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Abstract

In this thesis we present a computational model for generating non-misleading,
user-specific explanations from expert systems. Ideally an expert system should, as an aid
in formulating cooperative responses, both maintain a model of the user from the ongoing
dialogue and possess knowledge of a user’s expectations of cooperative expert behavior.
Our model focuses on how knowledge of the user’s goals, plans, and preferences should
influence a response. Included are two important specifications: what information about
the user is needed plus an algorithm for using that information to compute user-specific
responses. The explanation model may be seen as extending the work of Joshi, Webber,
and Weischedel to include user-specific goals and to specify the algorithm independent of

domain.

The algorithm, together with the model of the user, present a general method of
computing the responses enumerated by Joshi et al. They also allow us to generate help-
ful responses that address a particular user’s preferences and goals and to recognize cases
where a direct, correct response may violate the user’s expectations of cooperative expert
behavior and thus mislead or confuse the user. This involves, among other things, the
ability to: provide a correct, direct answer to a query; explain the failure of a query;
compute better alternatives to a user’s plan as expressed in a query; and recognize when a

direct response should be modified and make the appropriate modification.

While we focus in this thesis on explanations in the context of expert advice-giving
systems, we feel the approach is applicable to a broad range of question types and to

expert system explanation generation in general.
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Introduction

Man may smile and smile but he is not an investigating animal. He loves the obvious.
He shrinks from explanations. Yet I will go on with mine.

— Joseph Conrad, The Secret Agent

Explanation capabilities are an important area for research in computational linguistics.
They are of theoretical interest as a sub-problem in the larger area of generation of coherent
natural language text. But they are also of practical importance for computer systems in language
intensive fields such as computer aided instruction and expert consulting systems. The communi-

cation needs of these types of programs have increased the necessity for sophisticated explanation

capabilities.

Expert consulting systems have great potential for filling a need in highly specialized prob-
lem domains where human experts are scarce or unavailable. Unlike many complex computer
systems, such as an operating system, where an ability to explain its actions is often considered
superfluous, the ability for an expert system to explain its reasoning and actions can be regarded
as essential. Any knowledge based system incapable of explaining its behavior would be unlikely
to be accepted by its users or by those human experts in the same field of knowledge. A recent
study of 200 physicians confirmed that high-quality explanations were an important requirement

for a diagnostic expert system (Buchanan and Shortliffe 1984).



1.1. What is an Explanation

The positivist separation of logic and pragmatics meant that for many years pragmatics
was the Cinderella of language, forced to stay home and do the dirty work while sis-
ters syntax and semantics received all the attention.

— Alan Garfunkel, Forms of Explanation

While the meaning of the concept of explanation seems intuitively clear, an attempt to con-
struct an adequate definition of what constitutes an explanation encounters difficulties. Webster’s

(Merriam-Webster Inc., Springfield, Mass., 1985) defines an explanation as:

"Something that explains, makes plain or understandable, gives the meaning of,
accounts for, or gives an interpretation of”

In the context of expert systems, we wish to define an explanation as something that
explains an action, event, fact, or result to a user of the system; makes it plain or intelligible to

him, makes him understand it, or justifies it to him.

The difference between these two definitions lies in the relativistic sense of the latter defini-
tion. Explanations can now be ordered by how explanatory they are to a particular person.
These explanations may be the result of an implicit or explicit question on the part of the user of
the system. We will examine in detail the explanations that result from information-seeking
requests (as used in Carberry 1983a) where the questioner seeks plan related information but
where the plan is not executed within the dialogue. Here the response should include an indica-
tion of the possibility or advisability of an action and an answer to the implicit questions of why

the result is true and what are the consequences of the action. The response should also suggest



better alternative courses of action when the recognized plan of the user is non-optimal.

There is a large body of work on developing a formal syntactic and semantic theory of
scientific explanation. A notable and representative example is the covering law or deductive
model of explanation developed by Carl Hempel (1965). This model tells us that F is explained
by a statement of boundary conditions B and law L if and only if F is deducible from B and L in
such a way that B and L are both essential to the deduction. Explanation in the covering law
model is not a matter of making something understood by any particular person. Rather, in
Hempel’s view, pragmatic considerations are the sorts of things a scientific model of explanation
would abstract from. But, in the same way that a logically well constructed argument can fail to

convince a listener, a logically well constructed explanation can fail to be explanatory.

As our adopted definition of explanation indicates, there is a pragmatic component to expla-
nation: it requires reference to the person to whom the explanation is directed. It is often the
case that in explaining the answer to some question, Q, to someone, U, one must provide not
only a correct (direct) answer to Q, but also such information as may be required to bring U to
understand, accept, and not be mislead by the explanation. In addition to providing a correct
(direct) answer to Q, the explanation may have to provide additional background information,
correct certain of U’s mistaken background beliefs that are inconsistent with the correct answer to
0, show U that certain of his correct background beliefs are in fact consistent with the answer
(Matthews 1981; Bromberger 1965), address U’s motivation for asking Q (McKeown, Wish, and

Matthews 1985), and provide additional information aimed at preventing U from performing



inappropriate reasoning (Joshi, Webber, and Weischedel 1984a, 1984b).

Thus, we will argue that an explanation should depend on the beliefs, goals, knowledge, and
assumptions of a user on a particular occasion. We characterize what is necessary and sufficient
in an explanation such that it is understandable and satisfactory to a particular user and avoids
misleading that user. We then demonstrate that the pragmatic processing needed to produce
these user-specific explanations requires a model of the user. As a step in this direction we show
how a model of the user that incorporates some information on the background, goals, plans and
preferences of the user can be used to produce user-specific explanations. The type of domain
independent reasoning that the explanation facility must go through to make use of the user
model will be detailed. A case will be made that these explanations are indeed better than those
that result from the absence of such pragmatic processing. In support of the feasibility of incor-
porating models of the user into an explanation facility, an existing implementation will be

described.

1.2. Major Points of the Proposed Model

This thesis presents a model for generating user-specific explanations, based on the back-
ground of the user, the user’s goals, plans for achieving the goals, and preferences among the
goals. Our work should be seen as extending the research of Joshi, Webber, and Weischedel
(1984a, 1984b), hereafter referred to as Joshi’s for simplicity. Joshi’s work addresses the problem

of when a speaker should supply additional information to prevent inappropriate reasoning on the



part of the hearer (see chapter 4 for a detailed account) and can be summarized in the following

maxim:

If you, the speaker, plan to say anything which may imply for the hearer something
that you believe to be false, then provide further information to block it.

Further, he gives a formal model of a user’s beliefs about cooperative expert behavior that

can be used to design a system that will avoid misleading responses to task related questions.

Joshi approach is to explicitly list each possible case - a potentially impossible task in more
complex domains. We design an algorithm to actually reason about a user’s goals and plans.
This has the advantage of providing a more general method of computing these non-misleading
responses and of providing some domain independence in that the explanation procedures and the
procedures for reasoning about the goals, plans and preferences of the user remain constant
across domains. With a model of participants in a conversation as purposive agents as motiva-
tion, the algorithm is also designed to, with the aid of a model of the user, discover new classes
of cases which would require an implemented system to supply additional information to prevent
inappropriate reasoning. Finally, by reasoning about a user’s goals, plans and preferences among
goals, the system can offer alternatives to the user which are specific to that user. The model
works by constructing possible user domain plans and comparing them to system-generated plans,
to provide the best alternative to a user’s query. As a result, the model is particularly useful for

detecting and correcting user’s misconceptions.



1.3. Outline of the Thesis

The next chapter contains a brief discussion of expert systems, examples of early work in

generating explanations from expert systems, and an outline of some of the problems with these

previous approaches.

Explanations can be improved in a number of ways beyond addressing the goals and plans
of a user, including enhancing the knowledge base of the expert system, optimizing the surface
form of the explanation, and taking into consideration the sophistication of the user. A discus-
sion and examples of the research done in these ways of improving explanations can be found in
chapter 3. Chapter 3 concludes with a discussion of related work on inferring and responding to

the goals of a user of an expert advice-giving system, with an emphasis on our differences.

Truthful and informative responses are, of course, expected from an expert but they are not
in themselves sufficient in that they may imply for the hearer conclusions that the expert believes
to be false. This is the subject of chapter 4. Chapter 4 also contains a detailed description of the
work of Joshi (1984a, 1984b) in preventing false inferences upon which the current research is

largely based.

Chapter 5 is the heart of the thesis, presenting both the motivation for the model for gen-
erating user-specific explanations and a detailed description of it. The model was implemented in
a student-advisor domain and further tested by hand simulating responses to requests for explana-

tions in the context of an expert system for the diagnosis of learning disabilities. Examples from



these two domains are presented to further illustrate our ideas about explanations. Chapter 5 also

contains the details of the Prolog implementation of the model in the student-advisor domain.

The thesis concludes in chapter 6 with a discussion of the unfinished aspects of the model
and possible further extensions, some speculative remarks, and a summary of the contributions

and promise of the approach.



Explanations and Expert Systems

Archie: Ah! - I knew there was something! - McFee’s dead.
George: What?!!
Archie: Shot himself this morning, in the park, in a plastic bag.
George: My God! Why?
Archie: It's hard to say. He was always tidy.
— Tom Stoppard, Jumpers, Act II

An expert system can be characterized as "a computer program that embodies the expertise
of one or more experts in some domain and applies this knowledge to make useful inferences for
the user of the system” (Hayes-Roth, Waterman, and Lenat 1983). Expert systems, also known
as knowledge-based systems or computer consulting systems, can be further distinguished from
conventional computer programs by, among other things, the ability to employ self knowledge to
provide explanations and justifications. That these explanations and justifications are not, at
present, ideal is shown through a summary of the explanation capabilities of three existing expert
systems: MYCIN (Buchanan and Shortliffe 1984) and Teiresias (Davis 1982) for bacterial diag-
nosis and therapy, and XPLAIN (Swartout 1983) for digitalis therapy. A description of other
prominent expert systems, the techniques employed in building them, and an extensive bibliogra-
phy can be found in (Hayes-Roth, Waterman, and Lenat 1983). Subsequent chapters of this

thesis will detail our proposals for improving these explanations.



2.1. Description of Rule-Based Expert Systems

A key problem in building expert systems is how to represent the human expert’s knowledge
in a usable form. Many expert consulting systems, including the three discussed below, employ
rule-based deduction. In these systems, the knowledge of human experts in the problem domain
is represented as a possibly large set of simple rules. The rules are used to deduce conclusions
from facts supplied by the user and to guide the dialogue between the system and the user. A
simple example of rule-based deduction will help clarify the subsequent discussion of current

research in explanation capabilities.

Facts:  dog(Fido)
meows(Myrtle)
~barks(Fido)
human(John)

Rules: human(x) and smiles(x) => friendly(x)
dog(x) and wags-tail(x) => friendly(x)
happy(x) => wags-tail(x)
happy(x) => smiles(x)
friendly(x) and —barks(x) => —afraid(y,x)
likes-milk(x) and meows(x) => cat(x)

Figure 2.1: Simple Knowledge Base
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When expert problem solving capabilities are captured in rule-based deduction, the problem
solving can be formalized as a theorem-proving problem, where structures called AND/OR trees
are useful for depicting the activity of the theorem prover. Consider the simple knowledge base
shown in figure 2.1 (adapted from Nilsson 1980). The proposition we wish to prove is whether
there exists a cat and a dog such that the cat is not afraid of the dog. The theorem prover seeks
a consistent solution tree terminating in fact nodes to prove the proposition. The derivation

(AND/OR) tree in figure 2.2 depicts the deductive reasoning.

Some facts necessary to continue the deduction are not present in the knowledge base and
the user is asked to supply them. This also provides the user with an opportunity to ask ques-
tions. Note that the AND successor nodes in the tree are linked by semi-circles indicating that all
of the successor nodes must be solved in order to solve the parent node. The OR successor nodes
indicate that only one of the successors must be solved. This is closely related to the problem
reduction heuristic with which humans solve problems: turning hard problems into possibly
several simpler problems. The reduction approach to problem solving can also be represented by
an AND/OR tree. Thus the proof procedure behaves as a problem solver and also implicitly

defines a derivation tree.
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cat(x) A dog(y)
A =—afraid(x,y)
cat(x) dog(y) —afraid(x,y)
ask-user: ) dog(Fido) friendly(y) —bark
meows(x og(Fido rien arks
likes-milk(x)? g y(y \))
meows(Myrtle) dog(y) wags-tail(y) -barks(Fido)
ask-user:
dog(Fido)
happy(y)?

Figure 2.2: Derivation Tree

2.2. Research in Explanations

One approach to explanations is to use stored text to answer a user’s queries. This is exem-
plified in conventional systems or programs by manual pages or help screens. This approach is
generally considered inadequate in that it makes it difficult to give explanations at varying levels
of detail, to base explanations on previous discourse, and to take into account why a user asked

the question.
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Recent research in providing explanation capabilities for expert systems has concentrated on
producing explanations directly from the rules and facts in the knowledge base. To facilitate this,
a history is kept of all rules that were applied in the deduction and an indication of whether the
rule succeeded or failed. (The history is conceptually very similar to the depiction of the deriva-
tion tree given above.) An explanation then involves translating into natural language portions of
the derivation tree. This approach has the added advantage of being linguistically relevant. As
noted above, humans often perform problem solving by problem reduction and justify their
actions and results by explaining the steps in the reduction and how those steps follow, one from

another.

Early work towards explanations in MYCIN (Buchanan and Shortliffe 1984), a medical con-
sulting system, allows the user to ask the system "why" a question was being asked. The resulting
explanation is a translation of the rule currently under consideration. Subsequent "whys" to the
same question causes the translator to move up one level in the derivation tree. Given the rule-
based deduction depicted graphically in figure 2.2, the dialogue in figure 2.3 could be a typical
question and explanation interaction with MYCIN (user input is shown in bold type, comments

are in italics).

As can be seen from the examples, one can see a portion of the rules, but to understand the
overall reasoning scheme, a user needs to request a display of each rule that was used. How the
rules fit together is never made explicit by the system, in part because such knowledge is often

lacking in the system. Rules are often designed for efficiency and omit the underlying causal
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Is Fido happy?

Why?

{ User wants to know why the system is asking whether Fido is happy. }
If Fido is happy then he wags his tail.

Is Fido happy?
Why?

{ User asks why again to the same question. The explanation given is a result of moving up one level
in the derivation tree and translating the rule. }

If Fido wags his tail and is a dog then he is friendly.

Figure 2.3: Hypothetical MYCIN Example (1)

mechanisms that explain why the consequent of a rule follows logically from its antecedents. For
example, the empirical or causal relationship between being happy and smiling (see figure 2.1) is
not included in the knowledge base. Thus a question regarding this relationship could not be

answered except to quote the rule.

More recent work in the MYCIN domain (Buchanan and Shortliffe 1984) has attempted to
rectify the limitation of explaining one rule at a time. The system has the ability to answer ques-
tions regarding chains of reasoning. To do this, a measure of complexity is associated with rules
and concepts . The user specifies his level of expertise before requesting an explanation. Reason-
ing chains that involve simpler concepts as intermediates are collapsed to avoid the display of

information that might be obvious to the user. As well, concepts that are gauged as too complex
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for the user are also omitted (see figure 2.4). Only those concepts whose complexity falls within
the range defined by the expertise level and the level of detail will be mentioned in the explana-

tion. Broader inference statements are generated to bridge the concepts that are chosen.

This approach preserves the logical flow of the explanation without introducing concepts of
inappropriate complexity. Rules are omitted from the explanation if they are either too simple or
too complex, depending on the user’s level of expertise. Again with respect to the previously dep-
icted derivation tree and assuming the appropriate complexity and importance measures attached

to the rules, the following could be an exchange in this system:

Expertise 3

{ User specifies expertise }

Is Fido happy?

Why?

{ Why is the system asking whether Fido is happy? The rule: happy(x) => wags-tail(x) is omitted
from the explanation because it involves a simple concept the user can be presumed to know because

of his specified expertise level. The rule : dog(x) and wags-tail(x) =>> friendly(x) is omitted because
its complexity measure places it above the range of expertise specified by the user. }

Happiness is associated with friendliness.
Not barking and friendliness means not afraid.

Figure 2.4: Hypothetical MYCIN Example (2)




15

While MYCIN allows the user to examine the reasoning and underlying knowledge at vari-
ous levels of detail, there are serious shortcomings to this approach to explanation. To foreshorten
the possibility of repetition, these shortcomings will be detailed after a short discussion of the

Teiresias expert system (Davis 1982), since they apply equally well to that case.

Teiresias builds on the MYCIN work. As with previous work, Davis takes as a starting
point the assumption that the program’s approach to its domain is sufficiently intuitive that a
recap of the deduction is a reasonable basis for an explanation. He asserts that, since the rules
are formulated by human experts and embody accepted patterns of human reasoning, they have
adequate explanatory value (Davis 1982). Davis further argues that backward chaining and
modus ponens are an accepted and often used (though probably implicitly) problem solving
method and therefore there exists some framework for viewing the program’s actions that allow a

recap to be comprehensible and acceptable to the user.

Possible questions to Teiresias include how and why. The user can control the detail with a
numeric argument (see figure 2.5). The rules have static importance based on their CF (Cer-
tainty Factor) value. Definitional rules (CF = 1.0) have no information, while those with smaller
CF’s have progressively more information. The entire "distance” from the current node to the top
of the goal tree is normalized to 10, and the argument following the WHY or HOW is taken as
some fraction of that distance. The chosen chain is then compressed into a single answer, the
compression being based on the CF values of the rules involved. Figure 2.5 contrasts the differ-

ence in the amount of detail the explanations provide depending on the numeric argument to the
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In light of the site from which the culture was obtained and the method of collection, do you feel
that a significant number of ORGANISM-1 was obtained?

** WHY
[i.e., Why is it important to determine whether ORGANISM-1 was observed in significant
numbers?]

[1.0] This will aid in determining whether there is therapeutically significant disease associated
with this occurrence of ORGANISM-1.

It has already been established that
[1.1] the method of collection is sterile,
therefore, if:

[1.2] the organism was observed in significant numbers, and the site of the culture is not one of
those which are normally sterile, then there is strongly suggestive evidence (0.9) that there is
therapeutically significant disease associated with this occurrence of the organism.

Also: there is strongly suggestive evidence (0.8) that the organism is not a contaminant.

** WHY 4

{ The "distance" to the top at this point is eight. The argument of four to the WHY command indi-
cates the user wants four-tenths of the present "distance" to be summarized. Since the three steps in
the chain constitute roughly four-tenths of the “distance" to the top, they are compressed into a single
answer. }

We are trying to find out whether the organism has been observed in significant numbers, in
order to determine an organism or class of organisms for which therapy should cover.

Figure 2.5: Teiresias Example
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"Why" command. The explanation resulting from "Why" with no numeric argument defaults to
the level of the rule currently under consideration, whereas the one resulting from "Why 4" sum-

marizes four-tenths of the current reasoning chain into a single answer.

In Teiresias, as in MYCIN, different levels of detail can be presented to a user based on a
scheme of assigning static complexity measures to the rules in the knowledge base. Unfor-
tunately, in this scheme, two rules with the same complexity measure are assumed to have the
same information content. But a user who is familiar with only the first of them will find much
more information in the second. In both MYCIN and Teiresias, "why" is underspecified and must
necessarily be expanded by the system to avoid misinterpretation by the user (Davis 1982). For
example, “why" might mean "why are you asking about that test instead of ...". Neither system
can determine the reason why a user requested an explanation. Both MYCIN’s and Teiresias’
model of explanation relies solely on a trace or recap of the program’s actions for generating
explanations. But an explanation may have to correct a user’s misconceptions, reaffirm what a
user knows, or provide information aimed at preventing inappropriate reasoning (recall our dis-
cussion in the introductory chapter of what an explanation should address) to be truly explana-
tory.

An alternative approach to having the user specify a level of expertise or detail, and the one
that this thesis ascribes to, is to have the system infer from the user/system dialogue and the
system’s augmented knowledge of the domain, not only the level of expertise of the user, but also

his specific goals in order to generate user-specific explanations. This theme will be taken up
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again beginning in chapter 3.

We conclude this chapter with an account of the XPLAIN expert system (Swartout 1983).
As mentioned previously in the discussion on MYCIN, many expert systems are limited to
describing what they did (or the reasoning path they followed to reach a conclusion), but they are
incapable of justifying their actions (or reasoning paths), where justification here means the rea-
soning behind the system (Swartout 1983). In short, previous systems can state what they did but
cannot state why they did it. To remedy this deficiency, Swartout uses automatic programming to
include knowledge of causal relationships and classification hierarchies into an expert system. A
translation of the rules along with this additional information provides much better explanations.
Swartout applied his ideas to an existing expert system. Figure 2.6 contrasts before and after: an
explanation from the original expert system and an explanation from the XPLAIN expert system
which has been augmented with knowledge of causal relationships and classification hierarchies.
A choice of two viewpoints (computer or medical) are allowed to be attached to steps to indicate
to whom the step should be explained. This allows some customization of explanation based on
what the user is interested in. As well, this system can produce shortened explanations if several

of the causal relationships have previously been explained (see latter part of figure 2.6).

The XPLAIN system does indeed generate improved explanations, but it too does not
address the goals of the user, the intent of the question, or any misconceptions the user may hold.

Thus, it suffers from many of the same shortcomings as the previous two example systems.
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Before:

What is the level of serum potassium? Why?
{ User questions why he is being asked to supply the value of serum potassium. }

My top goal is to begin therapy. One step in doing that is to check sensitivities. I am now
trying to check sensitivity due to potassium.

After:

Please enter the value of serum potassium: Why?

The system is anticipating digitalis toxicity. Decreased serum potassium causes increased
automaticity, which may cause a change to ventricular fibrillation. Increased digitalis also
causes increased automaticity. Thus, if the system observes decreased serum potassium, it
reduces the dose of digitalis due to decreased serum potassium.

Please enter the value of serum potassium: 3.7

Please enter the value of serum calcium: Why?

{ The system produces a shortened explanation, reflecting the fact that is has already explained
several of the causal relationships in the previous explanation. Also, since the system
remembers that it has already told the user about serum potassium, it suggests the analogy
between the two here. }

The system is anticipating digitalis toxicity. Increased serum calcium also causes increased
automaticity. Thus, (as with decreased potassium) if the system observes increased serum
calcium, it reduces the dose of digitalis due to increased serum calcium.

Please enter the value of serum calcium: 9.0

Figure 2.6: Example from Swartout’s Digitalis Therapy Advisor




Better Explanations

With a sweeping brush, problems in natural language generation can be distinguished as
deciding what to say and how fo say it. In some research these two aspects are tightly coupled, in
other research the solution to one is assumed in order to focus on the other. In Teiresias (see
chapter 2), for example, choosing what to say is decided by taking the derivation tree as a basis
and "pruning” it according to a user-inputted level of expertise. The rules that are left are then
simply translated into their English equivalent. Recent research has investigated how to better
decide what to say and how to say it. We detail below some representative examples of this
research into better explanations or responses. In particular, the first part of this chapter will dis-
cuss: improving surface choice (McKeown and Derr 1984), the use of rhetorical predicates for
deciding what to say and how to organize it (McKeown 1982; but see also Mann and Thompson
1983), and, in a vein similar to rhetorical predicates, the use of different descriptive strategies for
naive and expert users (Paris 1985). "The unifying theme of much current pragmatics and
discourse research is that the coherence of dialogue is to be found in the interaction of the con-
versants’ plans. That is, a speaker is regarded as planning his utterances to achieve his goals ...
[and] the hearer attempts to infer the speaker’s goal(s) and to understand how the utterance

furthers them" (Cohen and Levesque 1985). This chapter concludes with a discussion of how the

20
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goals and plans of a user can be inferred from the user/system dialogue and used towards generat-
ing improved user-specific explanations as exemplified in the work of Allen (1983); Carberry

(1983b); McKeown, Wish, and Matthews (1985); and Pollack (1984).

3.1. Surface Generation

Given a semantic representation of what to say, a surface generator must construct an
appropriate surface structure. For example, an expert system may select part of the goal tree, a
particular goal and its antecedent subgoals, to explain a behavior of the system. This is passed to
the surface generator which translates the logical propositions into English. One decision to be

made in translating is when to use a sequence of simple sentences or a single complex one.

McKeown and Derr (1984) have looked at how focus can be used in deciding when to use a
sequence of simple sentences or a single complex one, in selecting sentence voice (active or pas-
sive), and in determining whether to replace a noun with a pronoun. See figure 3.1 for an exam-
ple of using temporary focus shift in forming complex sentences using subordination. The actual
semantic representation is horn clause logic and the input to the surface generator is a portion of
the goal tree selected to explain a behavior of the system. The figure shows an English transla-

tion for simplicity sake.
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The generator determines that subordination is necessary by checking whether focus shifts over a

sequence of three propositions. Each proposition has five arguments: verb, protagonist, goal,
beneficiary, and focus.

Rule: If the first proposition focuses on FOCUS] and mentions an unfocused argument
GOAL1, and if the second proposition specifies GOALL1 as its focus, but in the

third proposition the focus returns to FOCUSI, then the first and second proposi-
tions can be combined using subordination.

Before: Assembly language has a prerequisite.
{ FOCUS! = Assembly language, GOALI = prerequisite }
The prerequisite was taken.
{ focus = GOALI }
Assembly language does not conflict.
{ focus = FOCUSI }

After: Assembly language has a prerequisite that was taken.
Assembly language does not conflict.

Figure 3.1: Determining whether subordination is necessary using focus

3.2. Rhetorical Predicates

In contrast to the supposition underlying the Teiresias and MYCIN explanation facilities,
namely that a trace of the rules used in the deduction is sufficiently intuitive and explanatory,
McKeown (1982) states that communicative strategies that people are familiar with should be
used to effectively convey information. She examines texts and classes each sentence as one of a
set of rhetorical predicates. Some combinations of predicates are considered more likely than

others. These standard combinations are encoded as schemas which represent the structural rela-
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tion between propositions in a text. As well, some schemas are considered more appropriate than
others for certain discourse situations. For example, in situations where an object or concept can
be described in terms of its sub-parts or sub-classes, the "constituency” schema (figure 3.2) is
used. The "compare and contrast” schema (not shown) is used in response to a question about
the difference between objects. To use the schemas in response generation, the input question is
used to produce a relevant knowledge pool. Depending on the information available to answer
the question, a particular schema is chosen for formulating the response. In figure 3.2, the "con-
stituency" schema is selected for describing a telephone receiver because the relevant knowledge
pool contains much information about sub-parts and their properties. A formal representation of
the answer is constructed by selecting propositions from the knowledge pool which match the rhe-

torical techniques in the given schema. For clarity reasons, figure 3.2 shows only the English

equivalent.

3.3. Descriptive Strategies for Different Users

Explanations are most effective if they are based on the expected level of knowledge of the
recipient of the explanation. For example, an explanation on how a car engine works would
probably be fundamentally different if for a music student than if for a student of mechanical
engineering. Typically this doesn’t consist of merely giving more details for the novice as is often
thought (Davis 1982; and see chapter 2). Paris (1985) characterized the explanation strategies

employed for naive and expert users in describing complex physical objects by examining junior
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Notation: "{}" indicate optionality, "/" indicates alternatives, "+" indicates the item may appear
1-n times, and "*" indicates that the item may appear O-n times.

{ Constituency }
Cause-effect® / Attributive*
{ Depth-identification / Depth-attribute
{ Particular Ilustration / Evidence }
{ Comparison; Analogy } }+
{ Amplification / Explanation / Attributive / Analogy }

1) The receiver includes a ring-shaped magnet system around a coil and a ring shaped armature
of anadium Permendur. 2) Current in the coil makes the armature vibrate in the air gap. 3) An
attached phenolic-impregnated fabric diaphragm, shaped like a dome, 4) vibrates and sets the air
in the canal of the ear in motion.

Depth-attributive for the receiver
1. Depth-Attributive

2. Cause-effect

3. Depth-Attributive

4. Cause-effect

Figure 3.2: Constituency Schema Example

and adult encyclopedia entries. She found that in the adult entries, the details given are mainly
about the sub-parts and their properties and only very briefly about the mechanical processes
involved. This corresponded to the constituency schema of McKeown (figure 3.2). In the junior
entries, the process mechanism is more important than the sub-parts and given in more detail.

More specifically, the junior entries contained a process description of the object, the cause and
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effect relations, and functional information about the objects parts. As well, there were no large
gaps in the chain of inference. Paris found that there was no corresponding schema or other
organizing structure for juniors. The main strategy in describing objects to a naive user is to

trace through the process that allows the object to perform its function.

3.4. User-Specific Explanations

Previous research has investigated user modeling in the context of interpreting an utterance
correctly and of generating appropriate explanations. In MYCIN and Teiresias (see chapter 2),
the user can specify his level of expertise when requesting an explanation. In Paris’ research (see
section 3.3), different descriptive strategies are employed depending on whether the user is an
expert or naive user. While these approaches allow the explanation to be tailored to the general
level of knowledge of the user, they do not address the specific knowledge of the user, they
require the system to have a priori knowledge of the user’s expertise, and, more importantly in
our context, they do not address why an explanation was requested nor do they recognize that a

direct response may be misleading.

An alternative approach is to gather information about the user’s goals, assumptions, and
knowledge from the user/system dialogue (e.g. Allen 1983; Carberry 1983b; McKeown, Wish,
and Matthews 1985; Pollack 1984). This approach is particularly fruitful in the expert system
environment where the user and the system work cooperatively towards common goals through

the dialogue and the user’s utterances may be viewed as actions in plans for achieving those
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goals. The present work draws on this latter approach. In particular, our model uses knowledge
of the plans and goals of the user in order to produce user-specific, cooperative responses. Actu-
ally deriving these plans and goals is not part of our work. But below we describe some closely

related work which ideally could be used to gather the goals needed in our explanation algorithm.

3.4.1. Recognizing Intentions from Natural Language Utterances

In their early and influential work on plan recognition, Perrault, Allen and Cohen (1978)
observe that "part of cooperative behavior is the detection by one agent of obstacles in the plans
he believes the other agent holds, possibly followed by an attempt to overcome them”. Allen
(1983) gives as example the following exchange between a patron and a clerk at an information
booth in a train station:

Patron: When does the Montreal train leave?
Clerk:  3:15 at gate 7.

In this exchange, the clerk not only answers the patron’s direct question, but also provides as

additional information the departure gate.

To model the generation of responses that provide more information than strictly required,
Allen adopts a view of language use as goal-oriented behavior. This view has its basis in the
speech act theory of language use, developed most notably by Austin (1962) and Searle (1969),
which can be summarized in Searle’s suggestion that "a theory of language is part of a theory of

action". Allen (1983; but see also Allen and Perrault 1980) uses a theory of speech acts based on
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plans, plan construction, and plan recognition where speech acts are modeled as actions in a plan-

ning system.

To return to the patron and clerk example (above), in Allen’s model an explanation of what
occurs would be as follows: The patron has a goal of boarding the train to Montreal but lacks
some information needed in order to achieve the goal. To overcome this obstacle, the patron for-
mulates and executes a plan to question the clerk. For his part, the clerk attempts to infer the
patron’s goals and plans from the patron’s question. In this example, it is straightforward for the
clerk to recognize that a goal of the patron is to know when the train departs (Allen’s model is
also able to handle examples where this step is more problematical because the question is a sen-
tence fragment or is phrased indirectly). But the clerk also infers that the patron wishes to board
the train and, being helpful, recognizes that another obstacles exists in achieving this goal (the

patron may also need to know the departure gate) and generates a response that overcomes both

obstacles.

This plan recognition or inference is done in Allen’s system with the use of rules of the
form: "If agent S believes agent A has a goal X, then agent S may infer that agent A has a goal
Y" in conjunction with knowledge of the expected goals in a particular domain and the use of rat-
ing heuristics which judge the likeliness that an inferred goal is part of the the actual intention of
the user. Pollack (1984) examines the plan inference rules that may be needed when the user has
not accurately and literally expressed a request for advice. She proposes a set of alternate goal

rules that combine some of Allen’s rules and sketches a preliminary version of an algorithm.
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Our work differs from Allen’s, and is probably closer in spirit to Pollack’s, in that we study
different forms of cooperative behavior, such as: non-misleading responses and offering alterna-
tives when the recognized plan of the user is non-optimal or will fail in its intention. As well, we
propose tracking the user’s goals throughout a dialogue as an aid in producing subsequent

Iesponscs.

3.4.2. Tracking the User’s Goals

In Allen’s work, the system is able to infer the complete plan of the user from a single utter-
ance. This is possible because the domain has a small number of possible domain goals. Car-
berry (1983a) argues that in more complex domains this may not be possible since the user’s
overall plan may consist of many subplans and subgoals and the user’s current goal within such a
plan may change during the course of a dialogue. She states that "a cooperative information-
provider will assimilate the preceding dialogue, infer the underlying task-related plan motivating
the speaker’s queries, and focus on that aspect of the task on which the information-seeker’s
attention is focused.” Carberry’s approach is to build the complete plan (context model) as the
dialogue progresses by inferring a lower-level goal from an utterance and relating it to potential
higher level plans. To do this, she distinguishes between the immediate goal, derived goal, and
focused goal of a user (local plan context) and the user’s overall plan (global plan context or con-
text model). An enriched set of inference rules are used to recognize the goals in the local plan

context and focusing heuristics are used (such as "the user will generally obtain all desired infor-
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mation about the currently focused task and the most recently considered subaction before consid-

ering other tasks") to relate the focused goal to the global plan and thus to update the context

model.

Carberry is primarily concerned with using the context model as an aid to understanding a
user’s utterances; in related papers (1983b, 1985), she demonstrates in particular how the context
model can be used to correct pragmatically ill-formed queries and to understand intersentential

ellipses. Our model proposes tracking the user as an aid in generating responses.

3.4.3. Varying the Explanation by Point of View

One way in which the content of an explanation can vary is according to the perspective or
point of view taken on the underlying problem domain (McKeown 1984; McKeown, Wish, and
Matthews 1985). For example, in the student advisor domain, where users of the advisor typi-
cally work towards a degree, there are a number of points of view the student can adopt for
selecting courses. The selection of courses can be viewed as a process of meeting requirements
(i.e., "how do courses tie in with requirement sequencing?”), as a state model process (i.e., "what
should be completed at each state in the process?"), as a semester scheduling process (i.e., "how
can courses fit into schedule slots?"), or as a process of maximizing personal interests (as in "how
will courses help me learn more about AI?"). Given these different points of view, alternative
explanations of the same piece of advice (i.e., yes) can be generated in response to the question:

"Should I take both discrete math and data structures this semester?” The different responses



could be the following (McKeown 1984):

1. Requirements: Yes, data structures is a requirement for all later Computer Science courses
and discrete math is a co-requisite for data structures.

2.  State Model: Yes, you usually take them both first semester, sophomore year.

3. Semester Scheduling: Yes, they're offered next semester, but not in the spring and you need
to get them out of the way as soon as possible.

4. Personal Interests (e.g. Al): Yes, if you take data structures this semester, you can take
Introduction to Al next semester, and you must take discrete math at the same times as
data structures.

In more recent research, McKeown (1985) describes an approach to inferring the goals of a
user within a brief discourse segment. These inferred goals, or points of view, of the user are
then used to vary the response depending on the strength of the system’s belief in the inference
(see figure 3.3). Specifically, McKeown develops techniques for organizing the knowledge base
to support different explanations, for identifying possible goals underlying the current discourse,
and for determining when an underlying goal should be taken into account in forming the expla-
nation. Consider dialogue 1 of figure 3.3. The system has a strong belief that the underlying
goal of the discourse is taking NLP (from the fact that both questions a and b inquire about tak-
ing NLP and because the user stated his future intention in question a) and makes use of this
goal in response ¢ to "construct an explanation from the proper perspective” (McKeown, Wish,
and Matthews 1985). In dialogue 2 of figure 3.3, the strength of the system’s belief in its discern-
ment of the underlying goal of the discourse is not sufficient to warrant taking an underlying goal

into account in forming the explanation.
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While McKeown’s work importantly addresses why the user asked a question, i.e. the

underlying goal of the question, it does not identify possible user misconceptions, avoid possibly

misleading responses, or compare and suggest possible better alternative plans.

1a.

2a.

I’'m planning on taking NLP in the future. What are the prerequisites?
plausible goal = take NLP
Al

Is it offered next semester?

plausible goal = take NLP

relevant goal = take NLP

Yes, on Mondays and Wednesdays at 1:10.

I'm also thinking of taking computability this semester. Would that be a good
idea?

plausible goal = take computability

Yes, computability is particularly important for NLP since it covers grammars so
it’s a good idea to take it first.

Is natural language offered this semester?
plausible goal = take NLP
Yes, at 1:10 on Mondays and Wednesdays.

I'm thinking of taking computability this semester. Would that be a good idea?
plausible goal = take computability

Yes, it’s your last requirement and it’s a good idea to get it out of the way before
going on to electives.

Figure 3.3: McKeown Example




Preventing False Inferences

Whether man or machine, it is expected and necessary that an expert respond truthfully and
informatively to questions. However, truthful and informative responses are not always sufficient
in that they may imply for the hearer conclusions that the expert believes to be false. The expert

must recognize these cases and modify or add to the response to block the listener from inferring

false conclusions.

Joshi (1984a) proposes a modification of Grice’s Maxim of Quality (1975) to which a

cooperative expert must conform in responding to questions:

Grice’s Maxim of Quality -
Do not say what you believe to be false or for which you lack adequate evidence.

Joshi’s Revised Maxim of Quality -

If you, the speaker, plan to say anything which may imply for the hearer something
that you believe to be false, then provide further information to block it.

Several classes of false conclusions that should be blocked by modifying otherwise true

responses have been identified in the literature. They include but are not limited to the following:

1. A discrepancy exists between the system’s beliefs and those of its user. The user draws false
conclusions from what is said because the presuppositions of the response are not in accord

with the system’s beliefs (Kaplan 1983; McCoy 1984; but see also Mercer and Rosenberg

32
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1984).

2. The user draws false conclusions by using standard default reasoning to conclude

(incorrectly) that there is nothing special about this case (Joshi 1984b).

3. The user draws false conclusions in a task-oriented context because of violated expectations

about the way a cooperative expert will respond (Joshi 1984a).

Our current work is a continuation of this research into predicting false conclusions and
modifying responses accordingly with the emphasis in the order that the above points are
described, the majority being on the last point. Thus it will be helpful to explicate these three

points in somewhat more detail.

4.1. Belief Discrepancies

In questions directed to an expert, a user may reveal a belief or assumption that is incompa-
tible with the beliefs held by the expert. Kaplan (1983) investigates how to detect and respond to
these discrepancies. Consider the following exchange:

User: How many French students failed csel21 last term?
System: I don’t know of any French students.
The user shows through the query that he believes, among other things, that the set of French

students is non-empty, that there is a course csel21, and that it was given last term (i.e. the

presuppositions of the question). Now suppose the system doesn’t know about any French stu-



dents. The technically truthful response of "None", or equivalently, "No French students failed
csel21 last term” may mislead the user into believing the false conclusion that the expert concurs
with the user’s beliefs about French students and further, that the French students did well in the

course. Kaplan’s system, as a first step in responding to a belief discrepancy, denies the false

information.

McCoy (1984) describes a method to infer and correct a user’s object-related misconception.

In the following example, the user has confused two types of ship:
User: Give me the hull number of all destroyers whose height is above 190.
System:  All destroyers that I know about have a mast height between 85 and 90.
Were you thinking of the aircraft carriers?

Before continuing the dialogue, the user’s incorrect belief must first be addressed. To do this,
McCoy classifies object-related disparities according to the knowledge base feature involved. In
the exchange above, for example, the user has an attribute misconception and is confusing the
object discussed with another object that has the specified property. The response involves deny-
ing the wrong information and mentioning the object which does have the property involved in

the misconception.



35

4.2. Inappropriate Default Reasoning

Default reasoning as discussed by Reiter (1980) is a logical system that supports reasoning
and drawing conclusions from partial information. Informally, most standard default rules are of
the form of "given no reason to suspect otherwise, there’s nothing special about the current case”.
For example, knowing only that Tweety is a bird an agent could conclude by default that since
most birds fly so can Tweety fly. Joshi (1984b) examines cases in an interaction with an expert
system where the user reasons from the partial information in the response to draw a false conclu-
sion based on inappropriately applying a default rule. The following example (Joshi 1984b) may
make this clear:

User: Is Sam an associate Professor?
System:  Yes, but he doesn’t have tenure.
If the system only responded with "Yes", the user could apply a default rule that says "most asso-
ciate professors are tenured” to conclude that "Sam is also tenured”. The system, therefore, must

recognize cases where the user may perform inappropriate default reasoning and modify the

response to block it.

4.3. Violated Expectations

Joshi (1984a, 1984b) focuses on characterizing the types of informing behavior usually
expected of an expert in responding to questions concerning the achievement of some goal. A

general statement of the problem is as follows:
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With respect to an expert’s responses to questions, if Q expects that R would inform
him of P if P were true, then Q may interpret R’s silence regarding P as implying P is
not true. Thus if R knows P to be true, his silence may lead to Q being mislead (Joshi
1984a).

Thus, an expert system must modify its planned response if there is reason to believe that the
response may mislead the user. To identify these cases Joshi makes use of the user’s stated goal
(the goal directly achieved by using the information requested) and his intended goal (the goal

underlying the stated goal of a request).

Scenario:
The stated goal of the user is not being in the course and the intended goal of the user is to
avoid failing the course.

User:

Can I drop numerical analysis?

System:

a) Yes, however you will still fail the course since your mark will be recorded as withdrawal
while failing.

b)  Yes, but a better way is to take an incomplete to have more time to perform the work.

Figure 4.1 Example from Joshi, Webber, and Weischedel (1984a)
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In addition to the direct, correct answer, a user expects to be informed if, for example, the
stated goal does not achieve the intended goal or if there is a better way to achieve the intended
goal (refer to Figure 4.1). If the expert system does not supply this additional information, P, it
risks misleading the user. The user may interpret the expert system’s silence regarding P as
implying that P is not true. In figure 4.1, the user asks "Can I drop course numerical analysis?".
Consider response (a). The system determines that it is possible to drop the course since the
deadline has not passed. Unfortunately, the result will be a failure on the student’s permanent
record. If the system gives the straightforward, truthful response of "Yes" this may mislead the
user; he may assume the stated answer is also an answer to his intended goal of not failing the
course. Thus, the system must add to the direct response to the query to explain that the user’s
stated goal will fail in its intent. In response (b), the system determines a better plan to achieve

the goal of not failing the course and includes this additional information in the response.

In all, Joshi has determined five cases where information may have to be provided by the
expert, R, in order not to mislead the user, Q. These cases are summarized in figure 4.2 and rely
on the stated and intended goals shown at the top of figure. As a final example, let us examine
response (a.1) more closely. Suppose that it is past the deadline for dropping courses. Thus R
responds with "You can’t drop 577". But if R knows another action that would achieve Q’s
intended goal, Q would expect to be informed about it. If not so informed, Q may mistakenly
conclude that there is no other way to achieve his intended goal. To avoid misleading Q, the

response includes the additional information: "you can change to audit status”. The analyses for



the remaining modified responses are similar.
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Query:

Can I drop course 5777

Intended goal:  Avoid failing the course.
Stated goal: Drop the course.

a.

Failure of enabling conditions.
a.l A way (alternative).

"You can’t drop 577; you can change to audit status."
a.2 No way.

"You can’t drop 577, the deadline has passed."”

A non-productive act (consequences).
"You can drop 577. However, you will still fail.”

A better way.
"You can drop 577, but taking an incomplete to have more
time to perform the work is a better way."

The only way.
"You can drop 577. No other change of status is possible."”

Something turning up.

e.l External event.
"You can’t drop 577. If ’e’ occurs, you won’t fail 577."

e.2 Event followed by action.
"You can’t drop 577. If ’e’ occurs, you could ’a’ and thus
avoid failing."

Figure 4.2: Joshi Summary
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Since our model for user-specific explanations has as its starting point Joshi’s work on avoid-
ing misleading responses, it will be useful to recount some of the limitations of Joshi’s work and
to sketch how our model removes these limitations (full details of our model can be found in the

next chapter).

Joshi’s approach can provide an additional or modified response in order to block inap-
propriate reasoning on the part of the user because of violations of the user’s expectations of
cooperative expert behavior. These modified responses also have intrinsic worth in that they pro-
vide additional useful information to the user. However, his approach computes the above only
in regards to the stated and intended goal of the immediate question, which, as we shall argue,

can be inadequate for avoiding misleading responses.

The following example demonstrates how Joshi’s modified responses may themselves be
misleading: Imagine that a student wishes to learn more about AI and thus asks the system
whether he can enroll in a particular course. If the answer is no, perhaps because the student
lacks the prerequisites, Joshi’s modified response would also inform the student of any alternative
Al courses that the student would be permitted to take. Clearly, if the possible alternatives did
not help the student in the pursuit of, say, his degree, this additional information would be of lit-
tle use to the student and providing it may seriously mislead him. Thus Joshi’s modified response

may itself mislead.



The important point in this example is that the system can not plan to avoid misleading the
user with its response by reasoning solely about the stated and intended goals of the query. The
system must also have recourse to the user’s domain goals and plans. In this case a model of the
user that contains the domain goal and plan of the user’s academic program would be sufficient.
As well, by adding the user’s higher domain goals/plans to the user model we can identify addi-

tional cases where a response must be modified in order to prevent false inferencing.

As the examples thus far have shown, a major claim of Joshi is that a system, so that it will
not produce misleading responses, must recognize when a user’s plan is sub-optimal and provide a
better alternative. How to generate alternatives and determine "betterness” are left unspecified.
Our introduction of the user’s higher domain goals (e.g in the course domain: the goal of getting
a degree with certain course requirements) and the tracking of the user’s goals throughout the
dialogue provide some insights into generating and comparing alternatives with regards to a

specific user.

To conclude our comparison, Joshi’s approach to computing modified responses is to expli-
citly enumerate all potential cases (see figure 4.3) - thus placing the burden on the author who
must prepare for all contingencies; whereas our approach is to reason about the user’s goals

according to general principles, independently of domain.
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if admissible(drop(Q,C)(Sc))
then if "holds("fail(Q,C),drop(Q,C)(Sc))
then begin nonproductive act
if (E b)[admissible(b(Sc)) & holds("fail(Q,C),b(Sc))]
then a way
else no way
end
else if (E b)[admissible(b(Sc)) & holds("fail(Q,C),b(Sc)) & better(b,f)]
then a better way
else if (E b)[admissible(b(Sc)) & holds("fail(Q,C),b(Sc))]

then a way
else no way
Notation:
Q the user
C the course
Sc the current state of the student

admissible(e(S)) event/action e can apply in state S
holds(P,S) P, a proposition, is true in S

Figure 4.3: Joshi’s approach




A Model For Better Explanations

Make plans by seeking advice ...
— Proverbs 20:18

As previous discussion has indicated, a model of explanation that relies solely on a trace or
recap of program actions for formulating explanations may not give the most complete or best
explanation, and may even fail to be explanatory. This ineffectiveness is the result of ignoring
epistemic (what the user does and does not know), motivational (why the user requested the
explanation), and contextual (the user’s overall domain goals and preferences) considerations.
For an explanation to be explanatory it must provide for an individual user, U, not only a
correct, direct answer to a question, Q, but also provide such other information as may be neces-
sary in order to bring U to understand the answer to Q. Thus, in addition to providing a correct,

direct answer to Q, an explanation may have to

(i) provide additional background information since U may not possess the requisite concepts
and foundations (Swartout 1983, chapter 2; Paris 1985, chapter 3). U possibly can

remember no reasons to suggest an explanation or lacks specific knowledge.
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(ii) correct certain of the U’s mistaken background beliefs that are inconsistent with the correct
answer to Q. If the explanation lacks this the user may be mislead into inferring false con-

clusions (Kaplan 1983, chapter 4).

(iii) address U’s motivation for asking Q. In the context of advice-seeking questions, the
motivation for asking Q may be the attainment of another, higher goal. One facet includes
assuring U that his goals were taken into consideration in arriving at the response

(McKeown, Wish, and Matthews 1985, chapter 3).

(iv) provide additional information aimed at preventing U from drawing false conclusions from
inappropriate default reasoning or violated expectations of how an expert would respond

(Joshi 1984a, 1984b, chapter 4).
(v) and address U’s overall goals, objectives, and preferences among those goals and objectives.

Addressing these pragmatic components of explanation requires a model of the user’s beliefs,

knowledge, goals, and plans.

In what follows we provide a partial framework in which expert systems could practice the
pragmatic philosophy of explanation expressed in points (iv) and (v). We show how a model of
the user which contains some general facts about the user along with the objectives, plans, and
preferences of the user can be incorporated into the explanation facility of an expert system in
furtherance of our goal of good explanations. We demonstrate how the model of the user is con-

structed and maintained by the system and an algorithm is presented which produces these expla-



nations by reasoning about the goals and plans contained in the model of the user. Our work
should be seen as an extension of the approach of Joshi (1984a, 1984b, chapter 4) which charac-
terizes the type of informing behavior usually expected of an expert and states that an expert sys-
tem must modify its planned response if there is reason to believe that the response may mislead

the user.

The algorithm, together with the model of the user, present a general method of computing
the responses enumerated by Joshi (see figure 4.4). This involves, among other things, the ability
to provide a correct, direct answer to a query; explain the failure of a query; compute better alter-
natives to a user’s plan as expressed in a query; and recognize when a direct response should be
modified and make the appropriate modification. The algorithm and the user model thus consti-
tute a processing model for generating user-specific explanations. This model allows us to gen-
erate helpful responses that address a particular user’s preferences and goals and also to recognize
additional cases where a direct, correct response violate the user’s expectations of cooperative

expert behavior and thus mislead or confuse the user.

As test cases for our model of explanation the application areas of requests for information
from a student advisor system and an educational diagnosis expert system were chosen and will
be illustrated in this paper. The requests will be about the possibility (e.g., "Can I drop numeri-
cal analysis?”) or advisability (e.g., "Is the McLeod Phonics Test appropriate?”) of an action.
An appropriate response will include an indication of the possibility and advisability of the action,

better alternatives and consequences of the actions if appropriate, and an answer to the implicit
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question of why the result should be believed by the user. The model was actually implemented
in the student-advisor domain, and further tested by hand simulating responses in the educational

diagnosis domain.

The rest of this chapter will proceed as follows. The next section is a brief overview and
presents some examples to illustrate what we are proposing. Subsequent to that are separate sec-
tions detailing the user model and the algorithm. Toward the end of the chapter are some exam-
ples from the student-advisor domain of how the algorithm and the model of the user work
together to produce the responses. Finally, the chapter ends with some thoughts on generating
responses when the system perceives a misconception on the part of the user. The next chapter
concludes the thesis with a discussion of the possible future directions for the model and a sum-

mary of the contributions and promise of the approach.

5.1. Overview

Previous work has emphasized that a cooperative expert is expected to infer the immediate
goals and plans of an utterance (or discourse segment) and formulate a response in light of these
goals and plans. We wish to show that an advice seeker may also expect the expert to respond in
light of, not only the immediate goals and plans of the user, but also in light of (i) previously
expressed goals or preferences, (ii) goals that may be inferred or known from the user’s back-
ground, and (iii) domain goals the user may be expected to hold. If the expert’s response does

not take into consideration these latter type of goals the result may mislead or confuse the user



and, at the least, will not be cooperative. To formulate cooperative response, a model of the user
is needed to track these three types of goals of the user and also to record some of the back-
ground of the user pertinent to the domain. We also wish to demonstrate how the responses

enumerated in (Joshi 1984a, see figure 4.4) can be effectively computed given the model of the

user.

User:
Can I enroll in CS 375 (Numerical Analysis)?

System:
a) Yes.

b) Yes, but CS 375 does involve a lot of FORTRAN programming. You may find Eng 353
(Technical Writing) and CS 327 (AI) to be useful courses.

Figure 5.1: Example from student advisor domain

For example, consider the exchange between a student and student-advisor system shown in
figure 5.1. The user hopes to enroll in a particular course in order to help fulfill his elective
requirements. But imagine that in the past the student has told the advisor that he has strong
feelings about not using FORTRAN as a programming language. If the student-advisor gives
response (a) of "Yes" and the student subsequently enrolls in the course and finds out that it

involves heavy doses of FORTRAN programming, the student will probably have justifiably bad
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feelings about the student-advisor. A better response (b) takes into account what is known about
the user’s preferences. Thus the system must check if the user’s plan as expressed in his query is
compatible with previously expressed goals of the user. The system can be additionally coopera-
tive by offering alternatives that are compatible with the user’s preferences and also help towards

the user’s intended goal of choosing an elective (response (b)).

User:

Can I drop CS 2737

System:
a) Yes.
b) Yes, but CS 273 is a co-requisite of CS 265 and you are enrolled in CS 265.

Figure 5.2: Example from student advisor domain

In the example shown in figure 5.2, the user is doing poorly in a course and wants to drop
out of it in order to avoid a failing mark on his permanent record. But a plan which leads to the
attainment of one goal may result in another goal becoming impossible to achieve. A user may
expect to be informed of such consequences, particularly if the goal which cannot now be attained
is a goal the user values highly. Knowing the background of the user, the expert can reasonably
be expected to know that the student has the goal of getting a particular type of degree. The

better response (b), informs the user of the consequences of his proposed plan as concerns the
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goal of getting his degree.

Finally, avoiding misleading statements is not the only motive for individual models of the
users. In responding to questions, experts are expected to be fully informative, they are expected
to remind or inform the questioner of the consequences of a course of action. As an example,
suppose that a student asks, "Can I drop 225 (technical writing)?" For a user who has already met
his Arts credit minimum, the answer could be a simple: "You can drop 225." For another user
who could suffer from consequences a more informative response might be something like: "You
can drop 225. However, you will still need 3 units of Arts courses in order to get your degree."
Here we are not avoiding misleading responses, but rather providing additional useful informa-

tion. By incorporating a model of the user, explanations can be tailored to specific audiences.

5.2. The User Model

Our model requires a database of domain dependent plans and goals. A plan may contain
subgoals, actions, and constraints (cf. Sacerdoti 1977; Litman and Allen 1984). The plans are
hierarchical since subgoals may themselves have associated plans. We assume that the goals of
the user in the immediate discourse are available by methods such as specified in (Allen 1983;

Carberry 1983a; Pollack 1984; see section 3.4.1).

It is proposed that the model of a user contain, in addition to the user’s immediate discourse
goals, his background, higher domain goals, and plans specifying how the higher domain goals

will be accomplished. The plans may be neither completely specified nor instantiated, either
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because the user has not completely defined his plan or because the system has an incomplete
knowledge of that definition. To give this some concreteness, consider an example from the stu-
dent advisor domain. Initially, the user model will contain some default goals which the user can
be expected to hold, such as avoiding failing marks on his permanent record. It will also contain
those goals of the user which can be inferred or known from the system’s knowledge of the user’s
background, such as the attainment of a degree. Initially, the plan to obtain a degree will be an
incomplete, uninstantiated plan that contains only the constraints imposed by the student’s univer-
sity. Parts of the plan may be corrected (eg. the student changes his major) or expanded and
instantiated (eg. the student completes and enrolls in courses) based on the actions of the student.
New goals and plans will be added to the model (eg. the student’s preferences or intentions) as
they are derived from the discourse. For example, if the user displays or mentions a predilection

for numerical analysis courses this would be installed in the user model as a goal to be achieved.

5.3. The Algorithm

The possible is preferable to the impossible.

That is preferable which is the more applicable on every occasion or on most occa-
sions.

— Atristotle, Topics, Book IIT

As our starting point we make the assumption that a user of an expert system can be effec-
tively characterized as a purposive, rational or reasonable agent. Participants in conversation

(and, more generally, any human interaction) attribute goals or intentions to their partners in
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conversation. But the only way in which they are able to employ these goals to effectively under-
stand and respond in a dialogue is by holding fixed the assumption of rationality on the part of
the other participants. This assumption of rationality is common to recent research, but is often
left implicit. Examples of this recent work are (i) Cohen’s (1983, 1984, 1985) model of argument
understanding where the speaker assumes the hearer can discern the intentions of the speaker in
order to reconstruct the logical structure of the argument and thus achieve understanding. The
hearer can comprehend without believing an argument by reconstructing the form of the argu-
ment using world knowledge and a model of the speaker’s aims, goals, and purposes as they
relate to the present context. (ii) Allen’s (1983, see chapter 3) work in recognizing intentions
from natural language utterances which makes the assumption that "people are rational agents

who are capable of forming and executing plans to achieve their goals".

Further, explanations and predictions of people’s choices in everyday life are often founded
on the assumption of human rationality. The definition of rationality has been much debated,
but there is general agreement that rational choices should satisfy some elementary requirements
of consistency and coherence. We posit some guiding principles of action that a reasonable agent
uses in deciding between competing goals and methods for achieving those goals. Explicitly stat-
ing a fuller definition of reasonableness will subsequently be shown to facilitate the generation of

user-specific explanations in the context of expert systems.
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The principles of action to which a reasonable person will try to adhere are the following

(Points 3 and 4 are largely based on Nielson 1979; but see also Cohen and Levesque 1985):

An agent will adopt as an immediate goal only those goals in which he believes there exists
a method or plan of action that will achieve the goal. An agent may desire a goal that is
unachievable but will not execute actions in a plan to achieve the goal if, as far as he can

ascertain, some steps in the plan will fail.

A plan for achieving a goal will be adopted only if the agent believes that execution of the

plan will cause the goal to obtain.

If an agent has several compatible goals, he should take the means which will, as far as he

can ascertain, enable him to realize the greatest number of his goals.

Those goals which are valued absolutely higher than other goals, are the goals which are to
be achieved. An agent should seck plans of action which will satisfy those goals, and plans
to satisfy his other ends should be adopted only in so far as they are compatible with the

satisfaction of those goals he values most highly.

These principles can be viewed as "shared knowledge" between the user and the expert. If

the user does not "live up" to these principles, the expert’s response should include how the princi-

ples are violated and also some alternatives that are better (if they exist) because they do not

violate the principles. Because the system is assumed by the user to be a cooperative expert, not

informing the user could mislead or confuse the him. Alternatively, the principles can be viewed
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as a specification of what the program should do.

The algorithm begins by checking whether the user’s query is possible or not possible. It
then infers the intended goals of the user’s query (refer to figure 5.3). If the query is not possi-
ble, the user is informed and the explanation includes the reasons for the failure (step 1.0 of algo-
rithm). Alternative plans that are possible and help achieve the user’s intended goal are searched
for and presented to the user. But before presenting any alternative, the algorithm, to not
mislead the user, ensures that the alternative is compatible with the higher domain goals of the

user (step 1.1).

If the query is possible, control passes to step 2.0, where the next step is to determine
whether the stated goal does, as the user believes, help achieve the intended goal (step 2.1). Pre-
vious research has either made the assumption that the intended goal of a query could be
uniquely determined from an utterance or kept track of plausible goals until further utterances
determined the unique goal. If the system has to answer a question before the goal was uniquely
determined, it would have to ask the user for clarification of his goals. Consider the situation
where the system believes the user intends to enroll in a course to both achieve his goal of taking
numerical analysis courses and to help achieve the goal of getting a degree. The goals are not
inconsistent with each other and it is entirely plausible that the user’s intent was to take a step in
his plan for getting his degree and at the same time satisfying his goal of taking as many NA
courses as he can. Of course, if the set of goals is inconsistent, the system must wait for further

utterances or ask the user for clarification (Allen and Perrault 1980). (The current
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(1.0)

(1.1)

(1.2)

(2.0)

2.1)

2.2)

(2.3)

Check if original query is possible.
Infer intended goals.

Case 1: { Original query fails }

Message: No, [query] is not possible because ...

If ( 3 alternatives that help achieve the intended goals and
are compatible with the higher domain goals ) then
Message: However, you can [alternatives]

Else
Message: No alternatives

Case 2: { Original query succeeds }
Message: Yes, [query] is possible.
If not ( intended goals ) then

Message: Warn user that intended goal does not hold and explain why.

If ( 3 alternatives that do help achieve the intended goals and
are also compatible with the higher domain goals ) then
Message: However, you can [alternatives]

Else
Message: No alternatives

Else If ( stated goal of query is incompatible with the higher
domain goals ) then

Message: Warn user of incompatibility.

If ( 3 alternatives that are compatible with the higher domain
goals and also help achieve the intended goals ) then
Message: However, you can [alternatives]

Else
Message: No alternatives

Else If ( 3 alternatives that also meet intended goals but are
better than the stated goal of the query ) then

Message: There is a better way ...

Else
{ No action }

Figure 5.3: Explanation Algorithm
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implementation of our model does not check for the inconsistency of goals, but we feel this is
important for a future improved implementation.) Given that the user presents a plan that he
believes will accomplish his intended goals, the system must check if the plan succeeds in its

intentions (step 2.1 of algorithm).

The i-goal may already be true.
2.  The i-goal may not be possible to achieve.

3.  Several relationships that can hold between a stated goal (s-goal) and an intended goal
(i-goal) can be enumerated (Joshi 1984a):

3.1 The s-goal may be the same as the i-goal.

3.2 The s-goal may be a subgoal that addresses only part of the i-goal. For example, the

user’s s-goal may be to enroll in a natural language course while his i-goal may be to
concentrate on Al

3.3 The s-goal may be a pre-condition of the i-goal. For example, the s-goal may be to
get read/write access to a file, while his i-goal may be to alter it.

3.4 The i-goal may be more specific than the s-goal. For example, the s-goal may be to
know how to send files to someone on another machine, while his i-goal is just to send
a file to a particular machine, which may allow for a specialized procedure.

Figure 5.4: Relationship among goals
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To recapitulate, the user model contains the stated goal (s-goal) and the intended goal
(i-goal) upon which the current discourse is focused, and some higher domain goals. A represen-
tative list of things which must be checked for to identify possible misconceptions on the part of
the user and thus to provide the best response, are shown in figure 5.4. The user may falsely
believe that a certain relationship holds between his goals; it is then up to the system to correct
the misconception. Given our knowledge representation in terms of goals and plans for achieving
those goals, a natural method of computing whether these relationships hold presents itself.
Thus, (3.1) corresponds to checking for equality, (3.2) involves checking whether the s-goal could
be a possible step in the plan for the i-goal, (3.3) whether the s-goal is a pre-condition in the plan
for the i-goal, and (3.4) whether the i-goal is among the (possibly) multiple plans available for

achieving the s-goal.

As is shown in the algorithm, if the relationship does not hold or ‘the plan is not executable,
the user should be informed. Here it is possible to provide additional unrequested information
necessary to achieve the goal (cf. Allen 1983). If possible, the system should also inform the
user of (1) any pre-conditions that can’t possibly become true, given the state of the world, and
thus preclude the possibility of achieving the intended goal, and (2) whether the usefulness of the

stated goal is dependent on the result of first achieving an all together different goal.

We have identified several ways in which an explanation can be user-specific by providing
additional relevant information that is aimed at blocking inappropriate reasoning or at coopera-

tive. In planning a response, the system should ensure that the current goals, as expressed in the
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user’s queries, are compatible with the user’s higher domain goals (step 2.2 in algorithm). For
example, a plan which leads to the attainment of one goal may lead to the non-attainment of
another when a previously formed plan becomes invalid or may make the sub-goal impossible to
achieve. A user may expect to be informed of such consequences, particularly if the goal which

cannot now be attained is a goal the user values highly (see figure 5.2).

The expert system can be additionally cooperative by suggesting better alternatives if they
exist (step 2.3 in algorithm). Furthermore, both the definitions of better and possible alternatives

are relative to a particular user.

5.4. An Example

Until now we have discussed a model for generating better, user-specific explanations. A
test version of this model has been implemented, in Waterloo UNIX Prolog. Below we present
an example to illustrate how the algorithm and the model of the user work together to produce

these responses and to illustrate some of the details of the implementation.

Given a query by the user, the system determines whether the stated goal of the query is
possible or not possible and whether the stated goal will help achieve the intended goal. In the
hypothetical situation shown in figure 5.5, the stated goal of enrolling in ¢s572 is possible and the

intended goal of taking a numerical analysis course is satisfied!. The system then considers the

1 Recall that we are assuming the stated and intended goals are supplied to our model. This particular in-
tended goal, hypothetically inferred from the stated goal and previous discourse, was chosen to illustrate the
use of the stated, intended, and domain goals in forming a best response. For a more standard intended goal,
like "satisfy the 500 level requirement”, the conflict between stated and intended goal would be handled in a
similar fashion to the conflict between stated and domain goal, shown in this example.
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background of the user (in the course domain: the courses taken), the background of the domain
(in the course domain: what courses are offered) and a query from the user (e.g. "Can I enroll in

cs5727"), and ensures that the goal of the query is compatible with the attainment of the overall

domain goal.

Scenario:

The user asks about enrolling in a 500 level course. Only a certain number of 500 level
courses can be credited towards a degree and the user has already taken that number of 500
level courses.

Stated goal: Enroll in the course.
Intended goal: Take a numerical analysis course.
Domain goal: Get a degree.

User:

Can I enroll in CS 572 (Linear Algebra)?

System:
a) Yes.

b) Yes, but it will not get you further towards your degree since you have already met your
500 level requirement. Some useful courses would be CS 673 (Linear Programming) and
CS 674 (Approximation).

Figure 5.5: Example from student advisor domain




58

In this example, the user’s stated goal of enrolling in a particular course is incompatible with
the user’s higher domain goal of achieving a degree because several pre-conditions fail. That is,
given the background of the user the goal of the query to enroll in ¢s572 will not help achieve the

domain goal. Knowledge of the incompatibility and the failed pre-conditions are used to form the

first sentence of the system’s response.

To suggest better alternatives, the system goes into a planning stage. There is stored in the
system a general plan for accomplishing the higher domain goal of the user. This plan is neces-
sarily incomplete and is used by the system to track the user by instantiating the plan according to
the user’s particular case. The system considers alternative plans to achieve the user’s intended
goal that are compatible with the domain goal. For this particular example, the system discovers

other courses that the user can add which will help achieve the higher goal.

To actually generate alternatives and to check whether the user’s stated goal is compatible
with the user’s domain goal, a module of the implemented system is a Homn clause theorem
prover, built on top of Waterloo Unix Prolog, with the feature that it records a history of the
deduction. The theorem prover generates possible alternative plans by performing deduction on
the goal at the level of the user’s query. That is, the goal is "proven” given the "actions” (e.g.
enroll in a course) and the “constraints” (e.g. prerequisites of the course were taken) of the
domain. In the example of figure 5.5, the expert system has the following Horn clauses in its
knowledge base:

course (cs673, numerical)
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get_degree(Student, Action) <-
receive_credit(Student, Course, Action);
get_degree(Student, []);

receive_credit (Student, Course, Action) <-
counts_for_credit (Student, Course),
enrolled (Student, Course, credit, Action),
do_work (Student, Course),
passing_grade (Student, Course);

receive_credit (Student, Course, Action) <-
enrolled (Student, Course, credit, []),
enrolled (Student, Course, incomplete, Action),
complete_work (Student, Course),
passing_grade (Student, Course);

counts_for_credit (Student, Course) <-
is_500_level (Course),
500_level_taken (Student, N), 1t (N, 2);
counts_for_credit (Student, Course) <-
is_600_level (Course),
600_level_taken (Student, N), It (N, 5);

Figure 5.6: Simplified domain plan for course domain,

course (cs674, numerical)
Figure 5.6 shows a portion of the simplified domain plan for getting a degree. For example, a
course will count for credit if it is a 500 level course and fewer than two 500 level course have
already been counted for credit (since in our hypothetical world, at most two 500 level courses

can be counted for credit towards a degree). Similarly for a 600 level course.



The domain plan is then employed to generate an appropriate response. The clauses can be
used in two ways: (i) to return an action that will help achieve a goal and (ii) to check whether a
particular action is a possible step in a plan to achieve a goal. In the first use, the Action parame-
ter is uninstantiated (a variable), the theorem prover is applied to the clause, and, as a result, the
Action parameter is instantiated with an action the user could perform towards achieving his goal.
In the second case, the Action parameter is bound to a particular action and then the theorem
prover is applied. If the proof succeeds, the particular action is valid step in a plan; if the proof
fails, it is not valid and the history of the deduction will indicate why. In this example, enrolling

in cs673 is one of the valid steps or actions in a plan for achieving a degree.

Note that the system will generate alternative plans even if the user’s query is a step in the
domain plan. In this case the challenge is to find a better solution for the user. The (possibly)
multiple plans are then potential candidates for presenting to the user. These candidates are then
pruned by ranking them according to the heuristic of "which plan would get the user further
towards his goals”. Thus, the better alternatives are the ones that help satisfy multiple goals or
multiple subgoals. One way in which the system can reduce alternatives is to employ previously
derived goals of the user such as those that indicate certain preferences or interests. In the course
domain, for instance, the user may prefer taking numerical analysis courses. For the example in
figure 5.6, the suggested alternatives of cs673 and cs674 help towards the user’s goal of getting a
degree and the user’s goal of taking numerical analysis courses (a middle digit of seven refers to

numerical analysis) and so are preferable?.

2 Note that in this example the user’s intended goal also indicates a preference. Other user preferences
may have been previously specificed; these would be used to influence the response in a similar fashion.
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The system has the ability to further reduce the alternatives displayed to the user. This can
be done by employing domain dependent knowledge. For the course domain a rule of the form:

"A mandatory course is preferable to a non-mandatory course”, may help eliminate presentation

of certain options.

In addition, the system could combine these two methods. Consider the educational diag-
nosis domain where a user asks the system about the learning disabilities of a child. A response
may indicate which further tests the child should be given. Determining these tests involves
reference to the case history of the child being diagnosed (model of child) and domain knowledge
on what makes a test better. A rule such as, "Tests in which the mode of presentation or the
mode of response is the same as that in which the child is having difficulty are less appropriate
than those in which they differ" could be used. But the system could also consider the user’s

preferences in determining which tests should be administered by suggesting tests with which the

user is most familiar.

5.5. Joshi Revisited

The discussion in the previous section showed how our model can recognize when a user’s
plan is incompatible with his domain goals and present better alternative plans that are user-
specific. Here we present examples of how our model can generate the responses enumerated by
Joshi (see figure 4.2). The examples illustrate different aspects of our algorithm and also demon-

strate how our model removes some of the limitations of Joshi’s approach (see section 4.3).
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Zconsult(example_1);

? query(change_status(andrew, 577, credit, nil),
not_fail(andrew, 577, Action));

No, change_status(andrew, 577, credit, nil) is not possible because ...
fail: less_than(date, drop/add-deadline)
There are no alternatives.

yes

2consult(example_2);

? query(change_status(andrew, 577, credit, nil),
not_fail(andrew, 577, Action));

Yes, change_status(andrew, 577, credit, nil) is possible.
But, not_fail(andrew, 577, _461) is not achieved since ...
fail: not_presently_failing(andrew, 577)
However, you can ...
alts: change_status(andrew, 577, credit, incomplete)
This will also help towards receive_credit(_10, _11, _461)

yes

Zconsult(example_3);

? query(change_status(andrew, 577, credit, nil),
not_fail(andrew, 577, Action));

Yes, change_status(andrew, 577, credit, nil) is possible.
But, there is a better way ...

better: change_status(andrew, 577, credit, incomplete)
Because this will also help towards receive_credit(_10, _11, _627)

yes

Figure 5.7: Sample responses
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Figure 5.7 shows three different responses to the same question: "Can I drop CS 5777" The
student asking the question is doing poorly in the course and wishes to drop it in order to avoid
failing it. The goals of the query are passed to the Prolog implementation and the response gen-
erated depends on these goals, the information in the model of the user, and on external condi-
tions such as deadlines for changing status in a course. For example purposes, the domain infor-
mation is read in from a file (e.g. consult(example_1)). Figure 5.8 shows the clausal representa-
tion of the domain goals and plans used in this example. Consider the first clause of the
receive_credit predicate. This clause states that the student will receive credit for a course if the
course can be counted for credit, the student is enrolled in the course, does the work, and gets a

passing grade.

Example 1: In this example, the student’s stated goal (dropping the course) is not possible (see (a)
of figure 4.2). This is case 1.2 of the algorithm. To formulate the response, the theorem prover
is applied to the stated goal and the resulting history of the deduction indicates the reasons why

the goal is not possible. These reasons are then presented to the student.

Example 2: In this example, the stated goal is possible, but it fails in its intention (dropping the
course doesn’t enable the student to avoid failing the course; see (b) of figure 4.2). This is case
2.1 of the algorithm. The system now looks for alternatives that will help achieve the student’s
intended goal and determines that two alternative plans are possible: the student could either
change to audit status or take an incomplete in the course. The plan to take an incomplete is

presented to the user because it is considered the best of the two alternatives; it will allow the



get_degree(S,Action) <-
receive_credit(S, C, Action);
get_degree(S,[]);

receive_credit (S, C, Action) <-
counts_for_credit (S, C), enrolled (S, C, credit, Action),
do_work (S, C), passing_grade (S, C);

receive_credit (S, C, Action) <-
enrolled (S, C, credit, []), enrolled (S, C, incomplete, Action),
complete_work (S, C), passing_grade (S, C);

not_fail (S, C, Action) <-
not_presently_failing (S, C), enrolled (S, C, credit, []),
enrolled (S, C, nil, Action);

not_fail (S, C, Action) <-
enrolled (S, C, credit, [}), enrolled (S, C, incomplete, Action),
finish_work (S, C);

not_fail (S, C, Action) <-
enrolled (S, C, credit, []), enrolled (S, C, audit, Action);

enrolled (S, C, After, change_status (S, C, Before, After)) <-
change_status (S, C, Before, After);

change_status (S, C, Before, After) <-
student (S), course (C, Area),
enrolled (S, C, Before, []), possible (Before, After);

possible (credit, audit) <- less_than (date, audit-deadline);

possible (credit, nil) <- less_than (date, drop/add-deadline);
possible (credit, incomplete) <- less_than (date, incomplete-deadline);

Figure 5.8: Not failing example
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student to still achieve another of his goals: receiving credit for the course.

Example 3: Here the query is possible (the student can drop the course) and is successful in its
intention (dropping the course does enable the student to avoid failing the course; see (c) of fig-
ure 4.2). The system now looks for a better alternative to the student’s plan of dropping the
course (case 2.3 of algorithm) and determines an alternative that achieves the intended goal of
not failing the course but also achieves another of the student’s domain goals: receiving credit for

the course. This better alternative is then presented to the student.

5.6. Misconceptions

In our discussion we have noted that a technically correct answer to a question can poten-
tially mislead the listener. This was found to be the case when there exists a discrepancy between
the beliefs of the user and those of the expert (cf. Kaplan, 1983; see chapter 4). We extend this
idea to the beliefs the user may hold about the relationships between his goals and plans for
achieving those goals and the beliefs the expert has about those goals and plans. This allows us to

identify and present to the user knowledge that may make the misconception clear.

As a simple example, suppose a student believes there is a course called ¢s377 and asks the
system, "Can I enroll in cs377?" If no such course exists, a direct response of "No" would mislead
the student. Our system would respond with the equivalent of "No such course exists". This
much is straightforward since the system was designed to report the reasons for the failure of a

query (Kaplan’s work involved databases where this ability was not part of the initial design).



Scenario:

User:

The child appears to have a language difficulty. He doesn’t speak much and when he does
his sentences are short and choppy with connecting words, prepositions, and articles usually
missing. Testing is aimed at getting a measure of intelligence to determine whether this
disability is a reflection of mental retardation.

Is the Neale Analysis of Reading an appropriate test?

System:

a)

b)

The Neale is a useful test of reading comprehension and reading within context, but it is not

an 1.Q. test. The PPVT (Peabody Picture Vocabulary Test) would be useful in this situa-
tion.

While the Neale may prove to be a useful test later in the diagnosis process, if it is felt
necessary to assess the child’s reading skills, the general level of performance indicates that
testing should first be aimed at getting a measure of intelligence to determine whether this
disability reflects mental retardation or a learning disability. The PPVT is a good test to
give in this situation.

Figure 5.9: Example from educational diagnosis domain

A more complex example is shown in figure 5.9. Here the explanation varies according to

the intended goal a user holds when a question is asked and thus the misconception recognized.

In both of the cases in figure 5.9, the explanation points out that a goal of the user is inappropri-

ate, provides background information aimed at relieving the user of his misconception, and sug-

gests a better alternative. Response (a), formulated at step 2.1 of the algorithm, informs the user

that the stated goal (administering the Neale test) does not achieve his intended goal (administer-
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ing an 1.Q. test). Response (b), formulated at step 2.2 of the algorithm, addresses not the rela-
tionship between the stated goal (administering the Neale test) and its intended goal (assessing
reading skills), but instead addresses the inappropriateness of the stated goal as it relates to the
user’s higher domain goal of planning a remedial program for the child under consideration. The
system determines that the usefulness of the stated goal is dependent on the result of first achiev-
ing an all together different goal. In this case, the user’s goals are necessary for computing a
correct and best response to the user’s queries. An explanation that did not address the miscon-
ception of the user may be unsatisfactory to the user and may even fail to be explanatory. The
present implementation is not able to detect that the user is attempting to execute a step in a plan

out of its proper order which is necessary for response (b).

The example just presented illustrated how the explanation can vary according to the goals
of a user and two possible responses to the same question where shown, with the appropriate
response depending on the user’s intended goal. In general, however, it is very difficult to infer
different goals from the same surface structure. Augmenting the user model to include the
beliefs of the user may help but a system may have to rely on the user being more explicit about

his goals through the dialogue (see section 6.2).



Future Work and Conclusion

In this chapter we recount some of the limitations of the current work, describe possible
future avenues of research for extending the model we presented for generating better explana-

tions and, lastly, present our conclusions.

6.1. Some Current Limitations

The model of the user and the algorithm for utilizing the model presented in the last chapter
are concerned primarily with the user’s background and goals. Some concerns remain with the

present implementation and the representation used.

®  The ability to determine a better plan to achieve the user’s intended goal may suffer from
large search spaces in less restricted domains. Rather than look at all the user’s goals dur-
ing this process, the search should be more focused, perhaps by grouping the goals accord-

ing to what actions they accept.

e In the present implementation the representation of plans and the planning process is too
simplistic. In particular, the frame problem is not adequately dealt with and there are res-
tricted notions of developing and executing plans over time. As a consequence, the reason-

ing about the effects of plans isn’t as elegant as is desirable.
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This has been acceptable so far in our restricted domain, where the emphasis has been on demon-
strating the usefulness of such notions in generating explanations, but further work needs to be
done. As is well known, planning is difficult and a planning component may not always be able

to compose a plan to achieve a goal.

As has been previously noted, our work assumes the existence of methods for inferring the
user’s goals from his utterance. This is not an unrealistic assumption as much work has been
done in this area (see Chapter 3). However, in cases where the user does not explicitly state his
goals, these goals are only hypothesized and are not known with certainty. A neglected aspect of
modeling a user in our work is the correction of the model when further information indicates
that an hypothesis was erroncous. As a complicating factor, some goals, such as the goal of find-

ing a good diagnosis in the educational diagnosis domain, should not be defeasible.

Finally, the future should include work on a component for mapping between the Horn
clause representation used by the program and the English surface form. Kindersley (1986)

investigates a parser for the educational diagnosis domain.

6.2. Modeling the User’s Knowledge About the Domain

We have argued that a system for producing explanations should track the user’s goals,
plans, and preferences throughout the dialogue and make use of them in formulating a response.
Modeling the user’s knowledge about the domain would also be useful in several ways for tailor-

ing a response to a specific user.
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One such way is in trimming a response. To explain something to a person, it is often suffi-
cient to call his attention to some particular fact of which he has not properly taken recognition.
It may be possible, based on some beliefs about the user’s knowledge of the domain, to trim a
response to be in harmony with Grice’s Maxim of Quantity: "be only as informative as is required

for the current purposes of the exchange" (1975).

In some domains it is desirable for an expert system to support explanations for users with
widely diverse backgrounds. To provide this support an expert system should tailor the content of
its explanations according to the user’s knowledge of the domain. An expert system currently
being developed for the diagnosis of a child’s learning disabilities and the recommendation of a
remedial program provides a good example (Jones and Poole 1985; McLeod and Jones 1985).
(Some of our examples are drawn from this domain and were provided by Marlene Jones.)
Psychologists, administrators, teachers, and parents are all potential audiences for explanations.
As well, members within each of these groups will have varying levels of expertise in educational
diagnosis. Cohen and Jones (1986) illustrate the need for different responses through the follow-
ing example:

User:

Could the student’s mispronunciation "errors” be due to dialect?

Response to Parent:

Yes, non-standard pronunciations may be due to dialect rather than poor decoding

skills.

Response to Psychologist:
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Yes, the student’s background indicates the possibility of a dialectal difference.

The parents know that their child speaks a dialect. What they lack and wish to know is some
specific domain knowledge. For the psychologist, the reverse is true; the domain knowledge is
known but the particulars of the child are unknown. Cohen and Jones (1986) provide a frame-
work for varying the content of an explanation based on incorporating a model of the user. The
user model begins with default assumptions based on the user’s group (psychologist, teacher, or
parent). The model is then updated as new information becomes available as the dialogue
progresses. In formulating a response, the system determines which information is relevant to

answering the query and includes that portion of the information which is believed to not be part

of the shared knowledge between the user and the system.

Finally, a model of the user’s beliefs would also be useful in correcting a user’s misconcep-
tions. In the Neale example (figure 5.9), several possibilities exist for the user’s misconception,
such as (i) user is misinformed about case data or is confused about the purpose of a test (facts),
(ii) or user draws wrong conclusion from a test or case data (deduction). The best explanation is

one which addresses directly the user’s underlying misconception.

6.3. Additional Question Types

Several additional question types seem to be amenable to the solution we propose for ques-
tions as to the possibility or advisability of a task. For example, explanation seeking questions of

the standard type "Why is it the case that p?" are often prompted by the belief that another
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alternative, g, should have been the case. And in this event, the questioner may not feel satis-

fied if he is offered an explanation of why p is the case (as in the MYCIN examples of chapter

2).

System:

Administer an individual intelligence test. For this particular case, the Peabody Picture
Vocabulary Test (PPVT) is recommended.

User:
Why is this test being recommended?

System:

The PPVT is being recommended because it does not require verbal responses and the stu-
dent appears to have language problems including difficulties with expressive language.
Hence, the PPVT is more appropriate than more common tests such as the WISC-R or
Stanford Binet.

Figure 6.1 Example from Cohen and Jones (1986)

In the example shown in figure 6.1 (due to Cohen and Jones, 1986), the user questions the
system’s recommendation of a particular intelligence test, preferring instead to administer a more
familiar intelligence test, such as the Stanford Binet. Notice that the user is not asking "why
administer an intelligence test at all”, and such an explanation would be inappropriate. Rather,
the ideal response shown informs the user why his preference is incompatible with the higher goal

of determining a good diagnosis. Our model is capable of responding to such requests for the
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comparison of alternatives. The difficult problem does remain, however, of determining the

user’s intent in asking the question.

6.4. Conclusion

We have argued that in generating natural language explanations or responses an expert sys-
tem must adhere to the pragmatic discourse conventions followed by human experts, particularly
those that relate to cooperative behavior. In a task oriented context, user’s of human experts
may expect the‘ expert to (i) recognize what goals and plans for attaining those goals they are
attempting to achieve and respond to questions regarding those goals and plans appropriately, (ii)
respond in terms of a better plan if the recognized one is either not the best plan or inappropriate
for attaining the user’s perceived goals. The use of a natural language explanation facility for a
computer system that is experr will imply to the user that the responses adhere to the normal
expectations of cooperative expert behavior. Not meeting these expectations may well confuse

and mislead the user and will certainly not provide the best explanation or response.

Joshi (1984a, 1984b), presents examples where an advice-giving system should anticipate the
possibility of the user drawing false conclusions from its response because of violated expectations
and hence should alter or expand its response so as to prevent this from happening. Joshi’s
approach involves only the immediate goals of the user’s query and does not present a general

method of computing these responses.
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Building on this research, we describe a model of the user based on a tracking and
representing the user’s goals, plans for achieving goals, and preferences among these goals and
plans. An algorithm is presented which uses this model, together with the immediate goals of the
query, to generate cooperative, helpful responses. By reasoning about the user’s goals and plans,
the algorithm can generate and present better alternatives to a user’s task related query goal.
Moreover, the algorithm can recognize several classes of direct responses which may violate the

user’s expectations of cooperative expert behavior and thus modifying the response to avoid

misleading or confusing the user.

Our implementation has supported the claim that the approach is useful in an expert system
environment where the user and the system work cooperatively towards common goals through
the dialogue and the user’s utterances may be viewed as actions in plans for achieving those
goals. While our focus and examples have been on explanation in the context of expert advice
giving systems, we feel this approach is applicable to a broad range of question types and to
expert system explanation generation in general. We believe the present work is a small but

never the less worthwhile step towards better and user-specific explanations from expert systems.
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