EPARTMENT
EPARTMENT

EPARTMENT

ER SEIENGE B
FSCRNGE

[
Ut
uT

T

SN
OMP

3 ¢

Y

gF

LY

TY

VERSITY OF WATERLOO C

VER
VER

Hole Problems
for
Rectangles

in
the Plane

Gregory J.E. Rawlins
Peter Widmayer
Derick Wood

Data Structuring Group
CS-86-49

October, 1986

Hole Problems for Rectangles
in the Plane *

Gregory J.E. Rawlins ! Peter Widmayer ¥ Derick Wood !

October 9, 1986

Abstract

Given a set of n rectangles with sides parallel to the coordinate
axes, we show how to determine whether their union, viewed as a set
of disjoint polygons, has a hole. Our algorithm needs no more than
O(nlogn) time and O(n) space, which we show to be optimal. How-
ever, in practice we also need to know the locations of holes, if there are
any. We present an algorithm to determine the locations of all A holes
in O(nlogn + k) time and O(n) space, which is again optimal. The
algorithm computes a point within each hole, representing the location
of the hole. The efficiency of these and several other algorithms follow
from some simple combinatorial arguments about sets of rectangles in
the plane.

1 Introduction

The problem of gathering information about holes in the union of a set of
rectangles with sides parallel to the coordinate axes is of theoretical interest
and of importance as a step in the computation of the contour of Boolean
combinations of sets of rectangles. Certainly, any algorithm reporting the
contour of the union of a set of rectangles (see e.g. [3,2,9]) will also report the
contours of all holes. However, such an algorithm uses time O(n log n+p) for
n rectangles and p edges in the contour, where p = O(n?) in the worst case.

“The first and third authors were supported under a Natural Sciences and Engineering
Research Council of Canada grant No. A-5692 and the work of the second author by a
grant from the Deutsche Forschungsgemeinschaft Wi 810/1-1

tData Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

*Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitit
Karlsruhe, Postfach 6980, 7500 Karlsruhe, West Germany

$Data Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

2 Rawlins, Widmayer, and Wood

For some questions concerning holes, this may be too much information to
be desirable. Specifically, we answer the following simpler problems more
efficiently.

Given a set of n rectangles in the plane, with sides parallel to the coor-
dinate axes,

1. Does the union of the rectangles have a hole?
2. Report one point in each hole of the union of the rectangles.

In order to solve Problems (1) and (2) efficiently, we establish a few
simple combinatorial properties of a set of rectangles in Section 2. We
would certainly like Problem (1) to be decidable in time independent of the
number of edges of the holes or even independent of the number of holes.
We show in Section 3 that £2(nlogn) is a lower bound for Problem (1), and
we present an algorithm answering Problem (1) in time O(nlogn).

For Problem (2), the number h of holes is the size of the output. From the
lower bound of Problem (1), a lower bound of Q(nlog n+ h) follows directly
for Problem (2). An algorithm to answer Problem (2) in time O(nlogn+h)
is presented in Section 4. Finally, we present some final remarks in Section
5.

2 Basic Definitions and Combinatorial Proper-
ties

We are given a set R = {Ry, Ry, ..., Ry} of n rectangles in the plane. Each
rectangle R;, 1 < ¢ < n, is described by a quadruple (z, z,, w, yt); of coor-
dinates for its left z-, right z-, bottom y- and top y-coordinate. We identify
rectangle R; with the two-dimensional interval [z;, z,| X [y, ¥¢] in the plane.
A point p = (z,y) in the plane is said to be covered by rectangle R; if
7 <z <z and yp <y < y for B; = (z1,z,, %, y:); rectangle R; is said
to cover p. Let U denote the union of all points covered by some rectangle
in R. Without loss of generality, assume that U is a connected set (the
connected components of R can be computed in time O(nlogn), see [1]).
If there are several connected components, one can lie inside a hole of an-
other; because we are interested in holes with respect to the complexity of
computations, we consider all components separately. U can be described
as a polygon P with sides parallel to the coordinate axes. P divides the
plane R? into a number of connected components of maximal size. That is,
R? - P={P|0 << h}, for h >0, and each P, is a polygon describing a
connected set of points not covered by any rectangle in R, and no two poly-
gons P;, P; intersect for ¢+ # j. Py is defined to be the polygon containing

Hole Problems for Rectangles : 3

Y\ [Re|
Ro]

a hole of 7

- X

Figure 1: The basic situation.

point (0o, 00); it is called the exzterior of U. Polygons Py,...P, are called
the holes of U.

For an example illustrating the definitions, see Figure 1. Note that there
need not be any holes in U. To simplify the discussion, but with no loss of
generality, we assume that the rectangles are in general position, that is, no
two of the z-values (y-values) in the input data are the same.

Recall that n is the number of rectangles and h is the number of holes
in Y. Let ¢ or, equivalently, kg, be the number of edges of the exterior P of
U, and let h; be the number of edges of hole P;, 1 < ¢ < h. Then we know
from [3]:

Proposition 2.1 ([3]) If U has no holes, then ¢ < 8n — 4.

[8] have generalized Proposition 2.1 to allow holes:
Proposition 2.2 ([8]) ¢ < 8n — 4, for n and c as defined above.

Proof: We present a proof of this Proposition that is different from the one

in [8], with the aim of using the insights it provides in subsequent proofs.
Any set of n+ 1 rectangles in the plane in one connected component can

be obtained by adding a rectangle to a set of n rectangles in a connected

4 Rawlins, Widmayer, and Wood

component, for n > 1. For n = 1, the claim holds, because ¢ = 4. Now
suppose our claim holds for some n > 1. Consider a set of n+ 1 rectangles.
Remove a rectangle R, ;. Then the intersection of the boundary of R,
with the uncovered area R2 — P consists of line segments on the boundary
of Rny1 (see Figure 2). At most 8 line segments contain a vertex of R, y1;
these line segments may increase the number of edges of either the exterior
Py or of holes (see Figure 2, edges e; to e5). Consider a line segment on
the boundary of R,; obtained from the intersection with P, say line seg-
ment lg. Then, either lp is an edge of the exterior P} of U' = U U Rpq1,
or lp is an edge of a newly created hole P;, > h (see Figure 2, edges eg
to e12). In the former case, the number of edges of Py does not increase,
because [y replaces at least one edge in Py, that is, at least one edge ¢g of
Py is not an edge of PJ, because Iy belongs to Pj, and e either lies in U’ or
belongs to a hole in U'. Therefore, ¢/, the number of edges of P, satisfies
d<c+8<8n-4+8=8(n+1)—-4. O

Corollary 2.3 For any hole P; of U,

hi; =0 for n < 3,
h; <4 forn =4, and
h; <8n—32 forn > 5,

Proof: By arguments similar to those for Proposition 2.2. d

Note that all of the stated bounds are tight, that is, there exist examples
for arbitrary n achieving the stated bound exactly. For Proposition 2.2, the
example can be constructed as in [3] (Figure 3). For Corollary 2.3, Figure
4 provides an example. We have seen so far that the exterior of U, Py, as
well as any hole P;, 1 < 1 < h, of U, may have a number of edges that is
linear in n. The example in Figure 5 shows that the number of holes may
be as high as (% — 1)2. However, the total number of edges in all holes and
the exterior of U together, is much less than the combination of these figures
might suggest.

Lemma 2.4 e < 8n+4h—4, wheree = E?:o h; is the total number of edges
in the exterior and in all holes of U.

Proof: Based on the proof of Proposition 2.2, consider the case where
lo is not an edge of P}, but an edge of a hole P;, j > h. Then P; may
have just been created, that is, before adding R,41, P; was part of .
In this case, Iy accounts for one new hole. Another possibility is that P;
has been obtained by splitting a hole into two. In general, ¢+ edges on the

Hole Problems for Rectangles

(2

Figure 2: Illustrating the proof of Proposition 2.2.

Rawlins, Widmayer, and Wood

Figure 3: The bound in Proposition 2.2 is tight.

Figure 4: The bounds in Corollary 2.3 are tight.

Hole Problems for Rectangles 7

] [e = = o ¢ = = = -
ﬁ"/z+1
R'}‘,1‘0-2
: R1 RZ X : IRX :
: Femeoct I
Rn

€1 e'1J €y

e, € 1e3

Figure 6: Splitting a hole (before and after).

boundary of R,;1 may create ¢ new holes from an old one, that is, add
t — 1 new holes. For 1 = 2, the increase in the number of edges by creat-
ing a new hole is at most 4 (see Figure 6). For ¢ > 2, the increase in the
number of edges per new hole is less. Therefore, we get ' < e + 8 + 4h’,
where A’ is the additional number of holes created by R,y;. Altogether,
e <e+8+4h'<8n+4h—4+8+4h =8(n+1)+4(h+h)-4 O

Next, we show that this bound is tight , that is, for any given n and A
such that A holes can be formed by a set of n rectangles, there is a set of n
rectangles forming A holes and having a total of e edges in the exterior and
in all holes of . To this end, we first need to know the maximum possible
number h of holes for a given n.

Lemma 2.5 The number of holes in any arrangement of n rectangles is at
most ([3] —1)(15] = 1), forn > 1.

Proof: By induction on n. Let h(n) denote the number of holes in an

8 Rawlins, Widmayer, and Wood

Figure 7: Leftmost and topmost holes and rectangles.

arrangement of n rectangles. We perform induction on odd and even n
separately.

Consider a hole with leftmost left boundary, and a hole with topmost
top boundary. Any rectangle bounding the former hole to the left is called
a leftmost rectangle; any rectangle bounding the latter hole from the top is
called a topmost one. Let d(n) denote the decrease in the number of holes
of an arrangement of n rectangles, when a leftmost and a topmost rectangle
are removed. That is, d(n) is at most the number of holes with a left or a
top hole edge from one of the two rectangles being removed. The edges of
these holes are, hence, aligned along the two rectangles, in a purely linear
fashion (see Figure 7). Therefore, to separate two holes from each other,
a rectangle is needed. This rectangle cannot separate any other two of the
holes under consideration. As there are just n — 2 rectangles left, these can
form at most n — 3 holes in the described way. Therefore, d(n) < n—3. Now
consider induction on even numbers of rectangles, that is, h(2n), for n > 2.
The claim h(2n) < (n — 1)? holds for 2n = 4. Assume the claim holds for
all even values up to some value 2n > 4. We show that the claim then holds
for 2(n + 1). To this end, assume the contrary, that is, A(2(n + 1)) > n?.
Because d(2(n + 1)) < 2n — 1 is the number of holes we have to subtract
when removing two rectangles, we get h(2n) > h(2(n + 1)) — d(2(n + 1)) >
n? — 2n+ 1 = (n — 1)%, a contradiction to the inductive assumption that
h(2n) < (n—1)2

For odd numbers of rectangles, the argument is similar. The claim
h(2n +1) < n(n — 1) holds for 2n + 1 = 5 (we could also start with
2n + 1 = 3 and no holes). Assume the claim holds for all odd values up

Hole Problems for Rectangles 9

to some 2n + 1 > 5. To see that the claim also holds for 2(n + 1) + 1,
assume the contrary, that is, assume that h(2(n+ 1) + 1) > (n+ 1)n. By
removing the two rectangles to the left and on the top we get h(2n + 1) >
h(2(n+1)+1)—-d(2(n+1)+1) > (n+1)n—2n = n(n—1), a contradiction. O

The example in Figure 5 shows how the upper bound given in Lemma
2.5 can be achieved for even n; for odd n, just add one rectangle in either of
the two ways. Any desired number h of holes can be achieved by shrinking
rectangles R;, 1 <4 < |}/, in such a way that enough holes are connected
to the exterior, and the desired number of holes remains (see Figure 8 for
an example with 6 rectangles). If the corner points of all rectangles belong
to the boundary of a hole or the exterior, that is, are not covered by some
other rectangle, then the bound of Lemma 2.4 is realized exactly. Hence,
for any n and h as described, this bound is tight.

For k > 1 connected components of the set R we obtain:

Corollary 2.6 Foralln>1and k> 1:

1. ¢ < 8n — 4k;

2. hy=0forn—-k+1<3;
hi<4forn—k+1=4;
hi<8n—-8k—24 forn—k+12>5;

8. e< 8n+4h — 4k.

Proof: For k components having n; > 1 rectangles in component 7, 1 <
7 < k, we observe the following:

1L c<Yk (8nj—4)=8TF n; — 4k =8n — 4k.

2. The number of holes is maximized if all components apart from one
consist of only one rectangle, that is, without loss of generality, n; =
n—k+1,n; =n3g=...=ng = 1. Substituting n — k+1 in the bound
of Corollary 2.3 yields the above bound.

3. Let h(7) be the number of holes in component 7, 1 < j < k; then
e < Z;'::l(s"'j — 4h(5) —4) = 82?:1 n; — 42_{,9:1 h(y) — 4k, hence

e < 8n — 4h — 4k.
Oa

Finally, to ensure that our algcrithm satisfies the claimed bounds on
time and space, we need the following:

10 Rawlins, Widmayer, and Wood
(a) | (b)
(c) (d)
B
(e) Figure 8: Achieving all possible numbers of holes by shrinking.

Hole Problems for Rectangles 11

Lemma 2.7 For any vertical or horizontal line l, let I C {0,...,h} be the

set of indices of those polygons P; (holes and exterior of U) that intersect !,
that is, I = {i|P; N1 # @}. Then 3} ;cr hi < 16n — 4k.

Proof: In the given set R of n rectangles, line I intersects all rectangles in
a subset R' C R. Let each rectangle in R' be cut into two pieces at I. Then
we get two sets of rectangles: R; to the left of I and R, to the right of [.
All edges of the exterior and of holes of R that have been intersected by [
belong (partially) to the exterior of at least one of R;, R,. Let k, ¢, n with
subscript ! (r) be defined with respect to set R; (R,). Then k;+ k, > k, and
ny + n, < 2n. By Corollary 2.6 (2.3) we get

D e hi Sater < 8m— 4k +8n, — 4k, < 16n - 4k
0

Note that this bound is not tight in general, but it is sufficient to establish
the runtime and space consumption arguments for the algorithms to be
presented. The essence of Lemma 2.7 has been stated and proved already
in [8]; we include it here for the sake of completeness.

3 The Hole Detection Problem

Let us present a lower bound for the hole detection problem first and then
describe an optimal solution.
3.1 A Lower Bound

Lemma 3.1 Given a set R of n rectangles in the plane, Q(nlogn) time is
required to determine whether their union U has a hole. This holds even if
the rectangles are given in sorted order according to one of the coordinates.

Proof: By a reduction from the element uniqueness problem for positive
integers.

Given a set X = {z1,...,n,} of positive integers, define a set of 3n + 1
rectangles in the plane as follows. Compute Zmyq,; = max{z;|1 <1 < n} in
time O(n) by a simple linear scan. Then R = {Ry,..., Rs,}, where

—(4;4) 4:zmaz+4) and
fori=1,...,n,
— 1 . 1 1
R3i-—2 = (_4_;l + 4 Ti, Ti + Z))

I 1 . 1
R3.'_1—(t—z,z+z,:z:.-—2,:c, 4) and

12 Rawlins, Widmayer, and Wood

X max

2L Ll XA

\
\
\
\
\\
N
N
\\
X%
\: hole (X, -xj)
X. =X,
i ‘
) 7777772
\
\
N l 1)
oy)) { T —
1 1 j n

Figure 9: A lower bound for hole dei~ction.

— (i _ 1 1 1 1
Ry=(i—§,n+ 5% — 3,% — 4)-

For an illustration see Figure 9. Note that we have deliberately violated
the assumption that the rectangles are in general position, in order not
to obscure the basic idea of the reduction. The reduction can be changed
slightly to shift the rectangles into general position. The set of rectangles
has the following properties:

e all rectangles form one connected component;
e there is a hole in U if and only if the elements of X are not unique.

It is immediate from the construction that Lemma 3.1 holds even if the
rectangles are given in sorted order according to one of the coordinates.
This completes the proof of Lemma 3.1. a

3.2 An Algorithm for Hole Detection

Our general approach is to sweep the plane from left to right with a vertical
sweep line [. The line stops at each left and right vertical edge of a rectangle.

14 Rawlins, Widmayer, and Wood

be determined that e; will not contribute to a hole. At sweep position z3,
it is still not known whether e4 will contribute to a hole.

An uncovered area between two tentative inner edges is called a tentative
hole. Any hole has to start in our plane sweep as a tentative hole. A tentative
hole splits into several branches, when a left vertical edge of a rectangle falls
entirely in between the two active edges of the hole. In our example, Rs’s
left vertical edge falls entirely in between e; and e4. At a right vertical edge
of a rectangle R;, two areas meet that have been separated currently by
R;. If two tentative holes meet, it is recognized that they actually form one
tentative hole. If a tentative hole meets the outside Py of U, it is recognized
that the tentative hole belongs to Py rather than forming a hole. A hole
is detected only when a left vertical edge blocks all branches of a tentative
hole.

Note that the tentative inner edges come in pairs of active edges with
adjacent intersections with the sweep line. All of the above situations and
transitions can be properly determined by keeping track of all pairs of ten-
tative inner edges, of outer edges, and of hidden edges, in the way outlined
above. Furthermore, in order to decide whether all branches of a tentative
hole have been blocked, it is helpful to keep track of a set of branches for each
tentative hole. Each tentative hole will start out with one branch. Later
on, a branch may be added, whenever the tentative hole splits; a branch
may be deleted when it ends; two tentative holes may be combined into one
when two of their tentative branches meet; and, finally, a tentative hole is
recognized to be a hole, when all of its branches end.

Then, more formally, the algorithm works as follows.

Algorithm Detect Hole
{Given a set R of rectangles, detect whether there is a hole in the contour
of their union.}

1. Initialize all sweep-line data structures to be empty, and sort all x-
values (vertical edges).

2. For all vertical edges e in ascending z-order do:

if e is a left vertical edge, then
terminate all branches of tentative holes in the y-range of e;
if the set of branches for some tentative hole becomes empty,
then report that a hole has been detected, and stop;
update all (at most 2) branches that are intersected by (but not
contained in) e’s y-range;
if e falls within one branch of a tentative hole,
then split this branch into two;

Hole Problems for Rectangles 15

terminate all contour edges that lie within e’s y-range;

add the top and bottom edges of e’s rectangle to the set of active

edges, and to the contour if they lie outside the area covered by the

rectangles so far;

else {e is a right vertical edge}

if there are no edges in e’s y-range, to the right of ¢, that

belong to the contour, then
combine the two areas adjacent to e above and below into one,
by creating a new tentative hole from two old ones, by
combining all branches, or by adding all branches of a tentative
hole to the contour,

else {there are contour or hole edges to the right of €}
update the contour or holes above and below e accordingly;
start a new hole for every pair of horizontal edges in e’s
y-range that have uncovered area between them.

3. Report that there is no hole.

end

3.3 An Efficient Implementation

In essence, to detect the existence of a hole in the union of a set of rectangles,
the algorithm computes the contour implicitly and additionally keeps track
of “topological” information about candidate holes. An optimal sweep-line
algorithm for computing the contour, see [8], uses as the central data struc-
ture the visibility tree; see [9].

For any given sweep line position, the active horizontal edges are repre-
sented by points on the sweep line. Some of these points are visible, others
may be hidden. When a vertical edge is encountered, points may change
their status from visible to hidden (at a left edge) or from hidden to vis-
ible (at a right edge). Also, points representing horizontal edges have to
be inserted into or deleted from the visibility tree. The visibility tree al-
lows for the insertion or deletion of a point representing a horizontal edge
in time O(logn), where n is the number of points to be stored in the tree.
For a given interval representing a vertical edge of a rectangle, the visibility
tree enables the visibility status of all affected edges to be updated in time
O(logn), and it enables these edges to be reported in constant time per
edge. Furthermore, it uses only linear space, because each active point is
stored only once.

The central data structure in our implementation of the hole detection
algorithm is the visibility tree. During the line sweep, we maintain a visibil-
ity tree, together with information on the holes to which the visible points

16 Rawlins, Widmayer, and Wood

belong. To this end, we store the set of active visible edges belonging to a
tentative hole in a doubly linked circular list, with one list item for each edge.
This is done for each hole, and also for the outer contour. From each active
visible point in the visibility tree, there is a pointer to the corresponding list
item. All updates of the lists are performed by following pointers from the
visibility tree to list items. Actions need only be taken when edges become
visible or become hidden. A starting hole or the starting contour lead to a
new list containing two items, one for each horizontal edge bounding the hole
or contour. When a branch of a hole ends, the two corresponding items are
removed from their list. Splitting a hole into two implies that two edges are
added to the corresponding list; forming the union of two holes is realized
by linking two circular lists (giving one circular list). Note that access to the
circular lists is provided through the visibility tree by pointers to list items.
As soon as a list becomes empty for a tentative hole and it was not the only
one in existence, a hole has been detected. With this implementation, we
get:

Theorem 3.2 Given a set of n rectangles in the plane, it can be determined,
in O(nlogn) time and with O(n) space, whether their union has a hole.

Proof: The presented algorithm correctly determines whether there is a
hole by sweeping a line from left to right until the right boundary of a
hole is first encountered. Therefore, no hole lies entirely to the left of the
current sweep line position. With Lemma 2.7, the number of edges of all
started holes and the contour is therefore O(n). Hence, O(n) operations
have been performed on the visibility tree, each at a cost of O(logn) time.
Altogether, O(n) edge pieces have changed their visibility status, with each
of the involved updates of the associated lists performed in constant time.
This establishes the claimed time bound. The space requirement follows
from that of the visibility tree. O

4 Computing all holes

A lower bound for computing some constant size information about each
hole, say, a point within each hole, follows immediately from the lower bound
for hole detection:

Corollary 4.1 Given a set of n rectangles in the plane, Q(nlogn+h) time
is required to compute a point within each hole in their union, where h is the
number of holes.

Hole Problems for Rectangles 17

Proof: Follows from Lemma 3.1 and the fact that A is the number of points
to be reported. O

An algorithm to report a point inside each hole can be derived simply
from the algorithm presented in Section 3 to detect the existence of a hole.
Instead of halting after the end of a hole has been detected, we report a
point just to the left of the edge terminating a hole, and continue doing so
for each hole until all edges have been processed. Thus, we obtain:

Theorem 4.2 Given a set of n rectangles in the plane, a point within each
hole in their union can be computed in time O(nlogn + h) and space O(n),
where h 18 the number of holes.

Proof: The number of operations to be carried out on the visibility tree
is O(n), for the 2n left and right vertical edges of rectangles, at a cost of
O(log n) time each. For every change in the visibility status of (a piece of) an
edge, constant additional cost to update the lists suffices. From Lemma 2.4
we know that there are O(n + h) of these changes, establishing the claimed
time bound. The space bound follows from that of the visibility tree. 0O

5 Concluding Remarks

In this paper we have proved some basic combinatorial results about the
number of holes in the union of a set of rectangles. We have also provided
time— and space—optimal algorithms to decide whether there is a hole and
to compute a point withir each hole.

Clearly, these questions can be posed in other frameworks, for example,
what happens in d-d .uensions, what happens with other shapes, for exam-
ple, squares and circles, and what about the searching problem — given n
rectangles and a query point that lies in a hole, provide the hole’s contour.
These questions and related ones are currently under investigation, some
initial results are reported in [5].

Initially, the reason we investigated holes was to provide an alterna-
tive algorithm to solve the contour problem for a set of restricted-oriented
polygons (see [6] for an introduction to restricted-oriented geometry). Of
course, using the general algorithm of [4] we can solve this problem in
O(nlogn + klogn) time, where the polygons have a total of n edges and
there are k edge intersections. Because restricted-oriented polygons appear
to be closer in their behavior to orthogonal polygons we expected to ob-
tain an O(nlogn + p) time algorithm, where p is the number of edges in
their union. Unfortunately, so far we have been unable to find such an algo-

18 Rawlins, Widmayer, and Wood

rithm. For this reason, we considered a different approach stemming from
the following observation.

Given a point in a hole, we can extend it vertically upwards until
it first hits an edge. This must contain an edge of the contour
of the hole. Follow the edge to the right, say, until a second
edge is met. This must also belong to the contour. We continue
walking around the edges bordering the hole, in this manner,
until we return to the starting edge.

To implement this algorithm for orthogonal polygons we can use a sim-
plified form of the layered segment tree of [7]. Each search for an edge
requires O(logn) time, therefore this leads to an O(nlogn + plogn) time
algorithm for the contour. This is worse than the best algorithms known for
this problem, see {2,9], since they only require O(nlogn-+p) time. However,
this technique can be applied to the restricted-oriented case, with the same
time bounds, and, in this case, it is better than the general algorithm. At
present however, we are unable to find points in the holes within the same
time bound so a contour algorithm for restricted-oriented polygons with this
time complexity is still elusive.

References

[1] H. Edelsbrunner, J. van Leeuwen, Th. Ottmann, and D. Wood. Comput-
ing the connected components of simple rectilinear geometrical objects
in d-space. RAIRO Informatique théoretique, 18:171-183, 1984.

[2] R.H. Giiting. An optimal contour algorithm for iso-oriented rectangles.
Journal of Algorithms, 5:303-326, 1984.

[3] W. Lipski and F.P. Preparata. Finding the contour of the union of a set
of iso-oriented rectangles. Journal of Algorithms, 1:235-246, 1980.

[4] Th. Ottmann, P. Widmayer, and D. Wood. A fast algorithm for the
Boolean masking problem. Computer Vision, Graphics, and Image Pro-
cessing, 30:249-268, 1985.

[5] G.J.E. Rawlins, P. Widmayer, and D. Wood. Circles, Squares, and
Holes. Technical Report, University of Waterloo, Department of Com-
puter Science, 1986.

[6] G.J.E. Rawlins and D. Wood. Restricted-Orientation Convezity. Tech-
nical Report, University of Waterloo, Department of Computer Science,
1986.

Hole Problems for Rectangles 19

[7] V.K. Vaishanavi and D. Wood. Rectilinear line segment intersection,

layered segment trees, and dynamization. Journal of Algorithms, 3:160-
176, 1982.

[8] P. Widmayer and D. Wood. Time- and Space-Optimal Contour Compu-
tation for a Set of Rectangles. Technical Report, University of Waterloo,
Department of Computer Science, 1986.

[9] D. Wood. The contour problem for rectilinear polygons. Information
Processing Letters, 19:229-236, 1984.

'

e
(0,0)

Hole Problems for Rectangles 13

Z/////,V//f? 7
¢ L Re /]

;” N2
///////{/////////////j

X2 X3
Figure 10: Hole detection.

A data structure L keeps track of the horizontal edges of rectangles currently
intersected by the sweep line; the active edges. Some of these edges separate
a covered area from an area that is not covered, that is, they are on the
boundary of Y. Whenever [intersects at least one rectangle there will be at
least two edges that partially belong to the outside boundary of U, that is,
Py, and there may be edges that partially belong to holes P;, 1 > 0. All of
these edges are said to be visible. In addition, there may be active edges that
do not currently belong to the boundary of U; these are said to be hidden.
Of the visible edges, some are known to belong to the outside boundary of
U, namely, at least the topmost and the bottommost ones; these edges are
called outer edges. There may be other visible active edges that may or may
not belong to a hole, as far as this can be judged from the current state of
the plane sweep; these edges are called tentative inner edges with respect to
the state of the plane sweep.

For an illustration of these concepts, see Figure 10. At sweep position
zi, €1, €3, €3, and e4 are all tentative inner edges, whereas e; and eg are
outer edges. At sweep position z2, €; becomes an outer edge, because it can

—+— % —=x
X

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

