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1. Introduction.
We are concerned with solving the simple bound constrained minimization problem

minimize  f(x)
(1.1 xeR"
subject to the simple bounds /I <x=<u
by a method of the trust region type. In this problem, f(x) is assumed to be sufficiently
smooth, / and u are fixed vectors and the inequalities are taken componentwise.

Such problems arise quite naturally in a number of different circumstances. Indeed,
some authors (see, Gill, Murray and Wright, 1981) maintain that the variables for the
vast majority of optimization problems can only be considered meaningfull within
specific intervals and consequently should be solved with simple bound constraints.

Many algorithms for solving (1.1) have been proposed. Early methods were of the
active set variety in which a sequence of problems, for which a subset of the variables
(the active set) are fixed at bounds and the objective function minimized with respect to
the remaining variables, are solved. Such algorithms typically use line searches to force
convergence and both direct (Fletcher and Jackson, 1974, Gill and Murray, 1976) and
iterative (O’leary, 1980) methods have been suggested for solving the linear systems
which arise during each iteration. A significant drawback of such methods for large-scale
problems appears to be that the active sets can only change slowly and many iterations
are necessary to correct for a bad initial choice. More recently, methods which allow a
rapid change of the active set to occur have been proposed (Bertsekas, 1982, Dembo and
Tulowitzki, 1983); these methods perform linesearches along a search direction which is
‘bent’ to keep the iterates within the feasible region. Although a convergence theory for
such methods can be given for convex problems, it is not obvious how to adapt the theory
for more general problems.

In this paper, we propose a new algorithm for which we have already produced a
general convergence theory (Conn, Gould and Toint, 1986) and which allows rapid
changes in the active set. At each iteration of the algorithm, we define a (quadratic)
approximation to the objective function, and a region surrounding the current iterate in
which we believe this approximation to be adequate. The algorithm then finds a feasible
candidate for the next iterate in this region. This candidate is chosen so as to give a
sufficient reduction in the value of the (quadratic) model of the objective function. If the
function value calculated at this point matches its predicted value closely enough, the
new point is accepted as the next iterate and the trust region is possibly enlarged;
otherwise the point is rejected and the trust region size decreased.

A particularly attractive aspect of the algorithm proposed is that, by generalizing the
standard notion of a Cauchy point to accommodate the bound constraints, in what seems
to us a natural manner, one is able to extend the very general known convergence results
for trust region methods applied to unconstrained problems (see Moré). Moreover, the
framework presented is well suited to large dimensional problems and can be used in
conjunction with partitioned secant updating techniques on the general class of partially
separable problems (Griewank and Toint, 1982a, b). However, the issues involved in
solving large scale problems are by no means trivial, and the design of sophisticated
software for such problems is a major task that we postpone for a future paper. The
purpose of the current work is to demonstrate the viability of the framework proposed



(and whose convergence is studied) in our previous paper. Consequently, the numerical
results presented below are for small dense problems — the largest containing 45
variables.

The paper is organised as follows. In §2 we give a general introduction to the
framework of our algorithms and we discuss the issues involved in determining our
generalization of the Cauchy point in §3. The specific algorithm used in our tests is then
given in §4. In §5 details of our testing and the numerical results obtained are presented
and a general discussion of some of the directions for future research follows in §6. A
detailed list of the test problems that we have used is given in an appendix.

2. The basic algorithm.

As we have already stated, our algorithm is essentially of the model-trust region
variety. The description we give here is a special case of the more general framework
presented by Conn, Gould and Toint (1986). We need to define the following concepts.
The set of all points x for which ! < x < u is the feasible region for the problem (1.1) and
any point x in the feasible region is feasible. Let a and b be any two vectors for which
a < b. The active set with respect to the vectors a and b at the point x, I(x, a, b), is the
index set {i for which x; < a; or x; = b, (or both)}. In particular, we shall refer to

I(x, I, u) as the active set at x and denote it by I(x). We now define the projection
operator P[-] (componentwise) by

1 <
a, ifx;, <a

Plx,a,b]; = { b, ifx; > b,

i i

x; otherwise

For brevity we shall write P[x| = Px, I, u] and will refer to P{x| as the projection of x into
the feasible region.

At the k—th stage of the algorithm, we suppose that we have a feasible point x®) the
gradient, g™, of f(x) at x% and a suitable symmetric approximation B® to the Hessian
matrix of the objective function at this point. Furthermore we require a scalar A
which represents a bound upon displacements around x®) within which we believe that a
second order approximation,

k) (4 (K — £y &) 0T T pk
(2.1) m® xR +5) = fx®) + g® s+1is B® s,

to the objective function will effectively agree with the true function (the trust region). A
trial point x**D = x® 4+ & is constructed by finding an approximation to the
solution of the trust region problem
minimize ~ m® (x)
x e R”

(2.2) subject to the simple bounds [<x =<u

and the trust region constraint |[jx — x® || < A%

where ||.|| is a suitably chosen norm. The acceptance of the trial point as an improvement
and the modification of A® are treated in essentially the same way as in trust region
methods for unconstrained problems (see, Moré, 1983). That is we compute the ratio of
the achieved to the predicted reduction of the objective function,
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@3 p® = (®) - f® + 58/ {xP) - mPE® + 5@
and set
k k) : k
x® if p(k) <u

and

v A® it p® <y
(2.4) AFD =1 AR < p® <y
rA® it p® =g,

where yy <1< y,, u and n are appropriate numbers. It remains to describe our.
approximate solution of (2.2).

It is convenient to attempt to solve (2.2) in the case where we choose the infinity norm
for the trust region constraint for then the shape of the trust region is aligned with the
simple bounds (see, for example, Fletcher, 1980). Thus we replace the constraints in
(2.2) by the “box” constraints '

2.5 max(l,x® - A®) =10 < x, <u® = min (u, x® + AD)

fori = 1, ..., n. In order to satisfy our global convergence theory, we need only find a

-feasible point within the trust region at which the value of the model function is no larger
than its value at the Generalized Cauchy Point (GCP) (see Conn, Gould and Toint,
1986). The GCP is defined as the first local minimizer of the univariate function

(2.6) q(k)(t) = m(k)(P[x(k) - tg(k), l(k), u(k)} ).

That is, the first local minimizer of the model function, along the piecewise linear arc
defined by projecting the steepest descent direction into the region (2.5). The calculation
of the GCP may be performed extremely efficiently as we shall shortly show. We note
that the combinatorial part of our algorithm (the determination of which variables are to
be fixed at one of their bounds during the current iteration) takes place in finding the
GCP. This computation allows us to add and drop many bounds from the active set
during a single iteration if this is desirable. As we have already remarked, this is
important for large-scale problems.

In order to provoke a fast asymptotic rate of convergence of the method, we normally
require a better approximation to the minimizer of (2.2) than the GCP. Consequently we
suppose that the GCP is x®¢ and that the active set with respect to [®) and u® at x®e
is I(x ®e 1% 4 0). We now apply the conjugate gradient algorithm, starting from
x = x®e , to the problem

2.7 minimize m® (x),
xeR"
with the restriction that the variables in the set I(x Be N u(k)) remain fixed throughout
the process. Under a strict complementary slackness assumption, this strategy is
sufficient to ensure that the set of constraints active at the solution (the correct active set)
is identified after a finite number of iterations (see Conn, Gould and Toint, 1986). The
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convergence of the algorithm can thereafter by analysed as that of a purely
unconstrained method. The conjugate gradient algorithm is terminated at the point % if

(i) the norm of the restricted gradient of the model function, that is the vector
whose components are those of the gradient of m® (x) at x = % not indexed by
I(x e , 19 %)) s less than n®) for some n®;

(ii) one or more of the unrestricted variables violates one of the bounds (2.5) (¥ is
then the point at which the offending bound(s) is (are) encountered); or

(iii) an excessive number of iterations has been taken.

In all cases, the final point reached is the new trial point, i.e. (%™ = ). The rule (i)
has already been considered by Toint(1981) and Steihaug(1983) for unconstrained
minimization algorithms and are known to be useful for large-scale computations. Rule
(ii) has three purposes. The first is to provide a natural stopping rule in the event that
non-positive curvature is encountered for the model. The second is to maintain
feasibility of the iterates. The last is to avoid the expense of restarting the conjugate
gradient iteration when a bound is encountered.

Once the correct active set has been determined, the asymptotic rate of convergence
of the method will be controlled by the accuracy to which we attempt to solve (2.7). A
superlinear rate of convergence can be assured provided that (a) the ratio of the norm of
the restricted gradient at the final point to that at x% tends to zero as the iterates
approach a Kuhn-Tucker point for the problem and (b) the matrices B® approach the
true second derivative matrix at the solution in the direction that x* approaches the
solution (see, Dembo, Eisenstat and Steihaug, 1982, Dennis and Schnabel, 1983). A
suitable choice for ) in order to satisfy (a) is given by

2.8) n® = min 0.1, V[g® ) 2®1,

where 3% is the projected gradient, Plx®® — g®] — x® "at x®  The property (b) is
certainly true if exact second derivatives are computed; the situation for secant updating
formulae is closely related to that given by Steihaug (1983). In this case we must be
careful that our updates obey the condition '

2.9 §1 1+ max||BO|) = »
2.9) Z /(1 + max|iBO])

required in our global }:onvergence theory. Such a condition is satisfied if, for instance,
| (2.10) IB®|| < ¢, + ke,.

for some positive constants ¢; and ¢, .

3. The Generalized Cauchy Point.

In order to find the Generalized Cauchy Point, we need to be able to determine the
first local minimizer of a quadratic function along a piecewise linear arc. In this section
we describe an efficient algorithm for this calculation.

We shall consider a piecewise linear arc of the form
td; ifr<t

(3.1 x() = x7 + d(1), where d()), {tj, d; otherwise



where the breakpoints 0 = ¢, < < .... <{t, and the indices 0 < j, < m are well
defined and may be calculated as required. We shall adopt the convention that j, = 0 if
d, = 0 and note that d(?) is independent of ¢ for all t > ¢, . Notice that the arc

Px® — g® 0, ®)]

is exactly of this form, a breakpoint occuring whenever a variable reaches one of its
bounds.

Our method for finding the GCP is simply to consider the intervals [¢ s 4 t.;1]in order of
increasing j until the one containing the GCP is located. We need only calculate ¢ L
when the first j intervals have been examined and rejected. In order to calculate the
GCP, we shall be concerned with the behaviour of the quadratic function

(3.2) mix)=f+ (x—x"Tg + %(x - xHTB (x - x%)
for points lying on (3.1). In particular we shall be concerned with its behaviour between
adjacent pairs of breakpoints. If we define x/ = x(t;), we can express (3.1) in the interval
[ ] » ]+1]
a, ifj>j

(3.3) x(t) = ¥/ + At d’, where d{ = { )
0 otherwise

and Az = ¢ — ;. Hence, defining
f]-=f+gsz+%szsz,
fr=g"d +dT Bz
\ and f" = d/T BdJ,
where z/ = x/ — x°, and combining (3.2) and (3.3), we obtain
m(x() = f; + Atf’ + L AP £,

forall r = ¢; + At in the interval [7;, £;,;]. It is then straightforward to deduce that the
GCP lies at L = f /f " provided that this point lies in the interval (¢, ;) and that
fi" >0, lies at 4 if f = 0 and lies at or beyond ¢;,; in all other cases. We need now only
be concerned with calculating f;' and f".

LetJ; = {i such that j; = j}. Then
d=d"1 - Yde,
iel;

where e’ is the i~th column of the identity matrix. We may then obtain the identities

f}_l =f}~1! + At]‘_lf}‘_lu - b]T xj — Z’dl glo
! 1€,
(3.4) and T 4 . !
[ o= fo + b T(Nd; e - 2bT),
ier

where g = g — Bx?, At,_y =1t — t;_; and

(3.5)b/ = B(Yd, ¢') = Y d, (B e')
ieJ; ieJ;

Notice that the recurrences (3.4) require a single matrix-vector product (3.5) and two
vector inner products. Moreover, the matrix-vector product only involves columns of B
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indexed by J;; as it is usual for |J;| to be small (typically 1) the product can normally be
formed very efficiently. In the worst case, when we have to run through all of the
breakpoints to find the GCP, each column of B will be accessed once. The recurrences
are initialized with the values

fy' =7 d® and f," =d°T Bd°.

4. The specific algorithm.

We are now in a position to specify our algorithm in almost its entirety. The only part
that we do not give here are the details of how the second derivative approximations B*)
are formed and updated. Details of these calculations are given in §5.

STEP 0 [Initialization] ~

The feasible starting point x @, the function value f(x@) and the gradient value
g(o) are given, as well as an initial trust region radius, A©® and BO | an initial
symmetric approximation to the Hessian matrix of f(x) at the starting point. The
positive constants y, < 1 < y,, 4, 1, and ¢ are specified. Set k = 0.

STEP 1 [Test for convergence]

Compute the projected gradient g% = Px® — g®] - x® 1f ||z®| < ¢,
STOP.

STEP 2 [Find the GCP]

Calculate the bounds /® and u® from equation (2.5). Find the Generalized
Cauchy Point, x e (using the algorithm outlined in §3) as follows:

STEP 2.0 [Initialization]
Set
x=x®, g=g® _ g )
d=Px® — g [0 ,®] _ ®
fr=g®T 4 and f"=d7BW 4.
Iff'=0,gotoSTEP 2.4
STEP 2.1 [Find the next breakpoint]

Find the largest stepsize At for which I® < x + Atd < u® and the index
set J of the indices of all the variables which first encounter their bounds at
x + Atd.

STEP 2.2 [Test whether the GCP has been found]

IfFf">0and0< — (f'/f") < At, reset x: =x — (f'/f") d and go to
STEP 2.4.

STEP 2.3 [Update line derivatives]

Compute b = B® X4, e') and reset
ie



f’:=f’+Atf”—bTx—ZJdigi,
LE,

f”: =f" + bT (Zdt ei - 2b),
ie]

x:=x+ Atd and

d:=0 forall iel.

Iff' =0, go to STEP 2.4. Otherwise, go to STEP 2.1.
STEP 2.4 [Termination with GCP]
Set x®e = x.
STEP 3 [Find thé new iterate]
Compute the active set I(x ®e , 109 )y,

Apply the following variant of the conjugate gradient algorithm to find an
approximation %® to the minimizer of the model function (2.1) over the feasible
region (2.2) with the additional restriction that the variables with indices in
I(x ®)e , 1% 49y remain fixed at the corresponding values of x®e.

STEP 3.0 [Initialization]

Set x=x%¢ and r=-— g® — B® (x — x®). Compute n® from
equation (2.8). Set

1={1,2,...,n) \I(x(k)c, 1% u(k)).

Let %, #, ] and & denote the vectors whose components are those of x, r, / (k)
and u® indexed by 1. Furthermore, let B denote the matrix whose rows and
columns are those of B® indexed by I. Setp = 0, p, = 1and p, = #T#-

STEP 3.1 [Test for the required accuracy in c.g. iteration]
If p, < (n®)2, go to STEP 3.3.
"STEP 3.2 [Conjugate gradient recurrences]

Set B = p, / p; and reset p: = # + B p. Compute y = B p and find @, the
largest value of & for which < £ + a p < .

IfpT 9 <0, reset&: = £ + a; p and go to STEP 3.3.
Otherwise, calculate o, = p, / p 7.

If oy, > o, reset 2: = X + oy p and go to STEP 3.3.
Otherwise, reset

=X+ a p

f‘:=f‘—a’2f/
p1:=p, and
p2:=?T?-

Return to step 3.1.



STEP 3.3 [Termination of conjugate gradient iteration]

Reset the components of x indexed by 7 to the values of the associated
components of £. Set ¥+ = x.

STEP 4 [Compute the ratio of achieved to predicted reduction in the function]
Compute f(x**V) and

p® = (fx®) = fE#+D)) [ (m ¥ x¥) — D)),
STEP 5 [Updates]
Set

51 _ 2(k+l)) if p(k) > u
* Tl i W <y,

set A**D according to equation (2.4) and compute

wspy _ | 8&ED) it p® >y
& 7= g® i p® <

Revise the approximation to the second derivative approximation B (k+1) while
ensuring that equation (2.10) is maintained. Increment & by 1 and return to STEP
1.

5. Numerical experiments.

In order to investigate the behaviour of the algorithm stated in §4, we have performed
a fairly substantial amount of numerical testing. We have attempted to solve forty six test
problems using a variety of methods; the methods only differing in their choice of second
derivative information. Our aim is naturally to indicate that our framework is an
effective one for solving relatively small problems; our belief is that these tests give some
indication as to how our framework could cope with larger problems.

For comparison, we have computed the second derivative matrices B &) in a number
of different ways. We refer the reader to Gill, Murray and Wright (1981, section 4.5.2.1)
for a definition of the methods and terminology of this section.

Firstly we have tried using the exact second derivatives; this was intended to allow a
comparison of other schemes with the ideal updating formula. Secondly we have
included the B.F.G.S. and D.F.P. updating schemes — the update is only performed in
either case provided that the new approximation can be ensured to be positive definite.
We note that the B.F.G.S. (but not the D.F.P.) update has the property that the updates
remain uniformly bounded (see, Powell, 1975, Griewank and Toint, 1982b) for convex
problems and hence automatically satisfy the growth requirement (2.10) in this case.
Thirdly we have included the P.S.B. update as an example of a scheme which allows
indefinite approximations to be generated and for which no effort needs be made to
ensure that the growth requirement (2.10) is satisfied. Finally we have tried the
Symmetric Rank-one update as an example of an update which allows indefinite
approximations but which must be controlled so that the growth requirement (2.10) is
satisfied. We choose to skip the update whenever the rank one correction is too large.
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For simplicity, we have chosen to skip the update when the correction has norm larger
than 108.

For each of these second derivative schemes, we solved every test problem twice. For
the first run, the problem is essentially unconstrained (U) but we have taken the
precaution of including the simple bounds

— 100.0 = x; = 100.0, 1<si=n,

to prevent an unbounded solution being found. For a few of the problems, typically
those containing exponentials, we have provided tighter bounds in order to prevent
numerical overflows when the problem functions are evaluated — notice that our
framework is especially useful for imposing such safeguards. Details of these additional
bounds are given in appendix 1. If x~ denotes the solution obtained for problem U, the
second test of the problem (C) includes the additional bounds

x, +01<x,<x +11 foralloddi.

14

The starting point for the constrained problem is the projection of the starting point for
the unconstrained problem into the feasible region, Plx (O)]. Details of the test problems
and their solutions are given in appendix 1.

All of the computation was performed on the IBM 3084Q computer at Harwell; our
code is written in Double Precision Fortran 77 (with modifications as required by
WATFIV) and compiled using the WATFIV Fortran compiler. All timings reported are
in seconds for time spent in the C.P.U. and appear to be correct to about one hundredth
of a second. As the code is essentially a prototype for studying the effectiveness of the
method, we did not feel it necessary to use a more sophisticated optimizing compiler; the
timings quoted are supposed to allow comparisons of the relative merits of the schemes
tested rather than trying to obtain the “best” timing for a particular scheme. The initial
estimate B = I was used for all of the updating schemes; the initial trust region radius
A® =0.1]|g9],. We also chose u = 0.25, 7 = 0.75, 7, = 0.5and y, = 2.

The results are given in Tables 4.1-4.5 and summarized in Tables 4.6-4.8. For each
run we have given the number of variables (n), the number of iterations (it.) required to
solve the problem (which is the same as the number of objective function evaluations),
the total number of derivative evaluations (de.) (which is the same as the number of
iterations for which the trial point is accepted), the total number of conjugate gradient
iterations taken (c.g.), the norm of the projected gradient (gr.norm) at the final point,
the last iteration on which the active set changes (cas) (which is an indication as to when
the correct active set is obtained for successful runs) and the time taken to reach the final
point (time). Additionally, for the B.F.G.S., D.F.P. and S.R.1 runs, we have recorded
the number of times the second derivative update was skipped (usk). Every run was
terminated if the norm of the projected gradient of the objective function was reduced
below 10 °. In addition, each unconstrained (constrained) run was terminated if more
than max(20n, 600) (max(10n, 300)) iterations were performed or if the trust region
radius A® was reduced below 107! and these failures are indicated by = in the
iteration column. In Table 4.6, the performance of the updating schemes is compared
with that obtained by the method which uses exact second derivative information. The
relative number of iterations and the relative timings are given and indicate how much
worse the respective updating schemes are than the use of exact second derivatives. In
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Problem n it. | de. | c.g.| gr.norm | cas | time
GENROSE U 8 42| 31| 184 | 2.2D-07 0] 0.88
GENROSE C 8 15} 15 54| 2.8D-10 6| 0.27
CHAINROSEU i 25 201 17 98 | 1.3D-07 0| 1.80
CHAINROSE C 25 18| 13 26| 3.9D-07| 14} 0.91
DEGENROSE U | 25 95| 94 34| 63D-07| 95| 5.64
DEGENROSEC | 25 17| 14 13| 1.2D-10| 12| 0.78
GENSING U 20 10 11 37| 5.6D-07 0 0.58
GENSING C 20 4 5 3! 1.6D-07 0 0.15
CHAINSING U 20 18| 19 96 | 4.6D-07 0] 1.21
CHAINSING C 20 3 4 8| 2.5D-15 0} 0.13
DEGENSINGU | 20| 155 156 56 | 3.0D-07 | 148 | 6.45
DEGENSING C 20 3 4 8| 2.5D-15 110.13
GENWOOD U 8| 107 75| 393} 2.6D-10 0] 2.03
GENWOOD C 8 5 6 2| 1.0D-07 0| 0.07
CHAINWOOD U | 8 77 54| 365 2.4D-09 0| 1.64
CHAINWOOD C | 8§ 5 6 71 7.8D-07 0| 0.07
HOSC45U 10 19| 20 0 0.0D-01| 19 0.26
HOSC45C 10 12| 13 0| 0.0D-01 12| 0.184
BROYDENIA U | 30 1] 12 38 | 6.9D-07 0] 1.13
BROYDENIAC | 30 8 9 10 | 3.5D-10 0054
BROYDENIBU | 30 7 8 31| 6.3D-08 01 0.79
BROYDENIBC | 30 6 7 51 3.3D-07 0] 0.39
BROYDEN2A U | 30 14| 15 7 5.6D-07 0] 1.48
BROYDEN2A C | 30 10| 11 11| 1.8D-07 3] 105
BROYDEN2BU | 30 91 10 12| 7.0D-07 0] 1.04
BROYDEN2BC | 30 91 10 9| 6.5D-08 21093
TOINTBROY U | 30 8 9 52| 3.3D07 0| 1.10
TOINTBROY C 30 8 9 8| 2.2D-10 0! 0.55
TRIGU 10 7 6 7| 1.6D-07 0 0.28
TRIGC 10 8 8 6| 8.8D-15 01032
TOINTTRIG U 10 13 9 26 | 9.6D-08 0} 0.28
TOINTTRIG C 10 10 9 18 | 2.8D-13 310.19
CRAGGLEVY U 8 241 25| 106 | 4.4D-07 0| 0.50
CRAGGLEVY C 8 20| 20 651 1.7D-07| 191 0.36
PENALTY U 15 27| 25 58 | 2.0D-08 0] 0.88
PENALTY C 15 80| 81 31 1.2D-08| 78 2.12
AUGMLAGNU | 15 31| 21 103 8.1D-07 8 1.15
AUGMLAGN C 15 471 37 186! 5.2D-08 | 44 1.77
BROWN1U 20 27| 28 32| 9.4D-10 1]1.22
BROWNI1C 20 271 28 0] 3.6D-10 11093
BROWN3 U 20 7 8 41 4.5D-08 0] 0.31
BROWN3 C 20 6 7 6 3.9D-07 0, 0.24
BVP(N=10) U 10 4 5 31 1.7D-09 0] 0.14
BVP(N=10) C 10 4 5 18 | 1.4D-07 310.10
BVP(N=20) U 20 5 6 77 1 6.4D-10 0 0.63
BVP(N=20) C 20 9, 10 62 | 6.1D-07 8 0.67
VAR(N=20) U 20 6 71 112 2.7D-09 0| 0.87
VAR(N=20) C 20 6 7 61| 1.7D-09 3,053
VAR(N=45) U 45 6 71 234| L.7D-07 0535
VAR(N=45) C 45 12| 13 90 ; 1.8D09 9.1 3.10

Table 4.1. Results for tests using exact second derivatives
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Problem n it. | de. | usk{ c.g. | gr.norm | cas time

GENROSE U 8 149 | 98

0| 376 5.9D-07 0 2.82
GENROSE C | 8 84| 54 0| 178 3.0D08| 49 1.33
CHAINROSEU | 25 190 | 129 0| 376 | 6.7D-07 0] 15.50
CHAINROSE C 25 65| 43 0 97| 2.2D-07] 16 4.10
DEGENROSE U | 25 240 | 210 0 65| 7.6D-07 | 240 | 17.39
DEGENROSEC | 25 56| 28 0 35| 69D07| 22 2.75
GENSING U 20 125 77 0| 503 | 3.8D-07 0 8.35
GENSING C 20 157 10 0 10| 1.9D-07| 12 0.58
CHAINSING U 20 165 | 109 0 512 6.3D-07 0] 10.44
CHAINSING C 20 25| 15 0 14 | 2.0D-08 0 0.93
DEGENSINGU | 20 572 | 545 0| 203, 44D-07| 572 29.74
DEGENSING C 20 21 13 0 16 { 1.1D-07 7 0.77
GENWOOD U 8 201 | 136 0| 720| 6.5D-08 0 3.99
GENWOOD C 8 50| 23 0 27| 1.2D-07| 21 0.59
CHAINWOOD U | 8 221 | 148 0| 894 | 4.9D-07 0 4.67
CHAINWOOD C | 8 47| 25 0 40 | 2.4D-08 | 22 0.61
HOSC45U 10| >600 | 601 | 600 0| 2.3D-04 0 7.57
HOSC45C 10 86| 87! 86 0| 0.0D-01| 86 1.07

218 | 8.4D-07 0 7.68
17| 4.1D-07 | 13 3.70
44 | 5.4D-07 0 8.78
30| 3.3D-07 0 4.46

183 | 8.8D-07 0 7.66
18| 1.9D-07 | 18 5.15
14 | 2.3D-07 0 6.29
25| 42D-07| 12 5.06
76 | 7.5D-07 0| 11.54
29| 3.8D07 10 4.89

BROYDENIA U | 30 651 44
BROYDENIAC | 30 54| 23
BROYDENIBU | 30 97| 62
BROYDENIBC | 30 65| 31
BROYDEN2A U | 30 71| 36
BROYDEN2A C | 30 65| 29
BROYDEN2BU | 30 69| 34
BROYDEN2BC | 30 67, 29
TOINTBROYU | 30 122 | 80
TOINTBROY C 30 68| 34

TRIGU 10 451 21 46 | 5.4D-07 0 1.09
TRIG C 10 171 11 13 | 3.3D-07 0 0.37
TOINTTRIG U 10 73| 37 65| 9.3D-07 0 1.50
TOINTTRIG C 10 57| 25 51| 1.3D-07 7 0.86
CRAGGLEVYU | 8 99| 83 574 | 6.3D-07 0 2.38

151} 7.6D-07 | 56 1.10
537 | 7.0D-07 0 6.28
156 | 1.7D-07 | 61 2.63
355 4.5D-07, 41 5.83
306 9.7D-07 | 131 5.03

CRAGGLEVY C 8 631 56
PENALTY U 15 139 | 104
PENALTY C 15 741 59
AUGMLAGNU | 15 156 | 112
AUGMLAGNC 15 139 | 98

BROWN1 U 20 94| 54 159 | 2.9D-07 8 4.68
BROWNI1C 20 330 29 0| 9.0D-07 6 1.21
BROWN3 U 20 18 15 28| 5.1D-07 0 0.94
BROWN3 C 20 9 9 13 7.3D-07 0 0.41
BVP(N=10) U 10 31 27 109 | 6.1D-07 0 0.80
BVP(N=10) C 10 33| 23 82| 2.4D-08 | 20 0.70
BVP(N=20) U 20 69| 56 438 | 6.1D-07 0 5.67
BVP(N=20) C 20 61 | 47 277 1.8D-07 | 37 4.09

390 | 1.7D-07 0 8.35
267 1.9D07| 88 7.09
1252 | 5.9D-07 0| 8594
772 8.3D-07; 279 | 69.54

VAR(N=20) U 20| 134 97
VAR(N=20) C 20| 128] 86
VAR(N=45) U 45| 366 | 259
VAR(N=45) C 45| 337 234
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Table 4.2. Results for tests using the B.F.G.S. update
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Problem n it. | de. | usk | c.g.| gr.norm | cas time

GENROSE U 8| >600 | 589 0| 1154 | 4.7D 00 0| 10.96
GENROSE C 8 390 31 0 99 | 54D-07 | 18 0.67
CHAINROSEU | 25 951 70 0| 410 7.1D-07 0 9.39
CHAINROSE C 25 45| 30 0 47| 4.0D-07 | 11 2.80
DEGENROSEU | 25 183 | 164 0] 202 9.4D-07 | 183 | 14.18
DEGENROSEC | 25 471 20 0 43| 2.6D-07 | 10 2.27
GENSING U 20 76| 61 0| 338 9.4D-07 0 5.30
GENSING C 20 14| 10 0 8 3.0D07| 12 0.58
CHAINSING U 20 253 | 230 0| 1635 | 4.4D-07 0| 21.04
CHAINSING C 20 17 12 0 13} 9.6D-07 0 0.69
DEGENSING U | 20| >600 | 594 0 9! 8.0D-03| 601 | 32.08
DEGENSING C 20 19 12 0 13| 1.7D-09 7 0.71
GENWOOD U 8! >600| 587 | 92 1824 | 19D 00 0| 11.46
GENWOOD C 8 28| 16 10| 1.7D-08 | 16 0.34

1904 | 1.4D-01 0 12.10
24| 1.7D-08 | 24 0.42
0| 2.3D-04 0 7.55

0; 0.0D-01| 86 1.07
819 9.5D-07 0} 16.51
52| 1.8D-07| 13 4.11
62 | 6.0D-07 0 591
44 | 3.4D-07 0 3.49
432 | 9.3D-07 0 11.17
124 9.3D-08 | 14 5.69
69 | 4.9D-07 0 5.75
95| 9.7D-07 | 12 5.07
108 | 9.9D-07 0 7.41
53] 7.7D-07 | 10 4.03

CHAINWOOD U | 8 >600]| 590
CHAINWOOD C | 8 307 18
HOSC45U 10| >600 | 601
HOSC45C 10 8 | 87
BROYDEN1A U | 30 9% | 69
BROYDENIAC | 30 59 24
BROYDENIBU | 30 65| 36
BROYDEN1BC | 30 521 20
BROYDEN2A U | 30 83| 51
BROYDEN2A C | 30 691 32
BROYDEN2B U | 30 66| 26
BROYDEN2BC | 30 65 29
TOINTBROYU | 30 77| 4
TOINTBROY C 30 56 26

TRIG U 10 281 16 20| 6.1D-07 0 0.71
TRIG C 10 15 10 10| 1.2D-07 3 0.34
TOINTTRIG U 10 411 24 71| 1.7D-07 0 0.91
TOINTTRIG C 10 26 15 30| 4.0D-07 7 0.44
CRAGGLEVY U 81 >600| 592 2387 | 1.1D-04 0| 12.70
CRAGGLEVY C 8 193 1 189 2371 9.3b-07 | 170 3.06
PENAITY U 15| >600 | 572 2971 | 8.6D-01 0} 30.19
PENALTY C 15 157 | 142 588 | 8.3D-07| 63 5.78

1346 | 3.6D-01 | 395, 24.73
998 | 2.5D-01| 297 | 12.12

AUGMLAGNU | 15| >600| 586
AUGMLAGN C 15} >300 | 291

BROWN1 U 20} >600 | 565 2717 | 1.3D-04 81 41.86
BROWN1 C 20 331 29 0 9.0D-07 6 1.19
BROWN3 U 20 151 12 18 | 8.1D-07 0 0.75
BROWN3 C 20 9 9 11} 7.0D-07 0 0.41
BVP(N=10) U 10 47| 45 252 | 3.6D-08 0 1.41
BVP(N=10) C 10 25 22 83| 1.4D-07 | 12 0.59

2645 | 8.5D-07 0l 27.07
734 2.7D-07 | 30 8.46
226 | 1.6D-07 0 3.82
185 | 8.6D-08 ! 21 3.40
695 1 1.5D-07 0] 3554
600 | 9.3D-07 ; 136 | 36.88

BVP(N=20) U 20| 269 | 264
BVP(N=20) C 200 107 97
VAR(N=20) U 20 s6| 43
VAR(N=20) C 20 54| 40
VAR(N=45) U 45| 130| 99
VAR(N=45) C 45| 153 127

Table 4.3. Results for tests using the D.F.P. update
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Problem n it. | de.| c.g.| gr.morm | cas| time

GENROSE U 8! 177| 125| s81| 22D-07| 0| 3.62
GENROSE C 8| 96| 67| 196| 2.0D-07| 42| 1.52
CHAINROSEU | 25| 137| 96| 323| 8.1D-07| 0] 1221
CHAINROSEC | 25| 52| 36| 75| 3.9D—07| 12| 3.17
DEGENROSEU | 25| 233 212| 23| 6.4D-07| 233 | 17.08
DEGENROSEC | 25| 42| 20| 39| 8.1D-08| 10| 2.01
GENSING U 200 171 132| 387 8.4D-07| 0] 10.21
GENSING C 20{ 14| 9 7| 87D07 9| 0.51
CHAINSINGU | 20| 217| 173 | 1745| 5.1D-07| 0] 19.91
CHAINSINGC | 20| 24| 14| 21| 52D-07] 0| 088
DEGENSING U | 20| >600] 559 | 547| 5.4D-05| 601 | 31.50
DEGENSINGC | 20| 19| 12! 12| 24D-09| 7| 0.68
GENWOOD U 8| 296| 230 | 1143 | 5.7D-07| 0| 6.19
GENWOOD C 8| 320 15| 19| 2.8D-08| 13| 036
CHAINWOOD U | 8| 279|204 | 1099 | 9.2D-07| 0| 5.97
CHAINWOODC | 8| 31| 20| 21| 54D-09| 23| 0.44
HOSC45 U 0] 29| 30 0| 0.0D-01| 29| 0.50
HOSC45 C 10| 15| 16 4| 00D-01] 15| 028
BROYDENIAU | 30| 172 143 | 1905 | 9.9D-07| 0 34.55
BROYDENIAC | 30| 60| 28| 58| 5.7D-07| 13| 4.10
BROYDENIBU | 30| 87! 50| 96| 8.8D-07| 0| 8.23
BROYDENIBC | 30| 57| 23| 42| 1.1D-07| 0| 3.67
BROYDEN2AU | 30| 111| 68{ 595| 9.8D-07| 0 15.22
BROYDEN2AC | 30| 69| 37| 60| 7.4D-07| 18| 5.44
BROYDEN2BU | 30| 68| 28| 48| 34D-07| 0] 5.88
BROYDEN2BC | 30| 62! 26| 69| 7.1D-07| 16| 4.68
TOINTBROYU | 30| 99| 59| 112| 59D-07| 0| 9.72
TOINTBROYC | 30| 54| 23| 28| 9.7D-07| 14| 3.74
TRIG U 10| 31| 19| 27| 33D07| 0| 0.79
TRIG C 10| 16| 10| 11! 9.6D-08, 3| 0.35
TOINTTRIGU | 10| 35| 23| 45| 6.0D-08| 0| 0.78
TOINTTRIGC | 10| 22| 14| 21| 33D-07| 7| 038
CRAGGLEVYU | 8| 454 | 422| 2967 | 9.3D-07| 0| 11.82
CRAGGLEVYC | 81 250! 240| 651 1.0D-06| 186| 4.14
PENALTY U 15| 566| 514 | 2886 | 9.6D—07| O | 28.96
PENALTY C 15| >300| 261 | 159| 1.1D 00| 109 | 8.96
AUGMLAGN U | 15| 549 | 493 | 4498 | 1.0D-06 | 24| 33.26
AUGMLAGNC | 15! 127] 103| 315! 8.1D-08 | 116| 4.77

BROWN1 U 20| >600| 539 | 7570 | 8.6D—04 ; 528 | 69.40
BROWNI1C 20 41 37 0} 5.3D-07 6 1.47
BROWN3 U 20 21 13 29 | 3.4D-08 0] 0.99
BROWN3 C 20 9 9 13 3.8D-07 0 0.40
BVP(N=10) U 10 34| 26| 114| 6.5D~07 0 0.86
BVP(N=10) C 10 38| 27 92| 49D-07| 19| 0.31
BVP(N=20) U 201 113] 82| 983 5.6D-07 0| 10.62
BVP(N=20) C 20 131; 88, 867 1.6D-07| 17, 9.99

VAR(N=20) U 20| 119; 85| 470| 5.5D-07 0 8.15
VAR(N=20) C 201 102 72 353] 93D-07, 74| 6.40
VAR(N=45) U 451 271 194 1390 | 7.7D-07 0 77.81
VAR(N=45) C 45| 200 157 619! 1.1D-07 | 168 | 47.60

Table 4.4. Results for tests using the P.S.B. update
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Problem n it. | de.| usk | c.g.| gr.norm | cas time

467 | 4.8D-07 0 3.39
118 | 8.8D09 | 32 0.96
220 | 1.6D-07 0| 1047
55| 40D-07| 11 2.24
58| 9.2D-08 | 152 | 10.17
22| 1.0D-08| 10 1.59
247 | 6.0D-07 0 4.49
7| 2.3D-10 0 0.43
445 | 8.7D-07 0 6.09
9| 71D-104, O 0.50
539 | 9.4D-04 | 77| 28.69
81 5.1D-09 7 0.48
814 | 6.8D-07 0 7.72
4] 1.0D-07| 28 0.37
1148 | 1.1D-10 0 7.57
15| 1.4D-09 | 16 0.29
0 00D-01| 28 0.45

2] 0.0D-01] 14 0.25
704 | 9.5D-07 0 17.46
46| 42D-08 | 13 3.63
78 | 2.2D-07 0 7.33
45| 3.0D-07 0 2.82
284 | 4.0D-07 0| 10.47
44 5.3D-07| 25 5.04
71} 1.5D-07 0 7.68
45 93D-07 12 4.35
119 | 4.2D-07 0 6.10
35 6.2D-07 | 19 3.25

GENROSE U 8 195 | 115
GENROSE C 8 70| 37
CHAINROSEU | 25 140 77
CHAINROSE C 25 39 23
DEGENROSEU | 25 152 | 120
DEGENROSEC | 25 34| 16
GENSING U 20 74| 46
GENSING C 20 12 8
CHAINSING U 20 83| 58
CHAINSING C 20 14 9
DEGENSINGU | 20| >600| 570
DEGENSING C 20 14 9
GENWOOD U 8 486 | 307
GENWOOD C 8 321 15
CHAINWOOD U | 8 411 | 261
CHAINWOOD C | 8 23| 15
HOSCa5 U 10 281 29
HOSC45 C 10 14 15
BROYDENIA U | 30 1291 76
BROYDENIAC | 30 541 25
BROYDENIBU | 30 81| 40
BROYDENIBC | 30 451 19
BROYDEN2A U | 30 95| 52
BROYDEN2A C | 30 63| 30
BROYDEN2BU | 30 82| 38
BROYDEN2BC | 30 57 28
TOINTBROYU | 30 62| 36
TOINTBROY C 30 4| 22

TRIG U 10 22| 13 25| 1.6D-08 0 0.55
TRIG C 10 13 9 91| 3.3D-09 0 0.28
TOINTTRIG U 10 271 17 30| 5.8D-07 0 0.57
TOINTTRIG C 10 20 12 19| 1.9D-10 7 0.33
CRAGGLEVYU | 8 142 | 92 398 | 2.6D-07 0 2.54

1821 3.2D-07 ! 49 1.02
742| 5.2D-08 0 7.45
126 | 49D-07 | 81 2.81
313 4.4D-07| 37 4.47
2401 2.1D-07 ] 90 3.39

CRAGGLEVYC | 8 56| 48
PENALTY U 15| 163 105
PENALTY C 15 91| 7
AUGMLAGNU | 15| 125| 9
AUGMLAGNC | 15 97| 72

BROWN1 U 20 110 | 88 164 | 3.4D-07 8 5.41
BROWN1 C 20 331 29 0| 9.0D-07 6 1.08
BROWN3 U 20 12y 1 10 | 4.4D-09 0 0.54
BROWN3 C 20 9 9 12 | 1.8D-07 0 0.37
BVP(N=10) U 10 27| 19 421 2.1D-08 0 0.54
BVP(N=10) C 10 18| 13 45| 49D-08 | 12 0.36
BVP(N=20) U 20 29| 25 143 | 2.5D-07 0 2.01
BVP(N=20) C 20 351 26 172} 2.6D-07 | 24 2.26

146 | 2.8D-08 0 2.52

921 94D-08 | 19 1.92
457 | 1.6D-08 0] 2221
245 9.2D-08 ; 80 : 17.98

VAR(N=20) U 20 41| 32
VAR(N=20) C 20 35| 25
VAR(N=45) U 45 78| 59
VAR(N=45) C 45 85| 67
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Table 4.5. Results for tests using the symmetric rank one update
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Problem BFGS | BFGS | DFP DFP PSB PSB SR1 SR1
it. time it. time it. time it. time

GENROSE U 3.55 3.14 | >14.29! >12.12 4.21 4.01 4.64 3.75
GENROSE C 5.60 4.87 2.60 2.46 6.40 5.55 4.67 3.52
CHAINROSE U 9.50 8.49 4.75 5.15 6.85 6.69 7.00 5.74
CHAINROSE C 3.61 4.49 2.50 3.06 2.89 347 2.17 2.45
DEGENROSE U 2.53 3.08 1.93 2.51 2.45 3.02 1.60 1.80
DEGENROSE C 3.29 3.51 2.76 2.90 2.47 2.57 2.00 2.04
GENSING U 1250 | 13.78 7.60 875 17.10| 16.83 7.40 7.42
GENSING C 3.75 3.82 3.50 3.81 3.50. 3.34 3.00 2.80
CHAINSING U 9.17 848, 14.06] 17.08| 12.06] 16.16 4.61 4.95
CHAINSING C 8.33 6.63 5.67 4.92 8.00 6.32 4.67 3.59
DEGENSING U 3.69 459 | >3.87| >4.95| >3.87| >4.86| >3.87 | >4.43
DEGENSING C 7.00 5.52 6.33 5.06 6.33 4.84 4.67 3.45
GENWOOD U 1.88 1.95| >5.61| >5.59 2.77 3.2 4.54 3.76
GENWOOD C 10.00 8.78 5.60 5.04 6.40 5.37 6.40 5.54
CHAINWOOD U 2.87 2831 >779 >17.31 3.62 3.61 5.34 4.57
CHAINWOOD C 9.40 8.30 6.00 5.71 6.20 5.99 4.60 4.03
HOSC45U >31.58| >26.58| >31.58| >26.52 1.53 1.79 1.47 1.62
HOSC45 C 7.17 5.83 7.17 5.87 1.25 1.57 1.17 1.36
BROYDEN1A U 5.91 6.62 873 1422 1564 29.74| 11.73| 15.04
BROYDENI1A C 6.75 6.74 7.38 7.49 7.50 7.48 6.75 6.62
BROYDENI1B U 13.86 | 10.70 9.29 7.21| 1243 10.02 | 11.57 8.93
BROYDENIB C 10.83 | 11.06 8.67 8.66 9.50 9.12 7.50 7.00
BROYDEN2A U 5.07 5.08 5.93 7.40 7.93 | 10.08 6.79 6.94
BROYDEN2A C 6.50 4.84 6.90 5.35 6.90 5.12 6.30 4.74
BROYDEN2B U 7.67 5.92 7.33 5.41 7.56 5.53 9.11 7.22
BROYDEN2B C 7.44 5.40 7.22 542 -6.89 5.00 6.33 4.65
TOINTBROY U 15.25 | 10.27 9.63 6.59 | 12.38 8.65 7.75 5.44
TOINTBROY C 8.50 8.68 7.00 7.16 6.75 6.64 5.50 5.78
TRIGU 6.43 3.65 4.00 2.38 4.43 2.64 3.14 1.86
TRIGC 2.13 1.15 1.88 1.07 2.00 1.08 1.63 0.88
TOINTTRIG U 5.62 5.09 3.15 3.10 2.69 2.67 2.08 1.97
TOINTTRIG C 5.70 4.54 2.60 2.32 2.20 1.99 2.00 1.75
CRAGGLEVY U 4.13 4.59 | >25.00| >24.36| 18.92| 22.68 5.92 4.89
CRAGGLEVY C 3.15 3.03 9.65 8.411 1250 11.38 2.80 2.80
PENALTY U 5.15 6.94 | >22.22| >33.34| 20.96| 31.98 6.04 8.24
PENALTY C 0.92 1.24 1.96 272 >3.75| >4.21 1.14 1.32
AUGMLAGN U 5.03 497 | >19.35| >21.04| 17.71 ] 28.28 4.03 3.81
AUGMLAGN C 2.96 283 | >6.38) >6.82 2.70 2.68 2.06 1.91
BROWN1 U 3.48 3.79 | >22.22 >33.74| >22.22| >55.94 4.07 4.37
BROWN1C 1.22 1.30 1.22 1.28 1.52 1.58 1.22 1.16
BROWN3 U 2.57 2.89 2.14 2.32 3.00 3.05 1.71 1.68
BROWN3 C 1.50 1.71 1.50 1.70 1.50 1.63 1.50 1.54
BVP(N=10) U 7.75 498 11.75 8.70 8.50 530 6.75 3.39
BVP(N=10) C 8.25 6.53 6.25 5.50 9.50 7.50 4.50 3.41
BVP(N=20) U 13.80 8.64 | 53.80, 41.16| 22.60| 16.16 5.80 3.07
BVP(N=20) C 6.78 6.10 | 11.89 12.61 14.56 14.89 3.89 3.37
VAR(N=20) U 22.33 9.38 9.33 430 19.83 9.16 6.83 2.84
VAR(N=20) C 21.33 | 13.13 9.00 6.30 | 17.00 | 11.86 5.83 3.57
VAR(N=45) U 61.00 | 16.06 | 21.67 6.70 1 45.17 | 13.94| 13.00 3.98
VAR(N=45)C 28.08 | 22.83| 12.75| 11.95| 16.67| 14.70 7.08 5.56

Table 4.6. A comparison of the performance of the methods
relative to the method using exact second derivatives
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Ranking | Exact | B.F.G.S. | D.F.P. | P.S.B. | S.R.1
1st 49 1 0 0 0

2nd 1 12 7 1 35

3rd 0 7 19 16 7

4th 0 7 11 20 6

5th 0 22 3 10 1
Failure 0 1 10 3 1

Table 4.7. A ranking of the various update methods
according to the number of iterations taken

Ranking | Exact | B.F.G.S. | D.F.P. | P.S.B. | S.R.1
1st 49 0 0 0 1

2nd 1 10 5 0 34

3rd 0 8 17 15 9

4th 0 9 11 23 4

5th 0 22 7 9 1
Failure 0 1 10 3 1

Table 4.8. A ranking of the various update methods
according to the time taken

Tables 4.7 and 4.8, the methods are ranked according to the numbers of iterations and
the c.p.u. times taken for each test problem. For each problem, the five methods are
ranked from 1 (fewest iterations or shortest time) to 5 (most iterations or longest time)
with failures being recorded separately. The table entries give the sums of these rankings
over all the test problems. For instance, the method using the D.F.P. update ranks third
for 19 of the test problems when the ranking is based upon the number of iterations
taken. '

As one might expect, the use of exact second derivatives gives uniformly and
significantly better results than the other approximating schemes — both in terms of the
number of iterations and in terms of the overall timings. Of course, none of the problems
solved has particularly complicated derivatives and the calculation of exact second
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derivatives is often cheaper than performing a rank one or two update to an existing
approximation. Nonetheless, we believe that the use of second derivatives in our
framework is worthwhile and would recommend their use whenever they are available.
The worst performance occurs on the problem DEGENSING for which the
complementary slackness condition does not hold at the solution. A closer examination
of the run shows that the degenerate bounds repeatedly enter and leave the active set as
the solution is approached (as is to be expected). The insistence on terminating the
conjugate gradient (c.g.) iteration when a previously inactive variable hits a bound slows
down convergence in the presence of degenerate bounds as it forces small steps to be
taken. As stated in §3, the reasoning behind this termination criterion for the c.g.
iteration is that for non-degenerate problems the correct active set will eventually be
found at the GCP and the c.g. iteration will thereafter be unhindered by the inactive
bounds. As the c.g. scheme would have to be restarted every time a new bound is
encountered (in order to restore conjugacy of the c.g. search directions) and as this could
involve a lot of additional computation for large scale problems, our termination criteria
seemed reasonable. However, for this particular problem, the inactive degenerate
bounds were all encountered during the first c.g. iteration and there would be little
overhead incurred in restarting the iteration under these conditions. The convergence
theory of Conn, Gould and Toint (1986) allows us to increase the active set in the c.g.
iteration provided that it always contains those variables active at the GCP. In Table 4.9,
we indicate the improvements possible if we allow restarting within the conjugate
gradient iteration for the DEGENSING (U) problem.

Hessiah it. | de. | usk | c.g. | gr.norm | cas time
Exact 20| 21 - | 142 | 9.3D-07 9 2.68
B.F.G.S. 104 | 78 0! 531 52D07| 8 | 11.50
D.F.P 203 | 189 0| 1203 | 7.5D—-07 | 203 | 23.77
P.S.B. 160 | 127 -1 1033 | 6.8D—07 | 160 | 17.69
S.R.1 85| 64 0| 459 | 42D07 | 64 9.49

Table 4.9. Results for the DEGENSING (U, n = 20) problem with
restarts allowed in the conjugate gradient iteration

Somewhat more surprisingly, the simplest of the updating schemes, the symmetric
rank-one method, appears to perform the best of the other methods in our tests. The use
of a trust region removes the main disadvantage of such methods in allowing a
meaningful step to be taken even when the approximation is indefinite. For large
problems, it is desirable to allow indefinite approximations, as the combination of
symmetric secant updating, positive definiteness and preservation of the sparsity
structure can lead to severe numerical difficulties (see, Sorensen, 1981). Of course such a
scheme must be used with care, but the restriction (2.10) seems to provide a useful
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stabilizing effect — we note, however, that the update was almost never skipped. We
suspect that the success of the method is due in part to our observation that, in contrast
to the other updating schemes, the second derivative approximations with respect to the
inactive variables at the solution converged to their true values on every problem tested.
(Such a result has been theoretically established, under very mild conditions, for
quadratic functions (see, e.g. Fletcher (1980, p.41) and would appear to be true in
general.) This is important for trust region methods which are essentially based on being
able to model the true function as accurately as possible in a larger subspace than just
that given by the Newton direction. The use of S.R.1 for larger problems is thus quite
appealing.

All of the updating methods failed on at least one problem. Of the three other
methods the B.F.G.S. update appears to be the most reliable - indeed the only failure
for this problem, on HOSCA435, is attributable to our insistence on maintaining a positive
definite approximation to a matrix which is uniformly indefinite. As has been observed
in the past, the B.F.G.S. method is more robust then the D.F.P. However, in
comparison with S.R.1, the performance of B.F.G.S. is surprisingly disappointing
although it does perform better on some problems. Indeed, the number of problems for
which this update performs worst of all is alarmingly high. The P.S.B. update appears to
give more reliable results than the D.F.P. However, it seems somewhat surprising, in
view of the relative success of the S.R.1 formula and our belief that part of this success is
attributable to the convergence of the updates to the true second derivatives, that the
P.S.B. formula performs so poorly. Under the same weak conditions that are needed to
prove the convergence of the updates in the S.R.1 case, the P.S.B. method should also
generate convergent second derivative approximations (see, Powell, 1970) but, in
practice, this convergence often seems to be very slow. The D.F.P. update is the most
unreliable. It is interesting to observe that it often fails or performs poorly on problems
for which B.F.G.S. is efficient.

A number of different initial approximations B® have also been tried, including the
use of the exact second derivatives (modified to be positive definite if necessary) and the
suggestions of Shanno and Phua (1978) and Dennis and Schnabel (1983). As was to be
expected, such different initial approximations did not significantly alter the numerical
results, since the problems cited are all reasonably well scaled.

6. Discussion.

We feel that our results indicate that our framework is a good one in which to consider
solving problem (1.1). The issues involved in solving larger problems are more
complicated. We would not, for instance, imagine storing dense matrices. Our choice of
a conjugate gradient “ inner iteration ” does not require we access matrices, but merely
that we are able to form matrix-vector products — the choice of algorithm has always had
the large-scale case in mind. To this end we envisage using the partial separability of the
problem functions (see, Griewank and Toint, 1982a) to allow efficient storage and
updating of matrices in matrix-vector product form. Of course it is essential to use
preconditioning when attempting to solve such large problems and we are currently
experimenting with a number of preconditioners. The theory given in our previous paper
(Conn, Gould and Toint, 1986) has this in mind.

The final aim of this research is actually to produce effective methods for solving
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general nonlinear programming problems. Our intention here is to solve problems of this
form by combining the nonlinear constraints, in a suitable fashion, with the objective
function (for instance, an augmented Lagrangian function) and solving the resulting
(sequence of) bound constrained minimization problem(s) using the methods described
in this paper. We anticipate there being an interesting tradeoff between the accuracy
required in solving the sequence of bound constrained problems and the convergence of
the overall method.

7. Appendix 1.

In our tests, we have attempted to solve the following test problems. For each
problem, we give (a) the function f(x), (b) any bounds on the variables for the
“unconstrained” problem, (c) the starting point x©@ and (d) and (e) the optimal solutions
xé and xz, obtained for the unconstrained and the constrained problems.

1. The Generalized Rosenbrock function (GENROSE) (Moré, Garbow and Hillstrom,
1981) : : ' :

(@) fx) = 1 + .§2[100(x,. —x2 )%+ (1 - xR

© x@ =(-12,1,-12,1,1,1, ..., 1, 1).
@ x;=(,1,1,..,1).
(e) xo = (1.1, 1.0775, 1.1, 1.0972, 1.1528, 1.3075, 1.7026, 2.8987) (n = 8).

2. The Chained Rosenbrock function (CHAINROSE) (Toint, 1978)
n
(@ flr) = 1+ L lday(x — 227 + (1= %)),
= .

where the constants «; are as given by Toint(1978).
© x@ = (-1, -1, -1, ...., -1).
@ xy=(1,1,1,..,1).
(e) xo = (1.1, 1.0659, 1.1, 1.0711, 1.1, 1.0645, 1.1, 1.0788, 1.1,
1.0691, 1.1, 1.0811, 1.1, 1.0759, 1.1, 1.0720, 1.1, 1.0714,
1.1, 1.0684, 1.1, 1.0652, 1.1, 1.1782, 1.3881) (n = 25).

3. The Degenerate Chained Rosenbrock function (DEGENROSE)
The same as 2 except that ‘

(b) x; < 1for all i such thati mod 3 = 0.

(e) xé = (1.1, 1.0659, 1.1, 1.0711, 1.1, 1, 1.1, 1.0788, 1.1, 1.0691,
1.1, 1, 1.1, 1.0759, 1.1, 1.0720, 1.1, 1, 1.1, 1.0684, 1.1,
1.0652, 1.1, 1, 1.3881) (n = 25).

4. The Generalized Singular function (GENSING) (Moré, Garbow and Hillstrom, 1981)
(a) flx) = EJ[(xi + 106,07 + 5(xp = Xis)® (g — 20050)°

+ 10(x; — 10x,,5)*],
where n is a multiple of 4 and J = {1, 5, 9, .... , n—=3}.
() x®=@3,-1,0,1,3,-1,0,1,...., 3, =1,0, 1),
(d) x; =(0,0,0, ..., 0).
(e) xo = (0.1, 0,0.1,0.1, ..., 0.1, g, 0.1, 0.1),
where 0 = —9.8153D—-3 (n = 20).
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5. The Chained Singular function (CHAINSING) :
(@) fx) = igl[(xi +10x;,1)% + Sy — Xia)? + (g — 2x550)°

+ 10(x; — 10x;,5)*],
where n is a multiple of 4 and J = {1, 3, 5, ...., n—3}.
() xX® =@3,-1,0,1,3,-1,0,1, ....,3, 1,0, 1),
@ x; = (0,0,0,...,0),
(e) xé = (0.1,0,0.1, , 0.1, w, 0.1, w, 0.1, w,
0.1, w, 0.1, w, 0.1, w, 0.1, w, 0.1, 0.1),
where 0 = —9.8153D-3 and w = —4.3827D-3 (n = 20).

6. The Degenerate Chained Singular function (DEGENSING)
The same as 5 except that

(b) x; < Ofor all i such thati mod 3 = 0 and i mod 4 = 2 and x; = O for all / such that
imod 3 = 0andi mod 4 * 2.
(e) xo = (0.1, 0,01, w,0.1, », 0.1, ®, 0.1, w,
0.1,0,0.1, w, 0.1, @, 0.1, w, 0.1, 0.1),
where 0 = —9.8153D-3 and w = —4.3827D-3 (n = 20).

7. The Generalized Wood function (GENWOOD) (see, Moré, Garbow and Hillstrom,
1981, for the Wood function)
(@) flx) = 1+ Z[(100(x;,, = D2+ (1= x)% + 90(x;,5 — x2,)°

+ (1= x40) + 100x,,, + X3 — 27 + 01065, — x,3)°],

where n is a multiple of 4 and J = {1, 5, 9, .... , n—3}.
(©) @ = (-3, -1, -3, -1, -2,0, 2,0, .... , =2, 0).
@ x; =(1,1,1,...,1).
(e) x = (1.1, 1.1753, 1.1, 1.1715, ..., 1.1, 1.1753, 1.1,1.1715).

8. The Chained Wood function (CHAINWOOD)
(@) flx) =1+ E][(wO(xi+1 —x)% + (1= x)% +90(x,. 5 — x%,)°

+ (1= 2p)% + 10(r,y + X3 = 2% + 010y, — x;13)%],

where 7 is a multiple of 4 and J = {1, 3, 5, .... , n—3}.
() x© = (=3, -1, -3, -1, =2, 0, =2, 0, ..., =2, 0).
d) x; =(,1,1,...,1).

(e) xo = (1.1, 1.1751, 1.1, 1.1734, 1.1, 1.1736, 1.1,1.1716)(n = 8).

9. A generalization of Hock and Schittkowski’s 45th problem (HOSC45) (Hock and
Schittkowski, 1981)

(@) fix) =2 - ﬂxi / nl.

b) 0=yx, <iforlsisn

© x9 =(2,2,2,....,2).

) x; =(1,2,3,....,n).

() xp = (2.1,2,4.1,4,6.1,6,.... ).
10. A generalization of the Broyden Tridiagonal function (BROYDENI1A) (see Mor¢,
Garbow and Hillstrom, 1981, for the Broyden Tridiagonal function)
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n .
(@ fix)y=1+ i§11(3 = 2%, = Xy — X + 17,

wherep = 73andx; = x,,; = 0.

(© x© = (-1, -1, -1, ...., =1).

(d) x;; = (—0.5707, —0.6819, —0.7025, —0.7063, —0.7070, —0.7071, —0.7071,
-0.7071, -0.7071, —0.7071, —0.7071, —0.7071, —0.7071, —0.7071,
-0.7071, —0.7071, —0.7071, —0.7071, —0.7071, —0.7071, —0.7071,
—0.7070, —0.7068, —0.7064, —0.7051, —0.7015, —0.6919, —0.6658,
—0.5960, —0.4164), (n = 30). |

(e) x(*: = (—0.4707, —0.5909, —0.6025, —0.6196, —0.6070, —0.6200, —0.6071,
-0.6200, —0.6071, —0.6200, —0.6071, —0.6200, —0.6017, —0.6200,
-0.6071, —0.6200, —0.6071, —0.6200, —0.6017, —0.6200, —0.6071,
—0.6200, —0.6068, —0.6193, —0.6050, —0.6146, —0.5919, —0.5758,
—0.4960, —0.3570), (n = 30).

11. Another generalization of the Broyden Tridiagonal function (BROYDEN1B)

The same as 10 except that p = 2 and

(e) xp. = (—0.4707, ~0.5952, —0.6025, —0.6233, —0.6070, —0.6239, —0.6071,
~0.6239, —0.6071, —0.6239, —0.6071, —0.6239, —0.6017, —0.6239,
~0.6071, —0.6239, —0.6071, ~0.6239, —0.6017, —0.6239, —0.6071,
~0.6238, —0.6068, —0.6232, —0.6050, —0.6183, —0.5919, —0.5794,
—0.4960, —0.3625), (n = 30).

12. A generalization of the Broyden Banded function (BROYDEN2A) (see Moré,
Garbow and Hillstrom, 1981, for the Broyden Banded function)
(a) fix) = 1 + i_§1|(2 50 + 1+ Tall+ 5P,
= e,
where p = 7/3 and J; = {j: max(1, i — 5) < min(n, i + 1)}.
© x@ = (-1, -1, -1, ..., =1).
(d) x;; = (—0.4774, —0.5204, —0.5584, —0.5921, —0.6223, —0.6505, —0.6481,
—0.6456, —0.6436, —0.6422, —0.6415, —0.6418, —0.6420, —0.6422,
—0.6422, —0.6422, —0.6422, —0.6422, —0.6422, —0.6422, —0.6422,
—0.6422, —0.6422, —0.6422, —0.6422, —0.6422, —0.6422, —0.6422,
—0.6430, —0.6140), (n = 30).
(e) xé = (—0.3774, —0.5258, —0.4584, —0.6089, —0.5223, —0.6715, —0.5481,
—0.6702, —0.5436, —0.6682, —0.5415, —0.6681, —0.5420, —0.6682,
—0.5422, —0.6682, —0.5422, —0.6682, —0.5422, —0.6682, —0.5422,
—0.6684, —0.5422, —0.6687, —0.5422, —0.6649, —0.5422, —0.6610,
—0.5430, —0.6264), (n = 30).

13. Another generalization of the Broyden Banded function (BROYDEN2B)

The same as 12 except that p = 2 and

(e) xp = (~0.3774, —0.5209, —0.4584, —0.6014, —0.5223, —0.6643, —0.5481,
—0.6630, —0.5436, —0.6611, —0.5415, —0.6611, —0.5420, —0.6612,
—0.5422, —0.6612, —0.5422, —0.6612, —0.5422, —0.6612, —0.5422,
—0.6613, —0.5422, —0.6616, —0.5422, —0.6585, —0.5422, —0.6557,
—0.5430, —0.6228), (n = 30).
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14. Toint’s 7-diagonal generalization of the Broyden Tridiagonal function (TOIN-
TBROY) (see Toint, 1978)

n . nf2
(@ fix) =1+ i§1|(3 =2 =Xy Xy TP+ i§1|xi + xi+n/2lp:
where nis even,p = 73 and x, = x,,; = 0.

) x©@ = (-1, -1, -1, ..., -1).

(d) x;; = (—0.4114, —0.4729, —0.4732, —0.4673, —0.4633, —0.4614, —0.4608,
—0.4614, —0.4630, —0.4657, —0.4700, —0.4761, —0.4838, —0.4914,
—0.4939, —0.4808, —0.4681, —0.4607, —0.4574, —0.4560, —0.4554,
—0.4546, —0.4532, —0.4506, —0.4459, —0.4374, —0.4221, —0.3938,
—0.3405, —0.2340), (n = 30). |

(e) x; = (—0.3114, —0.3802, —0.3732, ~0.3780, —0.3632, —0.3712, —0.3608,
-0.3713, —0.3630, —0.3758, —0.3700, —0.3867, —0.3838, —0.4029,
~0.3939, —0.3919, —0.3681, —0.3706, —0.3574, —0.3658, —0.3554,
—0.3643, —0.3532, —0.3601, —0.3459, —0.3469, —0.3221, —0.2973,
~0.2405, —0.1811), (n = 30).

15. A trigonometric function (TRIG) (Nazareth, 1986)
@ fx) = Tln+ 1= (asiny + bcosx)I2,

where a; = 6;,b; =1+ id; and §; = 1if i = jand 0 otherwise.

) xO = /n, Vn, Un, ..., 1n).
(d) x;, = (1.5708, 0.1, 0, 1.5708, 0.1, 0, 1.5708, 0.1, 0, 1.5708).
(e) xp = (1.6708, 0.1, 0.1, 1.5708, 0.2, 0, 1.6708, 0.1, 0.1, 1.5708).

16. Another trigonometric function (TOINTTRIG) (Toint, 1978)
(@) fx) = ¥ osinfB; x; + B x;+v;l,

(i, et
where o;; = 5[1 + mod(i, 5) + mod(j, 5)], B; =1 + i/ 10and y; = (i +j)/10.
We selected J = {(i, j): mod(|i —j|, 4) = 0}.
© x9 =(1,1,1, ..., 1). :
(d) x;] = (2.0511, 1.7968, 1.5817, 1.3973, 1.2375, 1.0976, 0.9742, 0.8645,
0.7664, 0.6781) (n = 10).
(e) xé = (2.1511, 1.7968, 1.6817, 1.3973, 1.3375, 1.0976, 1.0742, 0.8645,
0.8664, 0.6781) (n = 10).

17. A generalization of the Cragg and Levy function (CRAGGLEVY) (Cragg and Levy,
1969)
(a) fix) = igj[(exi = )t + 1000x,; — x.45)°

4
+ tan"(x;,, — X;,3) + xi8 + (X3 — 1D?],

where n is a multiple of 4 and J = {1, 5, 9, .... , n—=3}.
() x@ =(1,2,2,2,2,2,2,2,....,2,2,2,2),
(d) x;=©,1,1,1,...,0,1,1, 1),
(e) x; = (0.1, 1.1045, 1.1, 1.0019, .... , 0.1, 1.1045, 1.1, 1.0019).

18. A penalty function (PENALTY)
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n n n
(@ fx)=1+ Y x; +ul - .le/xi)z + u(l — 'Eli/xi)z.
i=1 i= i=
For our tests, we selected u = 1000.

(b) —0.01 <x; <10000forl <i=<n.

(© x@=0,1,1,...,1),

(d) xz, = 100(0.0371, 0.3346, 0.4718, 0.5772, 0.6662, 0.7446, 0.8155, 0.8807,
0.9414, 0.9984, 1.0524, 1.1037, 1.1527, 1.1997, 1.2450) (n = 15).

(e) xé = 100(0.0381, 0.3302, 0.4728, 0.5732, 0.6672, 0.7404, 0.8165, 0.8762,
0.9424, 0.9936, 1.0534, 1.0986, 1.1537, 1.1944, 1.2460) (n = 15).

19. An Augmented Lagrangian function for a generalization of Hock and Schittkowski’s
80-th problem (AUGMLAGN) (Hock and Schittkowski, 1981)

4
(a) f(x) =1+ IZJ[exixi+1xi+2xi+3xi+4 + %P ((in2+j - 10 — 11)2 +
ie j=0
(g1 Xipn = SXipa¥ing — 2)? + (& + 22 + 1= 1)2),
where n is a multiple of Sand J = {1, 6, 11, .... , n—4}. For our tests, we selected
p = 20, 4, = —0.002008, A, = —0.001900 and A; = —0.000261 (which make f(x)
an exact penalty function for Hock and Schittkowski’s problem).

(b) —23=<x,<23forl<is<n.
) x® =(-2,2,2, ,~1,-1, -1, -1,2, -1, =1, ... ,—1, —1,2, -1, —1)
(d) x; = (-1.7171, 1.5957, —1.8273, —0.7636, —0.7636, ...,
~1.7171, 1.5957, —1.8273, —0.7636, —0.7636)
(e) x¢ = (—1.6171, 1.4782, —1.9928, —0.8877, —0.6636, —1.8045, 1.6957,
—1.6488, —0.6636, —0.8425, —0.7290, —0.8553, 2.6161,
—1.3343, 0.3363) (n = 15).

20. A generalization of a function due to A. Brown (BROWNI) (L. C. W. Dixon,
private communication)

: 20(x; — x;,
@ ) =[5 = I + T[O.0001(x; = 3)7 = (5 = xy) T ),
where n is a multiple of 2and J = {1, 3, 5, .... , n—1}.
(b) —1=<x,<4forl<isn.
() x9 = (0, -1,0, -1, ..., 0, —1),
(d) x;, = (3, 3.1498, 3, 3.1498, ... , 3, 3.1498),
(e) x¢ = (3.1,3.2498, 3.1, 3.2498, ..., 3.1, 3.2498).

21. A generalization of another function due to A. Brown (BROWN3) (L. C. W. Dixon,
private communication)

n-l 2.+ 241
(a) f(x) = El[(xiz)(x, 1 + (xi2+1 (x; )]_
() x@ =(-1,1,-1,1, ..., =1, 1),
(d) x; = (0,0,0, .... , 0),
(e) xo =(0.1,0,0.1,0, ..., 0.1, 0).

22. The discrete boundary value problem (BVP) (Moré, Garbow and Hillstrom, 1981)
(@) fx) = T[2x, = x_y=x;py + B2(x + b+ 1) /2],
i=1
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where h = 1/(n + 1) andx, = x,,, = 0.

(b) —02n<x;,<02nforl<i<n.
© x® =ih(ih—-Dforl<isn
(d) xz, = 0.1(—0.4317, —0.8158, —1.1449, —1.4097, —1.5991, —1.6988, —1.6909,
—1.5525, —1.2536, —0.7542) (n = 10).
x;] = (.1(0.2321, —0.4520, —0.6588, —0.8514, —1.0288, —1.1895, —1.3322,
—1.4553, —1.5571, —1.6354, —1.6881, —1.7127, —1.7060, —1.6650,
—1.5856, —1.4636, —1.2938, —1.0702, —0.7858, —0.4323) (n = 20).
(e) xé = 0.01(5.6835, 8.4100, 8.9057, 7.8272, 5.7611, 3.2315, 0.7129,
—1.3527, —=2.5356, —2.3936) (n = 10).
x;: = 0.1(0.7679, 1.3625, 1.8041, 2.1121, 2.3047, 2.3990, 2.4107,
2.3542, 2.2425, 2.0875, 1.9000, 1.6895, 1.4648, 1.2337,
1.0034, 0.7805, 0.5710, 0.3050, 0.2142, 0.0773) (n = 20).

23. The discretization of a variational problem (VAR) (Toint, 1978)
n n x.
(@) fx) = 2i§1[xi(xi —x, )1/ B+ ZAhiEO[(ex’” — e ) xi 1 —x)],
where h = 1/(n + 1) and x, = x,,., = 0. We selected A = —3.4.

(b) —02n<x,<s02nforl<sis<n.
) xO =0.1in(1 - Hforl <i=<n.
(d) x;; = 0.1(1.4638, 2.8383, 4.1104, 5.2663, 6.2918, 7.1729, 7.8964,
8.4505, 8.8256, 9.0150, 9.0150, 8.8256, 8.4505, 7.8964,
7.1729, 6.2918, 5.2663, 4.1104, 2.8383, 1.4638) (n = 20).
x; = (0.6812, 1.3452, 1.9909, 2.6169, 3.2220, 3.8050, 4.3645,
4.8991, 5.4075, 5.8883, 6.3401, 6.7617, 7.1517, 7.5089,
7.8320, 8.1200, 8.3718, 8.5865, 8.7633, 8.9016, 9.0007,
9.0604, 9.0803, 9.0604, 9.0007, 8.9016, 8.7633, 8.5865,
8.3718, 8.1200, 7.8320, 7.5089, 7.1517, 6.7617, 6.3401,
5.8883, 5.4075, 4.8991, 4.3645, 3.8050, 3.2220, 2.6169,
1.9909, 1.3452, 0.6812) (n = 45).
(e) x¢ = 0.1(0.2464, 0.4253, 0.5925, 0.7456, 0.8826, 1.0010, 1.0984,
1.1728, 1.2224, 1.2459, 1.2427, 1.2129, 1.1573, 1.0773,
0.9747, 0.8517, 0.7107, 0.5540, 0.3838, 0.1966) (n = 20).
x. = (0.1681, 0.3084, 0.4464, 0.5820, 0.7146, 0.8440, 0.9697,
1.0911, 1.2077, 1.3189, 1.4241, 1.5227, 1.6139, 1.6970,
1.7714, 1.8363, 1.8912, 1.9354, 1.9685, 1.9902, 2.0001,
2.0100, 2.0080, 2.0100, 2.0001, 1.9902, 1.9685, 1.9354,
1.8912, 1.8363, 1.7714, 1.6970, 1.6139, 1.5227, 1.4241,
1.3189, 1.2077, 1.0911, 0.9697, 0.8440, 0.7146, 0.5820,
0.4464, 0.3084, 0.1681) (n = 45).
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