requirement that f be scparable into g and h is only necessary for
the efficiency described here. Arbitrary distortions of the input image are
possible if one is prepared to compute every B-spline value on the fly and keep
the entire input image in memory. '

Figure 6 shows the result of applying such a distortion to the image shown
(contracted) in its upper left-hand corner. Figure 7 is a somewhat more
extreme distortion of the same original.

Using B-Splines for Re-Sizing Images 9

Summary

An efficient method for re-sizing raster images has been presented. The
complexity is of the order of the sum of the number of input and output pixels
processed. The cost per pixel processed is that of a few multiplications and
several additions, as well as the overhead of reading the input and writing the
output. The images shown here were computed in approximately 35
microseconds per pixel processed, including approximately 10% overhead.
Computation was performed on a VAX 8600.

The algorithm is not restricted to aspect-ratio preserving transformations,
nor is it restricted to uniform size changes throughout an image. The use of
non-uniform size changes can produce images reminiscent of those seen in
distorted mirrors.

Acknowledgements

The re-sizing algorithm was implemented as another tool in the im
package, [Paeth1986] most of which was written by Alan Paeth. His picture
appears in Figure 6. The cat is courtesy of Stewart Kingdon. We have had
helpful discussions with David Martindale of the French Animation section of
the National Film Board of Canada. DEC hardware has been provided through
the WATDEC Research Agreement between the University of Waterloo and
the Digital Equipment Corporation. Other hardware has been acquired through
a BILD Grant from the Province of Ontario. Work in the Computer Graphics
Laboratory is supported by Operating, Infrastructure, and Strategic grants from
the National Sciences and Engineering Research Council of Canada.

References

Bartels1987 Bartcls, R.H., Beatty, J.C., and Barsky, B.A., An Introduction to the Use
of Splines in Computer Graphics, Morgan—Kaufmann, Palo Alto,
California (1987).

Heckbert1986 Heckbert, P.S., Filtering by Repeated Integration, Computer Graphics
20(4) pp. 315-321 (August 1986).

Pacth1986 Pacth, A.W., Design and Experience with a Generalized Raster Toolkit,

Proceedings of Graphic Interface ‘86, pp. 91-97 Canadian Information
Processing Society, (May 1986).

Figure 3 | Figure 4

Figure 5 | | Figure 6

Figure 7

	CS-86-56.pdf
	
	
	
	
	
	
	
	
	
	
	
	
	

