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Abstract

In this paper we consider the computation of the orthogonal con-
vex hull of a set of orthogonal simple polygons, where by orthogonal
we mean that only horizontal and vertical orientations of edges are
allowed. This, as we show, induces a partition of the set of orthogonal
polygons. We provide an algorithm to compute the orthogonal-convex-
hull partition of a set of p orthogonal polygons in O(nlog p) time and
O(n) space, where n is the total number of vertices of the p poly-
gons. Moreover we prove that this is both time and space optimal.
For the case p = 1, an O(n) time- and space-optimal algorithm is also
presented. We simplify the description of the algorithms by making
essential use of a decomposition theorem which we also prove.

As we shall demonstrate these results enable us to solve a number
of separability problems for polygons. In particular, the group 4-way
iso-separability of p polygons with a total of n vertices can be solved
in O(nlogp) time and O(n) space.

1 INTRODUCTION

Orthogonal simple polygons, that is, simple polygons whose edges are par-
allel to the x- or y-axes, occur naturally as images on rectangular grids in
image processing, see [7,20], or as building blocks in VLSI layout and wire
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routing, see [11]. Despite this most studies have concentrated on points,
orthogonal line segments, and orthogonal rectangles, see [2,3,5]. Recently
however, [10] and [11] have both, independently, investigated the construc-
tion of orthogonal convex hulls for sets of orthogonal polygons. In both
presentations, as pointed out in [13]|, some difficulties in the definition of
orthogonal convex hulls for sets of polygons or points have been overlooked.
However, it turns out that these definitional difficulties disappear if we form
the orthogonal-convex-hull partition of a set of orthogonal polygons, rather
than attempting to form a single connected orthogonal convex hull. A con-
firmation of this approach is to be found in [15] and [16]. It is this alternative
approach that we take in the present paper which we feel gives, in the prac-
tical situations mentioned above, a more natural grouping of images and
components.

This method of partitioning sets of objects is one of the most basic from
the geometrical point of view and may be extended to include the convex-
hull partition of arbitrary sets of objects in arbitrarily dimensioned space.
The grouping or clustering of finite point sets has, of course, been studied
intensively in the areas of statistics and classification, however little seems
to have been done with regard to finite sets of objects other than points.

We illustrate the usefulness of the concept by solving some separability
problems for orthogonal polygons. The study of separability in this sense
was initiated in [4]; however, it can be considered to be a special case of the
more general problem of motion planning, see [18,19,17], or of translation
in graphics, see [8].

The paper consists of a further four sections. In Section 2 we discuss
some previous work on the partitioning of sets of geometrical objects, while
in Section 3 we provide the basic notions and terminology used through-
out the paper. In Section 4 we first describe an algorithm to compute the
orthogonal convex hull of a single orthogonal polygon. Both [10] and [11]
have described similar algorithms to compute the orthogonal convex hull of
a single orthogonal polygon; therefore, ours is included, primarily, to ensure
the paper is self-contained. Second, we provide algorithms to compute the
orthogonal convex-hull and orthogonal convex-hull partition of a set of or-
thogonal polygons before proving their space and time optimality. Finally,
in Section 5 we define various notions of separability and apply the results of
Section 4 to obtain time- and space-optimal algorithms for their associated
decision problems.

2 PREVIOUS WORK ON PARTITIONING

Although the study of ortho-convex-hull partitioning is, to the best of our
knowledge, new, there has been some previous work on partitioning sets of
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geometrical objects. In this section we briefly survey these results.

Perhaps the most basic partition is the connected partition of a set of
geometrical objects. We say a set of objects is connected if their union is
a connected point set. The connected partition of a set S of geometrical
objects is the maximal partition of S such that each element of the partition
is a connected set, and is disjoint from all other elements. The elements of
this partition are also called connected components.

In [6] the connected partitions of sets of orthogonal line segments and
sets of orthogonal rectangles are shown to be computable in O(nlogn) time
and O(n) space. Moreover the extension to three and higher dimensional
orthogonal ranges, that is orthogonal “hyper-rectangles”, is also considered.

A second partition stems from the study of safety in locked transaction
systems initiated in [22,14]. They, essentially, define the closure-connected
partition of a set of rectangles in the plane.

A point set in the plane is diagonally closed if for any two points (z, y)
and (z',y') in the set such that 2’ < z and ' > y the points (z',y) and
(z,y') also belong to the set. The diagonal closure of a set S of geometrical
objects in the plane is the smallest diagonally-closed point set which contains
all elements of S. The diagonal closure naturally induces a partition on S,
called the closure-connected partition: Two objects are closure connected if
they are contained in the same component of the diagonal closure.

In [9] and [21] the closure-connected partition of a set of orthogonal
rectangles in the plane is computed and in the latter an O(nlogn) time and
O(n) space algorithm is presented.

Third, in [21] the notion of a rectangular partition is introduced. Given
a set of geometrical objects in the plane, its minimal enclosing orthogonal
rectangle, or bounding boz, is determined by the minimum and maximum
z-coordinate and y-coordinate values of the corresponding point set. Again,
given a set S of geometrical objects in the plane its rectangular partition
is the maximal partition which satisfies the condition: For every pair of
distinct elements of the partition their bounding boxes have no point in
common. [21] provide an O(nlogn) time and space algorithm to compute
this partition. The space bound can, almost certainly, be reduced to O(n).

3 BASIC NOTIONS

A geometrical object in the plane is said to be orthogonal if its edges are
parallel to the z- or y-axes. A polygon is, for the purposes of this paper,
an orthogonal simple polygon. We will speak of orthogonal (straight) lines,
orthogonal line segments, and orthogonal curves, that is a line consisting of
orthogonal line segments. We introduce immediately the central notion:
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Figure 1: Various hulls of two rectangles

Definition 3.1 We say a point set is orthogonal convex (or ortho-convex)
if for every two points in the set that are the endpoints of an orthogonal line
segment, the line segment lies wholly in the set.

Given a point set its orthogonal convex hull (or ortho-convex hull) is a
smallest ortho-convez set containing the given set.

Similarly, given a point set its connected orthogonal convex hull (or con-
nected ortho-convex hull) is a smallest connected ortho-convez set containing
the given set.

The notion of ortho-convexity is analogous to the usual notion of convex-
ity, while the notions of ortho-convex hull (introduced in [13]) and connected
ortho-convex hull (introduced in [10] and [11]) both, in their own way, cap-
ture some of the essence of the usual convex hull. These two notions are
discussed in detail in [13], where their advantages and disadvantages are
pointed out. The ortho-convex hull of a set may be a disconnected set,
while the connected ortho-convex hull, though connected, is not necessarily
unique. In Figures 1 (a)-(e) we display two rectangles, their convex hull,
their ortho-convex hull, and two example connected ortho-convex hulls. On
the other hand in Figure 2 we illustrate the unique connected ortho-convex
hull of a set of polygons. In [16] it is shown that ortho-convexity and convex-
ity are unified under restriction-orientation convexity; therefore, it appears
that ortho-convexity is the appropriate notion of convexity in an orthogonal
framework.

The “arms” occurring in Figures 1 (d) and (e) are, in a sense, unnatural.
They occur simply because we require connectedness in the connected ortho-
convex hull. These arms have, for the application we have in mind, little
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Figure 2: The connected ortho-convex hull of three polygons

Figure 3: An ortho-convex-hull partition

or no meaning. Indeed they indicate that the objects they connect are
really unrelated. For this reason we examine the ortho-convex hull as an
alternative to the connected ortho-convex hull of polygons studied in [10]
and [11]. The ortho-convex-hull of a set of polygons is the smallest ortho-
convex point set containing the polygons. It naturally induces a partition
on the set of polygons into pairwise disjoint components. We call this the
ortho-convez-hull partition: Two polygons belong to the same component of
the ortho-convex-hull partition if and only if they are contained in the same
(connected ortho-convex) component of the ortho-convex-hull of the set of
polygons. Clearly this partition is, in general, coarser than the connected
partition of the set of polygons discussed in the previous section. In Figure
3 we display the ortho-convex-hull partition of a set of polygons; observe
that element A of the ortho-convex-hull partition consists of two elements
of the connected partition.
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Figure 4: Convex hull partition of a set of line segments

As pointed out in [13] and proved in [16] the ortho-convex hull is not
only unique, but also has a number of equivalent definitions as does the
usual convex hull (this does not hold for connected ortho-convex hulls). We
may define, in analogy, the convez-hull closure of a set as the smallest set
which contains the given set such that each maximal connected subset of the
set is convex. In Figure 4 the convex hull closure of a set of line segments is
displayed. We leave this partition for future investigation.

An alternative formulation of the ortho-convex-hull partition of a set S
of polygons, which is easily proved, is: The ortho-convez-hull partition of S
18 the mazimal partition of S such that the connected ortho-convex hulls of
its elements are disjoint.

In the next section, we present algorithms to compute the ortho-convex
hull of an individual polygon and a set of polygons, as well as to compute
the ortho-convex-hull partition in the latter case.

4 COMPUTING THE ORTHO-CONVEX HULL
AND PARTITION

Rather than computing the ortho-convex hull or partition directly, we first
demonstrate that it can be decomposed into simpler closure operations,
which are easier to compute. For convenience throughout this section a set
of polygons often means the point set given by their union. This should be
clear from the context.

We begin by defining the simpler closure operations.

Definition 4.1 Given a set S of polygons we say that S is NX-closed, if
for every two points (z1,y) and (z2,y) which are connected in the set SN
{(«',y') : ¢ > y} and satisfy =1 < 3, then all points (z,y) are in S, where
z; < < zo. In other words the horizontal line segment joining the two
points is in S, if they are connected above the horizontal line passing through
them. Similarly, S is SX-closed if for every two points (z1,y) and (z2,y)
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Figure 5: Illustrating the reason for the definition of NX-closure

which are connected in the set SN {(z',y') : ¢ < y} and satisfy z1 < =z,
then all points (z,y) are in S, where 1 < x < z3. Further we say that S 1s
X-closed if it 15 both NX- and SX-closed.

The reader might wonder why we have introduced the notion of an X-
closed set in this way and not as follows: A set S is X-closed if for all pairs of
points on the same horizontal line which are connected in S the line segment
joining the two points also belongs to S. In order to show that this latter
condition is no stronger than the one chosen in Definition 4.1 assume that
p1 and p; are two points on the same horizontal line which are connected in
S; see, for example, Figure 5.

Any curve connecting p; and p2 in S, which does not lie either wholly to
the north or wholly to the south of the straight line through p; and p2, cuts
this line into fragments. If S is both N X-closed and S X-closed according
to Definition 4.1, each of these fragments must belong to S. Thus the whole
line segment joining p; and p; must also belong to S.

Analogously we also have:

Definition 4.2 Given a set S of polygons, we say that S is WY-closed,
if for every two points (z,y1) and (z,y2) which are connected in the set
Sn{(z,y') : ' < z} and satisfy y1 < ya, then all points (z,y) are in S,
where y; < y < y2. S 18 EY-closed 1s defined in a similar manner, and we
have that S is Y-closed if it is both EY - and WY -closed. Finally we say
that S 1s XY-closed if it is both X- and Y -closed.

We now turn to the various notions of closure:

Definition 4.3 Given a set S of polygons, the NX-closure of S, denoted by
NX(S), is the smallest NX-closed set containing S. SX-, EY-, WY-, X-,
Y-, and XY-closures are defined stmilarly.

The importance of these notions stems from:

Proposition 4.1 Let S be a set of polygons. Then XY (S) is the ortho-
convez hull of S.
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Figure 7: The four kinds of cavities

Proof: Clearly each connected component of XY (S) is connected ortho-
convex, and, moreover, XY (S) is the smallest such set. Hence XY (S)
equals the ortho-convex hull of S. O

The following decomposition results are now obtained:

Lemma 4.2 Let S be a set of polygons. Then
(a) SX(NX(S)) C X(S) and NX(SX(S)) € X(S),
(b) EY(WY(S)) CY(S) and WY (EY(S)) C Y(S), and
(c) X(Y(S)) C XY (S) and Y(X(S)) C XY (S).

Proof: (a) By definition S C X(S) and thus SX(NX(S)) C SX(NX(X(S))).
But SX(NX(X(S))) = X(S), because X(S) is both NX- and S X-closed.
Similar arguments apply for NX(SX(S)) € X(S), (b), and (c). O

We next demonstrate that the inclusions converse to those given in
Lemma 4.2 also hold. To do this we characterize the form of the contour of
the different closure operators.

A vertex v of a polygon is said to be a down-right vertez, if the preceding
vertex (in the clockwise order of vertices) is above v in the polygon, and the
succeeding vertex is to the right of v, see Figure 6. In a similar way down-
left, up-right, up-left, left-up, left-down, right-up, and right-down vertices are
defined. A polygon is said to have an upwards cavity at vertices v; and v,
if v; and v, are consecutive vertices, vy is an up-left vertex, and v; is a
left-down vertex, see Figure 7(a). Note that we assume the interior of the
polygon lies to the right when traversing the vertices in clockwise order. A
polygon has a downwards cavity at vy and vy, if v; and v are consecutive
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vertices, v; is a down-right vertex, and v; is a right-up vertex, see Figure
7(b). Similarly, rightwards and leftwards cavities at vertices v; and v, are
defined, see Figures 7(c) and (d).

The following lemma summarizes the rdle of these cavities.

Lemma 4.3 A polygon is:
(a) NX-closed iff it has no upwards cavities,
(b) SX-closed iff it has no downwards cavities,
(c) X-closed iff it has no upwards nor downwards cavities,
(d) WY-closed iff it has no leftwards cavities,
(e) EY-closed iff it has no rightwards cavities,
(f) Y-closed iff it has no leftwards nor rightwards cavities, and
(9) XY-closed iff it has no cavities.

Proof: Immediate from the definitions. O

Theorem 4.4 Decomposition Theorem Let S be a set of polygons; then:
(a) SX(NX(S)) = NX(SX(S)) = X(S),
(b)) EY(WY (S)) =WY(EY(S))=Y(S), and
(c) X(Y(S)) = Y (X(5)) = XY (S).

Proof: Consider (a) only, the others follow by similar arguments. Each
N X-closed set containing S must also be a set S’ of polygons composed
of at most as many polygons as S. By the definition of N X-closure, each
polygon in S' is NX-closed and, thus, has no upwards cavities (Lemma
4.3(a)). Similarly Lemma 4.3(b) implies that SX(NX(S)) = SX(S') is a
set of polygons each having no downwards cavities. We now conclude that
SX(S') has neither downwards nor upwards cavities, because SX-closure
does not introduce new upwards cavities, it only preserves existing ones.
Hence each polygon in SX(S') is X-closed (Lemma 4.3(c)), which means
that SX(S') is X-closed. Finally, because SX(NX(S)) C X(S) by Lemma
4.2(a), and X(S) is the smallest X-closed set containing S, we have equality.
That NX(5X(S)) = X(S) follows similarly. |

We are now in a position to describe algorithms for the computation
of the ortho-convex hull of, first, a single polygon, and, second, of a set of
polygons. Although both [10] and [11] present optimal algorithms for the
first, our algorithm is simple in that it is based on Theorem 4.4. We first
divide the given polygon into quarters, for example the NW-quarter is the
portion of the polygon from the leftmost vertex (the topmost one if there is
more than one leftmost vertex) to the topmost vertex (the rightmost one if
there is more than one). Similarly we have the N E-, S E-, and SW-quarters.
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The crucial idea behind this quartering is that computing the SX-closure
of the polygon, for example, can be considered to be the SX-closure of the
NW-quarter, the EY -closure of the N E-quarter, the N X-closure of the
S E-quarter, and the WY -closure of the SW-quarter, when we assume the
polygon is rotated by a quarter turn in a counter-clockwise direction after
each operation has been carried out. Similar sequences are obtained for the
SX-, EY-, and WY -closures, leading, by Theorem 4.4, to the XY -closure
of the given polygon.

For this reason we only describe an algorithm to compute the S X-closure
of the NW-quarter of a polygon, and then mention how it can be modified
to compute the NX-, EY -, and WY -closures.

Algorithm SX-Closure of the NW-Quarter of an R-Polygon;

Input A sequence of vertices vy, ..., vy, in clockwise order, called the input
list, determining the NW-quarter of a polygon as defined above. In
other words v; is the leftmost and topmost vertex in the polygon, and
v, is the topmost and rightmost vertex.

Output A sequence of vertices vy, ..., vy in clockwise order where vy’ = vy,
and v,' = vy, called the output list; the vertices of the S X-closure of
Vi,:.y3Um.

begin Scan the input list producing an output list of vertices (the vertices of
the S X-closure). On meeting each vertex in the input list, it is either
copied into the output list or discarded according to the following
rules:

(a) If the current input vertex is a right-down vertex it is discarded
together with all following vertices until one is met which is at least
as high as the current output vertex. If it is the same height simply
add it to the output list. Otherwise add a new vertex to the output
list having the same y-coordinate as the current output vertex and
having the same z-coordinate as the current input vertex, and add the
current input vertex to the output list.

(b) If the current input vertex is not a right-down vertex, it is added
to the output list, to become the current output vertex.

end of Algorithm.

To obtain, for example the N X-closure of the NW-quarter, we scan the
vertices in reverse order and begin to discard them when a down-left vertex
is met and continue discarding until a vertex no higher than the current
output vertex is reached.

Thus we have proved:
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Figure 8: Illustrating how cavities are filled

Theorem 4.5 Given an arbitrary polygon with n vertices, n > 4. Then the
Z-closure of the polygon, where Z € {NX,SX,EY,WY,X,Y, XY}, can be
computed in O(n) time and space, and this is optimal.

Having demonstrated how the SX-closure of a single polygon can be
computed efficiently, we consider now an algorithm to compute one of the ba-
sic closures of a set of polygons, using the plane-sweep paradigm, (see [12]).
If we sweep from bottom-to-top then we will compute the S X-closure, and
to compute the N X-closure we will sweep from top to bottom. We choose
to sweep from left-to-right, which enables us to compute the WY -closure
efficiently. Apart from the sweeping direction each of the basic closures is
computed in an identical manner. Alternatively one may consider that the
set of polygons is rotated by quarter turns, the WY -closure algorithm is
executed, and the output set of polygons is rotated in the reverse direction
for the same number of turns to compute any of the other closures.

Observe that in the definition of an WY -closed set of polygons, a verti-
cal line segment joining two points is in the set only if the two points are
connected to the left of the vertical line they determine. This definition was
made with plane-sweeping in mind. As the vertical sweep-line sweeps the
plane from left to right, we will sweep through and fill in leftwards cavities
found at the current position of the sweep-line. In Figure 8 we see that at
position S;, A and B are connected because the leftwards cavity in A will
have been filled in. This in turn will lead to the filling in of the new cavity
between A and B by the time S; is reached. This is a very similar approach
to that taken in [21] to compute a similar closure operator, cf. Section 2.

Essentially at any position of the sweep-line we need to maintain the
connected components formed so far. Clearly we only need sweep in discrete
(rather than continuous) steps through the set of polygons, since changes
to the connected components only occur when vertices of the polygons are
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Figure 9: The eight kinds of vertical edges

met.

To simplify somewhat the exposition of the WY -closure algorithm we
will first only compute the partition of the set of polygons induced by the
WY -closure. After giving this algorithm we will then explain how it should
be modified to produce the actual WY -closure.

This means that we are required to maintain the current elements of the
partition at each position of the sweep-line. and we need to update these
elements correctly as we pass each sweep-point. We say an element is active
if it is cut by the sweep-line. Each active element determines a number of
disjoint active y-intervals or waves, its intersection with the sweep-line at
its current position.

We will now discuss the algorithm in a little more detail before specifying
it completely. As the sweep-line passes through the polygons, it is only their
vertical edges which are of interest, their horizontal edges may be ignored.
For this reason, when determining the sorted sweep-points we, essentially, -
consider the set of polygons to be a set of vertical edges. However, we retain,
with each vertical edge, its type and the polygon to which it belongs. There
are eight types of vertical edges, specified by the two adjacent horizontal
edges and the inside of its polygon, see Figure 9. New intersections need to
be detected on meeting edges of Types (a), (c), (e), and (g), that is starting
edges, in analogy with the rectangle case. Each edge type also affects the
current waves, for example Type (a) serves to begin new waves, while Type
(d) ends waves. Note that Type (b), corresponding to a leftwards cavity,
does not affect the current wave.

Since the algorithm must keep track of the current connected compo-
nents under WY -closure, then one of the many available data structures
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for the UNION-FIND problem (see [1]) is used. We call this the union-find
structure. We only require that each operation takes O(log n) time, where n
is the total number of vertices in the p polygons, since this will ensure that
a worst case bound of O(nlogn) time is obtained for a complete sweep.

Now as in [6] we need to keep track not only of the current waves as-
sociated with each component, but also of the detailed composition of each
wave, that is which polygons gave rise to it. Each wave is a connected set,
unlike the waves in [6] where they can have a nested structure. We choose
to represent waves in two structures, the first, the wave structure, simply
holds all the current waves, and the second keeps the finer details for each
wave separately; we call this the background structure. Now consider the
operations that these structures are required to support.

On meeting a Type (a), (c), (e), or (g) edge we need to:

(i) Determine any intersections, that is query the wave structure for the
waves which intersect the given vertical edge, and

(ii) Merge the components corresponding to the waves, if necessary.

(iii) Merge these waves with the wave specified by the given vertical edge.

On meeting a Type (b), (d), (f) or (h) edge we need to:

(1) Determine which wave it belongs to,

(ii) Determine what shrinkage, if any, it will cause in this wave. Since
waves are represented by disjoint intervals on the sweep-line, we represent
them in a balanced leaf search tree with the y-coordinates of their endpoints.
This is our wave structure. The background structure for each wave may
also be represented by a balanced search tree. For each polygon contributing
to the wave, it holds all y-coordinate values of its currently active horizontal
edges.

Algorithm WY-Closure Partition;

Input A set of p polygons in the plane with a total of n vertices, n,p > 1.
Output The WY -closure partition of the polygons.

begin

Step 1 If p = 1 then apply the single polygon algorithm. Otherwise,
considering each polygon to be a collection of vertical edges, determine
the sorted sweep points.

Step 2 Scan through the sweep-points in sorted order, and at each sweep
point carry out one of the following operation sequences according
to the type of the edge: (a), (c), (e), (g): Treating the edge as a
wave w, query the wave structure for any intersections; let these be
wy,..., Wy, r > 0. Determine the components to which w, wy,...,w,
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belong. Merge the corresponding components if necessary. Replace
the waves wy,...,w, by a new wave determined by their intersection
with w, w' say, construct a new background structure for w', from the
corresponding background structures for wy,...,w, and, possibly, w.
(b), (d), (f), (b): Query the wave structure to determine which wave
w it belongs to. If it is a Type (d), (f) or (h) edge then determine,
from the background structure, whether or not its removal will either
cause w to shrink or have no effect on w. In the former cases update
the wave structure. In all cases update the background structure.

end of Algorithm.

Let us examine the time taken by each step in the above algorithm. Step 1
clearly takes, at worst, O(nlogn) time, thus consider Step 2.

Step 2 (a), (c), (e), (g): Obtaining all intersections with w takes O(logn+
r) time, where r = O(n), in the worst case, is the number of intersecting
waves. We carry out r + 1 FIND instructions, and at most r UNION opera-
tions; we charge these to the algorithm as a whole, rather than to this step
of it. We require r waves to be deleted and one new one to be inserted; again
we charge the deletions to the algorithm as a whole; the insertion can be
carried out in O(logn) time. Clearly the new wave w' can be computed in
O(1) time. The background structure for w' can be formed by catenating the
background structures for wy, ..., w,, since they are consecutive waves, and
updating it with w. We know from [1] that if the background structures are
2-3 trees, for example, then two such structures can be catenated in O(logn)
time. We, once more, charge the catenation of background structures to the
whole algorithm.

Step 2 (b), (d), (f), (h): The initial wave query, is in this case, a simpler
one than in the previous step, we may simply query the wave structure
with a single y-coordinate value of the line segment. This takes O(logn)
time, at most. If it is Type (b) we simply add its endpoint y-coordinates
to the background structure, which requires O(log n) time. For each of the
other types shrinkage of w may occur, and this is determined by deleting
one or two points from the background structure for w and checking for
shrinkage. This takes O(logn) time. Finally at most one point is added to
the background structure, again taking O(logn) time.

Apart from the operations charged to the algorithm, a single step re-
quires O(logn) time, and hence O(nlogn) time for the O(n) steps required
by Steps 1 and 2. It remains to compute the time charged to the algorithm
as a whole in Step 2. We claim that overall there can be, at worst, O(n)
FINDs, UNIONs, wave deletions, and wave catenations giving an additional
cost of O(nlogn), that is algorithm WY -closure requires O(nlogn) time
overall. To see this, first observe that only Type (a) edges introduce new
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waves and there can be at most n of them. Second, whenever waves are
joined, they are never separated again; they may only shrink. Therefore
there can only be at most n — 1 joins or UNIONS.

We can summarize the above discussion in:

Theorem 4.6 Given a set of polygons in the plane, with a total of n ver-
tices, n > 1. Then their Z-closure partition can be computed in O(nlogn)
time and O(n) space in the worst case, where Z € {NX,SX,EY,WY}.

The space requirement follows immediately by observing that all sup-
porting structures require only O(n) space.

To extend this result to X- and Y-closure (and XY -closure) we may
either use a second scan (and a third scan) as was done in [21], or modify
the above algorithm to output the new set of WY -closed polygons. We take
this latter course, since it leads to a uniform approach to all the closure
operators, namely polygons in and polygons out.

Algorithm WY-Closure;
Input A set of polygons in the plane with a total of n vertices, n > 1.
Output The polygons constituting the WY -closure of the input polygons.

begin When an incoming vertical edge in WY-Closure-Partition cuts some
of the current waves, in at most two points, the end points of this edge
are added to a vertex list L. Otherwise, if an incoming edge causes
a change in some wave, both the old and the new end point of the
wave are added to L. (If some wave disappears altogether, both its
end points are added.) As is easily seen, the vertex list L contains
all the vertices of the polygons in the WY -closure and maybe some
additional points. These extra points occur, however, only when three
or more points in L lie on the same vertical or horizontal line, and
they can be easily identified and discarded when the final sorted lists
of vertices determining polygons have been produced. Vertices in L
are partitioned into lists Ly, ..., Lm according to the m elements in the
partition produced by WY-Closure-Partition. Vertex v is in L;, if the
i-th element in the partition corresponds to a polygon having v on its
contour. This classification is performed by consulting the union-find
structure built by WY-Closure-Partition with the edge which caused
v to be in L. The lists Ly,..., Ly are sorted to obtain a clockwise
ordering of the vertices in the corresponding polygons. Finally, if
some list contains more than two consecutive elements lying in the
same vertical or horizontal line, only the first and the last of these are
left in the list and the others are discarded.
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end of Algorithm

The time needed for all of the above tasks is bounded by O(nlogn).
We now have:

Theorem 4.7 Given a set of p polygons in the plane, with a total of n
verlices, p > 1, their Z-closure and their Z-closure partition can be computed
in O(nlogp) time and O(n) space in the worst case, where Z € {X,Y, XY},

Proof: Consider the Y-closure of the set of polygons, the bounds for the
X- and XY -closure follow directly by the same arguments.

If p = 1 we require O(n) time and space by Theorem 4.5. Otherwise
p > 1 and we proceed as follows. First compute the Y-closure of each of the
p polygons in turn. This requires O(n) time and space once more. Second,
execute WY-Closure-Partition on the resulting set, modifying Step 1 so as to
perform the sorting of sweep-points by merging 2p upper and lower contour
sorted lists of points. By Lemma 4.3 (f) the vertices in the upper and lower
contours of each Y-closed polygon appear in sorted z-order. Thus these 2p
lists are obtainable in O(n) time and space, while performing their merger
requires O(nlogp) time and O(n) space. Apart from this minor change
WY-Closure-Partition proceeds as before. But in analyzing its time bounds
the remaining steps now require only O(nlogp) time and O(n) space. This
is because there can never be more than p waves and no more than two
active horizontal edges for each polygon at any one time, since each poly-
gon is Y-closed. Third, compute the Y-closure of the, at most p, polygons
obtained as output from WY-Closure, and then execute E'Y-Closure using
the same merge sorting technique in Step 1. This, by Theorem 4.4, results
in the Y -closure partition of the set of p polygons and also their Y -closure
in O(nlogp) time and O(n) space. )

5 SEPARABILITY

Given a set of p orthogonal polygons in the plane we ask whether they can
be separated(or translated) to infinity without collisions [4]. This problem
has been studied as part of motion planning, see [18,19,17], and as a graphics
problem, see [8]. If we require the polygons to be moved one at a time to
infinity, in the same direction, we call this the iso-separability problem. It
is clear that iso-separation to the east(eastern separation) is possible if and
only if western separation is possible, and similarly for north and south.
Define a set to be z-convez if, for every two points in the set that are the
endpoints of a horizontal line segment, the line segment is in the set. Then,
the z-convezhull of a set is the smallest z-convex set containing it. We define
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=

(a) )

Figure 10: Eastern separable and nonseparable examples

y-convez and y-convezhull similarly. Now, eastern separation is possible if
and only if the z-convex hulls of the p polygons do not intersect; see Figure
10 for eastern separable and nonseparable examples. But these observations
imply:

Theorem 5.1 Given a set of p polygons with a total of n vertices, iso-
separability can be decided in O(nlogp) time and O(n) space.

Proof: Using the algorithm of [3] adapted for finding one intersection in a
set of orthogonal polygons. O

If we require the polygons to be moved, in any one of the four possible
directions, one at a time to infinity, we call this the {-way iso-separation
problem. A set of polygons is 4-way iso-separable if and only if it is both x-
and y-separable. Thus it is 4-way iso-separable if and only if the x-convex
hulls of the polygons do not intersect and the y-convex hulls do not intersect.
Hence we have:

Theorem 5.2 Given a set of p polygons with a total of n vertices, {-way
iso-separability can be decided in O(nlogp) time and O(n) space.

But what if a set of polygons is neither iso-separable nor 4-way iso-
separable? In these cases we ask for the maximal partition into either iso-
separable or 4-way iso-separable clusters. The associated problems are called
the group iso-separability and the group {-way 1so-separability problems.
Let us consider them one at a time.

If we can find the maximal z- and y-partitions, we can clearly compute
the maximal iso-partition. But this problem falls to the same method of
attack used above, namely, first, we find the z-convex hulls of each polygon
and, second, we compute the connected components of the result. Since the
connected components algorithm of [6] requires O(n logp) time and O(n)
space for p z-convex polygons, we have:

Theorem 5.3 Given p orthogonal polygons in the plane with a total of n
vertices, group iso-separability can be solved in O(nlogp) time and O(n)
space.



18 Ottmann, Soisalon-Soininen, and Wood

Of course, we may be left with the trivial partition, that is one connected
component.

Second, the group 4-way iso-separability partition corresponds exactly
to the XY -closure partition we have computed in Section 4. Clearly the
elements of the XY -closure partition are, by definition, iso-separable in
any of the four directions. Moreover, no larger partition can be 4-way iso-
separable, since the x- or y-convex hulls of two elements of such a partition
must intersect. Thus our final separability result can be stated as:

Theorem 5.4 Given p orthogonal polygons in the plane with a total of n
vertices, group 4-way iso-separability can be solved in O(nlogp) time and
O(n) space.
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