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ABSTRACT

Techniques for numerical integration
within a symbolic computation environment
are discussed. The goal is to develop a fully
automated numerical integration code that
handles infinite intervals of integration and
that handles various types of integrand singu-
larities. Such a code should also be able to
compute to arbitrarily high precision. For the
case of an analytic integrand on a finite inter-
val, a Clenshaw-Curtis quadrature routine is
used. A concept of general (non-Taylor) series
expansions forms the basis of techniques for
identifying transformations that may yield an
analytic integrand. For the case when no
transformation is successful, the general series
expansion is used to represent the integrand
and it is directly integrated to move beyond
the singular point. The latter technique relies
on a powerful symbolic integrator that can
express integrals in terms of special functions.

[1] This research work was supported by the Natural Sciences and Engineering
Research Council of Canada under Grant A8967.



1. Introduction

The problem of computing a numerical value for a
definite integral has been well studied by numerical
analysts. There are several widely used numerical
codes for this task, such as those in the IMSL and NAG
libraries[IMS79,Gro82]. See [Don75] for an extensive
bibliography on numerical integration techniques. The
purpose of this paper is to examine the increased gen-
erality that can be achieved by a numerical integration
code that exploits the power of symbolic computation.
Numerical integration codes typically require the inter-
val of integration to be finite and the integrand to be
finite at every point of the interval. (For a discussion
of numerical techniques for handling singularities
see[Don75a] ). A symbolic computation environment is
a natural environment in which to treat singularities.
By using variable transformations and other techniques,
it is possible to automatically handle the numerical
integration problem in the presence of various types of
singularities. Moreover, integrals can be computed to
arbitrarily high precision.

A symbolic computation system typically includes
a powerful facility for the symbolic indefinite integra-
tion of elementary functions, ultimately based on the
Risch integration algorithm[Ris69]. Also, many definite
integrals (not otherwise handled by indefinite integra-
tion) can be expressed symbolically using the techniques
discussed by Wang[Wan71].  Nonetheless, many
integration problems of practical interest fail to be
solved by these techniques. A symbolic computation
system should include a facility to ‘‘evaluate in
floating-point mode’ those definite integrals left
unevaluated by the symbolic techniques. This paper is
a report on such a facility being developed for the
Maple system[Cha83,Cha85].

In[Fat81], Fateman discusses the problem of
symbolic/numeric integration. He indicates several
approaches that are offered by a symbolic computation
environment. However, it is left to the user to try vari-
ous techniques much as in the traditional mode, except
that the power of a symbolic “calculator” is available.
In contrast, the approach taken here is to present a
general algorithmic scheme by which a wide class of
numerical integration problems can be solved automati-
cally.
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In section 2, the control procedure for numerical
integration is presented, and there is a brief discussion
of the method currently being used for the case of an
analytic integrand on a finite interval. Section 3 out-
lines the concept of ‘‘general series expansions’ which
forms the basis for handling singularities. A method for
identifying variable transformations to transform the
problem into one with an analytic integrand is
presented in section 4. If transformation to an analytic
integrand fails, the method discussed in section 5 is to
integrate the ‘‘general series’ approximation to move
beyond the singular point. Successful integration of
such series relies on the power of the symbolic integra-
tor, typically including integrals expressed in terms of
special functions such as the error function, exponential
integral, sine integral, etc.

2. The Case of an Analytic Integrand on a Finite
Interval

Underlying the techniques presented in this paper,
we need an efficient routine for numerical integration in
the ‘simple” case where the interval of integration is
finite and the integrand has no singularities on the
interval. Most traditional numerical integration
methods could serve for this purpose, but the present
investigation is being carried out in the following con-
text. The automatic integration code is being
developed within a symbolic computation system
(Maple) so that powerful algebraic manipulations can be
applied to handle various types of singularities. The
floating-point arithmetic currently supplied in Maple
does not exploit hardware floating-point facilities, but
rather it is a software-coded arbitrary-precision
floating-point facility. As a consequence, floating-point
operations are relatively slow. It is therefore highly
desirable to use a numerical integration method which
minimizes the number of function evaluations required
to achieve a specified accuracy, and the method must
also extend gracefully to arbitrarily high precision.

Based on these considerations, the Clenshaw-
Curtis quadrature method as implemented by
Gentleman[Gen72,Ged79] was found to be a very good
choice. This method is at its best when the integrand
is analytic in a “sufficient” region of the complex plane
surrounding the interval of integration. Using the tech-
niques presented in this paper, it is possible to ensure
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analyticity of the integrand which gets passed to the
numerical method. Even if the sub-problem of integrat-
ing an analytic integrand on a finite interval were
coded in an environment using hardware floating-point
arithmetic, there is evidence in the literature to suggest
that the Clenshaw-Curtis quadrature method remains
very competitive with other known methods.

Clenshaw-Curtis quadrature has another signifi-
cant advantage: it yields an approximation to the inde-
finite integral in the form of a Chebyshev series expan-
sion. This property can be exploited conveniently
within a symbolic computation environment.

In Figure 1, the Maple code for the ‘‘control rou-
tine’” for the numerical integration package is
presented. This code tests for infinite limits of integra-
tion, and for the presence of end-point singularities
using the taylor command, and dispatches accordingly.
Ultimately, it invokes a procedure called cequad which
is a Maple implementation of Gentleman’s Clenshaw-
Curtis quadrature code.

Prior to the invocation of the quadrature code, an
evaluation procedure for the integrand is created via
the Maple procedure makeproc. The purpose of this
code is to generate a procedure which accurately evalu-
ates the integrand at all arguments in the interval, tak-
ing care to handle removable singularites and points
where floating-point cancellation would lead to loss of
accuracy. Space does not permit elaboration of this
procedure, but the following example will serve to illus-
trate. Suppose that the integrand is the expression:

o= T —sin!x!

x3

A straightforward procedure to evaluate this expression
would have two types of difficulties. First, evaluating
f at x = 0 leads to division by zero due to the remov-
able singularity at zero. If this problem is handled by
returning the limiting value at £ = 0, a second problem
is the fact that for argument values near zero, cancella-
tion in floating-point arithmetic will lead to inaccurate
evaluation. For example, direct evaluation of f at
r = .00321 in a 7-decimal-digit floating-point arith-
metic yields the result .1813995 compared to the correct
result  f(.00321) = .16666658 - - .  The procedure
makeproc analyzes the integrand for removable singu-
larities and for points where loss of accuracy may occur,
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and creates a procedure which uses a Taylor series
expansion near points of difficulty. For the expression
f above with the floating-point precision set at
Digits := 7, the procedure created by the invocation
fproc := makeproc(f,x,-1,1,10"(-Digits)) is:

fproc := proc (tv)
if abs(t) < 1.1561940 then
subs(x = t, .1666667+(~.008333333+
(.0001984127-.000002755732%x"2)
*X~2) *x"2)
else
subs(x = t, (x-sin(x))/x"3)
fi
end

With this procedure for evaluating the integrand f,
fproc(.00321) yields the value .1666666 in 7-digit arith-
metic, which is fully accurate.

Notes on the code in Figure 1:

(1) evalf is the Maple function for ‘‘evaluation in
floating-point mode’’.

(2) traperror is the Maple function that provides an
error-trapping facility. The type-checking of the
form type(pleft, taylor) will return false if
the result from taylor was an error message or if
the result from taylor was a non-Taylor series.

(3) 'If infinite limits of integration arise, the problem is
dispatched to a routine named improper. The
details of this algorithm for handling improper
integrals are not presented. It simply uses a
t =1/t transformation to transform an infinite
limit to zero, first breaking up the interval if the
interval includes zero. The transformed problems
are then passed back to control.

(4) When a singularity is encountered, a transforma-
tion or interval splitting is performed if necessary
to yield an integration problem in which the singu-
larity appears at the left end-point of the interval.
This simplifies the subsequent handling of the
singularity by the routine singular (see the follow-
ing sections).
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control := proc (f, x, a, b, eps)
local left,right,h,pleft,pright,fproc,err,
nofun,c,r,tol;
1f has({a,b}, infinity) then
RETURN( improper(f,x,a,b,eps) )
f1i;
left := evalf(a); right := evalf(b);
1f not type(left,numeric)
or not type(right,numeric) then
RETURN( FAIL )
elif left > right then
RETURN( control(-f,x,right,left,eps) )
fi;

h := right-left;
pleft := traperror( taylor(f, x=left) );
pright := traperror( taylor(f, x=right) );

# If not "pure Taylor serles" then there 1ls
# an end-point slngularity.
1f not type(pleft,taylor)
and not type(pright,taylor) then
# Split 1interval 1n two.
RETURN (control (f,x,left,left+h/2,eps/2)
+ control(f,x,left+h/2,right,eps/2))
elif not type(pright,taylor) then
# Transform singularity to the left.
RETURN( control (subs(x=2*right-x,f),x,
right,2*right-left,eps) )
elif not type(pleft,taylor) then
# Deal with singularity at the left.
RETURN( singular(f,x,left,right,eps) )
else
# Attempt numerical integratlion.
fproc := traperror(
makeproc(f,x,a,b,eps) );
if fproc = lasterror then
ERROR ('non-removable singularity )
f1;
r := ccquad(fproc,left,right,eps, 487,
err,nofun,c);
if r = FAIL then
ERROR (" singularity 1n or near
interval of 1ntegration’)
£1;

# Calculate relative error tolerance;
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# if too small, use absolute error.
tol := max(eps*abs(r), 0.001xeps);
1f err <= tol then RETURN( r ) else
ERROR('failed to converge')
fi
fi
end:

Figure 1. Maple code for the control routine.

3. General Series Approximations

The main tool for handling integrand singularities
is a facility for generating very general (non-Taylor)
series expansions of expressions. The function for this
purpose has the same argument syntax as the taylor
function:

series(expr, var=value, ord).

If there exists a Laurent series expansion of expr about
the point wvar = value, with finite principal part, then
this will be the result returned. More generally, the
series returned might involve algebraic singularities,
logarithmic singularities, or exponential singularities
such as exp(—1/x). (Series involving the latter singu-
larity must be treated as one-sided series expansions for

z >0.)

As long as the non-polynomial functions intro-
duced into the series expansion can be bounded by a
power of wvar—wvalue, it is possible to generate a series
with a correct order ‘term O((var—value)?) for some p.
For example, for all x > 0 we have:

In(z) < =
1
exp(—;) <1

1
exp(—) < 1.
T

Some examples of general series follow.

series(sqrt(sin(x)), x=0, 4);

L2 _ 1% 252 4 0(z"?)

series(ln(1-cos(2*x)), x=0, 8);



1 1 2
In(2) + 2 In(z) — 3 x? — %0 zt — 2835 z% + O(2®)

series(1/ (1-x*xexp(-cos(x)/x)), x=0, 4);

L+ exp(—T) @ + (5 exp(——) + exp(——)") o +
(% exp(—é—) + exp(——i-)2 + exp(—-ij)‘g) 2% + O(z*)

Consider briefly the case of exponential singulari-
ties. Let the exponential subexpression be exp(g(z))
and let the point of expansion be £ = 0. If g(z) has a
Taylor series expansion then exp(g(x)) has a Taylor
series expansion. Otherwise, if g(2) has a Laurent
series expansion with finite principal part then the fol-
lowing technique is used to generate a general series. If
the Laurent expansion is

@) =g o+ o te o g te T b e
then

)

exp(g(z)) = eXP(_';llc‘ . exp("%)_c—1

exp(co+crz+ ).

The last exponential term here has a regular Taylor
series expansion. To complete the general series expan-
sion for the original expression containing exp(g(z)) as a
subexpression, an ordinary Taylor series expansion is
performed after substituting each non-regular exponen-
tial term

exp(——L)

xl

by a unique symbol independent of x.

4. Transforming to an Analytic Integrand

If an integrand is found to be non-analytic at a
point of the interval of integration, the first technique
tried is to look for a transformation that will remove
the singularity. Three types of transformations are
attempted:

(i) subtracting off the singularity;
(ii) an algebraic transformation of variables;

(iii) a non-algebraic transformation of variables.
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In all three cases, the fundamental tool is the general
series expansion discussed in the preceding section. As
was seen in section 2, we may assume that the singular-
ity is at the left end-point of the interval. This pro-
perty is important because of the ‘‘one-sided’’ validity
of some of the general series expansions being gen-
erated.

Let f be the integrand, = be the variable of
integration, zy be the singular point, and s be the gen-
eral series expansion of f about z.

For case (i), the method used is to test each term
in the expansion s to determine which terms are regular
(i.e., have a Taylor series expansion at z;). If the
number of non-regular terms is less than half the
number of terms in s, then make the conjecture that
the expression f — ¢ might be analytic at z;, where ¢
denotes the sum of the non-regular terms. Test this
conjecture, and if it is true then the integration of
f — q can proceed normally. In some cases, the non-
regular part ¢ will be integrable by the general integra-
tor; otherwise, it will passed on to the general tech-
niques discussed in subsequent sections.

Example 1.

Consider the problem of integrating over the interval
[0, 1] the function

[ = In(1 — cos(2z)).

The general series expansion of f at £ =0 is of the
form: '

1 1 2
In(2) + 2 In(z) — 3 z? — s zt — 5835 2% + O(z8).

The non-regular part is
q = 2 In(z).
The new expression
f — ¢ =In(1 — cos(2z)) — 2 In(z)

is analytic on the interval [0, 1]. Thus it can be
integrated by the numerical method, yielding the value
0.5797067686 (computing to 10 digits of accuracy).
Integrating ¢ is easy because it has the indefinite
integral
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2 ¢ ln(x) — 2 =;

its definite integral is therefore —2. Finally, summing
the two values, we obtain the value —1.420293231 for
the definite integral of f. O

Case (ii) outlined above is the case of an algebraic
transformation of variables. This method comes into
effect whenever there are fractional powers of x — x,
appearing in the series expansion s, whether or not
there are other non-regular functions appearing in the
expansion. The idea is to transform away algebraic
singularities, and if other singularities remain they will
be handled on a second pass. The specific method used
is to compute the least common multiple n of all
denominators of the fractional powers, and then to
apply the change of variables:

t = (z — z0)"/"

Example 2.

Consider the problem of integrating over the interval
[0, 2] the function

f = sqrt(sin(z)).

The general series expansion of f at =0 is of the
form:

L2 _ Tlé_ 252 4+ 0(2%7).
Applying the change of variables t = /2 yields the
new integrand '

2 t sqrt(sin(t?))

to be integrated over the interval [0, sqrt(2)]. This new
integrand is analytic and therefore it can be integrated
by the numerical method, yielding the value
1.620723408 (computing to 10 digits of accuracy). O

Case (iii) outlined above is the case of a non-
algebraic transformation of variables. When this
method comes into effect, the general series expansion s
of the integrand f at = = x; contains no fractional
powers but it contains other non-regular functions.
Once again, the method is based on looking at the
terms in the expansion s. For each non-regular func-
tion u(z) appearing in s, attempt to find a variable
transformation ¢ = u(x) that yields an analytic
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integrand. There are two sCéps that must succeed
before the variable transformation is accepted:

(a) the solve function must succeed in solving
t = u(z) for z, yielding the substitution for z:
z = w(t);

(b) the new integrand g = f(w(t)) w'(t) must be ana-
lytic at t=u(zg).

Of course, the value u(wg) is computed via the limit

function, if necessary. Also, this value may be infinite

in which case a t = 1/t substitution is used. If these

two steps succeed then the integration continues using

the transformed integrand.

The algorithm for these transformations is
presented in Figures 2a and 2b. It is invoked by the
routine singular presented in the next section.
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# The expression f 1n the varlable x has a singularity at x = a.
# The general serlies expansion of f at x=a 1s ser.

transform := proc (f, x, a, ser)
local inds, q, s, powinds, base, n, t;

inds := map(proc(e,x) if has(e,x) and e<>x then e fi end,
~ indets(ser), x);
# Check if the singularity can be "subtracted off".
1f type(ser, "+°) then
q := map(proc(e,x) 1f not type(e,polynom,x) then e fi end,
' [op(ser)], x);
1f nops(q) < nops(ser)/2 then
q := convert(q, +°);
s := traperror( taylor(f-q, x=a) );
1f type(s, taylor) then RETURN( subtract off',q) fi
fi
£fi;
# Separate from inds the fractlional powers of x-a.
powinds := map(proc(e) if type(e,'~') and type(op(2,e),fraction)

then e fi end, inds);
inds := 1nds minus powlnds;

1f nops(powinds) > O then
# Apply an algebralc transformation.
base := op(1l, powinds[1]);
n := 1lcm( op(map(proc(e) op(2,op(2,e)) end, powinds)) );
s := solve({t=base~(1/n)}, {x});
1f s <> NULL and nops([s]) = 1 then
RETURN( subs(t=x, op(2,s[1])), base~(i/n) )

f1
fi; ‘
# Search for a non-algebralc transformation.
findtransform(f, x, a, 1inds)
end:

Figure 2a. Algorithm for finding transformations.
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findtransform := proc (f, x, x0, 1inds)
“local 1, t, inv_sbst, sbst, newf, t0, s;

for 1 to nops(inds) do
inv_sbst := t=inds[1];
sbst := solve({inv_sbst}, {x});
1f sbst <> NULL and nops([sbst]) = 1 then
newf := subs(sbst, f) * diff(op(2,sbst[1]), t);
t0 := traperror( limit(inds[1], x = x0) );
if type(evalf(t0), numeric) then
s := traperror( taylor(newf, t=t0) );
1f type(s, taylor) then
RETURN( subs(t=x, op(2,sbst[1])), inds[1] ) fi
elif has(tO0, infinity) then
8 := traperror( taylor(subs(t=1/t, newf), t=0) );
1f type(s, taylor) then
RETURN( subs(t=x, op(2,sbst[1])), inds[1] ) f1
f1
fi
od;
FAIL
end:

Figure 2b. Algorithm for finding non-algebraic transformations.

5. The Case of a Singular Integrand

The control routine presented in Figure 1 of sec-
tion 2 dispatches the problem to singular if a singular-
ity is encountered. This singularity-handling algorithm
is presented in Figure 3. '

The singularity is known to be at the left end-
point a. The general series expansion of the integrand
at the singular point is generated and the algorithm of
section 4 is invoked to search for a transformation.
The transformation may be the “subtract off* type or it
may be a substitution of variables. In either case, the
indicated transformation is performed. The case where
no transformation is found (case FAIL) is discussed
below. -
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‘singular := proc (f, x, a, b, eps)
local ord, s, t, newf, newa, newb,;

# Compute general serles expansion of f.

ord := trunc( evalf(-1ln(eps)) );

s := series(f, x=a, ord);

1f type(s, laurent) then
ERROR('integrand has a pole at', a)

f1;

# Search for a transformation of f.
t := transform(f,x,a,convert(s,polynom));

1f ¢t = FAIL then
# Integrate the general series.
intseries(f, x, a, b, eps, 8)
elif t([1] = ‘subtract off" then
control(f - t[2], x, a, b, eps/2)
+ control(t[2], x, a, b, eps/2)
else
newf := subs(x=t[1],f) * diff(t[1],x);
newa := limit(t[2], x=a);
newdb := limit(t[2], x=b);
control(newf, x, newa, newb, eps)

fi
end:

Figure 3. Singularity-handling routine.

5.1. Direct integration of the general series

Although the method of transformations is quite
powerful, it will not always succeed in transforming to
an analytic integrand. A method that has been found
to be very successful is to use the general series approx-
imation as a representation of the integrand, and to
directly integrate this general series over its interval of
accuracy. The remainder of the interval can then be
handled by the numerical integration method. It is cru-
cial that we move as far as possible away from the
singularity before resuming, because the efficiency of
the numerical integration method is affected by the
nearness of singularities. The routine intseries (not
presented here) determines an interval over which
integration of the general series will be accurate and
then integrates the series. It then invokes the numeri-
cal integration method for the remaining part of the
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interval.

The success of this technique relies on a powerful
symbolic integrator to handle many of the singular
functions that may arise. For general series involving
In(z), the indefinite integral of In(z) z¥ is an elemen-
tary function. For general series 1nvolvmg exp(—1/x),
the indefinite integral of exp(—1/z) z* can be expressed
in terms of the exponential integral Ei(z). Slmllarly,
series involving the singular function exp(—1/z?) may
lead to both the exponential integral and the error
function erf(x).

Example 3.

Consider the problem of integrating over the interval
[0, co] the function
’U2

exp(v — 7)

1+ % exp(v)

First, the interval would be split into [0, 1] and [1, co].
For the finite interval, the numerical integration
method is applied directly and it yields the wvalue
0.7580564829 (computing to 10 digits of accuracy). For
the infinite interval, the change of variables v = 1/z
transforms the problem into integrating over the inter-
val [0, 1] the new integrand:

1
2 22

)

1 .
exp(-x— —

§= 1 1
(1 + Y exp(;)) x?

The first few terms of the general series expansion of g
at x = 0 are:

s =2 exp(—ﬁ)l/ 2fx% — 4 eXP(—-xl—Q)l/ : eXP(——::;)/S'J2
+ 8 exp(— )1/2 exp(— )Q/x

— 16 exp(— " )1/2 exp(— )3/x

Maple’s symbolic integrator determines that the inde-
finite integral of the first term of s is
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— sqrt(2m) erf(—s_a;t%Q—)—;);

the indefinite integral of the second term of ¢ is
1 1 1
2 sqrt(2m —) erf ;
sart(2m) exp( 2 Jer (sqrt(2) z t sqrt(2))
and similarly the integral of each term is computed. If
one computes the definite integral over [0, 0.25], say, of

the successive terms of s, one finds that the successive
values are:

.000158776061, —.000004738616, .000000146186,
—.000000004620, .000000000149, —.000000000005

Clearly, the series representation is rapidly converging
on this interval. Summing up these values yields the
value 0.000154179155 for the integral of g over [0, 0.25].
For the remaining interval [0.25, 1], the numerical
integration method is applied to integrate g, yielding
the value 0.547306237063 . Summing these two values
together with the previous result for the finite interval,
we have obtained the desired integral of f over [0, co]
to be 1.305516899 (to 10 digits of accuracy). O

The technique of integrating a general series
expansion appears to be a viable method for handling a
singular integrand, given a symbolic integrator that
handles a large class of special functions. More study
should be carried out on methods to determine the
optimal interval over which the general series is suffi-
ciently accurate. For example, suppose we postulate
(based on the order term for the series) that the general
series expansion will be accurate on an interval [a,
a + r], where a is the point of singularity. Then the
actual accuracy on the second half of this interval,
[a + r/2, a + r], could be tested by using an ordinary
Taylor series expansion about the point a + r. It will
be fruitful to determine an optimal choice for r because
the further we can move away from the singularity, the
more efficient will be the numerical integration method
on the remaining interval of integration.
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8. Concluding Remarks

We have presented some techniques that can form
the basis for a fully automated numerical integration
code in a symbolic computation system. A concept of
general series expansions (non-Taylor, non-Laurent
series) was used as the basis of algorithms to identify
possible transformations that might remove the singu-
larity. For the case where no transformation was suc-
cessful, a method was outlined for integrating the gen-
eral series expansion beyond the singular point, relying
on the power of the system’s symbolic integrator.

There are several areas of further study indicated
by this investigation. For the case of an analytic
integrand on a finite interval, various other numerical
integration methods could be considered. An interface
from the symbolic system to Fortran codes might be
the best solution when the interval is finite, there are
no singularities present, and ordinary precision is
acceptable.

For the case of a singular integrand when no
transformation is found to remove the singularity,
further study of error estimation for general series
expansions is warranted. As was noted in section 5, it
is desirable to integrate the general series expansion as
far beyond the singular point as possible, because the
nearness of the singularity affects the efficiency of the
numerical integration method which is used to complete
the integration on the remaining part of the interval.

Finally, it is necessary to develop a scheme to
automatically handle cases where the singularity cannot
be removed and the symbolic integrator is unable to
express the integral of the general series expansion.
One possible technique for the latter case would be to
transform back to an infinite range and to use some
method of estimating the ‘‘tail’”” of the integrand that
can be ignored for the accuracy that is desired. Sym-
bolic manipulation techniques should be useful for this
purpose. See [Fat81] for some ideas on this case.
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