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Abstract

When it began in 1982, Japan’s Fifth Generation Computer Systems project caught the
imagination of the computing world. Responses of all kinds, including criticism, praise, and
initiation of competing and cooperative projects, have combined in a kind of Fifth Generation
“hysteria” that has touched most of the world computing community.

Here we examine the motivation and foundation of the Fifth Generation project, and argue
that the ultimate goal is really to make computers easier to use. The argument is based on the
use of logic programming and its role in the development of rational systems. It suggests that
the Al revolution anticipated by some will actually be a subtle, almost undetectable infusion of
“rational” programming practices into the most common of everyday software.
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1 Introduction

On October 4, 1957, the Soviet Union launched the first man-made satellite into earth orbit.
“Sputnik hysteria” emerged to motivate great interest in the development of similar technology
in the West. In April 1982, the Japanese Ministry of International Trade and Industry (MITI)
launched their Fifth Generation Computer Systems (FGCS) project and induced a similar hysteria
on the Western computing community. !

Fifth Generation computers are intended to meet the information technology requirements of
the next decade by integrating artificial intelligence (AI) and parallel hardware into knowledge
information processing systems (KIPS). KIPS are the information technology revolution delivery
vehicle: they “democratise” the accessibility and use of the world’s growing information store. In
short, they will make computers easy to use.

*This paper was invited for the 1986 CIPS Edmonton Section Annual Conference, October 22-23, Edmonton,

Alberta.
'the analogy between Sputnik and Fifth Generation hysteria was pointed out to me by Jeffrey Crelinsten, a

Toronto science writer.



The first four generations of electronic computing machinery are informally distinguished by
the technology they employed: first generation vacuum tubes, second generation discrete semi-
conductor components, third generation integrated circuits, and fourth generation large and very
scale integrated (LSI, VLSI) circuits. As misleading as it may seem, the Japanese “fifth genera-
tion” is not another step in circuit technology, but a comprehensive proposal to combine various
information technologies into integrated KIPS.

KIPS result from the integration of several key technologies, including parallel hardware and
systems, logic programming, and artificial intelligence. The overall conception seeks to provide a
machine with rudimentary abilities to see, hear, speak, and solve problems. The Japanese recipe
for this lofty goal combines artificial intelligence to parallel hardware with the unifying concept of
logic programming.

International reaction to the FGCS project has been dramatic. Though many have criticised
everything from the logic programming basis to the detailed “legislation” of anticipated research re-
sults, there are few technology-related organisations that have escaped a twinge of Fifth Generation
hysteria (e.g., see [FM83]).

Here we explain one view of the FGCS project, and explain why logic programming was chosen
as the foundation of KIPS. We briefly explain the concept of logic programming and show how it
provides a connecting bridge between knowledge-based Al software and parallel hardware. Finally,
we argue that the essential features of KIPS should be included in all information systems, and
that a quiet “Al revolution” will consist of a slow but inevitable infusion of KIPS/AI programming
techniques into everyday software.

2 What is the Fifth Generation project?

MITI proposed the Fifth Generation Project at a Tokyo conference in the fall of 1981. In spring
of 1982, the project began with the creation of the Institute for New Generation Computer Tech-
nology (ICOT) [ICO84,IC0O85]. ICOT’s laboratory includes researchers from eight large Japanese
electronics companies (Fujitsu, Hitachi, NEC, Matsushita, Mitsubishi, Toshiba, Oki, and Sharp),
and two government research organisations (MITI’s Electrotechnical Laboratory and Nippon Tele-
phone and Telegraph). The novelty is that this is the first instance of this kind of Japanese industrial
cooperation.

The goal of the ten year project is the development of a working KIPS prototype, including the
human interface, basic software, and custom hardware. The focus is the development of integrated
hardware and software systems for acquiring, managing and using large volumes of “knowledge.”
The anticipated complex information processing systems are alleged to consist of an integration of
various hardware and software technologies, especially those associated with artificial intelligence
and based on logic programming.

The first phase of the project has produced basic tools for use in the crucial four year second
phase [Kaw84,Kur86]. The first “fundamental technologies” phase can be summarised as a logic
programming-based redevelopment of current Al-related technology. This technology will be ex-
ploited in the second phase, where most of the basic research will be conducted. Results of the
second phase are to be combined, in the final three year phase, into a complete KIPS prototype.



3 Logic programming: the heart of the Fifth Generation

There are several ways to slice the proposed KIPS design into components. At one level of detail,
the system can be decomposed into hardware, software, and human interface (e.g., [FM83, p. 112]).
The human interface integrates typewritten language, speech and graphics to provide a conceptually
efficient interface with the knowledge-based problem-solving software. In crude terms, the human
interface is the perception subsystem that provides an interface between the human user and the
knowledge-based “cpu.”?

The software system can be further decomposed into knowledge-base management, and problem-
solving and inference, and intelligent interface subsystems. Expert systems research has already
demonstrated how these three components could be integrated to provide powerful knowledge-
based problem solving programs, but had not concluded which programming language, if any,
was preferred. The existing alternatives included LISP, which predominates North American Al
programming, and Prolog, a relatively new but increasingly popular logic programming language
that originated in Europe. The Japanese choice was logic programming, which, more than any
other aspect of the project, drew the most attention and response.

3.1 What is logic programming?

Logic programming is best viewed as a model of computation based on deduction. This concept
can be illustrated with Prolog, the first and most popular logic programming language.

First, the deductive theorem-proving origins and Al flavour of logic programming can be shown
with a Prolog program to answer questions about family trees. For example, consider the following
database DB of facts:

father(randy, george).
mother(randy, julie).
father(lanie, milton).
mother(lanie, cora).
father(kari, randy).
father(jodi, randy).
father(kelly, randy).
mother(kari,lanie).
mother(jodi, lanie).
mother(kelly,lanie).

Each fact consists of a predicate name (e.g., father, mother) followed by two strings that denote
individuals. A fact of the form father(randy,george) asserts that the father of Randy is George.
Similarly, mother(randy, julie) asserts that Julie is Randy’s mother.

A predicate is defined by the set of assertions that mention it. The database DB defines two
predicates father and mother, and can be viewed as a Prolog program that can “compute” answers
to kinship questions. For example, the question “Is Randy the father of Kari?” might be posed as

father(kari, randy)?

20thers have noted this analogy between human interface as i/o subsystem, knowledge base as stoi'age subsystem,
and problem-solving and inference software as cpu, e.g., [TL82,Sto84]



The answer is obviously yes; the relationship between this question and the Prolog program DB

can be written as
DBt father(kari, randy) (1)

where  is read as “a Prolog consequence of,” so that (1) can be read as “father(kari,randy) is a
Prolog consequence of DB.” This is the first hint that logic programming has replaced computation
with deduction. Even though answering the above question requires only a simple pattern match,
that pattern match is viewed as a logical inference step. In other words, the pattern match is used
to conclude that father(kari,randy) follows logically from DB.

There is an important consequence of being able to justify answers with expressions of the form
(1). Because we view the question as following logically from the database, incorrect answers arise
because of incorrect assertions, not from errors in the computation that derived them. This becomes
more important when derived answers are not explicitly stated as facts. For example, we can add
to DB the rule

grandfather(X,Y) IF mother(X, Z) & father(Z,Y). (2)

Prolog will verify
DB |- grandfather(kari, milton) 3)

Rule (2) can be read as asserting that grandfather(X,Y’) is true for particular instances of X and
Y if there is a Z which is the mother of X and the daughter of Z. The portion of the rule preceding
the IF is called the rule head, and that following the I F is called the rule body. Instances of the head
are considered proved, as in (3), if corresponding instances of the body, viewed as questions, can be
proved. In this case, the relation (3) holds because the match of question grandfather(kari, milton)
with rule (2) creates the questions mother(kari, Z) and father(Z, milton), both of which follow
from DB when Z = lanie. Note that we rely on the correctness of the Prolog derivation strategy
I in order to conclude that the question follows from the database.

We could include another rule about paternal grandfathers, viz.

grandfather(X,Y) IF father(X,Z) & father(Z,Y). (4)
and consider the more complex question
grandfather(kari, X)? (5)

which is read as “for which values of X is grandfather(kari, X) a consequence of DB?” Prolog
will show that the question follows from DB for X = milton and X = george. Notice that we
have specified a program for computing the grandfathers of a given individual without providing
any indication of how such a computation should be carried out.

Logic programming can also be viewed as a method for conventional programming, where we
are interested in manipulating common data structures like lists and trees. For example, consider
the problem of appending two lists. In Prolog a list is either empty, written [], or has the form
[H|T), where H is the first element of the list and T is the remainder of the list (e.g., the list [1, 2, 3]
has 1 has its head, and the list [2, 3] as its tail). The “|” syntax is simply a way of indicating where
a list is to be split into head and tail. Our list appending program will be defined as a predicate
of three arguments, append(X,Y,Z), where X and Y are any two lists, and Z is the result of
appending X to the front of Y. The definition is:
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append([], X, X).
append([U|X],Y,[U|Z]) IF append(X,Y, Z).

The more conventional procedural reading of this program is as follows: append is the name of
a procedure of three arguments, of which the first two are input arguments and the third is an
output argument. The two assertions defining append are conditional statements, executed only if
the input arguments match the arguments in their heads. To see this reading more clearly, we can
restructure the two assertions in a more conventional manner, viz.

procedure append(X,Y:LIST; VAR Z:LIST);
var X,Y,Z:LIST;

begin
if X==
then Z :=Y;
else
U := head(X);
X := tail(X);
append(X,Y, Z);
z = [U|Z];
end

In other words, the Prolog definition can be read as a recursive procedure that terminates when
the first input is the empty list [|; otherwise it recurses with the tail of the first list, and constructs
the answer Z when the recursion unwinds. In this procedural reading, a question is viewed as a
procedure call, e.g., the question

append([1,2, 3],[4, 5, 6], Z)?

is a call of the procedure append with appropriate arguments. Despite this procedural interpretation
of append, we still have the interpretation that only correct instances of Z are those that make the
question a deductive consequence of the defining assertions.

The only computation done by Prolog is to match a question with a fact or rule head, stop if
a fact was matched, or continue with an instance of a rule body as new questions to be proved.
Each such sequence of matching a question with a fact or rule is called a logical inference step—
the speed of logic programming languages like Prolog is measured in logical inferences per second
(LIPS). This is a relatively crude measure as it does not depend on the number of parameters
or their internal complexity. However, it serves as a rule of thumb that is used to compare the
performance of various logic programming implementations. It can also provide some indication of
the computational power that FGCS hardware is assumed to require.

3.2 FGCS hardware requirements

The software level’s emphasis on symbolic processing (cf. numerical processing) demands hardware
that can efficiently perform computations at the symbolic level of abstraction. The anticipated
requirements for the project’s KIPS prototype is about one billion LIPS (gigaLIP), which is approx-
imately one thousand billion instructions per second (million MIPS) in conventional von Neumann



technology [TL82]. When compared to current “supercomputers,” which are in the range of one
hundred to two hundred MIPS [LMMS85], it is easy to conclude that special hardware is required
to support FGCS computing.

Since its inception, the FCGS project has been aware that special architectures would be neces-
sary to implement prototype KIPS. The proposed solution is to exploit multi-processor parallelism.
This itself is a major research project—and begs the question of how the software will take advan-
tage of parallel hardware.

Logic programming plays a key role in combining the problem-solving and inference software
with parallel hardware. To see why, note that, for many logic programs, there is more than one
possible way to demonstrate that an instance of a question logically follows from the program’s
assertions. For example, consider the following Prolog program:

p(X) IF ¢(X).
p(X) IF r(X).
q(a).
r(a).

Note that there are two different ways to derive the question

p(a)? (6)

One could use either the rule with ¢ in the rule body, or the rule with r in the rule body.

In general, there may be many alternative sequences of inferences that justify a particular
question. Because the meaning of an answer is the same regardless of how it was derived, the
inference system is free to choose any of the multiple possible derivation sequences. In this sense,
the semantics of a logic program is independent of the way in which a search for a derivation is
conducted.

As the meaning of an answer is independent of the way it was derived, multiple processors
can search for derivations in parallel without affecting the meaning of the specified program. Two
common examples of parallel search strategies are so-called OR-parallelism and AND-parallelism
[CK81]. The former applies multiple processors to the same question, dispatching a new processor
whenever alternative derivation paths arise. For example, because there are two rules whose heads
that match question (6) above, we can use one processor for each alternative and conclude that the
question follows from the assertions whenever one of the processors completes a derivation. This
scheme might “waste” a lot of computation, but it is guaranteed to find an answer in the shortest
possible time.

The latter scheme, A ND-parallelism, is a cooperative rather than independent derivation strat-
egy where multiple processors communicate to produce a derivation. For example, the question

p(X) & ¢(X)?

might be solved with two processors running in parallel in a producer/consumer relationship: a
processor assigned to p(X) might generate candidate values for X, while another processor assigned
to ¢(X) would determine whether ¢(X ) follows, for those values of X. Logic programming languages
with explicit control of this cooperative processing have formed the basis of most proposals for
multi-processor logic programming languages (e.g., [TF86,Sha86]).



Because of the independence of meaning and execution strategy, logic programming provides a
foundation for developing an integrated software and hardware system that can exploit parallelism.
This offers advantages for the programmer, who can concentrate on the logic of his problem, and
for the hardware designer, who can design multi-processing strategies for searching for derivations.

4 Rational systems: the quiet AI revolution

Even when the FGCS KIPS prototypes emerge, it is unlikely that every computer user will abandon
their existing information systems in favour of these marvelous new AI machines. The practical
reality is that there is a much larger investment in years of information system evolution than
in the supporting technology. If this is so, how will this new technology help make computers
easier to use? How will the anticipated Al revolution come about and when? The answer lies in a
historical question: when did the revolution in Japanese cameras, audio and video electronics, and
automobiles happen? It didn’t—it just seems that one day the neighbourhood seemed to have a
lot of Nikon cameras, Sony VCRs, and Toyota sedans.

4.1 The rational user interface

Many Al products anticipated in the seventies have not yet made their revolutionising debut (e-g.,
[FFC73]). However, there are computer systems that interact with their users via efficient graphical
and natural language dialogues, those that provide for maintenance and re-use of command language
sequences, those which correct spelling and suggest improvements on grammar and style, and those
which plan the routing of electronic mail based on route data. All of these existing systems attempt
to make us more effective users of the information at our electronic disposal. The ultimate tool
must be one that allows us to interact with the machine in terms most natural to us, for example,
in terms of questions, answers, and explanations. This is what expert systems provide.

One important aspect of expert systems is their contribution to an understanding of knowledge
engineering: the systematic acquisition of knowledge for use in a particular problem-solving situ-
ation. Another, often overlooked, aspect is the development of a common high level interface for
all interactive software. Indeed, an expert system might be classified as any software system that
communicates with it’s user in terms of assertions, questions, answers, and explanations. From
this viewpoint, a program is not “expert” because it is written in LISP or Prolog instead of C
or FORTAN. It is expert because it interacts rationally with its user at an appropriate level of
conceptual abstraction, via assertions, questions, answers, and explanations.

All of these concepts are vital to the definition of a rational system:

Assertions: assertions can not be arrays of numbers or other more complex data structures whose
meaning is not obvious to the user. They must be rendered at a conceptual level that the
user is comfortable with and can easily recognise and apply in the problem domain.

Questions: questions are necessary so that the user can determine the consequences of previously
stored assertions. This is important for applying the system’s assertions to a problem, and
for verifying the accuracy of the assertions.

3Maarten van Emden has called this the QUARFE interface, for QUestions, Answers, Rules, Facts, and
Explanations.



Answers: as with assertions, answers that consist of data structures rendered at an inappropriate
level of detail are not useful. Answers must be at the same conceptual level as the questions
from which they arose.

Explanations: unexpected or ambiguous answers require explanation. An explanation provides a
rational sequence of steps that led to the answer, together with the assertions that participated
in each inference step.

One can view Al as the investigation of how machines can behave rationally in terms of these
concepts. Logic programming is a step away from traditional programming practises, and is clearly
directed towards this concept of rational machine.

4.2 Mundane experts: exploiting machine rationality

It has been pointed out by van Emden [vE82] that nearly every expert system problem domain
is complex, and the knowledge thereof is difficult to acquire and use. This is because their major
potential advantage is that they embody relatively rare, potentially valuable, and perhaps volatile
expertise in a way that provides for its wider and more uniform use.

But the majority of software does not require such complex expertise; it is mundane in the
sense that it supports problem-solving and decision making in relatively simple domains where
the level of expertise is low, and the application is straightforward. Examples include all kinds of
commercial data processing software like payroll, inventory, accounting, and scheduling systems.
Also included are large institutional information systems like geographical, census, personnel, phar-
maceutical, and hospital patient databases. These and myriad others have similar characteristics:
they contain massive amounts of relatively well-structured data that are updated, retrieved, and
analyzed according to relatively simple rules. And they are all used by humans—they should use
the conceptual interface suggested by expert systems, and interact rationally with their users as
“mundane” expert systems.

The majority of these systems do not yet use the proposed interface. Whether they will depends
on two major factors:

e the availability of software tools that allow system programmers to modify and extend existing
interfaces with new rational interaction techniques, and

e the availability of persons whose computing education has given them both an appreciation
for rational interaction and the skills to use it in mundane systems.

There is evidence that suggests both of these conditions are beginning to materialise (e.g., see
[Man86]), and this will result in a slow but inevitable infusion of “Fifth Generation” software ideas
that will guide the evolution of the majority of such mundane expert systems.

5 Summary and conclusions

The Japanese FGCS project will produce some kind of working KIPS prototype by 1992. This
system will combine natural language, speech, graphics, knowledge-based problem-solving and in-
ference, and parallel hardware into an integrated knowledge-based information processing system.



The question of how well this prototype will perform is probably not as important as how ideas
developed along the way are spun-off into software engineering techniques that can infiltrate the
world of mundane expert systems.

The Fifth Generation won’t be a revolution, but you might wake up one morning to find your
Toyota sedan talking to your Sony video system about the best route to get you to work.
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