BEbARHENT
DEPARTMENT
DEPARTMENT

E
E
CE

G
G

i

L
U
U

Qe
OMP

3 &

Y
L

gF

rY
Y

S
VERSITY OF WATERLOO C

VER
VER

i

AVL Trees
On-The-Fly Restructuring
and Concurrency

Eljas Soisalon-Soininen
Derick Wood

Data Structuring Group
CS§-86-52

October, 1986




AVL Trees,
On-The-Fly Restructuring,
and Concurrency*

Eljas Soisalon-Soininen } Derick Wood *

October 19, 1986

Abstract

There is, presently, a renewed interest in in-core databases and
hence, in techniques to organize them for a concurrent environment.
In this paper we reconsider an old method for supporting insertions,
deletions, and member queries — AVL trees. The novelty of our ap-
proach is that we carry out incremental or on-the-fly restructuring as
a background maintenance task, rather than as a foreground user task.
For this purpose we add tags to nodes in an AVL tree to indicate where
local modifications need to be made. Since restructuring is not car-
ried out immediately we obtain what we call relazed AVL trees. We
present the restructuring algorithms for relaxed AVL trees and, also,
a concurrent solution based on these methods.

1 Introduction

There has been a recent resurge of interest in in-core databases and, hence,
also in in-core search structures for the abstract data type DICTIONARY,
see [12,13]. There is a difference between past and present interest however.
In the past, search structures were studied predominantly in sequential en-
vironments, while present interest is in concurrent environments. External
search structures have been well studied in this regard (see [3], the survey
of [11], and the more recent papers of [4,15]), since databases have been

*This research was supported under a Natural Sciences and Engineering Research
Council of Canada Research Grant No. A-5692.

tDepartment of Computer Science, University of Helsinki, Tukholmankatu 2, SF-02500
Helsinki, Finland

#Data Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada



2 Soisalon-Soininen and Wood

assumed to be stored externally. By comparison there has been little in-
vestigation of internal search structures in a concurrent environment; see
[6,7,8,10].

We contribute to the study of internal search structures in a concurrent
environment by extending a method due to Kessels[8] — for AVL trees — to
include deletions, that is the three DICTIONARY operations of MEMBER,
INSERT, and DELETE. Kessels’ approach is to decouple the search and
restructuring processes in an update process and to implement restructur-
ing as a simple, local restructuring process, that is, as straight-line code. In
Kessels’ solution [8] a binary tag is attached to each node in order to indicate
the possible need for restructuring. When a node is inserted a negative tag
(in our terminology) is attached to it. Using a modified definition of height
called relazed height, an insertion into an AVL tree results in what we call a
relazed AVL tree. Moreover, further insertions also leave a relaxed AVL tree.
A separate restructuring process searches for negative tags, cancelling them,
moving them upward in the tree possibly in conjunction with rotations, or
leaving them alone. A negative tag in the root can always be cancelled and
thus a finite number of restructuring steps always transforms a relaxed AVL
tree into an AVL tree. This approach is called on-the-fly restructuring in
analogy to on-the-fly compacting [2] and on-the-fly garbage collection [5].
It allows restructuring to be carried out as a background maintenance or
housekeeping task. The local restructuring process accesses a small, fixed
number of nodes that is independent of the size of the tree and it also main-
tains the consistency of the DICTIONARY. In contradistinction, the usual
restructuring process accesses a number of nodes bounded by the height of
the tree while maintaining consistency. The implication of these differences
is that in a concurrent environment a higher degree of concurrency can be
achieved without losing consistency.

To accomplish this extension we are forced to turn to the external-search
variant of AVL trees, that is, records are stored in external nodes and inter-
nal nodes contain only separating keys. As the reader will see we actually
use both positive and negative tags (at least, for ease of exposition). Essen-
tially, when an external node is deleted, its sibling is given a tag one greater
than its previous value. The separate restructuring process now searches
for any non-zero tag and operates in different ways depending on local com-
binations of the tags. Because the negative and positive tags may interact
it is not immediately clear that the insertion and deletion operations can
be implemented in this way. Fortunately, however, we are able to define a
background process for restructuring, which, after a finite number of steps,
transforms any relaxed AVL tree into one that has only zero-valued tags
and 1is, therefore, AVL.

In Section 2 we define external search AVL trees, while relaxed AVL



AVL Trees and On-The-Fly Restructuring 3

Cooke Wirth

Figure 1: An example tree.

trees are defined in Section 3. We turn our attention to their updating
in a concurrent environment in Section 4 and provide one possible locking
protocol in Section 5. Let us stress that the main goal of this paper is to
demonstrate that decoupling and local restructuring of AVL trees can be
accomplished.

2 External search AVL trees

We assume the reader is familiar with the definition of (extended) binary
trees, see [9], the associated genealogical terminology, and the usual notion
of an (internal) search binary tree or binary search tree.

Recall that in an extended binary tree there are both internal and ez-
ternal nodes; internal nodes have two children and external nodes have no
children. We represent internal nodes with circles and external nodes with
boxes. The height of a node in a binary tree is zero if it is an external
node and is one more than the maximum of the heights of its two children,
otherwise. An AVL tree, see [1,9], is a binary tree in which the heights of
each pair of sibling nodes differ by at most one. We usually associate with
each node in an AVL tree a balance factor, which is defined as zero if it is
an external node and the height of its left child minus the height of its right
child, otherwise. Clearly balance factors may take only the values -1, 0,
and +1, which we denote by —, =, and + in diagrams, see Figure 1.

An extended binary tree with n external nodes is an ezternal search
binary tree for keys K;, Ks, ..., K,, from some totally-ordered universe of
keys, where K; < K3 < ::- < K, if:

1. K; is associated with the first external node from the left, Ko with
the second external node,. .., and K,, with the nth external node.



4 Soisalon-Soininen and Wood

INSERT
_— Height increase

Figure 2: Addition of a key.

2. Each internal node has associated with it a key, from the universe of
keys, that separates the keys in its left subtree from the keys in its
right subtree. More precisely, the separating key, as it is called, is
greater than or equal to the keys in the node’s left subtree and less
than the keys in the node’s right subtree

Note that separating keys need not appear at external nodes. For ex-
ample, the tree of Figure 1 is an external search tree for the keys Cooke,
Hoare, Karp, Knuth, and Wirth. The separating keys are Dijkstra, Hoare,
Karp, and Meyer. The advantage of this definition of separating key is that
deletion of keys does not require the removal of a corresponding separating
key. For example if we delete the key Hoare we need not remove the sepa-
rating key Hoare from the root. This is a significant advantage over internal
search binary trees where the deletion of a key can effect a node arbitrarily
high in the tree.

Finally, an ezternal search AVL tree is an AVL tree which is also an
external search binary tree. From hereon in whenever we speak of an AVL
tree we mean an external search AVL tree.

3 Relaxed AVL trees

In a concurrent environment it is assumed that many DELETE, INSERT,
and MEMBER operations may be accessing a tree at any one time. Since
these operations can interfere with each other, we introduce some form of
concurrency control to ensure orderly access to nodes and their values. In
Section 5 we use a straightforward locking protocol for this purpose, see
also [15]. It is important to realize that even maintaining unrestricted bi-
nary search trees in a concurrent environment is a non-trivial task, see [10].
Because AVL trees may require structural changes after updating, maintain-
ing them is even more difficult. The only results specific to AVL trees are
those of [6,7,8]. In this and the following section we concentrate exclusively
on the structural maintenance of AVL trees, we return to the concurrency
control problem in Section 5. The basic idea behind our approach is caught
by Figure 2 and Figure 3. The addition of a key increases the height of a



AVL Trees and On-The-Fly Restructuring 5

DELETE Height decrease
LEL_EIE. Height decrease

Figure 3: Removal of a key.

INSERT

(o) (0

Figure 4: Addition forces a negative tag.

subtree and the removal of a key decreases the height of a subtree. In both
cases the balance factors of some nodes are, at best, modified and, at worst,
outside the range —1.. + 1. To avoid these difficulties, at least temporarily,
on insertion we associate a negative tag with the new internal node, see
Figure 4. Apart from a change in nomenclature this idea is to be found
in [8]. The effect of the tag is to make the height of the new node zero as
before, therefore the tree remains a valid AVL tree ¢f the tag is taken into
account. For this purpose, we define a modified notion of height, namely
relazed height, which takes tags into account. The relazed height (or rht) of
a node u, in a tagged binary tree is defined as:

0,
if u is in an external node;

1 + tag(u) + max(rht(left(u)), rht(right(u))),
otherwise

rht(u) =



6 Soisalon-Soininen and Wood

(0) +1)
DELETE
—_—

(0) (0)

Figure 5: Removal forces a positive tag.

where tag(u) is the tag value associated with node u. The relazed balance
factor of a node u, denoted by rbf(u), is defined as:

rbf(u) = rht(left(u)) — rht(right(u))
A relazed AVL tree is a tagged binary tree in which
—1<rbf(u) < +1

for all nodes u in the tree.

In a concurrent environment multiple insertions can cause many negative
tags to be associated with internal nodes. However each new negative tag is
associated with exactly one new internal node, therefore, initially, no node
has more than one negative tag associated with it. As we shall prove below
this situation never changes.

But what have these tags bought us? First, each insertion process can
be split into two separate processes — a search process and a restructuring
process — because the tag indicates where an addition has taken place. This
also means that restructuring need not be carried out immediately — indeed
we will assume a background maintenance task takes over this duty. Second,
as we shall see below, the restructuring process can be broken down into a
succession of simpler and similar tag processes; each such process consists
solely of straight-line code.

Deletion is, as almost always, a more difficult process to deal with. Since
we associate negative tags or a debit with the addition of a key, we should,
clearly, associate positive tags or a credit with the removal of a key.

Because we have removed the nodes that cause a local height decrease,
see Figure 3 we should associate a positive tag with the root of the remain-
ing sibling subtree; see Figure 5, for example. However because nodes are
removed rather than added we cannot guarantee that each such node will
have at most one positive tag.

e External nodes may accumulate a tag value greater than one. In Figure
6 this is caused by the deletion of B followed by the deletion of A.



AVL Trees and On-The-Fly Restructuring 7

(0) 15(*2)

DELETE DE;ETE, c
B
) (+1)
A c

Figure 6: Tag value greater than one.

© DELETE DELETE %] ()
———é-—-b —c_b
©) (0) (0) (+1)
A c
(o) (o)
B 3

Figure 7: An external node can obtain a positive tag.

An external node that is to be removed may have a positive tag asso-
ciated with it. In Figure 7, after the deletion of B, C has a tag value of
one. If C is deleted, what tag should be associated with the remaining
node for A? As we will see, as a result of restructuring, internal nodes
can also accumulate positive tags, even if the sibling of a deleted node
is an internal node.

A sibling, if it is internal, can have a negative tag associated with it.

The parent of an external node that is to be removed may itself have
a nonzero tag associated with it.

The balance factor of the parent effects the result. In Figure 8 we
display the three possibilities in a simple setting. Note that in all
three cases the new value of the tag of the sibling is independent of
the tag value of the deleted node.

In other words, the removal operation is not as simple as the addition oper-
ation. Fortunately, despite these difficulties, a removal can be effected. In
Figure 9 we display all possible situations that can occur and how we deal
with them. Furthermore, because an external node may have a positive tag,
insertion needs to be modified slightly; see Figure 10. Thus we have attained



Soisalon-Soininen and Wood

0
o) DELETE &1
e

X
(+1) {0)

© DELETE (+1)
P~ S5

X
(+1) (0)

(0) DELETE (+2)

(+1) (0)
X

Figure 8: The balance factor influences the effect of a deletion.

DELETE {i+k+max(1,1+r bf{u))

Kx DELETE (i+j+max(1,1-rbf(u))

Figure 9: Removal: The total picture.



AVL Trees and On-The-Fly Restructuring 9

INSERT
i
é(izO) (i-1

()] (0)

Figure 10: Modified addition.

our goal of separating deletion into two separate processes: the search (and
actual removal of a value) and the restructuring process.

In the next section we introduce a background maintenance task that
modifies tags in a relaxed AVL tree.

4 On-the-Fly Restructuring

We posit the existence of a background maintenance task that visits internal
nodes of the tree according to some discipline and initiates a restructuring
process at each such node. The restructuring process examines the node
and its two children to determine if any action should be taken.

e If action should be taken it locks the necessary nodes, carries out the
action, and terminates.

e If no action should be taken the process terminates immediately.

Our only concern here is the restructuring process — will each action
lead to a tree that is closer to being an AVL tree? First, we describe the
restructuring process and, second, we prove that each application produces
a tree closer to an AVL tree — in other words we have convergence.

The process is designed so that each invocation of the process will either
decrease the total sum of the absolute values of the tags in the tree, or this
sum remains the same but a node loses some of its absolute tag value in
favor of a node outside its subtree. Formally, we define OUTSIDE(u) to
be the number of nodes not in the subtree rooted at node u. Then, for a
node u, :

V ALU E(u) = abs(tag(u)) - OUTSIDE(u)

where abs(tag(u)) denotes the absolute value of the tag attached to u. For
a tree T, the tag-value sum, denoted by VALU E(T), is defined as:

VALUE(T)= Y VALUE(u)
ueT

Note that VALUE(T) = 0 if and only if T is an AVL tree.



10 Soisalon-Soininen and Wood

(i)

W ) (©) ©
(a) {b)

Figure 11: Case 1: Moving tags upward.

(a) (b)
Figure 12: Case 2: Dealing with positive tags.

An essential feature of the restructuring process is that whenever the
root of the tree obtains a non-zero tag it is changed back to zero. This
preserves the relaxed AVL property of the tree, since it indicates that the
root is either lower or higher than it appeared to be and neither of these
effect its balance factor. Thus, we define the rest of the process such that
it always searches for subtrees of height one, where the root of the subtree
has a zero tag. Depending on the tag combinations within such a subtree
the process performs different tasks. We have the following five cases.

Case 1. In this case we may simply move the tags upward and still have a
relaxed AVL tree; see Figure 11.

Case 2. Here the notation means that either tag(c) = ¢ and tag(s) = j, or
tag(c) = 7 and tag(s) = 1. Assuming that j > ¢, we obtain Figure 12.

Case 3. This is the case which was solved by Kessels [8]; see Figure 13.

Case 4. We consider the case tag(c) = —1 and tag(s) = 1 in Figure 14; the
reverse case is similar.

(0)

-1 (0)
(0) -1

Figure 13: Case 3: A single negative tag.



AVL Trees and On-The-Fly Restructuring 11

(i>0)
(i>0) © -1

Figure 14: Case 4.

()0 PY!)

€)1 ® li-1
(b)

S ®(i-1)
(a)

Figure 15: Case 4.1.

Case 4.1. rbf(p) = 0. We simply decrease tag(s) by one; see Figure
15(a).

Case 4.2. rbf(p) = —1. In this case we transform it as shown in
Figure 15(b).

Case 4.3. rbf(p) = +1, that is, c is the higher child. The situation
may be depicted as shown in Figure 16. The relaxed heights of
the nodes p,c, and s are h + 1,h, and h — 1, respectively. Now
there are three cases depending on rbf(c).

Case 4.3.1. rbf(c) = 0. In this case we do a single rotation;
see Figure 17. Notice here that the tag-value sum decreases,

because V ALU E(c) decreases and V ALU E(u) remains the
same, for all other nodes u.

Figure 16: Case 4.3.



12 Soisalon-Soininen and Wood

Figure 18: Case 4.3.2.

Case 4.3.2. Similarly, if rbf(c) = +1, we do a single rotation;
see Figure 18.

Case 4.3.3. The case in which rbf(c) = —1 may require a double
rotation. We depict the original situation again in Figure 19.
We have three further subcases depending on tag(g).

Case 4.3.3.1. tag(g) = 0. We do the double rotation shown
in Figure 20.

Case 4.3.3.2. If tag(g) = —1, we also do a double rotation.
If the relaxed heights of L2 and R2 are both h, we obtain
Figure 21. The two remaining cases, that is, the relaxed
height of either L2 or R2 is h — 1, are similar.

Case 4.3.3.3 It remains for us to consider the case tag(g) =
j > 0. We simply decrease tag(g) by one. This means
that the negative tag at ¢ may be cancelled, that is, tag(c)
becomes zero. No rotation is needed in this case.

Case 5. The only situation not yet considered is shown in Figure 22.
We consider the case tag(c) = ¢ and tag(s) = O; the reverse case
is similar.

Case 5.1. rbf(p) = 0. This case is similar to Case 4.1.



AVL Trees and On-The-Fly Restructuring

Figure 22: Case 5: A single positive tag.

13



14 Soisalon-Soininen and Wood

Figure 24: Case 5.3.1.

Case 5.2. rbf(p) = +1. This case is similar to Case 4.2.

Case 5.3. rbf(p) = —1, that is, s is the higher child. In this
case we depict the situation as shown in Figure 23. There
are three subcases to consider depending on rbf(s).

Case 5.3.1. rbf(s) = 0. In this case we do the single rota-
tion of Figure 24.

Case 5.3.2. If rbf(s) = —1, we also do a single rotation to
obtain Figure 25.

Case 5.3.3. If rbf(s) = +1, we may require double rotation.
The original situation is now depicted as given in Figure
26. The subcases again depend on the value of tag(yg).

Figure 25: Case 5.3.2.



AVL Trees and On-The-Fly Restructuring 15

Figure 27: Case 5.3.3.1.

Case 5.3.3.1. tag(g) = 0. We do the double rotation of
Figure 27.

Case 5.3.3.2 tag(g) = —1. The result is the same as in
Case 5.3.3.1 but tag(g) now has the value zero.

Case 5.3.3.3. If tag(g) = s > 0, we do no rotation, but
we adjust the tag values as shown in Figure 28.

We are now in a position to prove the following theorem.

Theorem 4.1 Let T be a relazed AVL tree. Then, repeated application of
the restructuring process given above, will, under the assumption that no
further insertions and deletions take place, transform T into an AVL tree
T

Proof: Each nontrivial application of the restructuring process reduces
V ALU E(T), by the case analysis above. Since no further insertions into or
deletions from T take place, this implies that V ALU E(T') never increases.
Therefore, after a finite number of such applications a relaxed AVL tree T'
is obtained such that VALU E(T') = 0. But this means that T is an AVL
tree. O



16 Soisalon-Soininen and Wood

Figure 28: Case 5.3.3.3.

5 Concurrency in Relaxed AVL Trees

In this section we consider the problem of supporting several processes oper-
ating concurrently on an internal database stored as a relaxed AVL tree. Our
solution to this concurrency control problem is related to the algorithms of
Ellis [6] designed for concurrent updates in AVL trees, but we benefit from
the uncoupling of the updates and the restructuring of the tree. In fact,
we design a concurrency control method which is based only on locking of
nodes, but still allows a high degree of concurrency. The environment of a
relaxed AVL tree makes it possible for each concurrent process to hold a
lock on a small number of nodes at any time. This principle holds also for
the algorithms of Kung and Lehman [10] and Manber and Ladner [14] for
concurrent updates in binary search trees.

In allowing an arbitrary number of processes to operate concurrently in
a relaxed AVL tree, we assume that each of these processes progresses at
a finite, but undetermined speed, and is performing one of the following
operations:

SEARCH(K): To determine whether the key K is in the tree; if it is then
it reports success, otherwise it reports failure.

INSERT(K): To add the key K to the tree if K is not already present in
the tree.

DELETE(K): To remove the key K from the tree if K is present in the
tree.

RESTRUCTURE: To perform one tag manipulation step as defined in
Section 4. This may or may not involve a rotation in the tree.

In our solution three different lock types are used: read-locks (r-locks), write-
locks (w-locks), and exclusive-locks (e-locks). These locks may interact in



AVL Trees and On-The-Fly Restructuring 17

Figure 29: An example of deletion.

the following way. Several processes can hold an r-lock on a node even if
it has one w-lock. Only one process can hold a w-lock or an e-lock on a
node, and r-locks are not allowed with e-locks. A w-lock on a node may be
converted into an e-lock.

We now describe the concurrent algorithms for SEARCH, INSERT,
DELETE,and RESTRUCTURE. We use the term lock-coupling to mean
that on the way down the tree the current node is always locked and the next
node in the path is always locked before its parent is unlocked. Unlocking
the parent may be done immediately after the child has been locked. In
lock-coupling a process holds a lock on at most two nodes at a time. Lock-
tripling is defined analogously, but in lock-tripling a lock is released from its
parent only when a grand-child has a lock on it. In lock-tripling a process
holds a lock on at most three nodes at any time.

SEARCH(K): The algorithm uses r-lock-coupling on the way down the
tree. At an external node the process reports success or failure de-
pending on whether the external node has key K, then the process
releases the r-lock on the external node and terminates.

INSERT(K): The algorithm uses w-lock coupling from the root. If an
external node is found which already has key K, then the process
releases its w-lock on the external node and terminates. Otherwise an
external node is found which should be expanded. The w-lock on the
external node is converted into an e-lock and an insertion is performed.
Note that this can be accomplished without changing the pointer in
the parent node and thus the parent node need not be locked. Finally,
the e-lock is released and the process terminates.

DELETE(K): Deletion uses w-lock-tripling from the root. We assume that
an external node is found which should be deleted; for example, see
Figure 29. After checking that key(q1) = K the process still holds a
w-lock on the parent p. The w-locks on p and ¢; are converted into
e-locks, and the node ¢z is e-locked, too. Now we remove ¢; without
changing the pointer field of the node p. Note that a lock on ¢z is



18 Soisalon-Soininen and Wood

{a)

Figure 30: A three-node subtree.

(p)(©0)

(¢) (i#0)

(@ (b)

Figure 31: How restructuring is carried out.

necessary in order to guarantee that the tag of g2 is not changed during
deletion. Finally, all locks are released and the process terminates.

RESTRUCTU RE: The restructuring algorithm involves a three-node sub-
tree; see Figure 30(a). Moreover, in the case of a double rotation the
right child of node ¢ or the left child of node s will be affected. For
example, assume that the nodes involved are those shown in Figure
30(b). The subtrees of s and g change their position, but this effect
is obtained by modifying the pointers of the nodes p, s, and g. Rebal-
ancing of the nodes p, ¢, s, and g is obtained by interchanging the keys
of the nodes and by modifying the pointers appropriately. This means
that the parent of p is not changed during the process.

The restructuring algorithm is implemented as follows. The algorithm
searches for a pair of nodes as in Figure 31(a), where the node ¢ has a
non-zero tag and the parent p has a zero tag; ¢ can be either the left
or right child of p. We consider the case in which ¢ is the left child,
the other case is analogous. When such a pair is found, the process
starts tag manipulation and possible rotations, if no other processes
are holding the nodes that are possibly subject to change. A simple



AVL Trees and On-The-Fly Restructuring 19

solution to this is to lock all these nodes. Assume, for example, that
these nodes are as given in Figure 31(b); then a w-lock is requested
on all nodes p,c,s and g, in this order. (It is important to w-lock p
first, then s, before locking g to avoid deadlocks with other processes
applying w-locks.) When all these w-locks have been granted they
are converted into e-locks, in the same order to avoid deadlocks with
search processes. At this stage the restructuring process is free to
perform its tasks, after which all locks are released and the process
terminates.

For the correctness of the solution the following properties should hold:

P1. The insertion, deletion and search processes should interact correctly.
That is, if at time ¢t a change indeed has been carried out, then at any
time t + k, k > 0, this change is taken into account by other processes
not finished before time .

P2. The rotation processes should interact correctly with respect to them-
selves and with respect to other processes. This means that concurrent
rotation processes should not make changes to the same part of the
tree and that parts of the tree involved in a change due to a deletion
or an insertion are not changed by a rotation process. Moreover, any
process advancing down the tree is not affected by a rotation process.

Property Pl is clear because all insertion and and deletion processes
will be totally ordered. Pure readers do not obey this total ordering but
the exclusive lock before any actual insertion or deletion prevents incorrect
reports.

For Property P2 first note that exclusive locking applied by rotation
processes and insertion and deletion processes imply that the actual changes
will not be affected by each other. Similarly, exclusive locking by a rotation
guarantees that no process advancing down the tree can be present at any
node subject to a change in the rotation.

6 Concluding remarks

Relaxed AVL trees are so wide a class that every binary tree can be viewed
as a relaxed AVL tree. In Figure 32 we demonstrate how a maximal height
tree can be made to appear AVL using only negative tags. In Figure 33
we use only positive tags to achieve the same result. Therefore one obvious
question is: Why use AVL trees at all? This leads to: Since a relaxed AVL
tree can be as unbalanced as an arbitrary binary tree why not use binary
trees? The difference between the two is that we expect relaxed AVL trees
to be close to AVL trees throughout their lifetime. (An investigation of this



20 Soisalon-Soininen and Wood

Figure 32: Maximal height binary trees are relaxed AVL.

Figure 33: Using only positive tags to obtain relaxed AVL trees.



AVL Trees and On-The-Fly Restructuring 21

expectation is currently underway), whereas arbitrary binary trees may be
far from balanced.

References

1]
2]
8]

(4]

(5]

l6]

[8]

[9]

[10]

[11]

[12]

G.M. Adel’son-Vel’skii and Y.M. Landis. An algorithm for the organi-
zation of information. Doklady Akademi Nauk, 146:263-266, 1962.

G.B. Baker. List processing in real time on a serial computer. Com-
munications of the ACM, 21:280-294, 1978.

R. Bayer and M. Schkolnick. Concurrent operations on B-trees. Acta
Informatica, 9:1-21, 1977.

A. Biliris. Concurrency Control on Database Indexes: The mU Pro-
tocol. Technical Report 85/014, Boston University, Computer Science
Department, 1985.

E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and E.F.M.
Steffens. On-the-fly garbage collection: an exercise in cooperation.
Commaunications of the ACM, 21:966-975, 1978.

C.S. Ellis. Concurrent search and insertion in AVL trees. IEEE Trans-
actions on Computers, C-29:811-817, 1980.

L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced
trees. In Proceedings of the 19th Annual Symposium on Foundations of
Computer Science, pages 8-21, 1978.

J.L.W. Kessels. On-the-fly optimization of data structures. Communi-
cations of the ACM, 26:895-901, 1983.

D.E. Knuth. The Art of Computer Programming, Vol.3: Sorting and
Searching. Addison-Wesley Publishing Co., Reading, Mass., 1973.

H.T. Kung and P.L. Lehman. A concurrent database manipulation
problem: binary search trees. ACM Transactions on Database Systems,
3:339-353, 1980.

Y.S. Kwong and D. Wood. Approaches to concurrency in B-trees. In
Mathematical Foundations of Computer Science, Lecture Notes in Com-
puter Science 88, pages 402-413, 1980.

T.J. Lehman and M.J. Carey. Query Processing in Main Memory
Database Management Systems. Technical Report, University of Wis-
consin, 1986.



22 Soisalon-Soininen and Wood

[13] T.J. Lehman and M.J. Carey. A Study of Indez Structures for Main

Memory Database Management Systems. Technical Report, University
of Wisconsin, 1986.

[14] U. Manber and R.E. Ladner. Concurrency control in a dynamic search
structure. ACM Transactions on Database Systems, 9:439-455, 1984.

[15] Y. Sagiv. Concurrent operations on B-trees with overtaking. Journal
of Computer and System Sciences, 1986.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

