Variables in Hypotheses

David Poole

Research Report CS-86-44
September 1986






Variables in Hypotheses

David Poole
Logic Programming and Artificial Intelligence Group,
University of Waterloo,
Waterloo, Ontario, Canada, N2L3G1
dlpoole@waterloo.csnet

September 25, 1986

Abstract

In many applications we want to build systems which must test
the consistency of some theory (or set of axioms). There is a problem
which arises when we are generating theories that contain variables.
This problem is general to many applications, for example abduction,
learning, default reasoning, diagnosis, and is examined here in the
context of theory formation from a fixed set of possible hypotheses.
Two solutions are examined, the first where we are only allowed to
have ground instances in theories formed, and the second where we
may have universally quantified variables in the theory. It is shown
that for the second case that the solution of reverse Skolemisation is
not adequate to solve the problem, nor is any naive pattern matcher.
A general solution for both cases is presented.

1 Introduction

There are many applications in which one wants to test consistency (or
failure to prove the negation) of some formula which is generated by some
program. For example:

o default reasoning, where we want to be able to use some instance of a
formula if it is consistent

e learning, where we want to be able to hypothesis some causal rule if
it is consistent



2 FORMAL FRAMEWORK 2

e negation as failure, where we want to conclude an atom if we can’t
prove its negation

We consider the problem in terms of a theory formation system which has
a fixed set of possible hypotheses (i.e. where we assume that some other
system is supplying the general forms we want to be able to assume).

The problem is how to test the consistency of a theory which is gener-
ated by some program. This is a problem because variables in a generated
theory somehow need to have their quantification reversed when checking
consistency. This paper shows that some proposed solutions do not work,
and gives a solution to the problems where we don’t allow variables in our
hypotheses, and the general case where we have a single hypothesis.

2 Formal Framework

We use the standard syntax of the first order predicate calculus, with vari-
ables in upper case.

F is a set of closed formulae (called facts), which we are giving as true

A is a set of formulae, each instance of which can be used as a possible
hypothesis

We say formula g is explainable if there is some D, a set of instances of
elements of A, such that
FUDIg

F U D is consistent

D is said to be the theory that explains g.

Without loss of generality, we assume that g is variable free, and is an
atom. If w is a wff which we want to explain, we can add w = g to F, and
try to explain g, where ¢ is a unique predicate not appearing elsewhere. g
is explainable if and only if w is.

Without loss of generality we also assume that elements of A do not con-
tain bound variables. If w is an element of A with free variables X3, ..., X,,,
we can replace w with d(Xj,...,X,) in A, where d is a predicate sym-
bol not appearing elsewhere, and add VX;...VX, d(X;,...,X,) = w to F.
d(Xji, ..., X»n) is assumable and consistent in the resulting system if and only
if w was assumable and consistent in the original system. This will simplify
the analysis which follows.

N.B. w € A is equivalent to [Reiter80]’s normal default : Mw/w [Poole86]



3 IMPLEMENTATION 3

3 Implementation

The obvious way to implement explainability [Reiter80,PGAS86] is to note
that both proving the observations, and testing consistency are both the
role of a theorem prover. Intuitively the idea is to try to prove the goal from
F and A, and make D the set of instances of A used in the proof. Again a
theorem prover is the appropriate tool to check whether F U D is consistent.

In this paper I assume that we are using some sort of resolution theorem
prover to generate the instances of hypotheses which imply the goal. The
results, however, do not seem to be restricted to such systems.

There is a problem which arises when there are variables in the D gen-
erated. Consider the following example:

Example 1 Let A = {p(X)}. That is, any instance of p can be used if it
is consistent. Let F = {VY (p(Y) = g), —p(a)}.

g is explainable with the theory {p(b)}, which is consistent with F (con-
sider the interpretation I = {—-p(a), p(b)} on the domain {a,b}), and implies
g. So according to our semantics above, g is explainable.

However, if we try to prove g, we generate D = {p(Y)} where Y is free
(implicitly a universally quantified variable). The existence of the fact —p(a)
should not make it inconsistent, as we want g to be explainable.

Theorem 1 It is not adequate to only consider interpretations in the Her-
brand universe of some set of formulae.

Proof consider the example above; the Herbrand universe is just the set
{a}. Within this domain there is no consistent theory to explain g. O

This shows that Herbrand’s theorem is not applicable to the whole sys-
tem. It is, however, applicable to each of the deduction steps [Chang73].

We now proceed to show how explainability can be computed. This is
done in two stages. First we examine the case where only ground instances
of defaults are allowed. This is then expanded to allowing general instances
of hypotheses in a theory.

4 Ground Instances of Defaults

Consider the case where we are only allowing ground instances of possible
hypotheses in a theory. A ground instance is defined to be one without
variables or Skolem constants.



4 GROUND INSTANCES OF DEFAULTS 4

The ground procedure! to compute explainability becomes

1. Skolemise F, and treat free variables as universally quantified (as in
Resolution theorem proving);

2. try to prove g using elements of F' and A as axioms. Make D the set
of instances of A used in the proof;

3. remove any D which contains a Skolem function;
4. replace free variables in D with unique constants;

5. add the D to F and try to prove an inconsistency. If complete search
for a proof fails, g is explainable.

Example 2 consider F and A as in example 1 above. If we try to prove
g, we use the hypothesis instance p(Y). This means that g is provable from
any instance of p(Y'). To show g cannot be explained, we must show that
all of the instances are inconsistent. The above algorithm says we replace
Y with a constant 8. p(8) is consistent with the facts. So that we can show
g is explainable.

Let us first try to justify this procedure.

Lemma 2 If D is some consistent theory which predicts g, then some more
general set B of instances of defaults can be generated in the manner de-
scribed above such that D = B@ for some 0.

Proof If there is a theory D, then there is a ground instance which is also
consistent and proves g (as any proof can be converted into a ground proof,
and if a theory is inconsistent then so is any ground instance). The fact that
some more general instance will be found is a direct corollary of the lifting
lemma [Chang73, page 84]. O

Theorem 3 The above procedure is correct.

Proof The third step of the procedure just enforces the groundness of de-
faults found. The fourth and fifth steps follow from checking if 3X D is
consistent by Skolemising the X (the free variables in D). O.

1This problem is, in general, undecidable; if it halts, it has computed a correct answer,
and if a provable answer exists this (nondeterministic) algorithm can compute it.



5 ARBITRARY INSTANCES OF DEFAULTS 5

5 Arbitrary Instances of Defaults

Sometimes we don’t want to be restricted to just ground instances of de-
faults. Consider the following examples:

Example 3 Consider the blocks world, where we only want positive knowl-

edge about which blocks are on each other, and we want the closed world

assumption for “on”. This is done by having the defaults: A = {-on(X,Y)}.
If we have

F = { VX((-3Y on(Y, X)) = cleartop(X)),
on(a,b)}

This says that a block has a clear top if there is nothing on it, and that
block a is on block b. Intuitively, we want to conclude that b does not have
a clear top, and all other blocks have a clear top. The theory used to explain
block ¢ having a clear top is {—on(f(c), ¢)} where f(c) is the individual said
to exist in the first fact.

Example 4 Let A = {ontable(X)}. That is we may assume that any block
is on the table. Let

F ={ (3Y red(Y) A ontable(Y)) = g
3X red(X)}

Intuitively we want to say that g is explainable as there is a red thing on the
table, namely the object that we know is red (but do not know its name).
The ground procedure would reject such an answer, as it must know the
name of the individual said to exist.

If we want to expand the procedure given in the previous section, we
have to consider how to handle Skolem functions in the theories generated.
One way to try to do this is pattern match the instance of the hypotheses
generated with the instances that lead to inconsistencies.

It has been suggested that we “reverse Skolemise” [Bledsoe78,Cox80]
the the generated hypotheses and try to prove their negation. If we can
prove their negation, we have shown the theory inconsistent; if a complete
theorem prover fails to prove their negation the theory is consistent. This
is equivalent to unifying the reverse Skolemised form with the inconsistent
instances of possible hypotheses.



5 ARBITRARY INSTANCES OF DEFAULTS 6

Theorem 4 No such pattern matching program will work in general. That
18 there can be no algorithm which does pattern matching on the instances
which lead to the goal to be explained, and the instances which are incon-
sistent such that the goal is explained if and only if the pattern matcher
fails.

Proof: To prove this it is adequate to show two examples which have iden-
tical inconsistent hypotheses and syntactically identical instances which can
prove the goal, but have opposite answers.

The examples we use are based on the cleartop example. Consider A =
{-on(X,Y)} and

F = { VX((-3Y on(Y, X)) = cleartop(X)),
on(a,b
recg(b) )
(VX cleartop(X)) = g1,
(VX —red(X) => cleartop(X)) = g2}

That is, there is one block (@) on a red block (). g1 is explainable if all
blocks have a clear top. g, is explainable if all non-red blocks have a clear
top. According to our semantics g; should not be explainable, but g; should
be explainable.

When attempting to compute their explanations, we note that exactly
the same instances of hypotheses lead to each goal, and exactly the same
instances are inconsistent. Put into Skolem normal form this becomes:

F={ ((_.(onlgjf(X),X)) => cleartop(X)),
red(l;)
cleartop(c1) = g1,
cleartop(cz) = g2,
red(cz2) = g2}

To prove each g; we generate the theory {—on(f(c;),c:)}, and the only
inconsistent instance of hypotheses is —on(a,b). Note that the last clause is
not used in either the proof of g; nor in proof of inconsistency. 3

The problem we have is that we have lost the context of what the Skolem
constants represent.



6 COMPUTING INCONSISTENCIES 7

6 Computing Inconsistencies

6.1 Skolemisation

Skolemisation is the replacement of
VX;..VX 3y w[Xy, ..., Xp, Y]

(where w[Xj, ..., Xy, Y] is a well formed formula with free variables X1, ..., X, Y)
with

VX1.VXp w[Xy, ..., Xp, f(X1, -0, X))
If we replace all existential variables by their corresponding Skolem function,
the system is in Skolem normal form. All variables remaining are universally
quantified, and so explicit scoping is redundant and can be removed.

Theorem 5 (Skolem) A set of formulae is unsatisfiable iff the Skolemised
form is unsatisfiable.

This is proven in [Chang73, theorem 4.1]. For more details see [Chang73].

6.2 Hilbert’s e-symbol

Hilbert’s e-symbol is a notational device to implicitly describe an individual
said to exist. ex.P(z) is, intuitively “an z such that P(z) is true”. This was
designed to eliminate existential variables through the equivalence:

X w[X] = weX.w[X]]

where w([X] is any well formed formula parameterised by X. See [Leisenring69]
for a detailed description of Hilbert’s e-symbol.

6.3 Building the Knowledge Base

The problem that arose before is that we did not know the context of the

Skolem functions used. In this section we show how Hilbert’s e-symbol can

be used to keep track of which functions the Skolem functions denote.
When Skolemising, we replace

VX1..VX,3y w[Xy, ..., X, V]

with
VXl...VXn w[Xl, seny Xn, f(Xl, seey Xn)]



6 COMPUTING INCONSISTENCIES 8

We should also define what f is. We can use Hilbert’s e-symbol to define f:
[f=2X1,.., A Xpeyw[Xy, ..., Xy, y]

that is
f(X1,..., Xy) = eyw[Xq, ..., Xy, Y]

Example 5 The fact 3X ¢(X), when Skolemised, becomes ¢(c) where ¢ is
some unique constant symbol. ¢ is defined as eX.¢(X).

To build the knowledge base, Skolemise all variables, and record the defini-
tions of all Skolem functions and constants.

6.4 The Prover

The prover presented here is an extension of the one presented in section
4. The proof of correctness follows directly from the proof in that section.
Once the knowledge base has been built, we try to prove the observation to
be explained, using the facts in F and the hypotheses in A. Let D be the set
of instances of elements of A used in the proof. D may contain free variables
and Skolem functions. We then replace all Skolem functions in D with their
definition. If Xy, ..., X,, are the free variables in D, we have proven

VX1, ., V(D = g)

that is
(3X4,...,3X,D) = ¢

The aim is to prove that 3Xj,...,3X,,D is consistent with the facts. Notice
that we do not have to worry about Skolem functions in D, as we removed all
of these. We can use the procedure presented in section 4 as it is now appli-
cable. However, we must be concerned about Hilbert’s e-symbol appearing
in the generated theory to be proven inconsistent.

If we have the generated theory p(ez.q(z)) we are assuming p(Y) for all
instances that we need to. We have to assume p(Y) for all Y such that

FAqlY)IEg

to prove inconsistent with F', we try to prove for some Y
F = -p(Y)
FAg(Y) g



6 COMPUTING INCONSISTENCIES 9

If we cannot prove this, we assume all of the instances of p(X) which are
needed to prove g. That is, we are assuming p(X) for all the individuals
which do not otherwise lead to g.

If we can find such an individual, there is no instance of p(X) which can
be consistently assumed (for this proof), and can be used to prove g (as all
we know is that one Y such that ¢(Y’) is true).

Example 6 Consider the blocks world of example 3. Let A = {-on(X,Y)}.
F = { VX(-3Y on(Y, X)) = cleartop(X),
on(a, b),
cleartop(b) = gs,
cleartop(c) = g.}
That is, we can explain g, if b has a clear top, and explain g, if ¢ has a
clear top.
Skolemising the facts gives,
Fy, = { —on(f(X), X) = cleartop(X),
on(a,b),
cleartop(b) = gs,
cleartop(c) = g.}
where f(X) = eY.—on(Y, X) = cleartop(X).
We can prove g, by generating the theory {—on(f(b),b)}. This can be
proven inconsistent if we can prove on(Y, b) for some Y such that

F A (—on(Y, ) = cleartop(b)) }~ gs

which is provable (Y = a).
The corresponding theory generated to explain g. cannot be proven in-
consistent as we cannot prove 3Y on(Y,c).

Example 7 Consider example 4. A = {ontable(X)}.

F ={ (3Y red(Y) A ontable(Y)) = ¢
3X red(X)}

Skolemised, the facts become,

F = { (red(Y) A ontable(Y)) = g
red(c)}

where ¢ = €X.red(X). We can explain g, generating the potential theory

{ontable(c)} which is, when c is replaced by its definition, {ontable(e X.red(X))}.

We cannot prove —ontable(X) for any X, so that g is explained.



6 COMPUTING INCONSISTENCIES 10

Example 7A Let F; = F U {red(a), ~ontable(a)}. g should not be
explainable from Fj, as there is no reason to assume that there is another
individual which is also red. We can prove, —ontable(X) for X = a and can
prove F Ared(a) J~ g.

Example 7B Let F; = F U {-red(a), ~ontable(a)}. g should be ex-
plainable from F3, as we know there is another individual which is red which
we can assume is on the table. We can explain g with the same theory, we
can prove —ontable(X) for X = a, but can prove F Ared(a) = g.

Example 8 Consider the example in theorem 4 above.
f = AX.eY.—on(Y, X) = cleartop(X)
The Skolem constants, ¢; have different definitions,
c1 = eX.cleartop(X) = ¢;

¢z = €X.(-red(X) = cleartop(X)) = ¢;

In each case the generated theory is {—on(f(ci),c;)}. So for each of these
we have to prove
on(Y, X)

for some Y and X. This can be proven for Y = a and X = b. In the first
case, we also have to prove

F A (cleartop(b) = g1) A (—on(a, b) = cleartop(b)) }~ g1

which can be proven. Hence g; cannot be explained.
To prove the second case inconsistent, we have to prove

F A ((—red(b) = cleartop(b)) => g2) A (—on(a, b) = cleartop(b)) }~ g2
so we have to check
F A (red(b) = g2) A (cleartop(b)) => g2) A (—on(a, b) = cleartop(b)) F g2

Which is not true (as red(d) is in F). Thus g, can be explained.



7 CONCLUSION . 11

7 Conclusion

There are many areas in which this problem arises. Some people have as-
sumed that it is sufficient to consider the Herbrand Universe [Reiter80].
Others have tried to define a “reverse Skolemisation” algorithm which can
be applied to the hypotheses generated, and unified with the instances lead-
ing to inconsistencies [Cox80,Bledsoe78]. We have shown that both of these
ideas cannot work.

We have shown that we need to keep track of the context in which
Skolem functions are defined, and have shown how this can be done by
using Hilbert’s e-symbol. An procedure is given which solves this problem
for the case of a single hypothesis and a single theory.

Acknowledgements

This research was supported under NSERC grant A6260. Thanks to Eric
Neufeld, Paul Van Arragon and Randy Goebel for valuable comments on an
earlier draft of this paper.

References

[Bledsoe78| Bledsoe,W.W. and Ballantyne,A.M., Unskolemizing, University
of Texas at Austin, Math Dept Memo ATP-41A, July 1978.

[Cox80] Cox,P.T. and Pietrzykowski,T., “A Complete, Nonredundant Al-
gorithm for Reverse Skolemisation”, in Bibel,W. and Kowalski,R. (Eds)
Fifth Conference on Automated Deduction, Springer-Verlag, Lecture
Notes in Computer Science 87, Heidelburg, Germany, pp 374-385.

[Chang73] C. Chang and R. Lee, Symbolic Logic and Mechanical Theorem
Proving, Academic Press, 1973.

[Leisenring69] A. C. Leisenring, Mathematical Logic and Hilbert’s -symbol,
MacDonald Technical and Scientific, London, 1969.

[Poole85] D. Poole, “On the Comparison of Theories: Preferring the Most
Specific Explanation”, Proceedings Ninth International Joint Conference
on Artificial Intelligence, Los Angeles, August 1985, pp. 144-147,



REFERENCES 12

[Poole86] D. Poole, Default Reasoning and Diagnosis as Theory Formation,
Technical Report CS-86-08, Department of Computer Science, Univer-
sity of Waterloo, March 1986, 19 pages.

[PGAB86] D. Poole, R. Goebel and R. Aleluinas, “Theorist: a logical rea-
soning system for defaults and diagnosis”, to appear in N.Cercone and
G.McCalla (Eds.) Knowledge Representation.

[Reiter80] R. Reiter, “A Logic for Default Reasoning”, Artificial Intelli-
gence, Vol 13, pp. 81-132.



	
	
	
	
	
	
	
	
	
	
	
	
	
	

