MENT

o

EbA
EPARTMENT
EPARTMENT

TER SCIENCE B
R SCRNGE

|
T
T

QU
MPU
OMPU

ATERISS &

QF WA
FW
IVERSITY OF WATERLOO C

1L
1%
Ty

R

|

The Definition,
Editing,

and

Contouring of Surfaces
for the

Analysis of

Field Problems

Robert R. Dickinson,
Richard H. Bartels

CS-86-54

November, 1986

The Definition, Editing, and Contouring of Surfaces for
the Analysis of Field Problems

Robert R. Dickinson,

University of Waterloo
Department of Systems Design
Waterloo, Ontario
Canada N2L 3G1
(decvax!watmath!watcgl!rdickins)

Richard H. Bartels

University of Waterloo
Computer Graphics Laboratory
Department of Computer Science
Waterloo, Ontario
Canada N2L 3Gl
(decvax!watmath!watcgl!rhbartels)

ABSTRACT

This paper reports on an interactive system for manipulating a
tensor-product B-spline approximation to field data for applications
in which contours are of interest. The features of the system are:
an interpolation technique for approximating fields defined from
scattered or gridded data by tensor-product B-splines, an interactive
display providing control-vertex manipulation of the resulting
B-spline approximation, and a contouring algorithm that is designed
specifically for B-spline surfaces.

This research was supported under grant number A4076 by the Natural Sciences and En-
gineering Research Council of Canada, and by the Atmospheric Environment Service of
Environment Canada under DSS contract number 02SE.KM147-5-6136.

Keywords: field data, contouring, interactive surface editing, tensor-product B-splines.

Dickinson, Bartels

1. INTRODUCTION

This paper outlines an approach to the definition and interac-
tive editing of spline approximations to functions of two variables.
The techniques described are intended for use in the analysis of
field problems in science and engineering. In particular, these
techniques have been developed for the input and editing of
meteorological data with a view to implementation in operational
meteorology environments, but these techniques could be applied to
many other field problems.

Input to software for the analysis of field problems is often pro-
vided as point information, but the users of such software can more
easily relate to analogue information such as contour maps or
streamline charts. For this reason we have developed a system to
perform (1) a translation between point data and an internal func-
tional representation of a field and (2) a translation between this
internal representation and contours to be displayed. In some con-
texts of field analysis; e.g. in the preparation of meteorological
charts for forecasting, editing of the field is legitimate to adjust, for
example, for unknown data, spurious values, updated information,
or human experience. Accordingly, our system’s display provides
the user with mechanisms by which the internal representation of
the field can be directly modified, thereby modifying the contour
display. The internal representation can be sampled for subsequent
processing by other systems, if point data is required. The internal
representation we have chosen, because of the ease with which it
can be interactively manipulated, is that of a tensor-product
B-spline surface. Its initial definition is through interpolation,
which can be based on either scattered or gridded data.

The paper is structured as follows. Section 2 outlines our
approach to the definition of a B-spline surface from a given set of
scattered field values. Section 3 outlines our approach to tracking
contours. Some aspects relating to the implementation of these
concepts in an interactive environment are also discussed. Section
4 gives a brief overview of the experimental software system that
has been developed to date. The paper concludes in section 5 with
an overview of some aspects requiring further study.

Defining, Editing, and Contouring Field Surfaces

2. DEFINITION OF AN INITIAL SURFACE

Various methods for defining an initial field have been
developed based on either gridded or scattered data; the material
in [Bochm84] and [Sablonni¢re85] will provide an introduction
and references for this material. Our own decision to use tensor-
product B-splines was based upon the ease by which local areas of
the surfaces they define can be adjusted through simple manipula-
tions of control vertices [Bartels87]. This means that we chose to
deal with a parametric surface representation of the field. In our
present system the initial B-spline surface is defined by interpola-
tion, though other forms of approximation could be used. Methods
for interpolating data given at the nodes of a rectangular grid using
tensor-product B-splines are well known [deBoor78], so only the
interpolation of scattered data is discussed here.

In order to investigate the fitting of field data in as flexible a
manner as possible, we decided to provide for non-uniform knot
spacing and various orders of splines. Consequently, our presenta-
tion here deals with general B-splines, and the sort of surface under
consideration as an approximation to a bivariate field is

f@y)=3V;jBix)Bj,(v) ,
i,j
which defines a single-valued function of ¥ and v in terms of a
two-dimensional array of control vertices V;; and a tensor-product

B-spline basis of order k X! . It is straightforward to provide for
multiple field parameters by using multiple sets of control vertices.

To define a surface, given knot sequences
Ug, - Uy and v, ..., Ve

suitable for k -th and [-th order splines respectively, we form one
equation in (m +1)X(n +1) unknown control vertices for each
specified data triple

W @) @))

as follows:

Dickinson, Bartels

m n

Y X Vi Big@®)B i (v@) =60

i=0j=0
The resulting system of linear equations can be solved using
orthogonal factorization. Briefly, if p =1,...,P and if
Q = (m 4+1)X(n +1), then the collection of equations will form a
P XQ system in the unknown control vertices V; ;. In matrix for-
mat

BV =6,
where B contains the P XQ entries Y, B; ; (u ®Np jav @), 6 is

b

the column vector of field values §®) Jto be interpolated, and V is
the column vector of unknown control vertices. In order to
attempt interpolation, rather than another form of approximation,
this system of equations should not be overdetermined; that is, we
should arrange that P < Q. In this case, the matrix B can be
decomposed into the product of an orthogonal matrix Q and a
lower triangular matrix L bordered by zero entries,

B =[L ,0]Q

Algorithms to achieve this are given in [Lawson74]. The system of
equations becomes

[L ,0]QV =6 .
If Q V is taken to be a vector W, then W can be specified by
solving the system

LW=86
for W, the first P components of W . By setting the remaining
Q —P components of W to zero, and by letting

v=0Tw,
where Q7 stands for the transpose of the matrix Q , the result is a
set of control vertices that will define an interpolating surface.

It is advisable that, within any u ,v —rectangle formed by k
successive knots in the u direction and ! successive knots in the v
direction, there be some (u(p),v(P))—sampled field value, o).
This is a condition ensuring that no column of zero entries will

-4 -

Defining, Editing, and Contouring Field Surfaces

occur in B . In the case of gridded data this will result in B hav-
ing full rank when P = Q ; see [deBoor78] for a complete discus-
sion. The routines in [Lawson74] are designed to detect and, gen-
erally, compensate for deficiency in the numerical rank of B . The
penalty to be paid for solving systems of deficient rank using these
routines is the possible failure to interpolate up to as many data
points as the nullity of B .

3. COMPUTING AND DISPLAYING CONTOURS

Various algorithms for contouring surfaces described by field
values at the nodes of triangular, quadrilateral, and
latitude/longitude meshes have been available for some time; exam-

ples include meteorological data [Kulikov82], geological
data [Moore77] , arbitrary data [McLain1974], finite element
meshes [Lyness83] , and contouring 2-variable

functions [Snyder78, Sutcliffe76] . These are based on low-order
approximations to the surface at each facet of the mesh. A limita-
tion of some of these algorithms is that the user control of the
trade-off between image quality and computational effort is rela-
tively clumsy. Others have a limited adaptability to changing field
gradients; to obtain ‘‘high quality”’ contours a fine mesh is typically
required.

More recently, higher-order contouring schemes have been
developed in [Preusser84, Preusser84a] , producing good results
within each mesh element but displaying sudden changes in con-
tour curvature across element boundaries. An efficient scheme for
plotting arbitrary C?2 continuous functions was recently
developed [Suffern84] that made good use of the osculating circle
geometry of the contour passing through a given point.

None of the foregoing work was directly suitable for our pur-
poses, though we have made use of some concepts presented in the
last-cited reference. We wanted to be able to edit local areas of
field surfaces, which suggested the use of tensor-product B-spline
approximations. To provide generality, we wished to be able to
contour B-spline surfaces of any order and corresponding con-
tinuity. In the most general context, we would like to be able to
handle arbitrary discontinuities associated with corresponding knot
multiplicities. Accordingly, we felt that the best results would be

Dickinson, Bartels

given by designing contouring algorithms specifically geared to sur-
faces composed of piecewise-bivariate polynomial patches.

Our method of contouring proceeds patch by patch over the
surface. The approach we have adopted consists of four stages.
The first stage prepares a table of power-series coefficients for use
in computing bivariate polynomial values and derivatives within a
selected patch. The second stage locates the contours that cross the
boundary of the patch. The third stage uses Taylor expansion and
Newton correction to compute each point in a stream of points
located along a contour and within some user-specified function-
value tolerance. The fourth stage uses each such stream of points
to determine the display of the corresponding contour. We begin
the detailed discussion with the crux of the algorithm; the computa-
tion of a stream of points located along a contour.

Taylor expansion

A given patch can be considered as an arbitrary bivariate poly-
nomial f (u ,v) of order k X! restricted to the rectangular domain
defined by adjacent knots in # and v , meaning that # is in some
knot interval [«; ,4; 1] and v is in some knot interval [v;,v; 4]
Contour tracking begins at some u ,v location on the patch boun-
dary that is known to be “on” a given contour; i.e. the value
f (u,v) is within a specified tolerance of the value C for the
given contour. In the Taylor expansion of f (u ,v), terms involv-
ing partial derivatives of order & or higher in ¥ and [/ or higher in
v are zero, so that we have the exact equality

f (u+6 ,v+ov)

of of
Ou + v av
6uk-—15vl—1 6k+l—2f
+ k15 [-1
k=DIC-D! 2u*Toy
For contouring we can simply set

f (u+dbu ,v+év)=f (u,v)

=f(u’v)+6u

to yield:

Defining, Editing, and Contouring Field Surfaces

of . 5,0f u?d%
5u3u +5v8v T 8u2+)

= ¢(2)(5u ,5v) =0

We will track a contour by piecewise linear steps, and the step
length will be:

5u2+5v2—length2=¢(3)(5u 0v)=0 3)

Hence, contour tracking amounts to the simultaneous solution
of equations (2) and (3) for the unknown values du and év that
define the next point

u +oéu ,v +6v
in the contour stream, in brief:

$)(0u ,6v) =0

P3)(0u ,6v) =0 .

These two equations also provide a natural basis for adapting com-
putational effort to field gradients to achieve a specified image
quality. That is, length can be adjusted at each step based upon
local measures of contour curvature.

As long as the step length is small relative to the local gra-
dients, we can easily obtain an approximate solution to du ,0v,
and solve via Newton’s method. It should be emphasized here that
we are only interested in one particular root, for which we can
arrange to have a good initial guess, as will be discussed in the
next subsection. Symbolically inverting the Jacobian, we obtain the
following iterative scheme for finding the particular solution to
these two equations for which we have a good initial guess:

su [F T 1 [[
L"] N [[J]K] $3))

where

Dickinson, Bartels

i 04 9
J11 J12 a(bu) 08(v)
¥ = =
J21 J22 ¢ 990
906u) d@v) |

The second row of [J]X¥ is easily computed as J 21=206u and
J22=20v. At each step along a contour, f and all its partial
derivatives are evaluated once at the current point, # ,v , and used
to compute the coefficients of the variables u and év in (2). At
each iteration in (4), J1,1, J12 and ¢ can be computed from
these coefficients.

Computing an initial guess
The Newton iteration demands an initial guess at the solution,

e

To compute a second-order guess, we use the osculating circle to
the current point, (u ,v), on the current contour of f . The radius
of the osculating circle at (u ,v) is [Suffern84]:

3
R =(fu2+fv2)2
X [fuufvz_zfufvfuv +fu2fvv]

The centre of the circle is located in the direction of the curvature
vector, which is normal to the contour at u ,» . The direction of
the tangent vector at (u ,v) is

1 = artan [—j:u] .

v

The rate of change of direction of the tangent vector along the
curve at (u ,v) is given by:

Defining, Editing, and Contouring Field Surfaces

. '—(fuufvz—zfufvfuv+fu2fw)
Y= 3

(fu 41,92
From this background, the centre of the osculating circle can
be located as:

u, =u + oR sin(y)

ve = v + oR cos(y)
where o = sign()sign(y)sign(f «) = 41 and sign(0) is defined as
1. It is noted that as f, —0, p — :I:% Under this condition we
can compute the centre of the circle from

u, =u +oRsin(y) , v, =v ,

where o = sign(ib)sign(fu)-
To compute a particular point on the circle, the initial guess
vector is now given as:

§u® = oR [sin(v))—sin(y+sense -51)]
§v 0 = oR [cos(y))—cos(yrsense -51)] .

where sense = £1 for right handed and left handed contouring
respectively. If 64 is sufficiently small, tabulated approximations
for the sine and cosine functions can be used.

It is desirable to provide the user with a simple way of control-
ling the image quality while maintaining the natural adaptive attri-
butes of the contouring algorithm. It appears that a simple
bi-linear approximation of the form

0.7 Ly, Liom
= "m0 <1.
54 —— +0.17 , —<1.0
!
§¢ = 0.87 , ”;'” >1.0

where 61 is in radians, /,,, is a user-specified “nominal segment
length”, and R is the radius of curvature, provides a fast way of
maintaining an almost uniform maximum deviation between piece-
wise linear approximations of contours and actual contour curves.

-9.

Dickinson, Bartels

Convergence and Correction

A suitable convergence criterion for iteration (4) is given by
checking only whether ¢(;)— 0, and ignoring ¢3). This is because
the segment length defined by a given solution 1s not critical, but
the tolerance on equation (2) determines the accuracy with respect
to the current contour value.

It should be pointed out that equations (2) and (3) are exact,
since a full Taylor expansion is being used. Errors arise, however,
from the termination of the Newton iteration after a finite number
of steps and from the given tolerance that specifies acceptable devi-
ation from the contour. The effect of these numerical errors is
easily checked by evaluating f at the new point (u +6u , v +0v).
A correction can be made when generating each new segment by
using the same procedure as described above, except for adding c g
to the left-hand-side of (2) where co=C —f (u,v). C is the
current contour value, and (u ,v) are the coordinates of the
current starting point. Hence the algorithm can be designed to be
continuously self-adjusting.

Display

Various curve-interpolation or curve-approximation techniques
could be used to render the stream of points produced along a con-
tour independently of the algorithm that produces the points. The
simplest technique is, of course, linear interpolation between adja-
cent points of the stream, and it is this technique that we have used
to produce the figures included in this paper.

Repetitive evaluations within a given patch

In practice, the implementation of the above techniques
involves a great many function and derivative evaluations within a
given patch, and we would like to be able to perform these as
quickly as possible. To achieve this, suggestions given
in [deBoor78] have been followed by setting up tables of power
series coefficients for a given patch prior to entering the contouring
procedure itself. These can then be used in a bivariate version of
Horner’s rule to compute the function and partial derivatives
values. Specifically, an order k X!/ bivariate polynomial in # and
v 2

-10 -

Defining, Editing, and Contouring Field Surfaces

f(u,v)=2k 213 Ci,jui"j ,

i=0 j=0
can be re-arranged as

k l ; .

f@wy)y=3% {E ci jv’ }“'
i=0 (j=0

For a given v, the term in braces can be evaluated for each i

using Horner’s rule. The resulting k¥ +1 numbers serve as coeffi-

cients for evaluations of f (u ,v), using Horner’s rule again, for a

given u . Partial derivatives are related to this formulation; e.g.,

‘;f -3 {El(l—j)Xc,-,,-v" } u!
v 1

i=0 |j=

is the coefficient of 64 %v ! in (2). The I coefficients of the form
(I —=j)Xc; ,j , and so on for higher-order partials, are constant for a
given patch. For simplicity, the coefficients ¢; ;, (I —j)Xc; ;,
and so on can be stored in a 4-dimensional table of the form
Ci,j,du ,dv -

The overhead involved in allocating space for and calculating
the table of coefficients pays off as long as there are a large
number of evaluations to perform within a given patch, which is
precisely the situation in which we find ourselves when tracking a
contour.

Finding the first point of a contour

As was mentioned above, the contouring algorithm begins at
some known point on a given contour at the boundary of a patch.
This sub-section discusses ways of finding such a point.

Within the bounds of a given patch, each contour must fit into
one of the following categories:

1) an open contour: one that intersects the boundary at two
distinct points;
or

2) a closed contour: one that does not intersect the boundary
at all.

-11 -

Dickinson, Bartels

Our present approach assumes that all contours have been put into
the first category by suitable refinement of the patches; e.g., by a
suitable application of the “Oslo Algorithm” [Cohen80] as a
preprocessing step.

We follow the surface profile along a patch boundary, stepping
from each contour value C to the next higher or lower value using
an incremental, root-finding process. Along each boundary we
have a Taylor-series expansion analogous to that for the above con-
touring discussion. From a given point along either a u or v
boundary, the intersection of the contour with value C is a positive
distance du or dv away, as follows, where the parameter ¢ can be
either ¥ or v and the order £ can be either k or /:

Fe+6)y=fO) + 60 £ 1) + 2 ‘” FA))
P . £
(h =1)!
or
—C +f0(t)+5tf1(t)+5) (6)
sehl L

which is a function, g (67), in the unknown that we want to find.

Using Newton’s Method again, we obtain the following itera-
tive scheme for finding 67 .

K -1
[5t]K =[5I]K—1— [g (6t)]K - (7)
[¢"(6e)"
The initial guess for 6¢ is given by the symbolic solution of a first
order approximation of (6):

o C —F%)
[6¢] = RO)

-12 -

Defining, Editing, and Contouring Field Surfaces

4. SOFTWARE OVERVIEW

This section gives a brief overview of the design of the experi-
mental software system. Feasibility tests with respect to response
times, using the above algorithms, indicate that contour drawing is
feasible on fast hardware (e.g. VAX-level or better) at nearly
refresh rates (30 Hz or better). Contour drawing on a typical
microcomputer-based workstation is sufficiently slow, however, to
require some special design considerations. Where approximate
times are given below, they are stated for a Silicon Graphics IRIS
2400 (MC 68010) graphics workstation with a floating-point
accelerator.

The interpolation sub-system

For the present experimental purposes, all data storage required
by the interpolation sub-system is dynamically allocated, except for
the display list names of the graphical icons representing the scat-
tered data points. In this way, the original scattered data points
can be instantaneously displayed at any time, upon the request of
the user. Provision is made for the automatic verification of the
accuracy with which the original data is interpolated.

The interpolation sub-system is designed to be used once only,
before editing commences, and is independent of the contouring
sub-system. It takes as input; (1) a B-spline basis given by the
parameters k ,I ,m ,n , and knots sequences of length (m +k +1) in
the u direction and (n +I +1) in the v direction; and (2) scattered
data point locations and a corresponding array of field values. Fig-
ures 1 to 3 show various representations of the same surface. In
these figures, the B-spline basis was specified as k =l =3 (bi-
quadratic) and m =n =5, with knots uniformly spaced to provide a
simple test case. The number of data points is 34. The interpola-
tion step itself took about 6 seconds for this test case.

The cyan lines indicate the knot layout. The white discs indi-
cate control vertex locations; they are returned by the interpolation
sub-system. In Figure 1, the yellow numbers indicate the value of
the interpolating surface at the centre of each patch. The red
numbers represent the input data. In Figure 2, the surface has
been contoured. In Figure 3, the contoured surface is shown in a
3-D perspective view, with spheres indicating the data points.

-13 -

Dickinson, Bartels

The contouring sub-system

The following contouring parameters can be made available for
interactive editing by the user to control the trade-offs between sys-
tem response time, the level of contour detail, and image quality.

A contouring switch

This provides the user with a computationally simple substi-
tute for contours so that frame changes near 30 Hz can be
made. In the present system this substitute is a map of
numeric field values displayed when operating in “map”
mode, as shown in Figure 1. As the selected control vertex
is raised or lowered, the yellow values give sample surface
heights at the cross-hair positions which change in
“speedometer” fashion, providing a real-time digital
readout. In “perspective view” mode, 3-D cross-hairs
located at the centre of each patch “float” on the surface in
real time, moving up and down in response to editing a
control vertex.

Contour interval

While an interactive interface has not been completed yet,
both global and local setting of the contour interval have
been provided for. A coarse contour interval can be speci-
fied for fast interactive editing, while a finer interval can
specify a higher density of contours for a high-quality, static
display.

Adjacent-point spacing

This defines the accuracy of the initial guess for the Newton
iteration as well as the nominal stepsize to be maintained
along the contour. It can be indirectly specified by the user
in terms of the “nominal segment length” described earlier.

Contour rendering

At the time of writing, the stream of points on contours
were simply connected by straight line segments. Experi-
ments with B-spline approximations will be conducted in the
near future, and a switch will be provided.

-14 -

Defining, Editing, and Contouring Field Surfaces

The main editing functions

Provision for interactive moving, insertion, deletion, and
appending of knots (and corresponding rows or columns of control
vertices) are foreseen for future versions of the software. At
present, only the interactive editing of control-vertex values is pro-
vided for. Control vertices are picked by the mouse, and the
patches effected by a picked vertex are displayed in green.

A picked vertex is tied to Y-movement of the mouse when a
designated mouse button is pressed, and a computationally simple
substitute for the effected contours, sample function values chang-
ing in real time, is used to monitor the continuous sliding of the
vertex height. Upon release of the button, the locally effected
patches are re-contoured. This sequence of events is illustrated in
Figures 4 to 7 in map mode, and in Figures 8 to 11 in perspective
view.

A typical time to contour 16 bi-cubic patches is about 10
seconds. The previous contours are blanked out, and the altered
contours are displayed as each patch is completed to provide the
user some visual gratification. Contouring time varies with the
level of complexity. If there are few contours to be drawn, and the
spline is of low degree, then the response is very fast. For a com-
plex patch with many contours, the system is seen to pause while
the contours are computed. It should be noted, however, that at
the time of writing the design was not fully optimized, and signifi-
cant speedup should be possible, as will be mentioned below.

5. FURTHER STUDY

Firstly, it is worth noting that major reductions in numerical
effort and some of the associated overhead could be achieved by
selecting special cases of B-splines. For example, if we chose to
limit the basis to uniform bi-cubics, then all function and derivative
evaluations can be much more rapidly computed from well-known
formulae, at the cost of the editing flexibility available to the user.

Secondly, in the present experimental system, each patch is
being contoured independently of any other patch, and each
contour/patch-boundary intersection is regarded as separate and
unique. While this has been very useful from a software-
engineering point of view, it clearly results in duplication of effort:

- 15 -

Dickinson, Bartels

the contour intersection module operates on every internal patch
boundary twice — once for each incident patch — and each con-
tour is traced twice within a patch — once from each boundary
intersection. The development of a data structure for this informa-
tion is planned, and an increase in speed of from 2 to 4 times could
be expected. .

Thirdly, in the context of editing on high-speed hardware, a
contour will change only slightly from one refresh to the next. It is
possible to take advantage of this coherence to speed up the process
of locating the intersections of contours with patch boundaries.

6. REFERENCES

Bartels87.
R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction

to the Use of Splines in Computer Graphics, Morgan Kaufmann
Publishers, Los Altos, California (1987).

Boehm84.
W. Boehm, G. Farin, and J. Kahmann, A Survey of Curve
and Surface Methods in CAGD, Computer Aided Geometric
Design 1(1) pp. 1-60 (1984).

deBoor78.

C. de Boor, A Practical Guide to Splines, Springer-Verlag
(1978).

Cohen80.
E. Cohen, T. Lyche, and R. Riesenfeld, Discrete B-splines and
Subdivision Techniques in Computer-Aided Geometric Design
and Computer Graphics, Computer Graphics and Image Process-
ing 14(2) pp. 87-111 (1980).

Kulikov82.
A. I. Kulikov and G. S. Rivin, Mapping Fields of the
Meteorological Elements Given at the Nodes of a Latitude
Longitude Grid, Meteorol. and Gidrol. (Meteorology and Hydol-
ogy) (U.S.S.R.) 1 pp. 41-48 (1982).

Lawson74.
C. L. Lawson and R. J. Hanson, Solving Least Squares Prob-
lems, Prentice Hall (1974).

- 16 -

Defining, Editing, and Contouring Field Surfaces

Lyness83.
J. F. Lyness and L. Asquith, A Simple Contour Plotting Pro-
gram for Finite Element Output, Advanced Eng. Software
5(1) pp. 23-31 (1983).

McLain1974.
D. H. McLain, Drawing contours from arbitrary data, The
Computer Jnl. 17 pp. 318-324 (1974).

Moore77.
I. G. Moore, Automatic Contouring of Geological Data, 15th
APCOM Symposium, pp. 209-219 (1977).

Preusser84.
A. Preusser, Computing Contours by Successive Solution of
Quintic Polynomial Equations, ACM Trans. on Math. Software
10(4) pp. 463-472 (1984).

Preusser84a.
A. Preusser, Algorithm 626 — TRICP: A contour plot program
for triangular meshes, ACM Trans. on Math. Software 10(4) pp.
473-475 (1984).

Sablonniére8s.
P. Sablonniére, Bernstein-Bézier Methods for the Construction
of Bivariate Spline Approximants, Computer Aided Geometric
Design - Surfaces in CAGD ’84, pp. 29-36 North-Holland,
Amsterdam, (1985).

Snyder78.
W. V. Snyder, Contour Plotting [J6], ACM Trans. on Math.
Software 4(3) pp. 290-294 (1978).

Suffern84.
K. G. Suffern, Contouring Functions of Two Variables, The
Australian Computer Jnl. 16(3) pp. 102-106 (1984).

Sutcliffe76.
D. C. Sutcliffe, An algorithm for drawing the curve f(x,y) = O,
The Computer Jnl. 19 pp. 246-249 (1976).

-17 -

Dickinson, Bartels

Figure 1:

An example of the interpolation of scattered data, where k =I =3,
n =m =5, and the number of scattered points (red numbers) is 34.
The yellow numbers indicate the interpolating surface’s height at the
centre of each patch.

Figure 2:

This figure is the same as Figure 1, except that the interpolating surface
has been contoured at an interval of 1.0.

Figure 3:
This figure displays the information in Figure 2 in perspective view.

Map view (Figure 2) and perspective view (Figure 3) are toggled by a
mouse button. The data points are displayed as spheres.

Figure 4:
An example of a surface to be edited, where k =I =4 and m =n =8;

The contour interval is 0.5 and the control vertex values range from -2.0
to 7.0.

Figure 5:
The first step in control vertex editing: The cursor (in red) is picking a

vertex near the top of a “hill” on the surface. The patches controlled by
the picked vertex are coloured green.

Figure 6:

The second step in control vertex editing: After a vertex has been
picked, and while the left mouse button is pressed, a computationally

-18 -

Defining, Editing, and Contouring Field Surfaces

simple substitute for contours is displayed to monitor changes in height
of the picked control vertex, controlled by Y-movement of the mouse.

Figure 7:
Upon releasing the left mouse button, there is a pause while each patch

is re-contoured. This figure shows the result of lowering the picked con-
trol vertex of Figure 6.

Figure 8:

The perspective view of Figure 4.

Figure 9:

The perspective view of Figure 5.

Figure 10:

The perspective view of Figure 6. In this case, the control vertex was
picked while in this mode of view, so 3-D cross hairs float on the sur-
face in real time, in lieu of the numbers in Figure 6. The cross-hairs
move up and down smoothly, in response to movement of the picked
vertex.

Figure 11:

The perspective view of Figure 7.

-19 -

‘sa1oyds se pakedsip

‘0’ 03 "~ Woiy 2BULL SINfEA XA [0IIU0D 2y} PUE ' ST [eA a1e syutod eyep ay | "uoyng asnou g £q voﬂwme are (g 21n819) mata sanoadsiod pue (7

-13}U INOTUOD AY L ‘g= U= Ul PUE p= [= ¥ JISYM ‘PINIP 9q 0 0BHNS © Jo sjdwrexs uy am31]) ma1a dejy “mara sanoadsiad w 7 2y ur uonewogul 2y skejdsip aandy mw: L
) p a1y ¢ andig

“yored yoea Jo anuad ay) 18 Y319y s,20epns Funejodiaug

. ‘0’ JO [eAI1UI UE B PAINO} 3y} 31BOIPW SISQUINY MOY[A Y |, "€ St (SIoquiny pal) sjurod pars)ess Jo Jaquni

-u0o usaq sey aoejns Sunejodisyut oy yeyy 1dooxs ¢y sy se swes iy st amBy sy, 33 PUB ‘G= wi= U ‘g= [=) IAYM “BIBp paseneds Jo uonejodiaur oy jo sydwexs M<
iz aandyy 11 undiyg

‘g am
-814 Jo x2u24 joxuod paxord oYy Fuuramof Jo 1jnsal a3 smoys ungy sy], paInood

H aanB Jo mo1a aandadsiad ay g -ax st yored yoes oy asned e st 319y} ‘wong dsnoul 3§9] 3y Suisedas uod()
:g omdyf amdrg :f aandyy

"SNOW Y} JO JUIUIIAOW
& AQ paflo13u0o ‘xal1aa [o13u02 paord i o yFioy ut sefuryd 1onuow o} pakeidsip ‘43018 paInojod
SI $1M03u00 10§ a1nynsqns ajduns Ajreuoneindwiod e ‘pessaxd st UOYING ISNOW 1J3] BY) aIe xauaA payord oy 4q pafjoniuoo saydred oy] advLInS SY) BO [y, € jo do}

aqym pue ‘paxord USq SBY XIMAA € 19y SUNIPS XOH3A (013100 Ui dais puodss Iy, a1y} Jesu xaptaa & Supyoid st (e uy) Josing oy :SUTIPS X9LIA [0I3U00 Ur 4315 1811y Ay
:9 amdyg :g amdig

b aur et g
e oo

*(, 231 Jo mata aanoadsiad oy
11 amndig

X314 paxord ay3 JO JUSWIAOTL

01 asuodsar ui ‘A[y100ws UMOP pue dn SAOW SIBY-SS0I0 Y], g 2InFLf U sIaquINU
3y} JO N3Y] UL ‘3UT} {BII U 3DBLINS Y} UO JBO[} SIIRY $SOID (J-€ OS ‘M3IA JO 3pOW Syl
ul A4 payold sem Xa1IaA [01)U0J 3Y) ‘aSeO SIYI U] g 2Bt Jo maia aanoadsiad oy '¢ a1ng1q Jo mata aanoadsiad sy,
0] 3m3Lg 16 3m31g

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

